1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Liu Y, Liu Z, Tu T, Liu H, Tan C, Feng D, Zou J. Lycopene attenuates trimethylamine-N-oxide-induced senescence in endothelial progenitor cells via the AMPK/SIRT1 pathway. Clin Exp Hypertens 2025; 47:2487891. [PMID: 40190067 DOI: 10.1080/10641963.2025.2487891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 05/17/2025]
Abstract
Aging-related diseases, which are associated with the senescence of endothelial progenitor cells (EPCs), are consistently accompanied by elevated levels of circulating trimethylamine-N-oxide (TMAO), a marker predictive of poor prognosis. Lycopene (Lyc) deficiency has been demonstrated to be linked to these age-related diseases. The AMPK/SIRT1 pathway plays a pivotal role in cellular senescence. In this study, we hypothesize that lycopene could mitigate TMAO-induced EPCs senescence, with involvement of the AMPK/SIRT1 pathway. EPCs were subjected to treatment with TMAO, Lyc, small interfering RNA targeting AMP-activated protein kinase (siAMPK), or sirtin-1 (siSIRT1). The biological functions of EPCs were evaluated through, CCK-8, transwell and tube formation assays, while their senescence was assessed via SA-β-gal activity assay and Western blotting. ROS generation was measured using dichlorodihydrofluorescein diacetate staining. TMAO-induced suppression of EPCs' functionality was alleviated by Lyc, but this effect was reversed by siAMPK and siSIRT1. TMAO increased SA-β-gal-positive cell number and ROS production, while reducing the expression of AMPK and SIRT1. These effects were attenuated by Lyc. However, the protective effects were diminished by siAMPK and siSIRT1. In conclusion, Lyc ameliorates TMAO-induced EPCs senescence through the AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhenhao Liu
- Department of Cardiovascular Medicine, Pingxiang People's Hospital, Jiangxi, China
| | - Tengcan Tu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hao Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chujun Tan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun Zou
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| |
Collapse
|
3
|
Robby AI, Jiang S, Jin EJ, Park SY. Semiconducting polymer dot-based wireless electrochemical aptasensor for detection of aging-related TGF-β1 and IL-6. Anal Chim Acta 2025; 1360:344139. [PMID: 40409909 DOI: 10.1016/j.aca.2025.344139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/01/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND The senescence-associated secretory phenotype (SASP) is closely linked to aging by promoting inflammation and tissue degradation. Sensing SASP is crucial for early detection of and intervention in age-related diseases to enhance therapeutic outcomes. Herein, SASP-selective sensors (transforming growth factor [TGF]-β1 and interleukin [IL]-6 probes) were designed by utilizing TGF-β1/IL-6 aptamers-functionalized copper-immobilized polymer dots that promoted specific binding between TGF-β1/IL-6 aptamers on the probe surface with aging factors (TGF-β1 and IL-6). RESULTS The selective binding was reflected by changes in the conductivity of the probes. The TGF-β1 and IL-6 probes showed high sensitivity towards TGF-β1 and IL-6, with limits of detection of 193.09 pg/mL for the TGF-β1 (R2 = 0.9989) and 16.49 pg/mL (R2 = 0.9998) for IL-6 probes. In vitro study using senescent cells confirmed that the probes could selectively detect TGF-β1 and IL-6, indicated by increased resistance with longer incubation times (TGF-β172h = 2.775 MΩ, IL-672h = 2.401 MΩ). Furthermore, the TGF-β1 and IL-6 probes exhibited excellent detection performance in in vivo samples from aging mouse models when monitoring the levels of TGF-β1 and IL-6 at different times after lenti soup injection and at different mouse ages (6-20 months). Additionally, the electrical signals generated during sensing can be displayed on a smartphone via a wireless sensing system. SIGNIFICANCE TGF-β1 and IL-6 probes provide a sensitive, specific and accessible diagnostic platform for senescence aging factors monitoring, which are expected to be an essential tool that transforms the analysis of aging and age-related diseases.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan, Chungbuk, 54538, Republic of Korea
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan, Chungbuk, 54538, Republic of Korea; Department of Biomedical Materials Science, Graduate School of JABA, Wonkwang University, Iksan, Jeonbuk State, 54538, Republic of Korea.
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
4
|
Yang Y, Cai Q, Zhu M, Rong J, Feng X, Wang K. Exploring the double-edged role of cellular senescence in chronic liver disease for new treatment approaches. Life Sci 2025; 373:123678. [PMID: 40324645 DOI: 10.1016/j.lfs.2025.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Cellular senescence is a fundamental yet complex defense mechanism that restricts excessive proliferation, maintains cellular homeostasis under various stress conditions-such as oncogenic activation and inflammation-and serves as a dynamic stress response program involved in development, aging, and immunity. Its reversibility depends on essential maintenance components. Cellular senescence is a "double-edged sword": on one hand, it limits the malignant proliferation of damaged cells, thereby preventing tumor development. However, by retaining secretory functions, senescent cells can also induce persistent changes in the microenvironment and disrupt homeostasis, leading to tissue inflammation, fibrosis, and carcinogenesis. Senescence plays a critical role in the pathogenesis of various chronic liver diseases, including chronic viral hepatitis, liver fibrosis, and hepatocellular carcinoma. It exerts a dual influence by facilitating immune evasion and inflammation in chronic viral hepatitis, modulating hepatic stellate cell activity in fibrosis, and reshaping the tumor microenvironment to accelerate hepatocarcinogenesis. This article reviews the characteristics of cellular senescence and its role in the pathogenesis of these chronic liver diseases while exploring potential treatment and prevention strategies. The aim is to provide a comprehensive reference for future clinical and research investigations into chronic liver disease.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Qun Cai
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Mingyan Zhu
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jianning Rong
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xudong Feng
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
| | - Ke Wang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Shin JW, Jang DH, Kim SY, Lee JJ, Gil TH, Shim E, Kim JY, Kim HS, Conboy MJ, Conboy IM, Wiley CD, Shin JS, Jeon OH. Propagation of senescent phenotypes by extracellular HMGB1 is dependent on its redox state. Metabolism 2025; 168:156259. [PMID: 40189139 DOI: 10.1016/j.metabol.2025.156259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND & PURPOSE Cellular senescence spreads systemically through blood circulation, but its mechanisms remain unclear. High mobility group box 1 (HMGB1), a multifunctional senescence-associated secretory phenotype (SASP) factor, exists in various redox states. Here, we investigate the role of redox-sensitive HMGB1 (ReHMGB1) in driving paracrine and systemic senescence. METHODS We applied the paracrine senescence cultured model to evaluate the effect of ReHMGB1 on cellular senescence. Each redox state of HMGB1 was treated extracellularly to assess systemic senescence both in vitro and in vivo. Senescence was determined by SA-β-gal & EdU staining, p16INK4a and p21 expression, RT-qPCR, and Western blot methods. Bulk RNA sequencing was performed to investigate ReHMGB1-driven transcriptional changes and underlying pathways. Cytokine arrays characterized SASP profiles from ReHMGB1-treated cells. In vivo, young mice were administered ReHMGB1 systemically to induce senescence across multiple tissues. A muscle injury model in middle-aged mice was used to assess the therapeutic efficacy of HMGB1 blockade. RESULTS Extracellular ReHMGB1, but not its oxidized form, robustly induced senescence-like phenotypes across multiple cell types and tissues. Transcriptomic analysis revealed activation of RAGE-mediated JAK/STAT and NF-κB pathways, driving SASP expression and cell cycle arrest. Cytokine profiling confirmed paracrine senescence features induced by ReHMGB1. ReHMGB1 administration elevated senescence markers in vivo, while HMGB1 inhibition reduced senescence, attenuated systemic inflammation, and enhanced muscle regeneration. CONCLUSION ReHMGB1 is a redox-dependent pro-geronic factor driving systemic senescence. Targeting extracellular HMGB1 may offer therapeutic potential for preventing aging-related pathologies.
