1
|
Liang X, Tan S, Chen Y, Wei C, Qin Z. Bioinformatics exploration of SPHKAP's role in IDH-mutant glioma involving energy metabolism, prognosis, and immune modulation. J Neuroimmunol 2025; 402:578570. [PMID: 40058165 DOI: 10.1016/j.jneuroim.2025.578570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 02/22/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The current understanding of glioma pathogenesis is limited by the lack of comprehensive insights into the metabolic reprogramming associated with isocitrate dehydrogenase (IDH) mutations. This study aims to contribute a step to this gap by investigating the role of energy metabolism-related genes in glioma. Our objective is to identify key molecular markers that could serve as prognostic markers and potential therapeutic targets for more effective treatment strategies in IDH-mutant glioma patients. METHODS We conducted an in-depth analysis of gene expression data from TCGA, CGGA, and GEO databases, employing Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis to pinpoint candidate genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to elucidate the biological pathways implicated by these genes. Protein-Protein Interaction (PPI) and Gene Multiple Association Network Integration Algorithm (GeneMANIA) networks were constructed to map gene interactions, and survival analysis and Cox regression models were utilized to assess the prognostic value of the identified genes. Additionally, CIBERSORT was used to evaluate immune cell infiltration in the tumor microenvironment. RESULTS Our findings identified SPHKAP as a gene significantly downregulated in glioma tissues compared to control samples. Specifically, low SPHKAP expression was associated with a poorer prognosis of patients with IDH-mutant glioma and linked to the expression of key enzymes involved in energy metabolism. Meanwhile, in IDH-mutant gliomas, reduced SPHKAP expression was correlated with increased macrophage infiltration, enhanced T cell response, and upregulation of immune checkpoint genes, highlighting its role as an independent prognostic marker. CONCLUSION This study reveals the differential expression of SPHKAP in glioma, suggesting its potential as a prognostic marker for IDH-mutant gliomas, providing information for future studies aimed at developing targeted therapies for glioma patients.
Collapse
Affiliation(s)
- Xi Liang
- Department of Neurosurgery, Guangxi Hospital, the First Affiliated Hospital of Sun Yat-sen University, Qingxiu District, Nanning 530022, PR China.
| | - Shi Tan
- Department of Neurosurgery, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China
| | - Yuecheng Chen
- Department of Neurosurgery, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China
| | - Cuirong Wei
- Department of Pathology, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China
| | - Zhongqiao Qin
- Department of Neurosurgery, Guigang City People's Hospital, Gangbei District, Guigang 537100, PR China.
| |
Collapse
|
2
|
Lee YK, Xiao C, Zhou X, Wang L, McReynolds MG, Wu Z, Purisic E, Kim H, Li X, Pang ZP, Dai J, Peng J, Yang N, Yue Z. Bipolar and schizophrenia risk gene AKAP11 encodes an autophagy receptor coupling the regulation of PKA kinase network homeostasis to synaptic transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630813. [PMID: 39803523 PMCID: PMC11722322 DOI: 10.1101/2024.12.30.630813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Human genomic studies have identified protein-truncating variants in AKAP11 associated with both bipolar disorder and schizophrenia, implicating a shared disease mechanism driven by loss-of-function. AKAP11, a protein kinase A (PKA) adaptor, plays a key role in degrading the PKA-RI complex through selective autophagy. However, the neuronal functions of AKAP11 and the impact of its loss-of-function remains largely uncharacterized. Through multi-omics approaches, cell biology, and electrophysiology analysis in mouse models and human induced neurons, we delineated a central role of AKAP11 in coupling PKA kinase network regulation to synaptic transmission. Loss of AKAP11 disrupted PKA activity and impaired cellular functions that significantly overlap with pathways associated with the psychiatric disease. Moreover, we identified interactions between AKAP11, the PKA-RI adaptor SPHKAP, and the ER-resident autophagy-related proteins VAPA/B, which co-adapt and mediate PKA-RI degradation. Notably, AKAP11 deficiency impaired neurotransmission and decreased presynaptic protein levels in neurons, providing key insights into the mechanism underlying AKAP11-associated psychiatric diseases.
Collapse
|
3
|
Kelly ED, Ranek MJ, Zhang M, Kass DA, Muller GK. Phosphodiesterases: Evolving Concepts and Implications for Human Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:415-441. [PMID: 39322437 DOI: 10.1146/annurev-pharmtox-031524-025239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs in normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.
Collapse
Affiliation(s)
- Evan D Kelly
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manling Zhang
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Grace K Muller
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| |
Collapse
|
4
|
Vierra NC. Compartmentalized signaling in the soma: Coordination of electrical and protein kinase A signaling at neuronal ER-plasma membrane junctions. Bioessays 2024; 46:e2400126. [PMID: 39268818 DOI: 10.1002/bies.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Neuronal information processing depends on converting membrane depolarizations into compartmentalized biochemical signals that can modify neuronal activity and structure. However, our understanding of how neurons translate electrical signals into specific biochemical responses remains limited, especially in the soma where gene expression and ion channel function are crucial for neuronal activity. Here, I emphasize the importance of physically compartmentalizing action potential-triggered biochemical reactions within the soma. Emerging evidence suggests that somatic endoplasmic reticulum-plasma membrane (ER-PM) junctions are specialized organelles that coordinate electrical and biochemical signaling. The juxtaposition of ion channels and signaling proteins at a prominent subset of these sites enables compartmentalized calcium and cAMP-dependent protein kinase (PKA) signaling. I explore the hypothesis that these PKA-containing ER-PM junctions serve as critical sites for translating membrane depolarizations into PKA signals and identify key gaps in knowledge of the assembly, regulation, and neurobiological functions of this somatic signaling system.
Collapse
Affiliation(s)
- Nicholas C Vierra
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Bartošík V, Plucarová J, Laníková A, Janáčková Z, Padrta P, Jansen S, Vařečka V, Gruber T, Feller SM, Žídek L. Structural basis of binding the unique N-terminal domain of microtubule-associated protein 2c to proteins regulating kinases of signaling pathways. J Biol Chem 2024; 300:107551. [PMID: 39002671 PMCID: PMC11367651 DOI: 10.1016/j.jbc.2024.107551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.
