1
|
Dos Reis RA, Boudier A, Piquard F, Piereti JC, Seabra AB, Clarot I. Nitric oxide detection by electrochemistry selective probe: calibration in the study environment is mandatory. Nitric Oxide 2025; 157:46-54. [PMID: 40258469 DOI: 10.1016/j.niox.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/23/2025]
Abstract
Nitric oxide (NO) plays a crucial role in various physiological processes, making its detection and controlled release significant for both therapeutic and environmental contexts. Electrochemical sensors are widely used for NO detection due to their high sensitivity and real-time monitoring capabilities. However, challenges such as interference from other gasotransmitters, sensor degradation, and calibration difficulties-especially in complex biological matrices-hinder accurate NO measurement. This review discusses recent advancements in electrochemical NO detection, with a focus on the impact of complex biological matrices, calibration strategies, and sensor designs. The release of NO from nanoparticles, such as S-nitrosoglutathione (GSNO)-encapsulating chitosan nanoparticles, is used as a case study for improving NO detection accuracy. Future innovations in sensor technology and nanoparticle design are expected to expand the applicability of NO detection in personalized medicine and environmental monitoring.
Collapse
Affiliation(s)
- Roberta Albino Dos Reis
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France; Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France; Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; Institut Universitaire de France (IUF), France
| | | | - Joana C Piereti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France; Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France.
| |
Collapse
|
2
|
Li X, Xie E, Sun S, Shen J, Ding Y, Wang J, Peng X, Zheng R, Farag MA, Xiao J. Flavonoids for gastrointestinal tract local and associated systemic effects: A review of clinical trials and future perspectives. J Adv Res 2025:S2090-1232(25)00033-5. [PMID: 39798849 DOI: 10.1016/j.jare.2025.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Flavonoids are naturally occurring dietary phytochemicals with significant antioxidant effects aside from several health benefits. People often consume them in combination with other food components. Compiling data establishes a link between bioactive flavonoids and prevention of several diseases in animal models, including cardiovascular diseases, diabetes, gut dysbiosis, and metabolic dysfunction-associated steatotic liver disease (MASLD). However, numerous clinical studies have demonstrated the ineffectiveness of flavonoids contradicting rodent models, thereby challenging the validity of using flavonoids as dietary supplements. AIM OF REVIEW This review provides a clinical perspective to emphasize the effective roles of dietary flavonoids as well as to summarize their specific mechanisms in animals briefly. KEY SCIENTIFIC CONCEPTS OF REVIEW First, this review offers an in-depth elucidation of the metabolic processes of flavonoids within human, encompassing the small, large intestine, and the liver. Furthermore, the review provides a comprehensive overview of the various functions of flavonoids in the gastrointestinal tract, including hindering the breakdown and assimilation of macronutrients, such as polysaccharides and lipids, regulating gut hormone secretion as well as inhibition of mineral iron absorption. In the large intestine, an unabsorbed major portion of flavonoids interact with the gut flora leading to their biotransformation. Once absorbed and circulated in the bloodstream, bioactive flavonoids or their metabolites exert numerous beneficial systemic effects. Lastly, we examine the protective effects of flavonoids in several metabolic disorders, including endothelial dysfunction, MASLD, cardiovascular disease, obesity, hyperlipidemia, and insulin resistance. In conclusion, this review outlines the safety and future prospects of flavonoids in the field of health, especially in the prevention of metabolic syndrome (MetS).
Collapse
Affiliation(s)
- Xiaopeng Li
- Center of Nutrition and Food Sciences Hunan Agricultural Products Processing Institute Hunan Academy of Agricultural Sciences Changsha China.
| | - Enjun Xie
- School of Public Health Zhejiang University School of Medicine Hangzhou China
| | - Shumin Sun
- School of Public Health Zhejiang University School of Medicine Hangzhou China
| | - Jie Shen
- School of Public Health Zhejiang University School of Medicine Hangzhou China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases Metabolic Syndrome Research Center Department of Metabolism and Endocrinology The Second Xiangya Hospital of Central South University Changsha China
| | - Jiaqi Wang
- Ausnutria Dairy Co., Ltd., Changsha 410200 China
| | - Xiaoyu Peng
- Ausnutria Dairy Co., Ltd., Changsha 410200 China
| | - Ruting Zheng
- Ausnutria Dairy Co., Ltd., Changsha 410200 China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562 Egypt
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI 36310 Vigo, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21 39011 Santander, Spain.
| |
Collapse
|
3
|
Bae JH, Kang H. Longitudinal Analysis of Sweet Taste Preference Through Genetic and Phenotypic Data Integration. Foods 2024; 13:3370. [PMID: 39517154 PMCID: PMC11545761 DOI: 10.3390/foods13213370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the genetic basis of sweet taste preference is crucial for potential implications in diet-related health outcomes, such as obesity. This study identified genes and single nucleotide polymorphisms (SNPs) associated with sweet taste preferences over time. Data from the American Nurses' Health Study (NHS1) and Health Professionals Follow-up Study (HPFS) cohorts were analyzed. Using tools like PLINK and METAL for genetic associations and FUMA for functional annotation, the study identified eight SNPs associated with sweet taste preferences. Notably, rs80115239 and rs12878143 were identified as key determinants of the highest and lowest associations with sweet taste preferences, respectively. Individuals with the rs80115239 (AA) genotype displayed a higher preference for sweet tastes, including chocolate and cake, but a lower preference for physical activity, fruits, and vegetables, particularly in females from the NHS1 cohort, linking this genotype to a higher obesity risk. Conversely, those with the rs12878143 (CC) genotype preferred fruits, vegetables, coffee, and tea, with a lower preference for sweetened beverages, but the correlation with obesity risk was less clear due to inconsistent data. In conclusion, these findings highlight the genetic influences on sweet taste preference and their potential role in personalized dietary recommendations and obesity management strategies.
Collapse
Affiliation(s)
| | - Hyunju Kang
- Department of Food Science and Nutrition, Keimyung University, Daegu 42601, Republic of Korea;
| |
Collapse
|
4
|
Deora N, Venkatraman K. Potential use of plant-based therapeutics for the management of SARS-COV2 infection in diabetes mellitus – a review. J Herb Med 2024; 47:100923. [DOI: 10.1016/j.hermed.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Godos J, Romano GL, Laudani S, Gozzo L, Guerrera I, Dominguez Azpíroz I, Martínez Diaz R, Quiles JL, Battino M, Drago F, Giampieri F, Galvano F, Grosso G. Flavan-3-ols and Vascular Health: Clinical Evidence and Mechanisms of Action. Nutrients 2024; 16:2471. [PMID: 39125353 PMCID: PMC11313926 DOI: 10.3390/nu16152471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the main causes of mortality and morbidity worldwide. A healthy diet rich in plant-derived compounds such as (poly)phenols appears to have a key role in improving cardiovascular health. Flavan-3-ols represent a subclass of (poly)phenols of great interest for their possible health benefits. In this review, we summarized the results of clinical studies on vascular outcomes of flavan-3-ol supplementation and we focused on the role of the microbiota in CVD. Clinical trials included in this review showed that supplementation with flavan-3-ols mostly derived from cocoa products significantly reduces blood pressure and improves endothelial function. Studies on catechins from green tea demonstrated better results when involving healthy individuals. From a mechanistic point of view, emerging evidence suggests that microbial metabolites may play a role in the observed effects. Their function extends beyond the previous belief of ROS scavenging activity and encompasses a direct impact on gene expression and protein function. Although flavan-3-ols appear to have effects on cardiovascular health, further studies are needed to clarify and confirm these potential benefits and the rising evidence of the potential involvement of the microbiota.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Ida Guerrera
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Research Group on Food, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito EN250, Angola
- Research Group on Food, Nutritional Biochemistry and Health, Universidad de La Romana, La Romana 22000, Dominican Republic
| | - Raquel Martínez Diaz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Arisi TOP, da Silva DS, Stein E, Weschenfelder C, de Oliveira PC, Marcadenti A, Lehnen AM, Waclawovsky G. Effects of Cocoa Consumption on Cardiometabolic Risk Markers: Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:1919. [PMID: 38931273 PMCID: PMC11206597 DOI: 10.3390/nu16121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to examine the effect of dietary intake of cocoa on anthropometric measurements, lipid and glycemic profiles, and blood pressure levels in adults, with and without comorbidities. METHODS The databases used were MEDLINE (PubMed), EMBASE, Web of Science, Cochrane, LILACS, and SciELO. The eligible studies were randomized clinical trials (RCTs) involving adults undergoing cocoa consumption (cocoa extract or ≥70% cocoa dark chocolate) for ≥4 weeks that evaluated at least one of the following markers: body weight, body mass index (BMI), waist/abdominal circumference, total cholesterol, LDL-c, triglycerides, HDL-c, blood glucose, glycated hemoglobin (HbA1c), and systolic and diastolic blood pressure (SBP/DBP). RESULTS Thirty-one studies were included, totaling 1986 participants. Cocoa consumption showed no effects on body weight, BMI, waist circumference, triglycerides, HDL-c and HbA1c. Yet, there was a reduction in total cholesterol (-8.35 mg/dL, 95% CI -14.01; -2.69 mg/dL), LDL-c (-9.47 mg/dL, 95% CI -13.75; -5.20 mg/dL), fasting blood glucose (-4.91 mg/dL, 95% CI -8.29; -1.52 mg/dL), SBP (-2.52 mmHg, 95% CI -4.17; -0.88 mmHg), and DBP (-1.58 mmHg, 95% CI -2.54; -0.62 mmHg). CONCLUSIONS The consumption of cocoa showed protective effects on major cardiometabolic risk markers that have a clinical impact in terms of cardiovascular risk reduction.