Collapse
Affiliation(s)
- Ji-Won Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Dong-Hyun Jang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - So Young Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Je-Jung Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae-Hwan Gil
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunha Shim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji Yeon Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyeon Soo Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Weng K, He Y, Weng X, Yuan Y. Exercise alleviates osteoporosis by regulating the secretion of the Senescent Associated Secretory Phenotype. Bone 2025; 196:117485. [PMID: 40216288 DOI: 10.1016/j.bone.2025.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
As the elderly population grows, the number of patients with metabolic bone diseases such as osteoporosis has increased sharply, posing a significant threat to public health and social economics. Although pharmacological therapies for osteoporosis demonstrate therapeutic benefits, their prolonged use is associated with varying degrees of adverse effects. As a non-pharmacological intervention, exercise is widely recognized for its cost-effectiveness, safety, and lack of toxic side effects, making it a recommended treatment for osteoporosis prevention and management. Previous studies have demonstrated that exercise can improve metabolic bone diseases by modulating the Senescent Associated Secretory Phenotype (SASP). However, the mechanisms through which exercise influences SASP remain unclear. Therefore, this review aims to summarize the effects of exercise on SASP and elucidate the specific mechanisms by which exercise regulates SASP to alleviate osteoporosis, providing a theoretical basis for osteoporosis through exercise and developing targeted therapies.
Collapse
Affiliation(s)
- Kaihong Weng
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Yuting He
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| |
Collapse
|
7
|
Plata-Gómez AB, Ho PC. Age- and diet-instructed metabolic rewiring of the tumor-immune microenvironment. J Exp Med 2025; 222:e20241102. [PMID: 40214641 PMCID: PMC11987706 DOI: 10.1084/jem.20241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The tumor-immune microenvironment (TIME) plays a critical role in tumor development and metastasis, as it influences the evolution of tumor cells and fosters an immunosuppressive state by intervening the metabolic reprogramming of infiltrating immune cells. Aging and diet significantly impact the metabolic reprogramming of the TIME, contributing to cancer progression and immune evasion. With aging, immune cell function declines, leading to a proinflammatory state and metabolic alterations such as increased oxidative stress and mitochondrial dysfunction, which compromise antitumor immunity. Similarly, dietary factors, particularly high-fat and high-sugar diets, promote metabolic shifts, creating a permissive TIME by fostering tumor-supportive immune cell phenotypes while impairing the tumoricidal activity of immune cells. In contrast, dietary restrictions have been shown to restore immune function by modulating metabolism and enhancing antitumor immune responses. Here, we discuss the intricate interplay between aging, diet, and metabolic reprogramming in shaping the TIME, with a particular focus on T cells, and highlight therapeutic strategies targeting these pathways to empower antitumor immunity.
Collapse
Affiliation(s)
- Ana Belén Plata-Gómez
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Avelar RA, Palmer D, Kulaga AY, Fuellen G. Conserved biological processes in partial cellular reprogramming: Relevance to aging and rejuvenation. Ageing Res Rev 2025; 108:102737. [PMID: 40122394 DOI: 10.1016/j.arr.2025.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Partial or transient cellular reprogramming is defined by the limited induction of pluripotency factors without full dedifferentiation of cells to a pluripotent state. Comparing in vitro and in vivo mouse studies, and in vitro studies in humans, supported by visualizations of data interconnections, we show consistent patterns in how such reprogramming modulates key biological processes. Generally, partial reprogramming drives dynamic chromatin remodelling, involving histone modifications that regulate accessibility and facilitate pluripotency gene activation while silencing somatic identity. These changes are accompanied by modifications in stress response programs, such as inflammation, autophagy, and cellular senescence, as well as improved mitochondrial activity and dysregulation of extracellular matrix pathways. We also underscore the challenges in evaluating complex processes like aging and cellular senescence, given the variability in biomarkers used across studies. Overall, we highlight biological processes consistently influenced by reprogramming while noting that some effects are context-dependent, varying according to cell type, species, sex, recovery time, and the reprogramming method employed. These insights inform future research and potential therapeutic applications in aging and regenerative medicine.
Collapse
Affiliation(s)
- Roberto A Avelar
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany.
| | - Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany.
| | - Anton Y Kulaga
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany; Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania.
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany; School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Jolles B, Stierlé V. Doxorubicin-induced senescence is modulated by the eukaryotic release factor 3a and its polyglycine expansion in HCT116 cells. Biochimie 2025; 233:81-87. [PMID: 40015471 DOI: 10.1016/j.biochi.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
In humans, the release factor eRF3a exists in several forms that differ in the length of the polyglycine tract (7, 10, 11 or 12 glycines) in its N-terminal domain. For the 12-Gly eRF3a, an association with cancer risk and a decreased affinity for the cytoplasmic poly (A) binding protein have already been established. In this work, HCT116 colon cancer cells were treated with low doses of doxorubicin, which is known to induce senescence in these cells with high efficiency. The expression of p21 and p53 (senescence marker proteins) as well as lysosomal β-galactosidase activity were reduced when 12-Gly-eRF3a was overexpressed or eRF3a was depleted in cells. If low activity of mTORC1 pathway might be responsible for reduced senescence onset after eRF3a depletion, its activity is maintained in cells overexpressing 12-Gly-eRF3a. In both cases, a defect in termination efficiency could be involved.