Collapse
Affiliation(s)
- Viktor Bartošík
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Plucarová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alice Laníková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Janáčková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Padrta
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Séverine Jansen
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vojtěch Vařečka
- Institute of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tobias Gruber
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Lukáš Žídek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
6
|
Vierra NC, Ribeiro-Silva L, Kirmiz M, van der List D, Bhandari P, Mack OA, Carroll J, Le Monnier E, Aicher SA, Shigemoto R, Trimmer JS. Neuronal ER-plasma membrane junctions couple excitation to Ca 2+-activated PKA signaling. Nat Commun 2023; 14:5231. [PMID: 37633939 PMCID: PMC10460453 DOI: 10.1038/s41467-023-40930-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Junctions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are specialized membrane contacts ubiquitous in eukaryotic cells. Concentration of intracellular signaling machinery near ER-PM junctions allows these domains to serve critical roles in lipid and Ca2+ signaling and homeostasis. Subcellular compartmentalization of protein kinase A (PKA) signaling also regulates essential cellular functions, however, no specific association between PKA and ER-PM junctional domains is known. Here, we show that in brain neurons type I PKA is directed to Kv2.1 channel-dependent ER-PM junctional domains via SPHKAP, a type I PKA-specific anchoring protein. SPHKAP association with type I PKA regulatory subunit RI and ER-resident VAP proteins results in the concentration of type I PKA between stacked ER cisternae associated with ER-PM junctions. This ER-associated PKA signalosome enables reciprocal regulation between PKA and Ca2+ signaling machinery to support Ca2+ influx and excitation-transcription coupling. These data reveal that neuronal ER-PM junctions support a receptor-independent form of PKA signaling driven by membrane depolarization and intracellular Ca2+, allowing conversion of information encoded in electrical signals into biochemical changes universally recognized throughout the cell.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA.
| | - Luisa Ribeiro-Silva
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| | - Michael Kirmiz
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| | - Deborah van der List
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| | - Pradeep Bhandari
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Olivia A Mack
- Chemical Physiology and Biochemistry Department, Oregon Health & Science University, Portland, OR, USA
| | - James Carroll
- Chemical Physiology and Biochemistry Department, Oregon Health & Science University, Portland, OR, USA
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Sue A Aicher
- Chemical Physiology and Biochemistry Department, Oregon Health & Science University, Portland, OR, USA
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA.
| |
Collapse
|
7
|
Yin Y, Wang F, Ma Y, Yang J, Li R, Li Y, Wang J, Liu H. Structural and functional changes in drug-naïve benign childhood epilepsy with centrotemporal spikes and their associated gene expression profiles. Cereb Cortex 2023; 33:5774-5782. [PMID: 36444721 PMCID: PMC10183734 DOI: 10.1093/cercor/bhac458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022] Open
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common pediatric epilepsy syndrome that has been widely reported to show abnormal brain structure and function. However, the genetic mechanisms underlying structural and functional changes remain largely unknown. Based on the structural and resting-state functional magnetic resonance imaging data of 22 drug-naïve children with BECTS and 33 healthy controls, we conducted voxel-based morphology (VBM) and fractional amplitude of low-frequency fluctuation (fALFF) analyses to compare cortical morphology and spontaneous brain activity between the 2 groups. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analyses were applied to explore gene expression profiles associated with gray matter volume (GMV) and fALFF changes in BECTS. VBM analysis demonstrated significantly increased GMV in the right brainstem and right middle cingulate gyrus in BECTS. Moreover, children with BECTS exhibited significantly increased fALFF in left temporal pole, while decreased fALFF in right thalamus and left precuneus. These brain structural and functional alterations were closely related to behavioral and cognitive deficits, and the fALFF-linked gene expression profiles were enriched in voltage-gated ion channel and synaptic activity as well as neuron projection. Our findings suggest that brain morphological and functional abnormalities in children with BECTS involve complex polygenic genetic mechanisms.
Collapse
Affiliation(s)
- Yu Yin
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| |
Collapse
|
8
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
9
|
Kovanich D, Low TY, Zaccolo M. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling. Int J Mol Sci 2023; 24:4667. [PMID: 36902098 PMCID: PMC10003371 DOI: 10.3390/ijms24054667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
10
|
Young KL, Fisher V, Deng X, Brody JA, Graff M, Lim E, Lin BM, Xu H, Amin N, An P, Aslibekyan S, Fohner AE, Hidalgo B, Lenzini P, Kraaij R, Medina-Gomez C, Prokić I, Rivadeneira F, Sitlani C, Tao R, van Rooij J, Zhang D, Broome JG, Buth EJ, Heavner BD, Jain D, Smith AV, Barnes K, Boorgula MP, Chavan S, Darbar D, De Andrade M, Guo X, Haessler J, Irvin MR, Kalyani RR, Kardia SLR, Kooperberg C, Kim W, Mathias RA, McDonald ML, Mitchell BD, Peyser PA, Regan EA, Redline S, Reiner AP, Rich SS, Rotter JI, Smith JA, Weiss S, Wiggins KL, Yanek LR, Arnett D, Heard-Costa NL, Leal S, Lin D, McKnight B, Province M, van Duijn CM, North KE, Cupples LA, Liu CT. Whole-exome sequence analysis of anthropometric traits illustrates challenges in identifying effects of rare genetic variants. HGG ADVANCES 2023; 4:100163. [PMID: 36568030 PMCID: PMC9772568 DOI: 10.1016/j.xhgg.2022.100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.
Collapse
Affiliation(s)
- Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Virginia Fisher
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Xuan Deng
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Misa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Elise Lim
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Bridget M Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Ping An
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA 98101, USA.,Institute for Public Health Genetics, University of Washington, Seattle, WA 98101, USA
| | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Petra Lenzini
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Ivana Prokić
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Colleen Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Di Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA.,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Erin J Buth
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Benjamin D Heavner
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen Barnes
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Tempus Labs, Chicago, IL 60654, USA
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sameer Chavan
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza De Andrade
- Health Quantitative Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rita R Kalyani
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Merry-Lynn McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Susan Redline
- Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98101, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donna Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | | | - Suzanne Leal
- Department of Neurology, Columbia University, New York City, NY, USA
| | - Danyu Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Michael Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| |
Collapse
|
11
|
Rasmussen M, Welinder C, Schwede F, Ekström P. The stereospecific interaction sites and target specificity of cGMP analogs in mouse cortex. Chem Biol Drug Des 2021; 99:206-221. [PMID: 34687134 DOI: 10.1111/cbdd.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
cGMP interactors play a role in several pathologies and may be targets for cGMP analog-based drugs, but the success of targeting depends on the biochemical stereospecificity between the cGMP-analog and the interactor. The stereospecificity between general cGMP analogs-or such that are selectivity-modified to obtain, for example, inhibitory actions on a specific target, like the cGMP-dependent protein kinase-have previously been investigated. However, the importance of stereospecificity for cGMP-analog binding to interactors is not known. We, therefore, applied affinity chromatography on mouse cortex proteins utilizing analogs with cyclic phosphate (8-AET-cGMP, 2-AH-cGMP, 2'-AHC-cGMP) and selectivity-modified analogs with sulfur-containing cyclic phosphorothioates (Rp/Sp-8-AET-cGMPS, Rp/Sp-2'-AHC-cGMPS) immobilized to agaroses. The results illustrate the cGMP analogs' stereospecific binding for PKG, PKA regulatory subunits and PKA catalytic subunits, PDEs, and EPAC2 and the involvement of these in various KEGG pathways. For the seven agaroses, PKG, PKA regulatory subunits, and PKA catalytic subunits were more prone to be enriched by 2-AH-, 8-AET-, Rp-8-AET-, and Sp-8-AET-cGMP, whereas PDEs and EPAC2 were more likely to be enriched by 2-AH-, Rp-2'-AHC-, and Rp-8-AET-cGMP. Our findings help elucidate the stereospecific-binding sites essential for the interaction between individual cGMP analogs and cGMP-binding proteins, as well as the cGMP analogs' target specificity, which are two crucial parameters in drug design.