Collapse
Affiliation(s)
- Tainah O. P. Arisi
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
| | - Diego Silveira da Silva
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
| | - Elana Stein
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
| | - Camila Weschenfelder
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
| | - Patrícia Caetano de Oliveira
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
| | - Aline Marcadenti
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
- Instituto de Pesquisa Hcor (IP-Hcor), Hcor, São Paulo 04005-909, SP, Brazil
- Faculdade de Saúde Pública, Universidade de São Paulo (FSP-USP), São Paulo 01246-904, SP, Brazil
| | - Alexandre Machado Lehnen
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
| | - Gustavo Waclawovsky
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, RS, Brazil; (T.O.P.A.); (D.S.d.S.); (E.S.); (C.W.); (P.C.d.O.); (A.M.); (G.W.)
| |
Collapse
|
7
|
Sedláček P, Bludovská M, Plavinová I, Zavaďáková A, Müller L, Müllerová D. Dietary intake of plant polyphenols: Exploring trend in the Czech population. Cent Eur J Public Health 2024; 32:101-107. [PMID: 39069313 DOI: 10.21101/cejph.a7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES This study aimed to determine trend in polyphenol consumption in the Czech Republic during the last three decades. Additionally, it provides a brief overview of the beneficial effects of polyphenols in several body systems. METHODS Data from the Phenol-Explorer 3.6, a specialized database of polyphenolic substances, were assigned to the resources of the Czech Statistical Office on the consumption of food and beverages in the Czech Republic for the years 1989-2022. The average daily intake of polyphenols was determined by multiplying the average annual consumption of each type of food by the polyphenol content obtained from the database; results were given in milligrams of polyphenols per inhabitant and day. Since the food items in the data sources are not identical, it was necessary to create an extensive model of food categories. RESULTS The current value of polyphenol intake is 1,673 mg per day per inhabitant; however, this level most likely reflects methodological underestimation. The favourable increase in dietary polyphenol intake in the Czech population - doubling, to be precise - which we observed from 1989 to 2007, has been replaced by the opposite trend in the last 15 years. The current intake of polyphenols corresponds to the level that was already achieved in 2004. Hydroxycinnamic acids (from the group of phenolic acids) are the most prevalent dietary polyphenols, followed by flavanols (from the group of flavonoids). The most frequent source of polyphenols in the Czech population are non-alcoholic beverages such as coffee, tea and juices, followed by fruits, cereals, and vegetables, respectively. CONCLUSION Current trend of dietary polyphenol intake in the Czech population is slightly decreasing. This tendency, lasting since 2008, is indisputably negative. Plant polyphenols offer opportunities for inexpensive interventions in health promotion.
Collapse
Affiliation(s)
- Pavel Sedláček
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Monika Bludovská
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Iveta Plavinová
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Anna Zavaďáková
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Luděk Müller
- Department of Cybernetics, NTIS, University of West Bohemia in Pilsen, Pilsen, Czech Republic
| | - Dana Müllerová
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
8
|
Alba BK, Greenfield AM, Yurkevicius BR, Jones ML, Castellani JW. Short-term cocoa bioflavanol supplementation does not improve cold-induced vasodilation in young healthy adults. Eur J Appl Physiol 2024; 124:1523-1534. [PMID: 38150009 DOI: 10.1007/s00421-023-05380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE Cold-induced vasodilation (CIVD) is an oscillatory rise in blood flow to glabrous skin that occurs in cold-exposed extremities. Dietary flavanols increase bioavailable nitric oxide, a proposed mediator of CIVD through active vasodilation and/or withdrawal of sympathetic vascular smooth muscle tone. However, no studies have examined the effects of flavanol intake on extremity skin perfusion during cold exposure. We tested the hypothesis that acute and 8-day flavanol supplementation would augment CIVD during single-digit cold water immersion (CWI). METHODS Eleven healthy adults (24 ± 6 years; 10 M/1F) ingested cocoa flavanols (900 mg/day) or caffeine- and theobromine-matched placebo for 8 days in a double-blind, randomized, crossover design. On Days 1 and 8, CIVD was assessed 2 h post-treatment. Subjects immersed their 3rd finger in warm water (42 °C) for 15 min before CWI (4 °C) for 30 min, during which nail bed and finger pad skin temperature were measured. RESULTS Flavanol ingestion had no effect on CIVD frequency (Day 1, Flavanol: 3 ± 2 vs. Placebo: 3 ± 2; Day 8, Flavanol: 3 ± 2 vs. Placebo: 3 ± 1) or amplitude (Day 1, Flavanol: 4.3 ± 1.7 vs. Placebo: 4.9 ± 2.6 °C; Day 8, Flavanol: 3.9 ± 1.9 vs. Placebo: 3.9 ± 2.0 °C) in the finger pad following acute or 8-day supplementation (P > 0.05). Furthermore, average, nadir, and apex finger pad temperatures during CWI were not different between treatments on Days 1 or 8 of supplementation (P > 0.05). Similarly, no differences in CIVD parameters were observed in the nail bed following supplementation (P > 0.05). CONCLUSION These data suggest that cocoa flavanol ingestion does not alter finger CIVD. Clinical Trial Registration Clinicaltrials.gov Identifier: NCT04359082. April 24, 2020.
Collapse
Affiliation(s)
- Billie K Alba
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Bldg. 42, Natick, MA, 01760, USA.
| | - Andrew M Greenfield
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Bldg. 42, Natick, MA, 01760, USA
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Beau R Yurkevicius
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Bldg. 42, Natick, MA, 01760, USA
| | - Myra L Jones
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Bldg. 42, Natick, MA, 01760, USA
| | - John W Castellani
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Bldg. 42, Natick, MA, 01760, USA
| |
Collapse
|
9
|
Chen S, Niu Z, Shen Y, Lu W, Zhao J, Yang H, Guo M, Zhang L, Zheng R, Du G, Li L. Naodesheng decoction regulating vascular function via G-protein-coupled receptors: network analysis and experimental investigations. Front Pharmacol 2024; 15:1355169. [PMID: 38533257 PMCID: PMC10963398 DOI: 10.3389/fphar.2024.1355169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Recanalization of blocked blood vessels and restoring blood supply to ischemic brain tissue are crucial for post-stroke rehabilitation. The decoction Naodesheng (NDS) composed of five Chinese botanical drugs, including Panax notoginseng (Burk.) F. H. Chen, Ligusticum chuanxiong Hort., Carthamus tinctorius L., Pueraria lobata (Willd.) Ohwi, and Crataegus pinnatifida Bge., is a blood-activating and stasis-removing herbal medicine commonly used for the clinical treatment of cerebrovascular diseases in China. However, the material basis of NDS on the effects of blood circulation improvement and vascular tone regulation remains unclear. Methods: A database comprising 777 chemical metabolites of NDS was constructed. Then, the interactions between various herbal metabolites of NDS and five vascular tone modulation G-protein-coupled receptors (GPCRs), including 5-HT1AR, 5-HT1BR, β2-AR, AT1R, and ETBR, were assessed by molecular docking. Using network analysis and vasomotor experiment of the cerebral basilar artery, the potential material basis underlying the vascular regulatory effects of NDS was further explored. Results: The Naodesheng Effective Component Group (NECG) was found to induce relaxation of rat basilar artery rings precontracted using Endothelin-1 (ET-1) and KCl in vitro in a dose-dependent manner. Several metabolites of NDS, including C. tinctorius, C. pinnatifida, and P. notoginseng, were found to be the main plant resources of metabolites with high docking scores. Furthermore, several metabolites in NDS, including formononetin-7-glucoside, hydroxybenzoyl-coumaric anhydride, methoxymecambridine, puerarol, and pyrethrin II, were found to target multiple vascular GPCRs. Metabolites with moderate-to-high binding energy were verified to have good rat basilar artery-relaxing effects, and the maximum artery relaxation effects of all three metabolites, namely, isorhamnetin, kaempferol, and daidzein, were found to exceed 90%. Moreover, metabolites of NDS were found to exert a synergistic effect by interacting with vascular GPCR targets, and these metabolites may contribute to the cerebrovascular regulatory function of NDS. Discussion: The study reports that various metabolites of NDS contribute to its vascular tone regulating effects and demonstrates the multi-component and multi-target characteristics of NDS. Among them, metabolites with moderate-to-high binding scores in NDS may play an important role in regulating vascular function.
Collapse
Affiliation(s)
- Shuhan Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziran Niu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wendan Lu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilin Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minmin Guo
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, Xinjiang, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Osakina A, Jia Y. Genetic Diversity of Weedy Rice and Its Potential Application as a Novel Source of Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2850. [PMID: 37571004 PMCID: PMC10421194 DOI: 10.3390/plants12152850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Weeds that infest crops are a primary factor limiting agricultural productivity worldwide. Weedy rice, also called red rice, has experienced independent evolutionary events through gene flow from wild rice relatives and de-domestication from cultivated rice. Each evolutionary event supplied/equipped weedy rice with competitive abilities that allowed it to thrive with cultivated rice and severely reduce yields in rice fields. Understanding how competitiveness evolves is important not only for noxious agricultural weed management but also for the transfer of weedy rice traits to cultivated rice. Molecular studies of weedy rice using simple sequence repeat (SSR), restriction fragment length polymorphism (RFLP), and whole-genome sequence have shown great genetic variations in weedy rice populations globally. These variations are evident both at the whole-genome and at the single-allele level, including Sh4 (shattering), Hd1 (heading and flowering), and Rc (pericarp pigmentation). The goal of this review is to describe the genetic diversity of current weedy rice germplasm and the significance of weedy rice germplasm as a novel source of disease resistance. Understanding these variations, especially at an allelic level, is also crucial as individual loci that control important traits can be of great target to rice breeders.
Collapse
Affiliation(s)
- Aron Osakina
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA;
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA
| | - Yulin Jia
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA
| |
Collapse
|
11
|
Choudhary R, Singh A, Upadhyay A, Singh R, Thangalakshmi S, Dar AH, Bajpai VK, Shukla S. Exotic god fruit, persimmon (
Diospyros kaki
): Pharmacological importance and human health aspects. EFOOD 2023. [DOI: 10.1002/efd2.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rita Choudhary
- TERI‐Deakin Nanobiotechnology Centre, Division of Sustainable Agriculture The Energy and Resources Institute, Gwal Pahari Haryana Gurugram India
| | - Anurag Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management, Kundli Sonipat Haryana India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management, Kundli Sonipat Haryana India
| | - Rakhi Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management, Kundli Sonipat Haryana India
| | - S. Thangalakshmi
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management, Kundli Sonipat Haryana India
| | - Aamir H. Dar
- Department of Food Technology Islamic University of Sciences and Technology Awantipora Kashmir India
| | - Vivek K. Bajpai
- Department of Energy and Materials Engineering Dongguk University Seoul Republic of Korea
| | - Shruti Shukla
- TERI‐Deakin Nanobiotechnology Centre, Division of Sustainable Agriculture The Energy and Resources Institute, Gwal Pahari Haryana Gurugram India
| |
Collapse
|
12
|
Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, Morawietz H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants (Basel) 2023; 12:281. [PMID: 36829839 PMCID: PMC9952760 DOI: 10.3390/antiox12020281] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
As a major cause of morbidity and mortality globally, hypertension remains a serious threat to global public health. Despite the availability of many antihypertensive medications, several hypertensive individuals are resistant to standard treatments, and are unable to control their blood pressure. Regulation of the renin-angiotensin-aldosterone system (RAAS) controlling blood pressure, activation of the immune system triggering inflammation and production of reactive oxygen species, leading to oxidative stress and redox-sensitive signaling, have been implicated in the pathogenesis of hypertension. Thus, besides standard antihypertensive medications, which lower arterial pressure, antioxidant medications were tested to improve antihypertensive treatment. We review and discuss the role of oxidative stress in the pathophysiology of hypertension and the potential use of antioxidants in the management of hypertension and its associated organ damage.