Collapse
Affiliation(s)
- Béatrice Jolles
- Sorbonne Université, Institute of Biology Paris-Seine, IBPS, CNRS, UMR 8256, Biological Adaptation and Ageing, B2A, F 75005, Paris, France
| | - Vérène Stierlé
- Sorbonne Université, Institute of Biology Paris-Seine, IBPS, CNRS, UMR 8256, Biological Adaptation and Ageing, B2A, F 75005, Paris, France; Sorbonne Université, Institute of Biology Paris-Seine, IBPS, CNRS, UMR 8263, INSERM U1345 Development Adaptation and Ageing, Dev2A, F 75005, Paris, France.
| |
Collapse
|
10
|
Cunha WR, Martin de la Vega M, Rodrigues de Barros P, Espinosa-Diez C. lncRNAs in vascular senescence and microvascular remodeling. Am J Physiol Heart Circ Physiol 2025; 328:H1238-H1252. [PMID: 40251747 DOI: 10.1152/ajpheart.00750.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of vascular senescence and microvascular remodeling, processes that significantly contribute to the development of age-related diseases in organs such as the kidneys, heart, and lungs. Through mechanisms like chromatin remodeling, transcriptional regulation, and posttranscriptional modifications, lncRNAs modulate gene expression, thereby influencing cellular processes such as apoptosis, inflammation, fibrosis, and angiogenesis. In chronic kidney disease, cardiovascular disease, and pulmonary disorders, lncRNAs play a central role in promoting vascular dysfunction, endothelial cell aging, and fibrosis. This review focuses on how lncRNAs contribute to endothelial dysfunction, fibrosis, and vascular aging, emphasizing their roles in disease progression within the kidneys, heart, and lungs, where lncRNA-mediated vascular changes play a significant role in disease progression. Understanding the interactions between lncRNAs, vascular senescence, and microvascular remodeling offers promising avenues for developing targeted therapeutic strategies to mitigate the impact of aging on vascular health.
Collapse
Affiliation(s)
- Warlley Rosa Cunha
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria Martin de la Vega
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Paula Rodrigues de Barros
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina Espinosa-Diez
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
11
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
12
|
Wu L, Coletta DK. Obesity and type 2 diabetes mellitus: insights from skeletal muscle extracellular matrix remodeling. Am J Physiol Cell Physiol 2025; 328:C1752-C1763. [PMID: 40244268 DOI: 10.1152/ajpcell.00154.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/23/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic diseases at epidemic proportions. The economic burden for these diseases is at an all-time high, and as such, there is an urgent need for advancements in identifying targets for treating these complex disorders. The extracellular matrix (ECM), comprising collagen, fibronectin, laminin, elastin, and proteoglycan, surrounds skeletal muscles and plays a critical role in maintaining tissue homeostasis by providing structural support and facilitating cell-to-cell communication. Disruption of the ECM signaling results in changes to its micro/macroenvironment, thereby modifying tissue homeostasis. Skeletal muscle ECM remodeling has been shown to be associated with insulin resistance, an underlying feature of obesity and T2DM. This narrative review explores the critical components of skeletal muscle ECM and its accumulation and remodeling in metabolic diseases. In addition, we discuss potential treatments to mitigate the effects of ECM remodeling in skeletal muscle. We conclude that targeting ECM remodeling in skeletal muscle represents a promising yet underexplored therapeutic avenue in the management of metabolic disorders.
Collapse
Affiliation(s)
- Linda Wu
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Dawn K Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
13
|
Li D, Wang J, Li X, Wang Z, Yu Q, Koh SB, Wu R, Ye L, Guo Y, Okoli U, Pati-Alam A, Mota E, Wei W, Yoo KH, Cho WC, Feng D, Heavey S. Interactions between radiotherapy resistance mechanisms and the tumor microenvironment. Crit Rev Oncol Hematol 2025; 210:104705. [PMID: 40107436 DOI: 10.1016/j.critrevonc.2025.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Resistance to radiotherapy (RT) presents a significant clinical challenge in management of cancer. Recent evidence points to specific mechanisms of resistance within the tumor microenvironment (TME), which we aim to discuss, with the aim of overcoming the clinical challenge. METHODS We performed the narrative review using PubMed and Web of Science databases to identify studies that reported the regulative network and treatments of RT resistance from TME perspectives. RESULTS RT significantly changes the immune TME of cancers, which is closely appearing to play a key role in RT resistance (RTR) by modulating immune cell infiltration and function. Various phenotypes are involved in the development of RTR, such as autophagy, senescence, oxidative stress, cell polarization, ceramide metabolism, and angiogenesis in the TME. Key genes and pathways are also implicated in RTR, including immune and inflammatory cytokines, TGF-β, P53, the NF-κB pathway, the cGAS/STING pathway, the ERK and AKT pathway, and the STAT pathway. Based on the mechanism of RTR in the TME, many proposed routes to overcome RTR, several specifically target the TME including targeting fibroblast activation protein, exosomes management, nanomedicine, and immunotherapy. Many challenges in RT resistance still need to be further explored with emerging investigative methods, such as artificial intelligence, genetic technologies, and bioengineering. CONCLUSIONS The complex interactions between RT and TME significantly affect the efficiency of RT. Novel approaches to overcome this clinical difficulty are promising, which needs future work to further explore and identify better treatment strategies.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
| | - Siang Boon Koh
- Faculty of Health and Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu, Nigeria
| | - Alisha Pati-Alam
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Eduardo Mota
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London, UK.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
14
|
Giroud J, Combémorel E, Pourtier A, Abbadie C, Pluquet O. Unraveling the functional and molecular interplay between cellular senescence and the unfolded protein response. Am J Physiol Cell Physiol 2025; 328:C1764-C1782. [PMID: 40257464 DOI: 10.1152/ajpcell.00091.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Senescence is a complex cellular state that can be considered as a stress response phenotype. A decade ago, we suggested the intricate connections between unfolded protein response (UPR) signaling and the development of the senescent phenotype. Over the past ten years, significant advances have been made in understanding the multifaceted role of the UPR in regulating cellular senescence, highlighting its contribution to biological processes such as oxidative stress and autophagy. In this updated review, we expand these interconnections with the benefit of new insights, and we suggest that targeting specific components of the UPR could provide novel therapeutic strategies to mitigate the deleterious effects of senescence, with significant implications for age-related pathologies and geroscience.