Collapse
Affiliation(s)
- Michel Rasmussen
- Faculty of Medicine, Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co. KG, Bremen, Germany
| | - Per Ekström
- Faculty of Medicine, Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Schleicher K, Zaccolo M. Axelrod Symposium 2019: Phosphoproteomic Analysis of G-Protein-Coupled Pathways. Mol Pharmacol 2021; 99:383-391. [PMID: 32111700 DOI: 10.1124/mol.119.118869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
By limiting unrestricted activation of intracellular effectors, compartmentalized signaling of cyclic nucleotides confers specificity to extracellular stimuli and is critical for the development and health of cells and organisms. Dissecting the molecular mechanisms that allow local control of cyclic nucleotide signaling is essential for our understanding of physiology and pathophysiology, but mapping the dynamics and regulation of compartmentalized signaling is a challenge. In this minireview we summarize advanced imaging and proteomics techniques that have been successfully used to probe compartmentalized cAMP signaling in eukaryotic cells. Subcellularly targeted fluorescence resonance energy transfer sensors can precisely locate and measure compartmentalized cAMP, and this allows us to estimate the range of effector activation. Because cAMP effector proteins often cluster together with their targets and cAMP regulatory proteins to form discrete cAMP signalosomes, proteomics and phosphoproteomics analysis have more recently been used to identify additional players in the cAMP-signaling cascade. We propose that the synergistic use of the techniques discussed could prove fruitful in generating a detailed map of cAMP signalosomes and reveal new details of compartmentalized signaling. Compiling a dynamic map of cAMP nanodomains in defined cell types would establish a blueprint for better understanding the alteration of signaling compartments associated with disease and would provide a molecular basis for targeted therapeutic strategies. SIGNIFICANCE STATEMENT: cAMP signaling is compartmentalized. Some functionally important cellular signaling compartments operate on a nanometer scale, and their integrity is essential to maintain cellular function and appropriate responses to extracellular stimuli. Compartmentalized signaling provides an opportunity for precision medicine interventions. Our detailed understanding of the composition, function, and regulation of cAMP-signaling nanodomains in health and disease is essential and will benefit from harnessing the right combination of advanced biochemical and imaging techniques.
Collapse
Affiliation(s)
- Katharina Schleicher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
14
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Di Benedetto G, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: Where, when, why. Cell Calcium 2020; 93:102320. [PMID: 33296837 DOI: 10.1016/j.ceca.2020.102320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy.
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| |
Collapse
|
16
|
Lobo MJ, Reverte-Salisa L, Chao YC, Koschinski A, Gesellchen F, Subramaniam G, Jiang H, Pace S, Larcom N, Paolocci E, Pfeifer A, Zanivan S, Zaccolo M. Phosphodiesterase 2A2 regulates mitochondria clearance through Parkin-dependent mitophagy. Commun Biol 2020; 3:596. [PMID: 33087821 PMCID: PMC7578833 DOI: 10.1038/s42003-020-01311-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed degradation of mitochondria by mitophagy, an essential process to maintain mitochondrial homeostasis, is not completely understood. Here we uncover a regulatory process that controls mitophagy and involves the cAMP-degrading enzyme phosphodiesterase 2A2 (PDE2A2). We find that PDE2A2 is part of a mitochondrial signalosome at the mitochondrial inner membrane where it interacts with the mitochondrial contact site and organizing system (MICOS). As part of this compartmentalised signalling system PDE2A2 regulates PKA-mediated phosphorylation of the MICOS component MIC60, resulting in modulation of Parkin recruitment to the mitochondria and mitophagy. Inhibition of PDE2A2 is sufficient to regulate mitophagy in the absence of other triggers, highlighting the physiological relevance of PDE2A2 in this process. Pharmacological inhibition of PDE2 promotes a 'fat-burning' phenotype to retain thermogenic beige adipocytes, indicating that PDE2A2 may serve as a novel target with potential for developing therapies for metabolic disorders.
Collapse
Affiliation(s)
- Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Frank Gesellchen
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - He Jiang
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Samuel Pace
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Natasha Larcom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ester Paolocci
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology University of Bonn, Bonn, Germany
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Omar MH, Scott JD. AKAP Signaling Islands: Venues for Precision Pharmacology. Trends Pharmacol Sci 2020; 41:933-946. [PMID: 33082006 DOI: 10.1016/j.tips.2020.09.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Regulatory enzymes often have different roles in distinct subcellular compartments. Yet, most drugs indiscriminately saturate the cell. Thus, subcellular drug-delivery holds promise as a means to reduce off-target pharmacological effects. A-kinase anchoring proteins (AKAPs) sequester combinations of signaling enzymes within subcellular microdomains. Targeting drugs to these 'signaling islands' offers an opportunity for more precise delivery of therapeutics. Here, we review mechanisms that bestow protein kinase A (PKA) versatility inside the cell, appraise recent advances in exploiting AKAPs as platforms for precision pharmacology, and explore the impact of methodological innovations on AKAP research.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
18
|
Bucko PJ, Scott JD. Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annu Rev Pharmacol Toxicol 2020; 61:361-379. [PMID: 32628872 DOI: 10.1146/annurev-pharmtox-022420-112134] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
19
|
Ikeda M, Takahashi A, Kamatani Y, Momozawa Y, Saito T, Kondo K, Shimasaki A, Kawase K, Sakusabe T, Iwayama Y, Toyota T, Wakuda T, Kikuchi M, Kanahara N, Yamamori H, Yasuda Y, Watanabe Y, Hoya S, Aleksic B, Kushima I, Arai H, Takaki M, Hattori K, Kunugi H, Okahisa Y, Ohnuma T, Ozaki N, Someya T, Hashimoto R, Yoshikawa T, Kubo M, Iwata N. Genome-Wide Association Study Detected Novel Susceptibility Genes for Schizophrenia and Shared Trans-Populations/Diseases Genetic Effect. Schizophr Bull 2019; 45:824-834. [PMID: 30285260 PMCID: PMC6581133 DOI: 10.1093/schbul/sby140] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWASs) have identified >100 susceptibility loci for schizophrenia (SCZ) and demonstrated that SCZ is a polygenic disorder determined by numerous genetic variants but with small effect size. We conducted a GWAS in the Japanese (JPN) population (a) to detect novel SCZ-susceptibility genes and (b) to examine the shared genetic risk of SCZ across (East Asian [EAS] and European [EUR]) populations and/or that of trans-diseases (SCZ, bipolar disorder [BD], and major depressive disorder [MDD]) within EAS and between EAS and EUR (trans-diseases/populations). Among the discovery GWAS subjects (JPN-SCZ GWAS: 1940 SCZ cases and 7408 controls) and replication dataset (4071 SCZ cases and 54479 controls), both comprising JPN populations, 3 novel susceptibility loci for SCZ were identified: SPHKAP (Pbest = 4.1 × 10-10), SLC38A3 (Pbest = 5.7 × 10-10), and CABP1-ACADS (Pbest = 9.8 × 10-9). Subsequent meta-analysis between our samples and those of the Psychiatric GWAS Consortium (PGC; EUR samples) and another study detected 12 additional susceptibility loci. Polygenic risk score (PRS) prediction revealed a shared genetic risk of SCZ across populations (Pbest = 4.0 × 10-11) and between SCZ and BD in the JPN population (P ~ 10-40); however, a lower variance-explained was noted between JPN-SCZ GWAS and PGC-BD or MDD within/across populations. Genetic correlation analysis supported the PRS results; the genetic correlation between JPN-SCZ and PGC-SCZ was ρ = 0.58, whereas a similar/lower correlation was observed between the trans-diseases (JPN-SCZ vs JPN-BD/EAS-MDD, rg = 0.56/0.29) or trans-diseases/populations (JPN-SCZ vs PGC-BD/MDD, ρ = 0.38/0.12). In conclusion, (a) Fifteen novel loci are possible susceptibility genes for SCZ and (b) SCZ "risk" effect is shared with other psychiatric disorders even across populations.