Collapse
Affiliation(s)
- Michael Amponsah-Offeh
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at University Clinic Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
13
|
Felli E, Nulan Y, Selicean S, Wang C, Gracia-Sancho J, Bosch J. Emerging Therapeutic Targets for Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2023; 22:51-66. [PMID: 36908849 PMCID: PMC9988810 DOI: 10.1007/s11901-023-00598-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/13/2023]
Abstract
Purpose of Review Portal hypertension is responsible of the main complications of cirrhosis, which carries a high mortality. Recent treatments have improved prognosis, but this is still far from ideal. This paper reviews new potential therapeutic targets unveiled by advances of key pathophysiologic processes. Recent Findings Recent research highlighted the importance of suppressing etiologic factors and a safe lifestyle and outlined new mechanisms modulating portal pressure. These include intrahepatic abnormalities linked to inflammation, fibrogenesis, vascular occlusion, parenchymal extinction, and angiogenesis; impaired regeneration; increased hepatic vascular tone due to sinusoidal endothelial dysfunction with insufficient NO availability; and paracrine liver cell crosstalk. Moreover, pathways such as the gut-liver axis modulate splanchnic vasodilatation and systemic inflammation, exacerbate liver fibrosis, and are being targeted by therapy. We have summarized studies of new agents addressing these targets. Summary New agents, alone or in combination, allow acting in complementary mechanisms offering a more profound effect on portal hypertension while simultaneously limiting disease progression and favoring regression of fibrosis and of cirrhosis. Major changes in treatment paradigms are anticipated.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Yelidousi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
- Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, 08036 Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
14
|
Davinelli S, Medoro A, Ali S, Passarella D, Intrieri M, Scapagnini G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr Neuropharmacol 2023; 21:651-668. [PMID: 36321225 PMCID: PMC10207917 DOI: 10.2174/1570159x21666221031103909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 02/10/2023] Open
Abstract
Adult neurogenesis deficiency has been proposed to be a common hallmark in different age-related neurodegenerative diseases. The administration of flavonoids is currently reported as a potentially beneficial strategy for preventing brain aging alterations, including adult neurogenesis decline. Flavonoids are a class of plant-derived dietary polyphenols that have drawn attention for their neuroprotective and pro-cognitive effects. Although they undergo extensive metabolism and localize in the brain at low concentrations, flavonoids are now believed to improve cerebral vasculature and interact with signal transduction cascades involved in the regulation of adult neurogenesis. Furthermore, many dietary flavonoids have been shown to reduce oxidative stress and neuroinflammation, improving the neuronal microenvironment where adult neurogenesis occurs. The overall goal of this review is to summarize the evidence supporting the role of flavonoids in modulating adult neurogenesis as well as to highlight how these dietary agents may be promising candidates in restoring healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
15
|
Polyphenols: a route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch Toxicol 2023; 97:3-38. [PMID: 36260104 DOI: 10.1007/s00204-022-03391-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Chronic pathologies or non-communicable diseases (NCDs) include cardiovascular diseases, metabolic syndrome, neurological diseases, respiratory disorders and cancer. They are the leading global cause of human mortality and morbidity. Given their chronic nature, NCDs represent a growing social and economic burden, hence urging the need for ameliorating the existing preventive strategies, and for finding novel tackling therapies. NCDs are highly correlated with unhealthy lifestyle habits (such as high-fat and high-glucose diet, or sedentary life). In general, lifestyle approaches that might improve these habits, including dietary consumption of fresh vegetables, fruits and fibers, may contrast NCD symptoms and prolong life expectancy of affected people. Polyphenols (PPLs) are plant-derived molecules with demonstrated biological activities in humans, which include: radical scavenging and anti-oxidant activities, capability to modulate inflammation, as well as human enzymes, and even to bind nuclear receptors. For these reasons, PPLs are currently tested, both preclinically and clinically, as dietary adjuvants for the prevention and treatment of NCDs. In this review, we describe the human metabolism and bioactivity of PPLs. Also, we report what is currently known about PPLs interaction with gastro-intestinal enzymes and gut microbiota, which allows their biotransformation in many different metabolites with several biological functions. The systemic bioactivity of PPLs and the newly available PPL-delivery nanosystems are also described in detail. Finally, the up-to-date clinical studies assessing both safety and efficacy of dietary PPLs in individuals with different NCDs are hereby reported. Overall, the clinical results support the notion that PPLs from fruits, vegetables, but also from leaves or seeds extracts, are safe and show significant positive results in ameliorating symptoms and improving the whole quality of life of people with NCDs.
Collapse
|
16
|
From Cocoa to Chocolate: Effect of Processing on Flavanols and Methylxanthines and Their Mechanisms of Action. Int J Mol Sci 2022; 23:ijms232214365. [PMID: 36430843 PMCID: PMC9698929 DOI: 10.3390/ijms232214365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the health benefits associated with the ingestion of the bioactive compounds in cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa products. Processing, however, affects the composition and quantities of the bioactive compounds, resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In this advanced review, we sought to better understand the effect of cocoa's transformational process into chocolate on polyphenols and methylxanthine and the mechanism of action of the original flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are still needed for better understanding the effect of each processing step on the final polyphenolic and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial function, and energy metabolism pathways, while flavanols mainly act though the protein kinases and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide and neurotrophin regulation.
Collapse
|
17
|
Fan W, Zong H, Zhao T, Deng J, Yang H. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 64:3522-3538. [PMID: 36226711 DOI: 10.1080/10408398.2022.2132375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proanthocyanidins, widespread in natural plant sources, are bioactive substances that exhibit broad benefits to human health. Of note, proanthocyanidins have been reported to lower blood pressure and prevent hypertension, but a critical review of this is lacking. In this review, information on the basic structures and absorption of dietary proanthocyanidins as well as their bioactivities and related mechanisms on the lowering of blood pressure derived via in vivo and clinical studies are summarized. Clinical studies have shown that proanthocyanidins have a pronounced blood pressure-lowering effect, effectively preventing hypertension and reducing the occurrence of cardiovascular and cerebrovascular diseases. The potential mechanisms, which are herein reviewed in detail, involve the improvement of vascular function, reduction of oxidative stress and inflammation, and modulation of lipid metabolism. Taken together, this work provides information for a better understanding of the antihypertensive effects of proanthocyanidins, which may promote their use to reduce the risk of developing hypertension.
Collapse
Affiliation(s)
- Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Houru Zong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Amoah I, Lim JJ, Osei EO, Arthur M, Tawiah P, Oduro IN, Aduama-Larbi MS, Lowor ST, Rush E. Effect of Cocoa Beverage and Dark Chocolate Consumption on Blood Pressure in Those with Normal and Elevated Blood Pressure: A Systematic Review and Meta-Analysis. Foods 2022; 11:1962. [PMID: 35804776 PMCID: PMC9265772 DOI: 10.3390/foods11131962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Cocoa is a major dietary source of polyphenols, including flavanols, which have been associated with reduced blood pressure (BP). While earlier systematic reviews and meta-analyses have shown significant effects of cocoa consumption on systolic BP, limitations include small sample sizes and study heterogeneity. Questions regarding food matrix and dose of polyphenols, flavanols, or epicatechins remain. This systematic review and meta-analysis aimed to investigate the effects of ≥2 weeks of cocoa consumption as a beverage or dark chocolate in those with normal or elevated (< or ≥130 mmHg) systolic BP measured in the fasted state or over 24-h. A systematic search conducted on PubMed and Cochrane Library databases up to 26 February 2022 yielded 31 suitable articles. Independent of baseline BP, cocoa consumption for ≥2 weeks was associated with reductions in systolic and diastolic BP (p < 0.05, all). Compared with cocoa, chocolate lowered the weighted mean of resting systolic BP (−3.94 mmHg, 95% CI [−5.71, −2.18]) more than cocoa beverage (−1.54 mmHg, 95% CI [−3.08, 0.01]). When the daily dose of flavanols was ≥900 mg or of epicatechin ≥100 mg, the effect was greater. Future, adequately powered studies are required to determine the optimal dose for a clinically significant effect.
Collapse
Affiliation(s)
- Isaac Amoah
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (E.O.O.); (M.A.)
| | - Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
| | - Emmanuel Ofori Osei
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (E.O.O.); (M.A.)
| | - Michael Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (E.O.O.); (M.A.)
| | - Phyllis Tawiah
- Department of Medicine, School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana;
| | - Ibok Nsa Oduro
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana;
| | | | - Samuel Tetteh Lowor
- Cocoa Research Institute of Ghana, Akim-Tafo P.O. Box 8, Ghana; (M.S.A.-L.); (S.T.L.)
| | - Elaine Rush
- Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland 1142, New Zealand;
- Riddet Centre of Research Excellence, Palmerston North 0632, New Zealand
| |
Collapse
|
19
|
Companys J, Calderón-Pérez L, Pla-Pagà L, Llauradó E, Sandoval-Ramirez BA, Gosalbes MJ, Arregui A, Barandiaran M, Caimari A, del Bas JM, Arola L, Valls RM, Solà R, Pedret A. Effects of enriched seafood sticks (heat-inactivated B. animalis subsp. lactis CECT 8145, inulin, omega-3) on cardiometabolic risk factors and gut microbiota in abdominally obese subjects: randomized controlled trial. Eur J Nutr 2022; 61:3597-3611. [PMID: 35643872 PMCID: PMC9464132 DOI: 10.1007/s00394-022-02904-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess the effects of enriched seafood sticks with postbiotic and bioactive compounds on CMD risk factors and the gut microbiota in abdominally obese individuals. METHODS Randomized, double-blind, parallel, placebo-controlled trial with abdominally obese individuals. Participants (n = 120) consumed 50 g/day of enriched seafood sticks containing SIAP: (1010 colony forming units (CFUs) of heat-inactivated B. animalis subsp. lactis CECT8145, 370 mg/day omega 3 and 1.7 g/day inulin), or 50 g/day of placebo seafood sticks for 12 weeks. At 12 weeks, an acute single-dose study of 4 h was performed. RESULTS Sustained SIAP2 consumption significantly decreased the insulin by - 5.25 mg/dL and HOMA-IR (homeostatic Model Assessment of Insulin Resistance) by - 1.33. In women, SIAP2 consumption significantly decreased the pulse pressure (PP) by - 4.69 mmHg. Gut microbiota analysis showed a negative association between glycemic parameter reduction and Alistipes finegoldii and Ruminococcaceae, and between PP reduction and Prevotella 9-ASV0283 and Christensenellaceae. In the acute single dose-study 4-h, SIAP2 consumption produced a lower increase in the postprandial circulating triglyceride levels [23.9 (7.03) mg/dL (mean [standard error])] than the observed with placebo [49.0 (9.52)] mg/dL. CONCLUSION In abdominally obese individuals, enriched seafood sticks induce a potential protection against type 2 diabetes development by the reduction in the insulin and HOMA-IR; and in cardiovascular disease, in women, by the PP reduction. These effects are accompanied by partial changes in the gut microbiota composition. The enriched seafood sticks reduce the atherogenic triglyceride postprandial concentrations. Our results support the use of enriched seafood sticks as a complementary strategy in the management of CMD risk factors. REGISTRATION NUMBER OF CLINICAL TRIAL: ( www. CLINICALTRIALS gov ): NCT03630588 (August 15, 2018).