Collapse
Affiliation(s)
- Joëlle Giroud
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Emilie Combémorel
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Albin Pourtier
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Corinne Abbadie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Olivier Pluquet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| |
Collapse
|
15
|
Papadopoulos D, Magliozzi R, Bandiera S, Cimignolo I, Barusolo E, Probert L, Gorgoulis V, Reynolds R, Nicholas R. Accelerated Cellular Senescence in Progressive Multiple Sclerosis: A Histopathological Study. Ann Neurol 2025; 97:1074-1087. [PMID: 39891488 PMCID: PMC12081997 DOI: 10.1002/ana.27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE The neurodegenerative processes driving the build-up of disability in progressive multiple sclerosis (P-MS) have not been fully elucidated. Recent data link cellular senescence (CS) to neurodegeneration. We investigated for evidence of CS in P-MS and sought to determine its pattern. METHODS We used 53BP1, p16, and lipofuscin as markers of CS in white matter lesions (WMLs), normal appearing white matter (NAWM), normal appearing cortical gray matter (NAGM), control white matter (CWM), and control gray matter (CGM) on autopsy material from patient with P-MS and healthy controls. Senescence-associated secretory phenotype (SASP) factors were quantified in cerebrospinal fluid (CSF). RESULTS P16+ cell counts were significantly increased in WMLs and GMLs, compared with NAWM, CWM, NAGM, and CGM and lipofuscin+ cells were significantly increased in WMLs, compared with NAWM and CWM, indicating more abundant CS in demyelinated lesions. The 53BP1+ cells in WMLs were significantly increased compared with NAWM and CWM. The 53BP1+ and p16+ cells were found significantly more abundant in acute active WMLs and GMLs, compared with chronic inactive lesions. Co-localization studies showed evidence of CS in neurons, astrocytes, oligodendrocytes, microglia, and macrophages. Among the quantified CSF SASP factors, IL-6, MIF, and MIP1a levels correlated with 53BP1+ cell counts in NAGM, whereas IL-10 levels correlated with p16+ cell counts in NAWM. P16+ cell counts in WMLs exhibited an inverse correlation with time to requiring a wheelchair and with age at death. INTERPRETATION Our data indicates that CS primarily affects actively demyelinating gray and WMLs. A higher senescent cell load in P-MS is associated with faster disability progression and death. ANN NEUROL 2025;97:1074-1087.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- School of MedicineEuropean UniversityNicosiaCyprus
- Laboratory of Molecular GeneticsHellenic Pasteur InstituteAthensGreece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and MovementThe Multiple Sclerosis Center of University Hospital of VeronaVeronaItaly
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Sara Bandiera
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Ilaria Cimignolo
- Department of Neurosciences and Biomedicine and MovementThe Multiple Sclerosis Center of University Hospital of VeronaVeronaItaly
| | - Elena Barusolo
- Department of Neurosciences and Biomedicine and MovementThe Multiple Sclerosis Center of University Hospital of VeronaVeronaItaly
| | - Lesley Probert
- Laboratory of Molecular GeneticsHellenic Pasteur InstituteAthensGreece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of MedicineNational and Kapodistrian University of AthensAthensGreece
- Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of BiologyMedicine and Health, University of ManchesterManchesterUK
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
16
|
Zhou Q, Luo J, Chai X, Yang J, Zhong S, Zhang Z, Chang X, Wang H. Therapeutic targeting the cGAS-STING pathway associated with protein and gene: An emerging and promising novel strategy for aging-related neurodegenerative disease. Int Immunopharmacol 2025; 156:114679. [PMID: 40252469 DOI: 10.1016/j.intimp.2025.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Neurodegenerative diseases (NDDs) represent a rapidly escalating global health challenge, contributing significantly to the worldwide disease burden and posing substantial threats to public health systems across nations. Among the many risk factors for neurodegeneration, aging is the major risk factor. In the context of aging, multiple factors lead to the release of endogenous DNA (especially mitochondrial DNA, mtDNA), which is an important trigger for the activation of the cGAS-STING innate immune pathway. Recent studies have identified an increasing role for activation of the cGAS-STING signaling pathway as a driver of senescence-associated secretory phenotypes (SASPs) in aging and NDDs. The cGAS-STING pathway mediates the immune sensing of DNA and is a key driver of chronic inflammation and functional decline during the aging process. Blocking cGAS-STING signaling may reduce the inflammatory response by preventing mtDNA release and enhancing mitophagy. Targeted inhibition of the cGAS-STING pathway by biological macromolecules such as natural products shows promise in therapeutic strategies for age-related NDDs. This review aims to systematically and comprehensively introduces the role of the cGAS-STING pathway in age-related NDDs in the context of aging while revealing the molecular mechanisms of the cGAS-STING pathway and its downstream signaling pathways and to develop more targeted and effective therapeutic strategies for NDDs.
Collapse
Affiliation(s)
- Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jinghao Luo
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xueting Chai
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
17
|
Stojanović SD, Thum T, Bauersachs J. Anti-senescence therapies: a new concept to address cardiovascular disease. Cardiovasc Res 2025; 121:730-747. [PMID: 40036821 DOI: 10.1093/cvr/cvaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Accumulation of senescent cells is an increasingly recognized factor in the development and progression of cardiovascular (CV) disease (CVD). Senescent cells of different types display a pro-inflammatory and matrix remodelling molecular programme, known as the 'senescence-associated secretory phenotype' (SASP), which has roots in (epi)genetic changes. Multiple therapeutic options (senolytics, anti-SASP senomorphics, and epigenetic reprogramming) that delete or ameliorate cellular senescence have recently emerged. Some drugs routinely used in the clinics also have anti-senescence effects. However, multiple challenges hinder the application of novel anti-senescence therapeutics in the clinical setting. Understanding the biology of cellular senescence, advantages and pitfalls of anti-senescence treatments, and patients who can profit from these interventions is necessary to introduce this novel therapeutic modality into the clinics. We provide a guide through the molecular machinery of senescent cells, systematize anti-senescence treatments, and propose a pathway towards senescence-adapted clinical trial design to aid future efforts.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Department of Cardiology and Angiology, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- PRACTIS Clinician Scientist Program, Dean's Office for Academic Career Development, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| |
Collapse
|
18
|
Siewe N, Friedman A. Modeling treatment of diabetic wounds with oxygen therapy and senolytic drug. Sci Rep 2025; 15:17944. [PMID: 40410445 DOI: 10.1038/s41598-025-02852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
Diabetic wounds are common in patients with type 2 diabetes; they are ischemic and inflammatory, and difficult to heal without intervention. Hyperbaric oxygen therapy (HBOT) is a standard treatment, but its effectiveness is limited to a subset of the aging population. Senescent fibroblasts, a hallmark of aging, impair wound healing, and senolytic drugs, like quercetin (Q), which target senescent cells, may improve healing. In this study, we developed a mathematical model that defines biological aging through two parameters, η and [Formula: see text], that decline with age. These parameters reflect the biological age of an individual, where η represents fibroblast proliferation and [Formula: see text] represents the production of the angiogenetic protein VEGF. Our model predicts that treatment with only HBOT achieves wound closure, within normal expectable time, for patients with a limited subset pairs of [Formula: see text], and this subset is increased to a larger subset by combining Q with HBOT. The two subsets of [Formula: see text] are determined explicitly by simulations of the model. To make these results applicable in clinical setting, one will have to relate the aging parameters η and [Formula: see text] to tangible marks of biological-aging factors.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematics and Statistics, Rochester Institute of Technology, Rochester, NY, USA.