Collapse
Affiliation(s)
- Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kenji Kondo
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ayu Shimasaki
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Kawase
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takaya Sakusabe
- Faculty of Clinical Engineering, Fujita Health University, School of Health Sciences, Toyoake, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Heii Arai
- Depearmtnt of Psychaitry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tohru Ohnuma
- Depearmtnt of Psychaitry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Osaka University, Suita, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan,To whom correspondence should be addressed; Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan; tel: 81-562-93-9250, fax: 81-562-93-1831, e-mail:
| |
Collapse
|
20
|
Krombeen SK, Shankar V, Noorai RE, Saski CA, Sharp JL, Wilson ME, Wilmoth TA. The identification of differentially expressed genes between extremes of placental efficiency in maternal line gilts on day 95 of gestation. BMC Genomics 2019; 20:254. [PMID: 30925895 PMCID: PMC6441153 DOI: 10.1186/s12864-019-5626-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background Placental efficiency (PE) describes the relationship between placental and fetal weights (fetal wt/placental wt). Within litters, PE can vary drastically, resulting in similarly sized pigs associated with differently sized placentas, up to a 25% weight difference. However, the mechanisms enabling the smaller placenta to grow a comparable littermate are unknown. To elucidate potential mechanisms, morphological measurements and gene expression profiles in placental and associated endometrial tissues of high PE and low PE feto-placental units were compared. Tissue samples were obtained from eight maternal line gilts during gestational day 95 ovario-hysterectomies. RNA was extracted from tissues of feto-placental units with the highest and lowest PE in each litter and sequenced. Results Morphological measurements, except placental weight, were not different (P > 0.05) between high and low PE. No DEG were identified in the endometrium and 214 DEG were identified in the placenta (FDR < 0.1), of which 48% were upregulated and 52% were downregulated. Gene ontology (GO) analysis revealed that a large percentage of DEG were involved in catalytic activity, binding, transporter activity, metabolism, biological regulation, and localization. Four GO terms were enriched in the upregulated genes and no terms were enriched in the downregulated genes (FDR < 0.05). Eight statistically significant correlations (P < 0.05) were identified between the morphological measurements and DEG. Conclusion Morphological measures between high and low PE verified comparisons were of similarly sized pigs grown on different sized placentas, and indicated that any negative effects of a reduced placental size on fetal growth were not evident by day 95. The identification of DEG in the placenta, but absence of DEG in the endometrium confirmed that the placenta responds to the fetus. The GO analyses provided evidence that extremes of PE are differentially regulated, affecting components of placental transport capacity like nutrient transport and blood flow. However, alternative GO terms were identified, indicating the complexity of the relationship between placental and fetal weights. These findings support the use of PE as a marker of placental function and provide novel insight into the genetic control of PE, but further research is required to make PE production applicable.
Collapse
Affiliation(s)
- Shanice K Krombeen
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC, 29634, USA
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Rooksana E Noorai
- Genomics and Bioinformatics Facility, Clemson University, Clemson, SC, 29634, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Julia L Sharp
- Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Matthew E Wilson
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Tiffany A Wilmoth
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
21
|
Aggarwal S, Gabrovsek L, Langeberg LK, Golkowski M, Ong SE, Smith FD, Scott JD. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem 2019; 294:3152-3168. [PMID: 30598507 PMCID: PMC6398132 DOI: 10.1074/jbc.ra118.006741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
Breast cancer screening and new precision therapies have led to improved patient outcomes. Yet, a positive prognosis is less certain when primary tumors metastasize. Metastasis requires a coordinated program of cellular changes that promote increased survival, migration, and energy consumption. These pathways converge on mitochondrial function, where distinct signaling networks of kinases, phosphatases, and metabolic enzymes regulate these processes. The protein kinase A-anchoring protein dAKAP1 compartmentalizes protein kinase A (PKA) and other signaling enzymes at the outer mitochondrial membrane and thereby controls mitochondrial function and dynamics. Modulation of these processes occurs in part through regulation of dynamin-related protein 1 (Drp1). Here, we report an inverse relationship between the expression of dAKAP1 and mesenchymal markers in breast cancer. Molecular, cellular, and in silico analyses of breast cancer cell lines confirmed that dAKAP1 depletion is associated with impaired mitochondrial function and dynamics, as well as with increased glycolytic potential and invasiveness. Furthermore, disruption of dAKAP1-PKA complexes affected cell motility and mitochondrial movement toward the leading edge in invasive breast cancer cells. We therefore propose that depletion of dAKAP1-PKA "signaling islands" from the outer mitochondrial membrane augments progression toward metastatic breast cancer.
Collapse
Affiliation(s)
- Stacey Aggarwal
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Laura Gabrovsek
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Lorene K Langeberg
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Martin Golkowski
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Shao-En Ong
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - F Donelson Smith
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - John D Scott
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
22
|
Liu Y, Harashima S, Wang Y, Suzuki K, Tokumoto S, Usui R, Tatsuoka H, Tanaka D, Yabe D, Harada N, Hayashi Y, Inagaki N. Sphingosine kinase 1–interacting protein is a dual regulator of insulin and incretin secretion. FASEB J 2019; 33:6239-6253. [DOI: 10.1096/fj.201801783rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanyan Liu
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Shin‐Ichi Harashima
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Yu Wang
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Kazuyo Suzuki
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Shinsuke Tokumoto
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Ryota Usui
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Hisato Tatsuoka
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Daisuke Tanaka
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Daisuke Yabe
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Norio Harada
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Yoshitaka Hayashi
- Division of Stress Adaptation and ProtectionDepartment of GeneticsResearch Institute of Environmental MedicineNagoya University Nagoya Japan
| | - Nobuya Inagaki
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| |
Collapse
|
23
|
Lim YT, Prabhu N, Dai L, Go KD, Chen D, Sreekumar L, Egeblad L, Eriksson S, Chen L, Veerappan S, Teo HL, Tan CSH, Lengqvist J, Larsson A, Sobota RM, Nordlund P. An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions. PLoS One 2018; 13:e0208273. [PMID: 30521565 PMCID: PMC6283526 DOI: 10.1371/journal.pone.0208273] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/14/2018] [Indexed: 12/03/2022] Open
Abstract
Metabolite-protein interactions define the output of metabolic pathways and regulate many cellular processes. Although diseases are often characterized by distortions in metabolic processes, efficient means to discover and study such interactions directly in cells have been lacking. A stringent implementation of proteome-wide Cellular Thermal Shift Assay (CETSA) was developed and applied to key cellular nucleotides, where previously experimentally confirmed protein-nucleotide interactions were well recaptured. Many predicted, but never experimentally confirmed, as well as novel protein-nucleotide interactions were discovered. Interactions included a range of different protein families where nucleotides serve as substrates, products, co-factors or regulators. In cells exposed to thymidine, a limiting precursor for DNA synthesis, both dose- and time-dependence of the intracellular binding events for sequentially generated thymidine metabolites were revealed. Interactions included known cancer targets in deoxyribonucleotide metabolism as well as novel interacting proteins. This stringent CETSA based strategy will be applicable for a wide range of metabolites and will therefore greatly facilitate the discovery and studies of interactions and specificities of the many metabolites in human cells that remain uncharacterized.