Collapse
Affiliation(s)
- Judit Companys
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Avinguda Universitat, 1, 43204 Reus, Spain ,Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | - Lorena Calderón-Pérez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Avinguda Universitat, 1, 43204 Reus, Spain ,Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | - Laura Pla-Pagà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Avinguda Universitat, 1, 43204 Reus, Spain ,Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | - Elisabet Llauradó
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | - Berner Andrée Sandoval-Ramirez
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | - Maria José Gosalbes
- Fundación de la Investigación Sanitaria y Biomédica, Valencia, Spain ,CIBERESP, Madrid, Spain
| | - Ainara Arregui
- Angulas Aguinaga Research Center, Laskibar bailara, 5, 20271 Irura, Gipuzkoa Spain
| | - Maddi Barandiaran
- Angulas Aguinaga Research Center, Laskibar bailara, 5, 20271 Irura, Gipuzkoa Spain
| | - Antoni Caimari
- Centre Tecnològic de Catalunya, Biotechnology Area, Reus, Spain
| | - Josep Maria del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Avinguda Universitat, 1, 43204 Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Faculty of Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Rosa M. Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Avinguda Universitat, 1, 43204 Reus, Spain ,Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | - Rosa Solà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Avinguda Universitat, 1, 43204, Reus, Spain. .,Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201, Reus, Spain. .,Hospital Universitari Sant Joan de Reus, Reus, Spain.
| | - Anna Pedret
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Avinguda Universitat, 1, 43204 Reus, Spain ,Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
20
|
Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner. J Nutr Biochem 2021; 100:108898. [PMID: 34748921 DOI: 10.1016/j.jnutbio.2021.108898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.
Collapse
|
21
|
Tripodi L, Molinaro D, Farini A, Cadiao G, Villa C, Torrente Y. Flavonoids and Omega3 Prevent Muscle and Cardiac Damage in Duchenne Muscular Dystrophy Animal Model. Cells 2021; 10:2917. [PMID: 34831140 PMCID: PMC8616158 DOI: 10.3390/cells10112917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
Nutraceutical products possess various anti-inflammatory, antiarrhythmic, cardiotonic, and antioxidant pharmacological activities that could be useful in preventing oxidative damage, mainly induced by reactive oxygen species. Previously published data showed that a mixture of polyphenols and polyunsaturated fatty acids, mediate an antioxidative response in mdx mice, Duchenne muscular dystrophy animal model. Dystrophic muscles are characterized by low regenerative capacity, fibrosis, fiber necrosis, inflammatory process, altered autophagic flux and inadequate anti-oxidant response. FLAVOmega β is a mixture of flavonoids and docosahexaenoic acid. In this study, we evaluated the role of these supplements in the amelioration of the pathological phenotype in dystrophic mice through in vitro and in vivo assays. FLAVOmega β reduced inflammation and fibrosis, dampened reactive oxygen species production, and induced an oxidative metabolic switch of myofibers, with consequent increase of mitochondrial activity, vascularization, and fatigue resistance. Therefore, we propose FLAVOmega β as food supplement suitable for preventing muscle weakness, delaying inflammatory milieu, and sustaining physical health in patients affected from DMD.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Centro Dino Ferrari, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.T.); (D.M.); (A.F.); (G.C.)
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Centro Dino Ferrari, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.T.); (D.M.); (A.F.); (G.C.)
| |
Collapse
|
22
|
Balayssac‐Siransy E, Ouattara S, Boka KJM, Ahiboh H, Yéo TA, Yapo P, Kondo AL, Touré WC, Edé KF, Dah CS, Bogui P. Dose-effect relation between regular consumption of 100% cocoa powder and blood pressure in young, healthy black Africans. Physiol Rep 2021; 9:e15070. [PMID: 34676690 PMCID: PMC8531838 DOI: 10.14814/phy2.15070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Some previous works have focused on dose-response relationship between cocoa consumption and blood pressure in Caucasians. As black subjects have lower nitric oxide bioavailability, the aim of this work was to determine the dose-effect relation between cocoa and blood pressure in black Africans. METHOD One hundred and thirty healthy black African males aged 18-30 were randomly assigned into four groups: three groups consuming 10 g, 5 g, or 2 g of cocoa powder daily for three weeks and one control group that did not consume cocoa. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were measured on day 1 (D1, before any subject consumed cocoa), D8, D15, and D22. Means of the parameters at each of the four visits and changes of the means were compared among the groups. RESULTS Significant decrease in SBP was noted in consumers of 10 g compared to controls in the 1st week, and compared to consumers of 2 g in the 2nd and 3rd weeks of follow-up. Means and changes of DBP were statistically similar among the four groups. CONCLUSION Among our cohort, decrease in SBP was significantly greater in the heavy cocoa consumer group (10 g) compared to the low consumer group (2 g), but there was no statistically significant difference when compared with the intermediate consumer group (5 g). The dose-response relationship between cocoa consumption and changes in SBP was not linear. No relationship was found between cocoa consumption and DBP.
Collapse
Affiliation(s)
- Edwige Balayssac‐Siransy
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
- Service des Explorations FonctionnellesCentre hospitalier universitaire de YopougonAbidjanCôte d’Ivoire
| | - Soualiho Ouattara
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Kotchi Joël Michée Boka
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Hugues Ahiboh
- Laboratoire de BiochimieUnité de Formation et de Recherche en Sciences Pharmaceutiques et BiologiquesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Téniloh Augustin Yéo
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Paule‐Denise Yapo
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Aya Liliane Kondo
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Walamitien Cyrille Touré
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Kotchi Fabrice Edé
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| | - Cyrille Serges Dah
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
- Service des Explorations FonctionnellesCentre hospitalier universitaire de CocodyAbidjanCôte d’Ivoire
| | - Pascal Bogui
- Laboratoire de Physiologie et d’Explorations FonctionnellesUnité de Formation et de Recherche en Sciences MédicalesUniversité Félix Houphouët‐BoignyAbidjanCôte d’Ivoire
| |
Collapse
|
23
|
Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson's Disease. Biomedicines 2021; 9:biomedicines9080918. [PMID: 34440122 PMCID: PMC8389563 DOI: 10.3390/biomedicines9080918] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.
Collapse
|
24
|
Zhong GC, Hu TY, Yang PF, Peng Y, Wu JJ, Sun WP, Cheng L, Wang CR. Chocolate consumption and all-cause and cause-specific mortality in a US population: a post hoc analysis of the PLCO cancer screening trial. Aging (Albany NY) 2021; 13:18564-18585. [PMID: 34329196 PMCID: PMC8351724 DOI: 10.18632/aging.203302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022]
Abstract
Few studies with mixed results have examined the association between chocolate consumption and mortality. We aimed to examine this association in a US population. A population-based cohort of 91891 participants aged 55 to 74 years was identified. Chocolate consumption was assessed via a food frequency questionnaire. Cox regression was used to estimate risk estimates. After an average follow-up of 13.5 years, 19586 all-cause deaths were documented. Compared with no regular chocolate consumption, the maximally adjusted hazard ratios of all-cause mortality were 0.89 [95% confidence interval (CI) 0.84-0.94], 0.84 (95% CI 0.79-0.90), 0.86 (95% CI 0.81-0.93), and 0.87 (95% CI 0.82-0.93) for >0-0.5 servings/week, >0.5-1 serving/week, >1-2 servings/week, and >2 servings/week, respectively (Ptrend = 0.009). A somewhat stronger inverse association was observed for mortality from cardiovascular disease and Alzheimer's disease. A nonlinear dose-response pattern was found for all-cause and cardiovascular mortality (all Pnonlinearity < 0.01), with the lowest risk observed at chocolate consumption of 0.7 servings/week and 0.6 servings/week, respectively. The favorable associations with all-cause and cardiovascular mortality were found to be more pronounced in never smokers than in current or former smokers (all Pinteraction < 0.05). In conclusion, chocolate consumption confers reduced risks of mortality from all causes, cardiovascular disease, and Alzheimer's disease in this US population.
Collapse
Affiliation(s)
- Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian-Yang Hu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng-Fei Yang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Geriatrics, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing-Jing Wu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Wei-Ping Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Cheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun-Rui Wang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Hernández-González T, González-Barrio R, Escobar C, Madrid JA, Periago MJ, Collado MC, Scheer FAJL, Garaulet M. Timing of chocolate intake affects hunger, substrate oxidation, and microbiota: A randomized controlled trial. FASEB J 2021; 35:e21649. [PMID: 34164846 DOI: 10.1096/fj.202002770rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Eating chocolate in the morning or in the evening/at night, may differentially affect energy balance and impact body weight due to changes in energy intake, substrate oxidation, microbiota (composition/function), and circadian-related variables. In a randomized controlled trial, postmenopausal females (n = 19) had 100 g of chocolate in the morning (MC), in the evening/at night (EC), or no chocolate (N) for 2 weeks and ate any other food ad libitum. Our results show that 14 days of chocolate intake did not increase body weight. Chocolate consumption decreased hunger and desire for sweets (P < .005), and reduced ad libitum energy intake by ~300 kcal/day during MC and ~150 kcal/day during EC (P = .01), but did not fully compensate for the extra energy contribution of chocolate (542 kcal/day). EC increased physical activity by +6.9%, heat dissipation after meals +1.3%, and carbohydrate oxidation by +35.3% (P < .05). MC reduced fasting glucose (4.4%) and waist circumference (-1.7%) and increased lipid oxidation (+25.6%). Principal component analyses showed that both timings of chocolate intake resulted in differential microbiota profiles and function (P < .05). Heat map of wrist temperature and sleep records showed that EC induced more regular timing of sleep episodes with lower variability of sleep onset among days than MC (60 min vs 78 min; P = .028). In conclusion, having chocolate in the morning or in the evening/night results in differential effects on hunger and appetite, substrate oxidation, fasting glucose, microbiota (composition and function), and sleep and temperature rhythms. Results highlight that the "when" we eat is a relevant factor to consider in energy balance and metabolism.