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Centner AM, Cullen AE, Khalili L, Ukhanov V, Hill S, Deitado R, Hwang HS, Azeez T, La Favor JD, Laitano O, Parvatiyar MS, Chelko SP, Salazar G. The Role of Sex in the Effects of Smoking and Nicotine on Cardiovascular Function, Atherosclerosis, and Inflammation. Nicotine Tob Res 2025; 27:1116-1126. [PMID: 39569583 DOI: 10.1093/ntr/ntae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Cigarette smoke (CS) invokes an inflammatory response associated with vascular dysfunction and atherosclerosis. The role of sex and nicotine in CS effects on cardiovascular function and atherosclerosis is unexplored. AIMS AND METHODS Male and female C57Bl/6 WT (wild type) and ApoE-/- mice were exposed to CS and nicotine with access to chow and water ad libitum for 16 weeks to fill this gap. Heart rate and endothelial function were measured in the aorta of WT mice, while the lipid profile, cytokines, chemokines, and plaque area and composition were assessed in ApoE-/- mice. RESULTS CS increased heart rate similarly in both sexes and induced a more substantial impairment in endothelial function in males and more plaque in females than nicotine. Necrotic core areas were similar for both treatments in both sexes, while females had higher collagen deposition across treatments. Both treatments elevated senescence-associated GLB1/-galactosidase (SA-GLB1) and interleukin 17A (IL17A) similarly in both sexes. CS upregulated cholesterol in both sexes, triglycerides, very low-density lipoprotein, high-density lipoprotein, and C-X-C motif chemokine ligand-5 (CXCL5/LIX) only in males, and LDL and IL1A only in females. Additionally, nicotine metabolism showed sex-specific responses to nicotine but not smoking. CONCLUSIONS Findings suggest that sex influences cardiovascular function and atherosclerosis following exposure to nicotine and CS. IMPLICATIONS The purpose of this study was to fill the existing literature gap through assessment of the differential sex effects of CS and nicotine on vascular function and atherosclerosis to identify sex-specific risk factors. We show sex-specific differences in endothelial function, plaque, inflammation, and extracellular matrix (ECM) regulators with exposure to CS and nicotine, which underscore the importance of assessing sex in tobacco and nicotine exposure studies. This study also shows the negative effect of oral nicotine administration as many oral dissolvable nicotine products, such as pouches and gum, are becoming increasingly popular among adolescents and young adults.
Collapse
Affiliation(s)
- Ann Marie Centner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL
| | - Abigail E Cullen
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Leila Khalili
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Vladimir Ukhanov
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Stephanie Hill
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Riley Deitado
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Hyun Seok Hwang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Tooyib Azeez
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Justin D La Favor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Orlando Laitano
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| | - Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL
| |
Collapse
|
20
|
Grossi E, Marchese FP, González J, Goñi E, Fernández-Justel JM, Amadoz A, Herranz N, Puchades-Carrasco L, Montes M, Huarte M. A lncRNA-mediated metabolic rewiring of cell senescence. Cell Rep 2025; 44:115747. [PMID: 40408249 DOI: 10.1016/j.celrep.2025.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/21/2025] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
Despite not proliferating, senescent cells remain metabolically active to maintain the senescence program. However, the mechanisms behind this metabolic reprogramming are not well understood. We identify senescence-induced long noncoding RNA (sin-lncRNA), a previously uncharacterized long noncoding RNA (lncRNA), a key player in this response. While strongly activated in senescence by C/EBPβ, sin-lncRNA loss reinforces the senescence program by altering oxidative phosphorylation and rewiring mitochondrial metabolism. By interacting with dihydrolipoamide S-succinyltransferase (DLST), it facilitates its mitochondrial localization. Depletion of sin-lncRNA causes DLST nuclear translocation, leading to transcriptional changes in oxidative phosphorylation (OXPHOS) genes. While not expressed in highly proliferative cancer cells, it is strongly induced upon cisplatin-induced senescence. Depletion of sin-lncRNA in ovarian cancer cells reduces oxygen consumption and increases extracellular acidification, sensitizing cells to cisplatin treatment. Altogether, these results indicate that sin-lncRNA is specifically induced in senescence to maintain metabolic homeostasis, unveiling an RNA-dependent metabolic rewiring specific to senescent cells.
Collapse
Affiliation(s)
- Elena Grossi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Francesco P Marchese
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Alicia Amadoz
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Nicolás Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
| | - Marta Montes
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
21
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
22
|
Graves SI, Meyer CF, Jeganathan KB, Baker DJ. p16-expressing microglia and endothelial cells promote tauopathy and neurovascular abnormalities in PS19 mice. Neuron 2025:S0896-6273(25)00303-4. [PMID: 40381614 DOI: 10.1016/j.neuron.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/15/2024] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
Cellular senescence is characterized by irreversible cell-cycle exit, a pro-inflammatory secretory phenotype, macromolecular damage, and deregulated metabolism. Senescent cells are highly associated with age-related diseases. We previously demonstrated that targeted elimination of senescent cells prevents neurodegenerative disease in tau (MAPTP301S;PS19) mutant mice. Here, we show that genetic ablation of the senescence mediator p16Ink4a is sufficient to attenuate senescence signatures in PS19 mice. Disease phenotypes-including neuroinflammation, phosphorylated tau, neurodegeneration, and cognitive impairment-were blunted in the absence of p16Ink4a. Additionally, we found that PS19 mouse brains display p16Ink4-dependent neurovascular alterations such as vessel dilation, increased vessel density, deregulated endothelial cell extracellular matrix, and astrocytic endfoot depolarization. Finally, we show that p16Ink4a deletion in endothelial cells and microglia alone attenuates many of the same phenotypes. Altogether, these results indicate that neurodegenerative disease in PS19 mice is driven, at least in part, by p16Ink4a-expressing endothelial cells and microglia.
Collapse
Affiliation(s)
- Sara I Graves
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st ST., Rochester, MN 55905, USA
| | - Charlton F Meyer
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st ST., Rochester, MN 55905, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st ST., Rochester, MN 55905, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st ST., Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st ST., Rochester, MN 55905, USA; Paul F. Glenn Center for Biology of Aging Research, Mayo Clinic, 200 1st ST., Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 1st ST., Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Konar GJ, Lingan AL, Vallone KT, Nguyen TD, Flickinger ZR, Patton JG. Depletion of Polypyrimidine tract binding protein 1 (ptbp1) activates Müller glia-derived proliferation during zebrafish retina regeneration via modulation of the senescence secretome. Exp Eye Res 2025; 257:110420. [PMID: 40355064 DOI: 10.1016/j.exer.2025.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Polypyrimidine Tract Binding protein 1 (PTB) is an alternative splicing factor linked to neuronal induction and maturation. Previously, knockdown experiments supported a model in which PTB can function as a potent reprogramming factor, able to elicit direct glia-to-neuron conversion in vivo, in both the brain and retina. However, later lineage tracing and genetic knockouts of PTB did not support direct neuronal reprogramming. Nevertheless, consistent with the PTB depletion experiments, we show that antisense knockdown of PTB (ptbp1a) in the zebrafish retina can activate Müller glia-derived proliferation and that depletion of PTB can further enhance proliferation when combined with acute NMDA damage. The effects of PTB are consistent with a role in controlling key senescence and pro-inflammatory genes that are part of the senescence secretome that initiates retina regeneration.