Collapse
Affiliation(s)
- Yan Ting Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dan Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lekshmy Sreekumar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Louise Egeblad
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Staffan Eriksson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Liyan Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Saranya Veerappan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hsiang Ling Teo
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Chris Soon Heng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Johan Lengqvist
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Larsson
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Radoslaw M. Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail: (PN); (RMS)
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail: (PN); (RMS)
| |
Collapse
|
24
|
The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells. Biochim Biophys Acta Rev Cancer 2018; 1869:293-302. [PMID: 29673970 DOI: 10.1016/j.bbcan.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.
Collapse
|
25
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
26
|
Magnesium Extravaganza: A Critical Compendium of Current Research into Cellular Mg 2+ Transporters Other than TRPM6/7. Rev Physiol Biochem Pharmacol 2018; 176:65-105. [PMID: 30406297 DOI: 10.1007/112_2018_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnesium research has boomed within the last 20 years. The real breakthrough came at the start of the new millennium with the discovery of a plethora of possible Mg homeostatic factors that, in particular, included putative Mg2+ transporters. Until that point, Mg research was limited to biochemical and physiological work, as no target molecular entities were known that could be used to explore the molecular biology of Mg homeostasis at the level of the cell, tissue, organ, or organism and to translate such knowledge into the field of clinical medicine and pharmacology. Because of the aforementioned, Mg2+ and Mg homeostasis, both of which had been heavily marginalized within the biomedical field in the twentieth century, have become overnight a focal point of many studies ranging from primary biomedical research to translational medicine.The amount of literature concerning cellular Mg2+ transport and cellular Mg homeostasis is increasing, together with a certain amount of confusion, especially about the function(s) of the newly discovered and, in the majority of instances, still only putative Mg2+ transporters/Mg2+ homeostatic factors. Newcomers to the field of Mg research will thus find it particularly difficult to orient themselves.Here, we briefly but critically summarize the status quo of the current understanding of the molecular entities behind cellular Mg2+ homeostasis in mammalian/human cells other than TRPM6/7 chanzymes, which have been universally accepted as being unspecific cation channel kinases allowing the flux of Mg2+ while constituting the major gateway for Mg2+ to enter the cell.
Collapse
|
27
|
Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal 2017; 37:1-11. [PMID: 28528970 DOI: 10.1016/j.cellsig.2017.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023]
Abstract
Cellular signal transmission requires the dynamic formation of spatiotemporally controlled molecular interactions. At the cell surface information is received by receptor complexes and relayed through intracellular signaling platforms which organize the actions of functionally interacting signaling enzymes and substrates. The list of hormone or neurotransmitter pathways that utilize the ubiquitous cAMP-sensing protein kinase A (PKA) system is expansive. This requires that the specificity, duration, and intensity of PKA responses are spatially and temporally restricted. Hereby, scaffolding proteins take the center stage for ensuring proper signal transmission. They unite second messenger sensors, activators, effectors, and kinase substrates within cellular micro-domains to precisely control and route signal propagation. A-kinase anchoring proteins (AKAPs) organize such subcellular signalosomes by tethering the PKA holoenzyme to distinct cell compartments. AKAPs differ in their modular organization showing pathway specific arrangements of interaction motifs or domains. This enables the cell- and compartment- guided assembly of signalosomes with unique enzyme composition and function. The AKAP-mediated clustering of cAMP and other second messenger sensing and interacting signaling components along with functional successive enzymes facilitates the rapid and precise dissemination of incoming signals. This review article delineates examples for different means of PKA regulation and for snapshots of compartmentalized PKA signalosomes.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
28
|
Pseudoscaffolds and anchoring proteins: the difference is in the details. Biochem Soc Trans 2017; 45:371-379. [PMID: 28408477 DOI: 10.1042/bst20160329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
Abstract
Pseudokinases and pseudophosphatases possess the ability to bind substrates without catalyzing their modification, thereby providing a mechanism to recruit potential phosphotargets away from active enzymes. Since many of these pseudoenzymes possess other characteristics such as localization signals, separate catalytic sites, and protein-protein interaction domains, they have the capacity to influence signaling dynamics in local environments. In a similar manner, the targeting of signaling enzymes to subcellular locations by A-kinase-anchoring proteins (AKAPs) allows for precise and local control of second messenger signaling events. Here, we will discuss how pseudoenzymes form 'pseudoscaffolds' and compare and contrast this compartment-specific regulatory role with the signal organization properties of AKAPs. The mitochondria will be the focus of this review, as they are dynamic organelles that influence a broad range of cellular processes such as metabolism, ATP synthesis, and apoptosis.
Collapse
|
29
|
Sphingosine kinase 1-interacting protein is a novel regulator of glucose-stimulated insulin secretion. Sci Rep 2017; 7:779. [PMID: 28396589 PMCID: PMC5429731 DOI: 10.1038/s41598-017-00900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) is essential in keeping blood glucose levels within normal range. GSIS is impaired in type 2 diabetes, and its recovery is crucial in treatment of the disease. We find here that sphingosine kinase 1-interacting protein (SKIP, also called Sphkap) is highly expressed in pancreatic β-cells but not in α-cells. Intraperitoneal glucose tolerance test showed that plasma glucose levels were decreased and insulin levels were increased in SKIP−/− mice compared to SKIP+/+ mice, but exendin-4-enhanced insulin secretion was masked. GSIS was amplified more in SKIP−/− but exendin-4-enhanced insulin secretion was masked compared to that in SKIP+/+ islets. The ATP and cAMP content were similarly increased in SKIP+/+ and SKIP−/− islets; depolarization-evoked, PKA and cAMP-mediated insulin secretion were not affected. Inhibition of PDE activity equally augmented GSIS in SKIP+/+ and SKIP−/− islets. These results indicate that SKIP modulates GSIS by a pathway distinct from that of cAMP-, PDE- and sphingosine kinase-dependent pathways.
Collapse
|
30
|
BAZ1B in Nucleus Accumbens Regulates Reward-Related Behaviors in Response to Distinct Emotional Stimuli. J Neurosci 2016; 36:3954-61. [PMID: 27053203 DOI: 10.1523/jneurosci.3254-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress. Viral-mediated overexpression of Baz1b, along with its associated subunit Smarca5, in mouse NAc is sufficient to potentiate both rewarding responses to cocaine, including cocaine self-administration, and resilience to chronic social defeat stress. However, despite these similar, proreward behavioral effects, genome-wide mapping of BAZ1B in NAc revealed mostly distinct subsets of genes regulated by these chromatin remodeling proteins after chronic exposure to either cocaine or social stress. Together, these findings suggest important roles for BAZ1B and its associated chromatin remodeling complexes in NAc in the regulation of reward behaviors to distinct emotional stimuli and highlight the stimulus-specific nature of the actions of these regulatory proteins. SIGNIFICANCE STATEMENT We show that BAZ1B, a component of chromatin remodeling complexes, in the nucleus accumbens regulates reward-related behaviors in response to chronic exposure to both rewarding and aversive stimuli by regulating largely distinct subsets of genes.