Collapse
Affiliation(s)
- Teresa Hernández-González
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain
| | - Rocío González-Barrio
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of Internacional Excellence, University of Murcia, Murcia, Spain
| | - Carolina Escobar
- Department of Anatomy, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juan Antonio Madrid
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain
| | - Maria Jesús Periago
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of Internacional Excellence, University of Murcia, Murcia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Spain
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Darand M, Hajizadeh Oghaz M, Hadi A, Atefi M, Amani R. The effect of cocoa/dark chocolate consumption on lipid profile, glycemia, and blood pressure in diabetic patients: A meta-analysis of observational studies. Phytother Res 2021; 35:5487-5501. [PMID: 34089280 DOI: 10.1002/ptr.7183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/21/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Due to the increasing rate of cardiovascular disease and related risk factors in the worldin recent decades, the present meta-analysis was performed to investigate the effects ofcocoa/chocolate consumption on lipid profile, glycemia, and blood pressure control in diabetic patients. A systematic search of the databases PubMed, Scopus, Web of Science, and Cochran Library was performed up to July 2020. All randomized controlled trials (RCTs) using cocoa/dark chocolate in diabetic patients were included in the study. The search results were limited to English-language publications. Eight RCTs, including 433 participants, were selected for this meta-analysis. Pooled analysis indicated a significant reduction in low-density lipoprotein cholesterol LDL-c levels (WMD: -15.49 mg/dl; 95% CI: -24.56, -6.42, p = .001) and fasting blood sugar (FBS) concentrations (WMD: -6.88 mg/dl; 95% CI: -13.28, -0.48, p = .03) following cocoa/dark chocolate consumption. The analysis of papers included in current study indicates that the consumption of cocoa/dark chocolate reduced the serum fasting blood glucose (FBS) and LDL cholesterol concentrations. However, further high quality trials are essential for confirming the clinical efficacy of cocoa/dark chocolate consumption on complete metabolic profile.
Collapse
Affiliation(s)
- Mina Darand
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Hajizadeh Oghaz
- Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska-Lincoln, Nebraska, USA
| | - Amir Hadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Atefi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Oliveira G, Volino-Souza M, Conte-Júnior CA, Alvares TS. Food-derived polyphenol compounds and cardiovascular health: A nano-technological perspective. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Zielinsky P, Martignoni FV, Markoski M, Zucatti KP, Dos Santos Marinho G, Pozzobon G, Magno PR, de Bittencourt Antunes V, Sulis NM, Cardoso A, Mattos D, Naujorks AA, von Frankenberg AD, Vian I. Maternal ingestion of cocoa causes constriction of fetal ductus arteriosus in rats. Sci Rep 2021; 11:9929. [PMID: 33976258 PMCID: PMC8113492 DOI: 10.1038/s41598-021-89309-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Maternal consumption of polyphenol-rich foods has been associated with fetal ductus arteriosus constriction (DAC), but safety of chocolate exposure in fetal life has not been studied. This experimental study tested the hypothesis that maternal cocoa consumption in late pregnancy causes fetal DAC, with possible associated antioxidant effects. Pregnant Wistar rats, at the 21st gestational day, received by orogastric tube cocoa (720 mg/Kg) for 12 h, indomethacin (10 mg/Kg), for 8 h, or only water, before cesaren section. Immediately after withdrawal, every thorax was obtained and tissues were fixed and stained for histological analysis. The ratio of the narrowest part of the pulmonary artery to the fetal ductus inner diameter and increased ductal inner wall thickness characterized ductal constriction. Substances reactive to thiobarbituric acid were quantified. Statistical analysis used ANOVA and Tukey test. Cocoa (n = 33) and indomethacin (n = 7) reduced fetal internal ductus diameter when compared to control (water, n = 25) (p < 0.001) and cocoa alone increased ductus wall thickness (p < 0.001), but no change was noted in enzymes activity. This pharmacological study shows supporting evidences that there is a cause and effect relationship between maternal consumption of cocoa and fetal ductus arteriosus constriction. Habitual widespread use of chocolate during gestation could account for undetected ductus constriction and its potentially severe consequences, such as perinatal pulmonary hypertension, cardiac failure and even death. For this reason, dietary guidance in late pregnancy to avoid high chocolate intake, to prevent fetal ductal constriction, may represent the main translational aspect of this study.
Collapse
Affiliation(s)
- Paulo Zielinsky
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil. .,Departament of Pediatrics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. .,Fetal Cardiology Unit, Institute of Cardiology/University Foundation of Cardiology, Avenida Princesa Isabel, 395 - Santana, Porto Alegre, CEP 90620-000, Brazil.
| | - Felipe Villa Martignoni
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil.,Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, CEP 97105-900, Brazil
| | - Melissa Markoski
- Basic Health Science, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre, CEP 90050-170, Brazil
| | - Kelly Pozzer Zucatti
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil
| | - Gabriela Dos Santos Marinho
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil
| | - Gabriela Pozzobon
- Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, CEP 97105-900, Brazil
| | - Pedro Rafael Magno
- Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, CEP 97105-900, Brazil
| | | | - Natassia Miranda Sulis
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil
| | - Alexandra Cardoso
- Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, CEP 97105-900, Brazil
| | - Daniel Mattos
- Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, CEP 97105-900, Brazil
| | - Alexandre Antônio Naujorks
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil
| | - Anize Delfino von Frankenberg
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil
| | - Izabele Vian
- Fetal Cardiology Unit, Institute of Cardiology/FUC, Avenida Princesa Isabel, 370, Porto Alegre, CEP 90620-000, Brazil
| |
Collapse
|
29
|
Siransy-Balayssac E, Ouattara S, Ahiboh H, Youzan TB, Gouh FL, Yao KB, Ehouman M, Dah CS, Bogui P. Weekly Physiological Changes in Blood Pressure During Three Weeks Daily Consumption of 10 Grams of Cocoa Powder Among Young Black Africans in Côte d'Ivoire. Front Physiol 2021; 12:634791. [PMID: 33679445 PMCID: PMC7930061 DOI: 10.3389/fphys.2021.634791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background In Caucasians, regular consumption of cocoa induces a drop in arterial blood pressure via an increase in nitric oxide (NO) production. However, black individuals have a different NO biodisponibility compared to Caucasians. The aim of this study was to determine, in black Africans, the physiological variations in arterial blood pressure among cocoa consumers. Method In total, 49 male black African volunteers, aged between 18 and 30 years old, were randomized into two groups; those consuming 10 g of cocoa powder per day (1,680 mg of flavonoids per day) for 3 weeks (consumer group), and those not consuming cocoa (control group). Systolic (SBP) and diastolic blood pressures (DBP), and heart rate (HR) were measured in the morning on an empty stomach (fasting), on day (D) 1 (without cocoa), D8, D15, and D22. Data were collected by groups and by subgroups established according to the level of SBP, DBP, or HR on D1. The means and variations of the means (between D1 and the subsequent days) of the recorded parameters were calculated and compared between groups and between subgroups. Results On D8, the variations in SBP in the consumer group were significantly different from the control group (-3.72 ± 6.01 versus 0.57 ± 6.66 mmHg; p = 0.02). Between the control and consumer subgroups according to SBP, no statistical difference in the means or variations in SBP was noted. On D8 and D22, the variations in the SBP of consumers with SBP ≥ 110 mmHg on D1 were significantly different from those of other consumers (D8: -6.55 ± 5.96 versus -1.1 ± 4.93 mmHg; p = 0.01; D22: -6.63 ± 7.77 versus 0.35 ± 5.58 mmHg; p = 0.01). In the subgroups with a DBP < 75 mmHg on D1, the mean DBP of the consumers was significantly lower than that of the controls on D8 (65 ± 5 versus 69 ± 6 mmHg; p = 0.03). Conclusion In young black African men living in Côte d'Ivoire, regular consumption of cocoa resulted in a decrease in SBP and DBP. The decrease in SBP appeared to be greater the higher the baseline SBP was.
Collapse
Affiliation(s)
- Edwige Siransy-Balayssac
- Laboratoire de Physiologie et d'Explorations Fonctionnelles, Unité de Formation et de Recherche en Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Service des Explorations Fonctionnelles, Centre Hospitalier Universitaire de Yopougon, Abidjan, Côte d'Ivoire
| | - Soualiho Ouattara
- Laboratoire de Physiologie et d'Explorations Fonctionnelles, Unité de Formation et de Recherche en Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Hugues Ahiboh
- Laboratoire de Biochimie, Unité de Formation et de Recherche en Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Toh Bi Youzan
- Laboratoire de Physiologie et d'Explorations Fonctionnelles, Unité de Formation et de Recherche en Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Fagnan Levy Gouh
- Laboratoire de Physiologie et d'Explorations Fonctionnelles, Unité de Formation et de Recherche en Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Koffi Bertrand Yao
- Laboratoire de Physiologie et d'Explorations Fonctionnelles, Unité de Formation et de Recherche en Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Mocket Ehouman
- Olopam Pharma and Research & Development, Abidjan, Côte d'Ivoire
| | - Cyrille Serges Dah
- Laboratoire de Physiologie et d'Explorations Fonctionnelles, Unité de Formation et de Recherche en Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Service des Explorations Fonctionnelles, Centre Hospitalier Universitaire de Cocody, Abidjan, Côte d'Ivoire
| | - Pascal Bogui
- Laboratoire de Physiologie et d'Explorations Fonctionnelles, Unité de Formation et de Recherche en Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Service des Explorations Fonctionnelles, Centre Hospitalier Universitaire de Yopougon, Abidjan, Côte d'Ivoire
| |
Collapse
|
30
|
Oteiza PI, Fraga CG, Galleano M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol 2021; 42:101914. [PMID: 33750648 PMCID: PMC8113027 DOI: 10.1016/j.redox.2021.101914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of the links among flavonoid consumption, mitigation of oxidative stress and improvement of disease in humans has significantly advanced in the last decades. This review used (−)-epicatechin (EC) as an example of dietary flavonoids, and inflammation, endothelial dysfunction/hypertension and insulin resistance/diabetes as paradigms of human disease. In these pathologies, oxidative stress is part of their development and/or their perpetuation. Evidence from both, rodent studies and characterization of mechanisms in cell cultures are encouraging and mostly support indirect antioxidant actions of EC and EC metabolites in endothelial dysfunction and insulin resistance. Human studies also show beneficial effects of EC on these pathologies based on biomarkers of disease. However, there is limited available information on oxidative stress biomarkers and flavonoid consumption to allow establishing conclusive associations. The evolving discovery of metabolites that could serve as reliable markers of intake of specific flavonoids constitutes a powerful tool to link flavonoid consumption to disease and prevention of oxidative stress in human populations.