Collapse
Affiliation(s)
- Gregory J Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Audrey L Lingan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kyle T Vallone
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tu D Nguyen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Gluck L, Gerstein B, Kaunzner UW. Repair mechanisms of the central nervous system: From axon sprouting to remyelination. Neurotherapeutics 2025:e00583. [PMID: 40348704 DOI: 10.1016/j.neurot.2025.e00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
The central nervous system (CNS), comprising the brain, spinal cord, and optic nerve, has limited regenerative capacity, posing significant challenges in treating neurological disorders. Recent advances in neuroscience and neurotherapeutics have introduced promising strategies to stimulate CNS repair, particularly in the context of neurodegenerative diseases such as multiple sclerosis. This review explores the complex interplay between inflammation, demyelination, and remyelination possibilities. Glial cells, including oligodendrocyte precursors, oligodendrocytes, astrocytes and microglia play dual roles in injury response, with reactive gliosis promoting repair but also potentially inhibiting recovery through glial scar formation. There is also an emphasis on axonal regeneration, axonal sprouting and stem cell therapies. We highlight the role of neuroplasticity in recovery post-injury and the limited regenerative potential of axons in the CNS due to inhibitory factors such as myelin-associated inhibitors. Moreover, neurotrophic factors support neuronal survival and axonal growth, while stem cell-based approaches offer promise for replacing lost neurons and glial cells. However, challenges such as stem cell survival, integration, and risk of tumor formation remain. Furthermore, we examine the role of neurogenesis in CNS repair and the remodeling of the extracellular matrix, which can facilitate regeneration. Through these diverse mechanisms, ongoing research aims to overcome the intrinsic and extrinsic barriers to CNS repair and advance therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lauren Gluck
- Montefiore Medical Center, 1250 Waters Place Tower 2, Bronx, NY 10461, USA.
| | - Brittany Gerstein
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| | - Ulrike W Kaunzner
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| |
Collapse
|
25
|
Wei H, Liu Y, Huang C, Wang C, Jiang H, Wang L, Wang Y, Wang Z. Ginsenoside Rg1 targets TLR2 to inhibit the NF-κB signaling pathway and ameliorate hematopoietic support of mesenchymal stromal cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119917. [PMID: 40348305 DOI: 10.1016/j.jep.2025.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/19/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside Rg1 is a key bioactive compound in ginseng, a traditional herbal medicine known for tonifying qi and nourishing blood, traditionally used to replenish "qi" by regulating hematopoietic function. But its underlying mechanism remains to be elucidated. AIM OF THE STUDY This study aims to delve into the role of Rg1 on senescent hematopoiesis and its mechanisms. MATERIALS AND METHODS A model of D-galactose-induced hematopoietic injury was established with ginsenoside Rg1. The hematopoietic supportive effect of Rg1 was assessed by quantifying the levels of hematopoietic supportive factors VCAM1, CXCL12 and SCF, CFU-Mix formation and cellular senescence; and the levels of inflammatory factors and oxidative stress were measured by ELISA in the serum and cellular supernatant of mice. Co-culture technique was used to examine the ability of Rg1 to restore impaired hematopoiesis by improving the inflammatory hematopoietic microenvironment. For mechanism exploration, RNA-Seq was used to detect differential genes in Rg1-treated MSCs, GO- and KEGG-based enrichment analyses were used to screen the key pathways in which Rg1 exerts its effects, and molecular docking was used to demonstrate the feasibility of molecular interconnections between Rg1 and TLR2. To further explore the mechanism, pathway activators were further used and the expression levels of target proteins downstream of the TLR2 pathway were quantified using Western blotting. RESULTS Rg1 decreased the levels of inflammatory factors IL-1β, IL-6 and TNFα, while enhancing the expression of hematopoietic support factors in senescent MSCs, thereby improving the self-renewal and differentiation of aged HSPCs. Additionally, Rg1 also delayed HSPC senescence and reduced the level of oxidative stress. KEGG and GO were enriched for the Toll/NF-κB signaling pathway, based on differential genes obtained by transcriptional sequencing. Rg1 could inhibit the elevated levels of MyD88, NF-κB-p65 and IκBα proteins, and their phosphorylation levels by binding to TLR2 protein and inhibiting them. In conclusion, Rg1 ameliorates the inflammatory hematopoietic microenvironment induced by MSCs senescence via the TLR2/NF-κB-p65 signaling pathway, alleviating HSPCs senescence. CONCLUSIONS Our results reveal the mechanism by which Rg1 regulates HSPCs function and represent a potential therapeutic strategy for hematopoietic dysfunction, highlighting the potential value of traditional Chinese medicine extracts in clinical applications.
Collapse
Affiliation(s)
- Han Wei
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yonggang Liu
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Caihong Huang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Cheng Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Honghui Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Ziling Wang
- Department of Pathology, Basic Medicine College, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
26
|
Mazzone V, Alessio N, Aprile D, Galano G, De Rosa R, Schiraldi C, Di Bernardo G, Galderisi U. Terpenes: natural compounds found in plants as potential senotherapeutics targeting senescent mesenchymal stromal cells and promoting apoptosis. Stem Cell Res Ther 2025; 16:231. [PMID: 40346705 PMCID: PMC12065172 DOI: 10.1186/s13287-025-04310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Senescence in stem cells and progenitor cells can be particularly detrimental because these cells are essential for tissue renewal and overall organismal homeostasis. In mesenchymal stromal cells (MSCs), which comprise a heterogeneous mix of stem cells, progenitors, fibroblasts, and other stromal cells, senescence poses a significant challenge, as it impairs their ability to support tissue repair and maintenance. This decline in regenerative capacity can contribute to aging-related diseases, impaired wound healing, and degenerative disorders. One hallmark of senescence is resistance to apoptosis, mediated by activation of anti-apoptotic pathways. Consequently, senotherapeutics have emerged as a promising strategy to selectively eliminate senescent cells and promote healthy aging. Plant secondary metabolites, notably polyphenols and terpenes, exhibit diverse effects on living organisms and have served as medicinal agents. METHODS In this study, we investigated four terpenes-carvacrol, thymol, eugenol, and lycopene-for their senolytic potential in human senescent MSCs. RESULTS We found that these compounds induce apoptosis through both caspase-dependent and caspase-independent mechanisms, involving the activation of BAX, cytochrome c release, and translocation of apoptosis-inducing factor (AIF) from mitochondria to nuclei. Importantly, terpene-induced apoptosis was associated with a significant increase in reactive oxygen species, and pre-incubation with glutathione partially rescued cell viability, confirming oxidative stress as a central trigger. Moreover, we identified SRC pathway modulation as a critical determinant of the senescence-to-apoptosis shift, highlighting a key regulatory switch in terpene action. CONCLUSIONS These findings provide a detailed mechanistic dissection of terpene-induced senolysis and underscore their potential as promising candidates for senotherapeutics targeting senescent cells.