Collapse
|
31
|
Burgers PP, Bruystens J, Burnley RJ, Nikolaev VO, Keshwani M, Wu J, Janssen BJC, Taylor SS, Heck AJR, Scholten A. Structure of smAKAP and its regulation by PKA-mediated phosphorylation. FEBS J 2016; 283:2132-48. [PMID: 27028580 DOI: 10.1111/febs.13726] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED The A-kinase anchoring protein (AKAP) smAKAP has three extraordinary features; it is very small, it is anchored directly to membranes by acyl motifs, and it interacts almost exclusively with the type I regulatory subunits (RI) of cAMP-dependent kinase (PKA). Here, we determined the crystal structure of smAKAP's A-kinase binding domain (smAKAP-AKB) in complex with the dimerization/docking (D/D) domain of RIα which reveals an extended hydrophobic interface with unique interaction pockets that drive smAKAP's high specificity for RI subunits. We also identify a conserved PKA phosphorylation site at Ser66 in the AKB domain which we predict would cause steric clashes and disrupt binding. This correlates with in vivo colocalization and fluorescence polarization studies, where Ser66 AKB phosphorylation ablates RI binding. Hydrogen/deuterium exchange studies confirm that the AKB helix is accessible and dynamic. Furthermore, full-length smAKAP as well as the unbound AKB is predicted to contain a break at the phosphorylation site, and circular dichroism measurements confirm that the AKB domain loses its helicity following phosphorylation. As the active site of PKA's catalytic subunit does not accommodate α-helices, we predict that the inherent flexibility of the AKB domain enables its phosphorylation by PKA. This represents a novel mechanism, whereby activation of anchored PKA can terminate its binding to smAKAP affecting the regulation of localized cAMP signaling events. DATABASE Structural data are available in the PDB under accession number 5HVZ.
Collapse
Affiliation(s)
- Pepijn P Burgers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Jessica Bruystens
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Rebecca J Burnley
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | - Malik Keshwani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Jian Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA.,Department of Pharmacology, University of California San Diego, La Jolla, California, USA.,The Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| |
Collapse
|
32
|
Ding CL, Xu G, Tang HL, Zhu SY, Zhao LJ, Ren H, Zhao P, Qi ZT, Wang W. Anchoring of both PKA-RIIα and 14-3-3θ regulates retinoic acid induced 16 mediated phosphorylation of heat shock protein 70. Oncotarget 2016; 6:15540-50. [PMID: 25900241 PMCID: PMC4558169 DOI: 10.18632/oncotarget.3702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
Our previous study reported that retinoic acid induced 16 (RAI16) could enhance tumorigenesis in hepatocellular carcinoma (HCC). However, the cellular functions of RAI16 are still unclear. In this study, by immunoprecipitation and tandem (MS/MS) mass spectrometry analysis, we identified that RAI16 interacted with the type II regulatory subunit of PKA (PKA-RIIα), acting as a novel protein kinase A anchoring protein (AKAP). In addition, RAI16 also interacted with heat shock protein 70 (HSP70) and 14-3-3θ. Further studies indicated that RAI16 mediated PKA phosphorylation of HSP70 at serine 486, resulting in anti-apoptosis events. RAI16 was also phosphorylated by the anchored PKA at serine 325, which promoted the recruitment of 14-3-3θ, which, in turn, inhibited RAI16 mediated PKA phosphorylation of HSP70. These findings offer mechanism insight into RAI16 mediated anti-apoptosis signaling in HCC.
Collapse
Affiliation(s)
- Cui-Ling Ding
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Gang Xu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Shi-Ying Zhu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Lan-Juan Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Zhong-Tian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Wen Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| |
Collapse
|
33
|
AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochem J 2016; 473:1881-94. [PMID: 27102985 DOI: 10.1042/bcj20160242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022]
Abstract
A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions.
Collapse
|
34
|
Chávez-Vargas L, Adame-García SR, Cervantes-Villagrana RD, Castillo-Kauil A, Bruystens JGH, Fukuhara S, Taylor SS, Mochizuki N, Reyes-Cruz G, Vázquez-Prado J. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING. J Biol Chem 2016; 291:6182-99. [PMID: 26797121 DOI: 10.1074/jbc.m115.712216] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.
Collapse
Affiliation(s)
| | - Sendi Rafael Adame-García
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Alejandro Castillo-Kauil
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Susan S Taylor
- Departments of Chemistry and Biochemistry and Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Guadalupe Reyes-Cruz
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | |
Collapse
|
35
|
Corradini E, Heck AJR, Scholten A. Separation of PKA and PKG signaling nodes by chemical proteomics. Methods Mol Biol 2015; 1294:191-201. [PMID: 25783887 DOI: 10.1007/978-1-4939-2537-7_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The chemically quite similar cyclic nucleotides cAMP and cGMP are two second messengers that activate the homologous cAMP- and cGMP-dependent protein kinases (PKA and PKG, respectively). To gain specificity in space and time in vivo, PKA is compartmentalized by the interaction of its regulatory subunits with A-kinase-anchoring proteins (AKAPs), which often form the core of larger signaling protein machineries. In a similar manner, PKG is also found to be compartmentalized close to specific, local pools of cGMP through interaction with G-kinase-anchoring proteins (GKAPs), although the extent and mechanisms mediating these interactions are only marginally understood. In affinity-based chemical proteomics strategies, small molecules are immobilized on solid supports in order to enrich for specific target proteins. We have shown the utility of immobilized cAMP and cGMP to enrich for PKA and PKG and their associated proteins. Unfortunately, both PKA and PKG are enriched in the pull downs with both immobilized compounds. Although this proved sufficient to identify novel AKAPs, the lower abundance of PKG has seriously hampered the enrichment and identification of novel GKAPs. Here we present an improved chemical proteomics method involving in-solution competition with low doses of different free cyclic nucleotides to segregate the cAMP/PKA- and cGMP/PKG-based signaling nodes, allowing the purification and subsequent identification of new scaffold proteins for PKG.
Collapse
Affiliation(s)
- Eleonora Corradini
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | |
Collapse
|
36
|
Turnham RE, Scott JD. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology. Gene 2015; 577:101-8. [PMID: 26687711 DOI: 10.1016/j.gene.2015.11.052] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
Abstract
Our appreciation of the scope and influence of second messenger signaling has its origins in pioneering work on the cAMP-dependent protein kinase. Also called protein kinase A (PKA), this holoenzyme exists as a tetramer comprised of a regulatory (R) subunit dimer and two catalytic (C) subunits. Upon binding of two molecules of the second messenger cAMP to each R subunit, a conformational change in the PKA holoenzyme occurs to release the C subunits. These active kinases phosphorylate downstream targets to propagate cAMP responsive cell signaling events. This article focuses on the discovery, structure, cellular location and physiological effects of the catalytic subunit alpha of protein kinase A (encoded by the gene PRKACA). We also explore the potential role of this essential gene as a molecular mediator of certain disease states.