Flavonoid’s metabolism and concentration determine their antioxidant mechanisms. Except for the GI tract, flavonoids are relevant indirect antioxidants in organs and tissues. Flavonoid's health effects are not always linked to biomarkers of oxidative stress. (‒)-Epicatechin mitigates the redox deregulation involved in hypertension/T2D pathogenesis. More human studies will strength links among flavonoids, oxidative stress, and disease.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021; 13:nu13010273. [PMID: 33477894 PMCID: PMC7833401 DOI: 10.3390/nu13010273] [Citation(s) in RCA: 460] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Polyphenols are a group of phytochemicals with potential health-promoting effects. They are classified as flavonoid (flavonols, flavanols, flavones, flavanones, isoflavones, and anthocyanins) and non-flavonoid molecules (phenolic acids, hydroxycinnamic acids, lignans, stilbenes, and tannins). Although an increasing number of trials have shown a correlation among polyphenol consumption and a reduction in risk factors for chronic diseases, discrepancies in explaining their positive effects have been found in terms of the bioavailability. In fact, polyphenols show a low bioavailability due to several factors: interaction with the food matrix, the metabolic processes mediated by the liver (phase I and II metabolism), intestine and microbiota. On the other hand, the biological activities of phenol compounds may be mediated by their metabolites, which are produced in vivo, and recent studies have confirmed that these molecules may have antioxidant and anti-phlogistic properties. This review discusses the studies performed in vivo, which consider the polyphenol bioavailability and their different food sources. Factors influencing the biological effects of the main classes of polyphenols are also considered.
Collapse
Affiliation(s)
- Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
- Correspondence: (C.D.L.); (P.R.); Tel.: +39-02-5031-8371 (P.R.)
| | - Francesca Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
| | - Simone Biella
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
| | - Creina Stockley
- The Australian Wine Research Institute (AWRI), Glen Osmond 5064, Australia;
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (F.C.); (S.B.)
- Correspondence: (C.D.L.); (P.R.); Tel.: +39-02-5031-8371 (P.R.)
| |
Collapse
|
32
|
Ren J, An J, Chen M, Yang H, Ma Y. Effect of proanthocyanidins on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2021; 165:105329. [PMID: 33465473 DOI: 10.1016/j.phrs.2020.105329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypertension is a common chronic disease that can lead to serious health problems. Previous studies have not drawn a consistent conclusion about the effect of proanthocyanidins (PCs) on blood pressure (BP). This systematic review and meta-analysis aims to evaluate the effect of PCs supplementation on blood pressure (BP). METHODS A comprehensive literature search was performed in 6 databases (Pubmed, Scopus, ISI Web of Science, the Cochrane Library, Embase and Google Scholar) to identify the randomized controlled trials (RCTs) that evaluated the BP-lowering effect of PCs. Subgroup and sensitivity analyses were conducted to evaluate the potential heterogeneity. Meta-regression analysis was used to evaluate dose effects of PCs on BP. RESULTS A total of 6 studies comprising 376 subjects were included in our meta-analysis to estimate the pooled effect size. This meta-analysis suggested that PCs supplementation could significantly reduce systolic blood pressure (SBP) (WMD: -4.598 mmHg; 95 % CI: -8.037, -1.159; I2 = 33.7 %; p = 0.009), diastolic blood pressure (DBP) (WMD: -2.750 mmHg; 95 % CI: -5.087, -0.412; I2 = 0.0 %; p = 0.021) and mean arterial pressure (MAP) (WMD: -3.366 mmHg; 95 % CI: -6.719, -0.041 mmHg; I2 = 0.0 %; p = 0.049), but had no significant effect on pulse pressure (PP) (WMD: -2.131 mmHg; 95 % CI: -6.292, 2.030; I2 = 0.0 %; p = 0.315). When the studies were stratified according to the duration of the study, there was a significant reduction on SBP in the subset of the trials with <12 weeks of duration. On the contrary, there was a significant reduction on DBP in the subset of the trials with ≥12 weeks of duration. The Subgroup analysis by BMI indicated that a significant reduction on SBP for people with a higher BMI (BMI ≥ 25) and a significant reduction on DBP for people with a lower BMI (BMI < 25). Additional subgroup analysis revealed low-dose-PCs (<245 mg/day) could significantly reduce SBP, DBP and MAP. The meta-regression analyses did not indicate the dose effects of PCs on SBP, DBP, PP and MAP. CONCLUSION Based on the current findings, PCs supplementation may be a useful treatment of hypertensive patients as well as a preventive measure in the prehypertensive and healthy subjects. However, further investigation is needed to confirm these results.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jiaqi An
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengyuan Chen
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Haiyue Yang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
33
|
Martín MA, Goya L, de Pascual-Teresa S. Effect of Cocoa and Cocoa Products on Cognitive Performance in Young Adults. Nutrients 2020; 12:nu12123691. [PMID: 33265948 PMCID: PMC7760676 DOI: 10.3390/nu12123691] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence support a beneficial role of cocoa and cocoa products on human cognition, particularly in aging populations and patients at risk. However, thorough reviews on the efficacy of cocoa on brain processes in young adults do not exist precisely due to the limited number of studies in the matter. Thus, the aim of this study was to summarize the findings on the acute and chronic effects of cocoa administration on cognitive functions and brain health in young adults. Web of Science and PubMed databases were used to search for relevant trials. Human randomized controlled studies were selected according to PRISMA guidelines. Eleven intervention studies that involved a total of 366 participants investigating the role of cocoa on cognitive performance in children and young adults (average age ≤ 25 years old) were finally selected. Findings from individual studies confirm that acute and chronic cocoa intake have a positive effect on several cognitive outcomes. After acute consumption, these beneficial effects seem to be accompanied with an increase in cerebral blood flow or cerebral blood oxygenation. After chronic intake of cocoa flavanols in young adults, a better cognitive performance was found together with increased levels of neurotrophins. This systematic review further supports the beneficial effect of cocoa flavanols on cognitive function and neuroplasticity and indicates that such benefits are possible in early adulthood.
Collapse
|
34
|
The influence of different concentrations of flavanol chocolate bars under acute supplement conditions on exercise and performance. Eur J Appl Physiol 2020; 120:2075-2082. [PMID: 32627052 DOI: 10.1007/s00421-020-04389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/02/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the effects and acute dosage of different flavanol concentrations in a dark chocolate bar on physiological parameters during steady state (SS) and incremental exercise. METHODS In a double-blind, randomised, crossover study, 15 healthy participants with a mean ± SD age of 30 ± 7 years; stature 176.8 ± 8.6 cm and body mass 80.3 ± 8.4 kg supplemented with high flavanol (HF) (1060 mg), moderate flavanol (MF) (746 mg), low flavanol (LF) (406 mg), or a control (CON) (88 mg) chocolate bar (~ 34 g), 2 h prior to 40 min of SS cycling (80% gas-exchange threshold) followed by an incremental test to volitional fatigue. During the SS cycle oxygen consumption ([Formula: see text]), respiratory exchange ratio (RER) and heart rate (HR) were continuously monitored. Plasma samples were collected prior to commencing exercise to determine nitrate (NO3-) and nitrite (NO2-) levels under each condition. RESULTS There was no observed effect between flavanol concentrations on [Formula: see text], RER, and HR during SS cycling (P > 0.05). [Formula: see text], peak power, HR peak, and RER peak also did not significantly differ between conditions (P > 0.05). There was a small trend for higher plasma NO2- levels following higher flavanol concentration; however, this did not reach statistical significance (P > 0.05). CONCLUSION Acute supplementation with cocoa of differing flavanol concentrations does not appear to have any effect on exercise and performance. It is plausible that longer flavanol supplementation periods might have greater accumulative effects and thus may potentially elicit a larger effect.
Collapse
|
35
|
Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020; 12:nu12071908. [PMID: 32605083 PMCID: PMC7400387 DOI: 10.3390/nu12071908] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cocoa and its products are rich sources of polyphenols such as flavanols. These compounds exert antioxidant and anti-inflammatory activities, accountable for cocoa health-promoting effects. However, cocoa polyphenols are poorly absorbed in the intestine, and most of them cannot reach the systemic circulation in their natural forms. Instead, their secondary bioactive metabolites are bioavailable, enter the circulation, reach the target organs, and exhibit their activities. In fact, once reaching the intestine, cocoa polyphenols interact bidirectionally with the gut microbiota. These compounds can modulate the composition of the gut microbiota exerting prebiotic mechanisms. They enhance the growth of beneficial gut bacteria, such as Lactobacillus and Bifidobacterium, while reducing the number of pathogenic ones, such as Clostridium perfringens. On the other hand, bioactive cocoa metabolites can enhance gut health, displaying anti-inflammatory activities, positively affecting immunity, and reducing the risk of various diseases. This review aims to summarize the available knowledge of the bidirectional interaction between cocoa polyphenols and gut microbiota with their various health outcomes.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
- Correspondence: ; Tel.: +39-3880944215
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| | - Laura Mancin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
- Human Inspired Technology Research Center, University of Padova, 35131 Padova, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| |
Collapse
|
36
|
Hollands WJ, Philo M, Perez‐Moral N, Needs PW, Savva GM, Kroon PA. Monomeric Flavanols Are More Efficient Substrates for Gut Microbiota Conversion to Hydroxyphenyl-γ-Valerolactone Metabolites Than Oligomeric Procyanidins: A Randomized, Placebo-Controlled Human Intervention Trial. Mol Nutr Food Res 2020; 64:e1901135. [PMID: 32223044 PMCID: PMC7378946 DOI: 10.1002/mnfr.201901135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/26/2020] [Indexed: 01/19/2023]
Abstract
SCOPE The majority of ingested flavanols reach the colon where they are catabolized by the microbiota to form hydroxyphenyl-γ-valerolactones (HGVLs). It is not known if the HGVLs are catabolic products of monomeric (epi)catechins (EPC), oligomeric procyanidins (OPCs), or both. Using data from a randomized, double-blind, placebo-controlled crossover trial the relative contributions of catechins and OPC to the bioavailable pool of HGVLs are estimated. METHODS AND RESULTS Participants ingested an apple extract once daily for 28 days that delivered the following: i) 70 mg EPC and 65 mg OPC (low dose EPC), ii) 140 mg EPC and 130 mg OPC (high dose EPC), iii) 6 mg EPC and 130 mg OPC (OPC), and iv) a placebo control. Urine is collected over a 24-h period before and after treatments. The median urinary excretion of HGVLs after ingestion of the high dose EPC is tenfold higher than that excreted after ingestion of the OPC that provided an equivalent dose of PC. Approximately 22% of catechins are converted to HGVLs in contrast to PC, for which there is limited conversion. CONCLUSION Monomeric catechins are efficiently converted to derived HGVLs that are absorbed and excreted in human urine, whereas oligomeric PCs are much less efficiently converted.