Collapse
Affiliation(s)
- Valeria Mazzone
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giovanni Galano
- ASL Naples 1 Centro P.S.I. Napoli Est-Barra, 80147, Naples, Italy
| | - Roberto De Rosa
- ASL Naples 1 Centro P.S.I. Napoli Est-Barra, 80147, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, 80138, Naples, Italy.
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, 80138, Naples, Italy.
- Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025; 46:349-375. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburgyi, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
28
|
Chen L, Wang X, Wang Y, Yao Q, Liu Y, Zhu Y, Huang H, Yang H, Yang Y, He Y, Qiang L. SQSTM1/p62 Orchestrates Skin Aging via USP7 Degradation. Aging Cell 2025:e70078. [PMID: 40344296 DOI: 10.1111/acel.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Skin aging is a complex process driven by intrinsic genetic factors and extrinsic environmental influences. In this study, sequestosome1 (SQSTM1/p62) was identified as a key regulator of senescence, the senescence-associated secretory phenotype (SASP), and skin aging. Notably, p62 expression is reduced in senescent cells and aging skin of both humans and mice. The depletion of p62 in the epidermis was found to be positively associated with accelerated aging and the initiation of SASP. Mechanistically, p62 inhibits the accumulation of ubiquitin-specific protease 7 (USP7) during senescence induction by orchestrating its degradation through specific binding interactions. In particular, the Tyr-67 residue within the PB1 domain or Gln-418 within the UBA domain of p62 forms a hydrogen bond with Ala-993 in the Ubl5 domain of USP7. Mutations in either Tyr-67 or Gln-418 of p62, or Ala-993 of USP7, resulted in the induction of cellular senescence, highlighting the critical role of these molecular interactions in the regulation of aging processes.
Collapse
Affiliation(s)
- Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuchen Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qingxin Yao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Global Platform One Vision, WuXi AppTec, Shanghai, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hedan Yang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yin Yang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| |
Collapse
|
29
|
Gao X, Li SJ, Cai JP. Human Peripheral Blood Leukocyte Transcriptome-Based Aging Clock Reveals Acceleration of Aging by Bacterial or Viral Infections. J Gerontol A Biol Sci Med Sci 2025; 80:glaf054. [PMID: 40089807 DOI: 10.1093/gerona/glaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 03/17/2025] Open
Abstract
The aging of the population is a global concern. In the post-coronavirus disease 2019 (COVID-19) pandemic era, there are no effective methods to identify aging acceleration due to infection. In this study, we conducted whole-transcriptome sequencing on peripheral blood samples from 35 healthy individuals (22-88 years old). By analyzing the changes in mRNA, lncRNA, and miRNA expression, we investigated the characteristics of transcriptome alterations during the aging process. ceRNA networks were constructed, and 10 genes (CD248, PHGDH, SFXN2, MXRA8, NOG, TTC24, PHYKPL, CACHD1, BPGM, and TWF1) were identified as potential aging markers and used to construct an aging clock. Moreover, our aging clock categorized individuals into slow-, average-, and quick-aging groups, highlighting a link between accelerated aging and infection-related clinical parameters. Pseudotime analysis further revealed 2 distinct aging trajectories, corroborating the variations in the aging rate identified by the aging clock. Furthermore, we validated the results using the OEP001041 data set (277 healthy individuals aged 17-75), and data sets comprising patients with infectious diseases (n = 1 558). Our study revealed that infection accelerates aging via increased inflammation and oxidative stress in infectious disease patients. Besides, the aging clock exhibited alterations after infection, highlighting its potential for assessing the aging rate after patient recovery. In conclusion, our study introduces a novel aging clock to assess the aging rate in healthy individuals and those with infections, revealing a strong link between accelerated aging and infections through inflammation and oxidative stress. These findings offer valuable insights into aging mechanisms and potential strategies for healthy aging.
Collapse
Affiliation(s)
- Xin Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Jia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Chen C, Wang L. Aging and metabolic dysfunction-associated steatotic liver disease: a bidirectional relationship. Front Med 2025:10.1007/s11684-025-1133-7. [PMID: 40316793 DOI: 10.1007/s11684-025-1133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 05/04/2025]
Abstract
In recent years, aging and cellular senescence have triggered an increased interest in corresponding research fields. Evidence shows that the complex aging process is involved in the development of many chronic liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In fact, aging has a tremendous effect on the liver, leading to a gradual decline in the metabolism, detoxification and immune functions of the liver, which in turn increases the risk of liver disease. These changes can be based on the aging of liver cells (hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells). Similarly, patients with liver diseases exhibit increases in the aging phenotype and aging cells, often manifesting as faster physical functional decline, which is closely related to the promoting effect of liver disease on aging. This review summarizes the interplay between MASLD/MASH development and aging, aiming to reveal the complex relationships that exacerbate one another. Moreover, the corresponding schemes for delaying aging or treating diseases are discussed to provide a basis for the development of effective prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
31
|
Athar F, Zheng Z, Riquier S, Zacher M, Lu JY, Zhao Y, Volobaev V, Alcock D, Galazyuk A, Cooper LN, Schountz T, Wang LF, Teeling EC, Seluanov A, Gorbunova V. Limited cell-autonomous anticancer mechanisms in long-lived bats. Nat Commun 2025; 16:4125. [PMID: 40319021 PMCID: PMC12049446 DOI: 10.1038/s41467-025-59403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Several bat species live >20-40 years, suggesting that they possess efficient anti-aging and anti-cancer defenses. Here we investigate the requirements for malignant transformation in primary fibroblasts from four bat species Myotis lucifugus, Eptesicus fuscus, Eonycteris spelaea, and Artibeus jamaicensis - spanning the bat evolutionary tree and including the longest-lived genera. We show that bat fibroblasts do not undergo replicative senescence, express active telomerase, and show attenuated SIPs with dampened secretory phenotype. Unexpectedly, unlike other long-lived mammals, bat fibroblasts are readily transformed by two oncogenic "hits": inactivation of p53 or pRb and activation of HRASG12V. Bat fibroblasts exhibit increased TP53 and MDM2 transcripts and elevated p53-dependent apoptosis. M. lucifugus shows a genomic duplication of TP53. We hypothesize that some bat species have evolved enhanced p53 activity as an additional anti-cancer strategy, similar to elephants. Further, the absence of unique cell-autonomous tumor suppressive mechanisms may suggest that in vivo bats may rely on enhanced immunosurveillance.