Collapse
Affiliation(s)
- Rigney E Turnham
- Howard Hughes Medical Institute, Department of Pharmacology, Box 357750, University of Washington School of Medicine, 1959 Pacific St. NE, Seattle, WA 98195, United States
| | - John D Scott
- Howard Hughes Medical Institute, Department of Pharmacology, Box 357750, University of Washington School of Medicine, 1959 Pacific St. NE, Seattle, WA 98195, United States.
| |
Collapse
|
37
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
38
|
Nygren PJ, Scott JD. Therapeutic strategies for anchored kinases and phosphatases: exploiting short linear motifs and intrinsic disorder. Front Pharmacol 2015; 6:158. [PMID: 26283967 PMCID: PMC4516873 DOI: 10.3389/fphar.2015.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation events that occur in response to the second messenger cAMP are controlled spatially and temporally by protein kinase A (PKA) interacting with A-kinase anchoring proteins (AKAPs). Recent advances in understanding the structural basis for this interaction have reinforced the hypothesis that AKAPs create spatially constrained signaling microdomains. This has led to the realization that the PKA/AKAP interface is a potential drug target for modulating a plethora of cell-signaling events. Pharmacological disruption of kinase–AKAP interactions has previously been explored for disease treatment and remains an interesting area of research. However, disrupting or enhancing the association of phosphatases with AKAPs is a therapeutic concept of equal promise, particularly since they oppose the actions of many anchored kinases. Accordingly, numerous AKAPs bind phosphatases such as protein phosphatase 1 (PP1), calcineurin (PP2B), and PP2A. These multimodal signaling hubs are equally able to control the addition of phosphate groups onto target substrates, as well as the removal of these phosphate groups. In this review, we describe recent advances in structural analysis of kinase and phosphatase interactions with AKAPs, and suggest future possibilities for targeting these interactions for therapeutic benefit.
Collapse
Affiliation(s)
- Patrick J Nygren
- Department of Pharmacology, University of Washington Seattle, WA, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Seattle, WA, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| |
Collapse
|
39
|
Zhang P, Knape MJ, Ahuja LG, Keshwani MM, King CC, Sastri M, Herberg FW, Taylor SS. Single Turnover Autophosphorylation Cycle of the PKA RIIβ Holoenzyme. PLoS Biol 2015; 13:e1002192. [PMID: 26158466 PMCID: PMC4497662 DOI: 10.1371/journal.pbio.1002192] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/01/2015] [Indexed: 01/10/2023] Open
Abstract
To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RIIβ holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RIIβ subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RIIβ holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RIIβ holoenzyme since the RIIβ holoenzyme is located close to ion channels. The 2.8Å structure of an RIIβp2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-(β,γ-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRIIβ subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RIIβ signaling cycle, we show that release of pRIIβ in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RIIβ holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | | | - Lalima G. Ahuja
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Malik M. Keshwani
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | - Charles C. King
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Mira Sastri
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Kassel, Germany
- * E-mail: (FWH); (SST)
| | - Susan S. Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (FWH); (SST)
| |
Collapse
|
40
|
Peng M, Aye TT, Snel B, van Breukelen B, Scholten A, Heck AJR. Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution. J Proteome Res 2015; 14:2976-87. [DOI: 10.1021/acs.jproteome.5b00370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mao Peng
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Department
of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Thin Thin Aye
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
41
|
Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ. PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 2015; 10:1502-10. [PMID: 25765284 DOI: 10.1021/acschembio.5b00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Eugen Franz
- Department
of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | | | - F. Donelson Smith
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Heidi Hehnly
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Jessica L. Esseltine
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Laura E. Hanold
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mandi M. Murph
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - John D. Scott
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
42
|
Whiting JL, Nygren PJ, Tunquist BJ, Langeberg LK, Seternes OM, Scott JD. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220. J Biol Chem 2015; 290:19445-57. [PMID: 26088133 DOI: 10.1074/jbc.m115.654822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 02/04/2023] Open
Abstract
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β.
Collapse
Affiliation(s)
- Jennifer L Whiting
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Patrick J Nygren
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Brian J Tunquist
- Translational Oncology, Array BioPharma, Inc., Boulder, Colorado 80301, and
| | - Lorene K Langeberg
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ole-Morten Seternes
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway
| | - John D Scott
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195,
| |
Collapse
|
43
|
Abstract
Mitochondria are highly dynamic organelles comprising at least three distinct areas, the OMM (outer mitochondrial membrane), the IMS (intermembrane space) and the mitochondrial matrix. Physical compartmentalization allows these organelles to host different functional domains and therefore participate in a variety of important cellular actions such as ATP synthesis and programmed cell death. In a surprising homology, it is now widely accepted that the ubiquitous second messenger cAMP uses the same stratagem, compartmentalization, in order to achieve the characteristic functional pleiotropy of its pathway. Accumulating evidence suggests that all the main mitochondrial compartments contain segregated cAMP cascades; however, the regulatory properties and functional significance of such domains are not fully understood and often remain controversial issues. The present mini-review discusses our current knowledge of how the marriage between mitochondrial and cAMP compartmentalization is achieved and its effects on the biology of the cell.
Collapse
|
44
|
Corradini E, Burgers PP, Plank M, Heck AJR, Scholten A. Huntingtin-associated protein 1 (HAP1) is a cGMP-dependent kinase anchoring protein (GKAP) specific for the cGMP-dependent protein kinase Iβ isoform. J Biol Chem 2015; 290:7887-96. [PMID: 25653285 DOI: 10.1074/jbc.m114.622613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are important in providing compartmentalization and specificity in cellular signal transduction. Many studies have hallmarked the well designed compartmentalization of the cAMP-dependent protein kinase (PKA) through its anchoring proteins. Much less data are available on the compartmentalization of its closest homolog, cGMP-dependent protein kinase (PKG), via its own PKG anchoring proteins (GKAPs). For the enrichment, screening, and discovery of (novel) PKA anchoring proteins, a plethora of methodologies is available, including our previously described chemical proteomics approach based on immobilized cAMP or cGMP. Although this method was demonstrated to be effective, each immobilized cyclic nucleotide did not discriminate in the enrichment for either PKA or PKG and their secondary interactors. Hence, with PKG signaling components being less abundant in most tissues, it turned out to be challenging to enrich and identify GKAPs. Here we extend this cAMP-based chemical proteomics approach using competitive concentrations of free cyclic nucleotides to isolate each kinase and its secondary interactors. Using this approach, we identified Huntingtin-associated protein 1 (HAP1) as a putative novel GKAP. Through sequence alignment with known GKAPs and secondary structure prediction analysis, we defined a small sequence domain mediating the interaction with PKG Iβ but not PKG Iα. In vitro binding studies and site-directed mutagenesis further confirmed the specificity and affinity of HAP1 binding to the PKG Iβ N terminus. These data fully support that HAP1 is a GKAP, anchoring specifically to the cGMP-dependent protein kinase isoform Iβ, and provide further evidence that also PKG spatiotemporal signaling is largely controlled by anchoring proteins.