Collapse
Affiliation(s)
- Wendy J Hollands
- Food Innovation and Health ProgrammeQuadram Institute BioscienceNorwichNR4 7UQUK
| | - Mark Philo
- Food Innovation and Health ProgrammeQuadram Institute BioscienceNorwichNR4 7UQUK
| | - Natalia Perez‐Moral
- Food Innovation and Health ProgrammeQuadram Institute BioscienceNorwichNR4 7UQUK
| | - Paul W Needs
- Food Innovation and Health ProgrammeQuadram Institute BioscienceNorwichNR4 7UQUK
| | - George M Savva
- Core Research ServicesQuadram Institute BioscienceNorwichNR4 7UQUK
| | - Paul A Kroon
- Food Innovation and Health ProgrammeQuadram Institute BioscienceNorwichNR4 7UQUK
| |
Collapse
|
37
|
Short-Term Effects of Dark Chocolate on Retinal and Choriocapillaris Perfusion in Young, Healthy Subjects Using Optical Coherence Tomography Angiography. Nutrients 2020; 12:nu12030664. [PMID: 32121339 PMCID: PMC7146134 DOI: 10.3390/nu12030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
(1) Aim: Contrasting results have been published on the effect of dark chocolate on visual function. The aim of this study was to evaluate retinal and choriocapillaris perfusion, using optical coherence tomography angiography (OCT-A), and visual function in healthy subjects following dark chocolate ingestion. (2) Methods: This prospective randomized study was carried out on 18 healthy young subjects at the St. Andrea Hospital, Sapienza, University of Rome. Visual acuity assessment and a complete ophthalmologic examination were carried out at baseline. In session one, each subject was randomized to eat either a 100 g dark chocolate bar or a 100 g white chocolate bar. In session two, the opposite chocolate was given to each participant. OCT-A and best corrected visual acuity (BCVA) were performed before the chocolate was eaten and repeated 1, 2, and 3 h after that. Retinal vessel density and choriocapillaris flow area were assessed. (3) Results: 18 patients with a mean (SD) age of 26.3 (1.5) years were included. No significant differences between dark or white chocolate were found when evaluating foveal density (%), whole density (%), choriocapillaris flow area, and BCVA. (4) Conclusions: Dark chocolate did not result in significant changes in retinal perfusion and choriocapillaris flow area. However, given the results of other studies showing the positive effects of flavonoids on visual function, further studies are warranted using pure chocolate without other components such as caffeine that can potentially affect results. Furthermore, we cannot rule out the possible benefits of higher doses of flavonoids in dietary supplementation over a more extended period and in a larger patient population.
Collapse
|
38
|
Latif R, Majeed F. Association between chocolate consumption frequency and heart rate variability indices. Explore (NY) 2020; 16:372-375. [PMID: 32008980 DOI: 10.1016/j.explore.2019.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/22/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previous studies have shown favorable effects of chocolate products on the cardiovascular system and reported an inverse relationship between chocolate consumption and adverse cardiac events; however, relationships between chocolate eating habits and heart rate variability have not yet been studied. The purpose of the present research was to determine the relationship, if any, between chocolate consumption frequency and heart rate variability. METHODS A cross-sectional study was carried out in a group of 98 young females (19-21 years old). The study included the evaluation of chocolate eating habits by a questionnaire and heart rate variability parameters by Finometer and Powerlab as primary outcomes along with measuring anthropometry, blood pressure and fasting blood sugar levels as predictors to account for potential confounding. RESULTS Three chocolate eating patterns were distinguished: "No regular chocolate consumption (n:42), 2-4 servings/week (n:20), 5 or more servings/week (n:36)". An ANOVA test revealed insignificant differences (p > 0.05) in heart rate variability parameters (time domain: Heart rate, RRms, SDNN, RMSSD; frequency domain: LF, HF, LF/HF) and pressures (systolic, diastolic, pulse, mean arterial) among three groups of individuals having different chocolate eating habits. Relative frequency of chocolate intake did not correlate with any of the cardiovascular, time-domain or frequency-domain parameters of heart rate variability in study participants. CONCLUSION Based on our results, we conclude that relative frequency of chocolate eating may not affect autonomic regulation of the heart in young females. Also, it may have no correlation with any of the cardiovascular, time-domain or frequency-domain parameters of heart rate variability.
Collapse
Affiliation(s)
- Rabia Latif
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | | |
Collapse
|
39
|
Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, Egido J. The Coming Age of Flavonoids in the Treatment of Diabetic Complications. J Clin Med 2020; 9:jcm9020346. [PMID: 32012726 PMCID: PMC7074336 DOI: 10.3390/jcm9020346] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM), and its micro and macrovascular complications, is one of the biggest challenges for world public health. Despite overall improvement in prevention, diagnosis and treatment, its incidence is expected to continue increasing over the next years. Nowadays, finding therapies to prevent or retard the progression of diabetic complications remains an unmet need due to the complexity of mechanisms involved, which include inflammation, oxidative stress and angiogenesis, among others. Flavonoids are natural antioxidant compounds that have been shown to possess anti-diabetic properties. Moreover, increasing scientific evidence has demonstrated their potential anti-inflammatory and anti-oxidant effects. Consequently, the use of these compounds as anti-diabetic drugs has generated growing interest, as is reflected in the numerous in vitro and in vivo studies related to this field. Therefore, the aim of this review is to assess the recent pre-clinical and clinical research about the potential effect of flavonoids in the amelioration of diabetic complications. In brief, we provide updated information concerning the discrepancy between the numerous experimental studies supporting the efficacy of flavonoids on diabetic complications and the lack of appropriate and well-designed clinical trials. Due to the well-described beneficial effects on different mechanisms involved in diabetic complications, the excellent tolerability and low cost, future randomized controlled studies with compounds that have adequate bioavailability should be evaluated as add-on therapy on well-established anti-diabetic drugs.
Collapse
Affiliation(s)
- Teresa Caro-Ordieres
- Research Discovery and Innovation Department, FAES FARMA, S.A, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa (Bizkaia), Spain;
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Luna Jiménez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
- Correspondence:
| |
Collapse
|
40
|
Kluknavsky M, Balis P, Skratek M, Manka J, Bernatova I. (-)-Epicatechin Reduces the Blood Pressure of Young Borderline Hypertensive Rats During the Post-Treatment Period. Antioxidants (Basel) 2020; 9:antiox9020096. [PMID: 31979210 PMCID: PMC7071046 DOI: 10.3390/antiox9020096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/28/2022] Open
Abstract
This study investigated the effects of (–)-epicatechin (Epi) in young male borderline hypertensive rats (BHR) during two weeks of treatment (Epi group, 100 mg/kg/day p.o.) and two weeks post treatment (PE group). Epi reduced blood pressure (BP), which persisted for two weeks post treatment. This was associated with delayed reduction of anxiety-like behaviour. Epi significantly increased nitric oxide synthase (NOS) activities in the aorta and left heart ventricle (LHV) vs. the age-matched controls without affecting the brainstem and frontal neocortex. Furthermore, Epi significantly reduced the superoxide production in the aorta and relative content of iron-containing compounds in blood. Two weeks post treatment, the NOS activities and superoxide productions in the heart and aorta did not differ from the age-matched controls. The gene expressions of the NOSs (nNOS, iNOS, eNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ (PPAR-γ) remained unaltered in the aorta and LHV of the Epi and PE groups. In conclusion, while Epi-induced a decrease of the rats’ BP persisted for two weeks post treatment, continuous Epi treatments seem to be necessary for maintaining elevated NO production as well as redox balance in the heart and aorta without changes in the NOSs, Nrf2, and PPAR-γ gene expressions.
Collapse
Affiliation(s)
- Michal Kluknavsky
- Slovak Academy of Sciences, Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (M.K.); (P.B.)
| | - Peter Balis
- Slovak Academy of Sciences, Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (M.K.); (P.B.)
| | - Martin Skratek
- Slovak Academy of Sciences, Institute of Measurement Science, 841 04 Bratislava, Slovakia; (M.S.); (J.M.)
| | - Jan Manka
- Slovak Academy of Sciences, Institute of Measurement Science, 841 04 Bratislava, Slovakia; (M.S.); (J.M.)
| | - Iveta Bernatova
- Slovak Academy of Sciences, Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (M.K.); (P.B.)
- Correspondence:
| |
Collapse
|
41
|
Christ A, Lauterbach M, Latz E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2020; 51:794-811. [PMID: 31747581 DOI: 10.1016/j.immuni.2019.09.020] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
The consumption of Western-type calorically rich diets combined with chronic overnutrition and a sedentary lifestyle in Western societies evokes a state of chronic metabolic inflammation, termed metaflammation. Metaflammation contributes to the development of many prevalent non-communicable diseases (NCDs), and these lifestyle-associated pathologies represent a rising public health problem with global epidemic dimensions. A better understanding of how modern lifestyle and Western diet (WD) activate immune cells is essential for the development of efficient preventive and therapeutic strategies for common NCDs. Here, we review the current mechanistic understanding of how the Western lifestyle can induce metaflammation, and we discuss how this knowledge can be translated to protect the public from the health burden associated with their selected lifestyle.