Collapse
Affiliation(s)
- Eleonora Corradini
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Pepijn P Burgers
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michael Plank
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
45
|
Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M. A-kinase anchoring proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary diseases. Br J Pharmacol 2014; 171:5603-23. [PMID: 25132049 PMCID: PMC4290705 DOI: 10.1111/bph.12882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/14/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
The universal second messenger cAMP is generated upon stimulation of Gs protein-coupled receptors, such as the β2 -adreneoceptor, and leads to the activation of PKA, the major cAMP effector protein. PKA oscillates between an on and off state and thereby regulates a plethora of distinct biological responses. The broad activation pattern of PKA and its contribution to several distinct cellular functions lead to the introduction of the concept of compartmentalization of cAMP. A-kinase anchoring proteins (AKAPs) are of central importance due to their unique ability to directly and/or indirectly interact with proteins that either determine the cellular content of cAMP, such as β2 -adrenoceptors, ACs and PDEs, or are regulated by cAMP such as the exchange protein directly activated by cAMP. We report on lessons learned from neurons indicating that maintenance of cAMP compartmentalization by AKAP5 is linked to neurotransmission, learning and memory. Disturbance of cAMP compartments seem to be linked to neurodegenerative disease including Alzheimer's disease. We translate this knowledge to compartmentalized cAMP signalling in the lung. Next to AKAP5, we focus here on AKAP12 and Ezrin (AKAP78). These topics will be highlighted in the context of the development of novel pharmacological interventions to tackle AKAP-dependent compartmentalization.
Collapse
Affiliation(s)
- W J Poppinga
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - P Muñoz-Llancao
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - C González-Billault
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
| | - M Schmidt
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| |
Collapse
|
46
|
Soni S, Scholten A, Vos MA, van Veen TAB. Anchored protein kinase A signalling in cardiac cellular electrophysiology. J Cell Mol Med 2014; 18:2135-46. [PMID: 25216213 PMCID: PMC4224547 DOI: 10.1111/jcmm.12365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/10/2014] [Indexed: 01/13/2023] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is an elementary molecule involved in both acute and chronic modulation of cardiac function. Substantial research in recent years has highlighted the importance of A-kinase anchoring proteins (AKAP) therein as they act as the backbones of major macromolecular signalling complexes of the β-adrenergic/cAMP/PKA pathway. This review discusses the role of AKAP-associated protein complexes in acute and chronic cardiac modulation by dissecting their role in altering the activity of different ion channels, which underlie cardiac action potential (AP) generation. In addition, we review the involvement of different AKAP complexes in mechanisms of cardiac remodelling and arrhythmias.
Collapse
Affiliation(s)
- Siddarth Soni
- Division of Heart & Lungs, Dept of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Biomolecular Mass Spectrometry & Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Burgers PP, van der Heyden MAG, Kok B, Heck AJR, Scholten A. A Systematic Evaluation of Protein Kinase A–A-Kinase Anchoring Protein Interaction Motifs. Biochemistry 2014; 54:11-21. [DOI: 10.1021/bi500721a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pepijn P. Burgers
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Marcel A. G. van der Heyden
- Department
of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Bart Kok
- Department
of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
48
|
Lefkimmiatis K, Zaccolo M. cAMP signaling in subcellular compartments. Pharmacol Ther 2014; 143:295-304. [PMID: 24704321 PMCID: PMC4117810 DOI: 10.1016/j.pharmthera.2014.03.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 01/11/2023]
Abstract
In the complex microcosm of a cell, information security and its faithful transmission are critical for maintaining internal stability. To achieve a coordinated response of all its parts to any stimulus the cell must protect the information received from potentially confounding signals. Physical segregation of the information transmission chain ensures that only the entities able to perform the encoded task have access to the relevant information. The cAMP intracellular signaling pathway is an important system for signal transmission responsible for the ancestral 'flight or fight' response and involved in the control of critical functions including frequency and strength of heart contraction, energy metabolism and gene transcription. It is becoming increasingly apparent that the cAMP signaling pathway uses compartmentalization as a strategy for coordinating the large number of key cellular functions under its control. Spatial confinement allows the formation of cAMP signaling "hot spots" at discrete subcellular domains in response to specific stimuli, bringing the information in proximity to the relevant effectors and their recipients, thus achieving specificity of action. In this report we discuss how the different constituents of the cAMP pathway are targeted and participate in the formation of cAMP compartmentalized signaling events. We illustrate a few examples of localized cAMP signaling, with a particular focus on the nucleus, the sarcoplasmic reticulum and the mitochondria. Finally, we discuss the therapeutic potential of interventions designed to perturb specific cAMP cascades locally.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department Of Physiology, Anatomy & Genetics, University of Oxford, UK.
| |
Collapse
|
49
|
Valsecchi F, Konrad C, Manfredi G. Role of soluble adenylyl cyclase in mitochondria. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2555-60. [PMID: 24907564 DOI: 10.1016/j.bbadis.2014.05.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/19/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
Abstract
The soluble adenylyl cyclase (sAC) catalyzes the conversion of ATP into cyclic AMP (cAMP). Recent studies have shed new light on the role of sAC localized in mitochondria and its product cAMP, which drives mitochondrial protein phosphorylation and regulation of the oxidative phosphorylation system and other metabolic enzymes, presumably through the activation of intra-mitochondrial PKA. In this review article, we summarize recent findings on mitochondrial sAC activation by bicarbonate (HCO(3)(-)) and calcium (Ca²⁺) and the effects on mitochondrial metabolism. We also discuss putative mechanisms whereby sAC-mediated mitochondrial protein phosphorylation regulates mitochondrial metabolism. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Federica Valsecchi
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Csaba Konrad
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Lefkimmiatis K, Leronni D, Hofer AM. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. ACTA ACUST UNITED AC 2013; 202:453-62. [PMID: 23897891 PMCID: PMC3734087 DOI: 10.1083/jcb.201303159] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
FRET-based sensors for cAMP and PKA activity reveal that mitochondrial subcompartments host segregated cAMP cascades with distinct functional and kinetic signatures. Cyclic AMP (cAMP)-dependent phosphorylation has been reported to exert biological effects in both the mitochondrial matrix and outer mitochondrial membrane (OMM). However, the kinetics, targets, and effectors of the cAMP cascade in these organellar domains remain largely undefined. Here we used sensitive FRET-based sensors to monitor cAMP and protein kinase A (PKA) activity in different mitochondrial compartments in real time. We found that cytosolic cAMP did not enter the matrix, except during mitochondrial permeability transition. Bicarbonate treatment (expected to activate matrix-bound soluble adenylyl cyclase) increased intramitochondrial cAMP, but along with membrane-permeant cAMP analogues, failed to induce measureable matrix PKA activity. In contrast, the OMM proved to be a domain of exceptionally persistent cAMP-dependent PKA activity. Although cAMP signaling events measured on the OMM mirrored those of the cytosol, PKA phosphorylation at the OMM endured longer as a consequence of diminished control by local phosphatases. Our findings demonstrate that mitochondria host segregated cAMP cascades with distinct functional and kinetic signatures.
Collapse
Affiliation(s)
- Konstantinos Lefkimmiatis
- VA Boston Healthcare System and 2 Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, West Roxbury, MA 02132, USA.
| | | | | |
Collapse
|