Collapse
Affiliation(s)
- Anette Christ
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA 01605, USA
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA 01605, USA; Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway; German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
| |
Collapse
|
42
|
Jafarnejad S, Salek M, Clark CCT. Cocoa Consumption and Blood Pressure in Middle-Aged and Elderly Subjects: a Meta-Analysis. Curr Hypertens Rep 2020; 22:1. [DOI: 10.1007/s11906-019-1005-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Philip P, Sagaspe P, Taillard J, Mandon C, Constans J, Pourtau L, Pouchieu C, Angelino D, Mena P, Martini D, Del Rio D, Vauzour D. Acute Intake of a Grape and Blueberry Polyphenol-Rich Extract Ameliorates Cognitive Performance in Healthy Young Adults During a Sustained Cognitive Effort. Antioxidants (Basel) 2019; 8:antiox8120650. [PMID: 31861125 PMCID: PMC6943592 DOI: 10.3390/antiox8120650] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Despite an increasing level of evidence supporting the individual beneficial effect of polyphenols on cognitive performance, information related to the potential synergistic action of these phytonutrients on cognitive performance during a prolonged cognitive effort is currently lacking. This study investigated the acute and sustained action of a polyphenols-rich extract from grape and blueberry (PEGB), on working memory and attention in healthy students during a prolonged and intensive cognitive effort. In this randomised, cross-over, double blind study, 30 healthy students consumed 600 mg of PEGB or a placebo. Ninety minutes after product intake, cognitive functions were assessed for one hour using a cognitive demand battery including serial subtraction tasks, a rapid visual information processing (RVIP) task and a visual analogical scale. Flow-mediated dilation (FMD) and plasma flavan-3-ols metabolites quantification were also performed. A 2.5-fold increase in serial three subtraction variation net scores was observed following PEGB consumption versus placebo (p < 0.001). A trend towards significance was also observed with RVIP percentage of correct answers (p = 0.058). No treatment effect was observed on FMD. Our findings suggest that consumption of PEGB coupled with a healthy lifestyle may be a safe alternative to acutely improve working memory and attention during a sustained cognitive effort.
Collapse
Affiliation(s)
- Pierre Philip
- Pôle Neurosciences Cliniques, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France; (P.P.); (P.S.)
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
- Centre d’Investigation Clinique Bordeaux, INSERM CIC 1401, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France
| | - Patricia Sagaspe
- Pôle Neurosciences Cliniques, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France; (P.P.); (P.S.)
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
| | - Jacques Taillard
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
| | - Claire Mandon
- Vascular Medicine Service, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France; (C.M.); (J.C.)
| | - Joël Constans
- Vascular Medicine Service, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France; (C.M.); (J.C.)
| | - Line Pourtau
- Activ’Inside, F-33750 Beychac et Caillau, France; (L.P.); (C.P.)
| | - Camille Pouchieu
- Activ’Inside, F-33750 Beychac et Caillau, France; (L.P.); (C.P.)
| | - Donato Angelino
- Department of Food & Drugs, University of Parma, 43125 Parma, Italy; (D.A.); (P.M.)
| | - Pedro Mena
- Department of Food & Drugs, University of Parma, 43125 Parma, Italy; (D.A.); (P.M.)
| | - Daniela Martini
- Department of Veterinary Science, University of Parma, 43125 Parma, Italy; (D.M.); (D.D.R.)
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, 43125 Parma, Italy; (D.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Correspondence: ; Tel.: +44-1603-591-732
| |
Collapse
|
44
|
The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6713194. [PMID: 31885810 PMCID: PMC6914975 DOI: 10.1155/2019/6713194] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/11/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Polyphenols are the general designation of various kinds of phytochemicals, mainly classified as flavonoids and nonflavonoids. Polyphenolic compounds have been confirmed to exhibit numerous bioactivities and potential health benefits both in vivo and in vitro. Dietary polyphenols have been shown to significantly alleviate several manifestations of metabolic syndrome, namely, central obesity, hypertension, dyslipidemia, and high blood sugar. This review is aimed at discussing the bioprotective effects and related molecular mechanisms of polyphenols, mainly by increasing antioxidant capacity or oxygen scavenging capacity. Polyphenols can exert their antioxidative activity by balancing the organic oxidoreductase enzyme system, regulating antioxidant responsive signaling pathways, and restoring mitochondrial function. These data are helpful for providing new insights into the potential biological effects of polyphenolic compounds and the development of future antioxidant therapeutics.
Collapse
|
45
|
Sub-Chronic Consumption of Dark Chocolate Enhances Cognitive Function and Releases Nerve Growth Factors: A Parallel-Group Randomized Trial. Nutrients 2019; 11:nu11112800. [PMID: 31744119 PMCID: PMC6893800 DOI: 10.3390/nu11112800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/18/2023] Open
Abstract
Previous research has shown that habitual chocolate intake is related to cognitive performance and that frequent chocolate consumption is significantly associated with improved memory. However, little is known about the effects of the subchronic consumption of dark chocolate (DC) on cognitive function and neurotrophins. Eighteen healthy young subjects (both sexes; 20-31 years old) were randomly divided into two groups: a DC intake group (n = 10) and a cacao-free white chocolate (WC) intake group (n = 8). The subjects then consumed chocolate daily for 30 days. Blood samples were taken to measure plasma levels of theobromine (a methylxanthine most often present in DC), nerve growth factor (NGF), and brain-derived neurotrophic factor, and to analyze hemodynamic parameters. Cognitive function was assessed using a modified Stroop color word test and digital cancellation test. Prefrontal cerebral blood flow was measured during the tests. DC consumption increased the NGF and theobromine levels in plasma, enhancing cognitive function performance in both tests. Interestingly, the DC-mediated enhancement of cognitive function was observed three weeks after the end of chocolate intake. WC consumption did not affect NGF and theobromine levels or cognitive performance. These results suggest that DC consumption has beneficial effects on human health by enhancing cognitive function.
Collapse
|
46
|
Al-Dashti YA, Holt RR, Carson JG, Keen CL, Hackman RM. Effects of Short-Term Dried Plum (Prune) Intake on Markers of Bone Resorption and Vascular Function in Healthy Postmenopausal Women: A Randomized Crossover Trial. J Med Food 2019; 22:982-992. [DOI: 10.1089/jmf.2018.0209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yousef A. Al-Dashti
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Roberta R. Holt
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - John G. Carson
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California, Davis, Sacramento, USA
| | - Carl L. Keen
- Department of Nutrition, University of California, Davis, Davis, California, USA
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Robert M. Hackman
- Department of Nutrition, University of California, Davis, Davis, California, USA
| |
Collapse
|
47
|
Regecova V, Jurkovicova J, Babjakova J, Bernatova I. The Effect of a Single Dose of Dark Chocolate on Cardiovascular Parameters and Their Reactivity to Mental Stress. J Am Coll Nutr 2019; 39:414-421. [PMID: 31526307 DOI: 10.1080/07315724.2019.1662341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: This study investigated the effect of a single administration of dark or milk chocolate on blood pressure (BP), heart rate (HR), and double product (DP) in young healthy women at rest and during acute mental stress.Method: Measurements consisted of anthropometry, BP, and HR. Mean arterial BP (MAP) and DP were computed. The relative reactivity of individual variables was quantified as to their percentage change during the rest or test of mental arithmetic (MA) with respect to the respective baseline value. All subjects underwent two tests of MA-one before chocolate administration and the second one 2 hours after chocolate (1 mg/g of body weight) ingestion.Results: Two hours after ingestion at rest, dark chocolate administration resulted in a significant increase in relative values of systolic BP and DP by 5.1% ± 1.4% and 13.7% ± 3.2%, respectively, compared to the responses in the milk chocolate group (-2.4% ± 1.6% and 0.6% ± 3.4%, respectively, p < 0.04 for both comparisons) without changes in diastolic BP, HR, and MAP. During MA-induced acute stress, the relative magnitude of the reactivity of diastolic BP, HR, MAP, and DP decreased by about 10, 16, 8, and 23 percentage points, respectively, 2 hours after ingestion of dark chocolate compared to the relative reactivity determined before dark chocolate ingestion. Milk chocolate failed to affect any of the above-mentioned parameters at rest or during stress.Conclusions: The single oral intake of 85% dark chocolate increased relative values of systolic BP and DP at rest but buffered the reactivity of diastolic BP, HR, MAP, and DP during mental stress, which was not found after ingestion of milk chocolate. Thus, dark chocolate might have a beneficial effect during acute stress due to its ability to buffer cardiovascular reactivity in young healthy women.
Collapse
Affiliation(s)
- Valeria Regecova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Bratislava, Slovakia
| | - Jana Jurkovicova
- Institute of Hygiene, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Jana Babjakova
- Institute of Hygiene, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Iveta Bernatova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Bratislava, Slovakia
| |
Collapse
|
48
|
Brothers RM, Fadel PJ, Keller DM. Racial disparities in cardiovascular disease risk: mechanisms of vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 317:H777-H789. [PMID: 31397168 DOI: 10.1152/ajpheart.00126.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) accounts for a third of all deaths in the United States making it the leading cause of morbidity and mortality. Although CVD affects individuals of all races/ethnicities, the prevalence of CVD is highest in non-Hispanic black (BL) individuals relative to other populations. The mechanism(s) responsible for elevated CVD risk in the BL population remains incompletely understood. However, impaired vascular vasodilator capacity and exaggerated vascular vasoconstrictor responsiveness are likely contributing factors, both of which are present even in young, otherwise healthy BL individuals. Within this review, we highlight some historical and recent data, collected from our laboratories, of impaired vascular function, in terms of reduced vasodilator capacity and heightened vasoconstrictor responsiveness, in the peripheral and cerebral circulations in BL individuals. We provide data that such impairments may be related to elevated oxidative stress and subsequent reduction in nitric oxide bioavailability. In addition, divergent mechanisms of impaired vasodilatory capacity between BL men and women are discussed. Finally, we propose several directions where future research is needed to fill in knowledge gaps, which will allow for better understanding of the mechanisms contributing to impaired vascular function in this population. Ultimately, this information will allow for better lifestyle and therapeutic approaches to be implemented in an effort to minimize the increased CVD burden in the BL population.
Collapse
Affiliation(s)
- R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
49
|
Pereira T, Bergqvist J, Vieira C, Grüner Sveälv B, Castanheira J, Conde J. Randomized study of the effects of cocoa-rich chocolate on the ventricle–arterial coupling and vascular function of young, healthy adults. Nutrition 2019; 63-64:175-183. [DOI: 10.1016/j.nut.2019.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 11/27/2022]
|
50
|
Effects of regular high-cocoa chocolate intake on arterial stiffness and metabolic characteristics during exercise. Nutrition 2019; 60:53-58. [DOI: 10.1016/j.nut.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/29/2018] [Indexed: 01/12/2023]
|