Collapse
Affiliation(s)
- Fathima Athar
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Sebastien Riquier
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Dominic Alcock
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Emma C Teeling
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
32
|
Jeong M, Lee H, Ko TH, Choi SJ, Oh W, Kim S. Umbilical Cord Blood Plasma Enhances Cellular Repair and Senescence Suppression in Human Dermal Fibroblasts Under Oxidative Stress. Rejuvenation Res 2025. [PMID: 40313215 DOI: 10.1089/rej.2024.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Aging is associated with a gradual decline in cellular function, largely driven by oxidative stress, which leads to cellular senescence. These processes contribute to tissue degeneration and age-related dysfunction. Human dermal fibroblasts (HDFs), critical for maintaining skin structure, are highly vulnerable to oxidative damage, making them key contributors to skin aging. Umbilical cord blood plasma (UCBP), rich in growth factors and regenerative molecules, has shown potential in preventing cellular senescence and addressing key mechanisms of tissue aging. Based on findings from heterochronic parabiosis experiments that demonstrated the rejuvenating effect of young blood, we investigated the effects of UCBP on hydrogen peroxide (H2O2) induced oxidative stress in HDFs and compared its efficacy with adult blood plasma (ABP). Our results indicate that although both UCBP and ABP reduce reactive oxygen species (ROS), UCBP is more effective in suppressing cellular senescence and maintaining fibroblast proliferation. These findings suggest that UCBP's protective effects extend beyond ROS reduction, potentially by modulating the senescence-associated secretory phenotype and the enhancement of tissue repair mechanisms.
Collapse
Affiliation(s)
- Miso Jeong
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Hyangju Lee
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Tae-Hyun Ko
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Soo Jin Choi
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Wonil Oh
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Sangwoo Kim
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| |
Collapse
|
33
|
Saatloo MV, Delisi D, Eskandari N, Krieg C, Gentile S. Kv11.1-dependent senescence activates a lethal immune response via tumor necrosis factor alpha. Neoplasia 2025; 63:101148. [PMID: 40117717 PMCID: PMC11981764 DOI: 10.1016/j.neo.2025.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Understanding the complex relationship between cancer and immune surveillance is essential for leveraging the immune system to control tumor growth. In our study, we discovered that activating the Kv11.1 potassium channel in ER+ breast cancer cells induces a senescent phenotype, which in turn triggers a potent immune response against these senescent cells. Specifically, we found that the senescence-associated secretory phenotype (SASP) plays a crucial role in activating CD4+ T-helper 1 (Th1) cells and memory T cell phenotypes. This activation led to the release of tumor necrosis factor-alpha (TNFα), which induced the death of senescent breast cancer cells, independent of their resistance to endocrine therapy. Our findings suggest that Kv11.1 channel-induced cellular senescence in ER+ breast cancer cells is a key mechanism in immune surveillance, driving a lethal immune response through TNFα. These results highlight the potential immunomodulatory role of Kv11.1 activation in ER-positive breast cancer and provide a foundation for future therapeutic investigations.
Collapse
Affiliation(s)
- Maedeh Vakili Saatloo
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA; Department of Periodontology, Henry M. Goldman School of Dental Medicine, Boston University, MA, USA
| | - Davide Delisi
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA
| | - Najmeh Eskandari
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University South Carolina, Charleston, SC 29425, USA
| | - Saverio Gentile
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
34
|
Kawabata S, Iijima H, Kanemura N, Murata K. Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons. Mol Neurobiol 2025; 62:6112-6127. [PMID: 39714525 DOI: 10.1007/s12035-024-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons. We integrated multiple public transcriptome datasets for DRGs, which include cell bodies in neurons, and the sciatic nerve, which includes axons in neurons, using network medicine-based bioinformatics analysis. We thus inferred the molecular mechanisms involved in cellular senescence of DRG neurons, from molecular responses to senescence, in the DRG-sciatic nerve network. Network medicine-based bioinformatics analysis revealed that age-related Mapk3 decline leads to impaired cholesterol metabolism and biosynthetic function in axons, resulting in compensatory upregulation of Srebf1, a transcription factor involved in lipid and cholesterol metabolism. This in turn leads to CDKN2A-mediated cellular senescence. Furthermore, our analysis revealed that senescent DRG neurons develop a senescence phenotype characterized by activation of antigen-presenting cells via upregulation of Ctss as a hub gene. B cells were inferred as antigen-presenting cells activated by Ctss, and CD8-positive T cells were inferred as cells that receive antigen presentation from B cells.
Collapse
Affiliation(s)
- Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.
| |
Collapse
|
35
|
Klier S, Dananberg J, Masaki L, Bhisitkul RB, Khanani AM, Maturi R, Salehi-Had H, Mallinckrodt CH, Rathmell JM, Ghosh A, Sapieha P. Safety and Efficacy of Senolytic UBX1325 in Diabetic Macular Edema. NEJM EVIDENCE 2025; 4:EVIDoa2400009. [PMID: 40261111 DOI: 10.1056/evidoa2400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BACKGROUND We tested the ability of a single intravitreal injection of foselutoclax (hereafter UBX1325), a novel senolytic small molecule inhibitor of antiapoptotic protein B-cell lymphoma-extra large, to mitigate the impact of diabetic macular edema. METHODS Patients with diabetic macular edema with prior suboptimal response to anti-vascular endothelial growth factor treatment were randomly assigned (1:1) to either a single intravitreal injection of 10 μg of UBX1325 or sham and were followed for up to 48 weeks. The primary trial objective was to evaluate the safety and side-effect profile of UBX1325 as assessed by ocular and systemic treatment-emergent adverse events (TEAEs). Our secondary objective was to probe efficacy, defined as mean changes from baseline for UBX1325 versus sham in best corrected visual acuity measured in Early Treatment of Diabetic Retinopathy Study (ETDRS) letters (range, 0-100 letters, higher scores indicate better vision) and retinal structure. RESULTS Between June 2021 and April 2022, 65 participants (32.3% women) were randomly assigned to either UBX1325 (n=32) or sham (n=33). There were four TEAEs of Grade 3 or greater in the sham group, of which three were considered serious, while there were five in the UBX1325 group of Grade 3 or greater and considered serious. There were no apparent between-group differences with respect to vital signs, electrocardiograms, or routine blood chemistries. For the secondary outcome of efficacy, the difference between UBX1325 and sham in mean change to week 48 in best corrected visual acuity was 5.6 more ETDRS letters (95% confidence interval, -1.5 to 12.7). CONCLUSIONS In this sham-controlled trial there were no TEAEs that led to discontinuation of treatment with UBX1325 compared with sham. There were trends suggestive of potential efficacy; larger trials are needed to further evaluate these findings. (Funded by UNITY Biotechnology; ClinicalTrials.gov number, NCT04857996.).
Collapse
Affiliation(s)
| | | | | | | | - Arshad M Khanani
- Sierra Eye Associates, Reno, NV, and Reno School of Medicine, The University of Nevada, Reno, NV
| | - Raj Maturi
- Midwest Eye Institute, Indianapolis
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis
| | - Hani Salehi-Had
- Retina Associates of Southern California, Huntington Beach, CA
| | | | | | | | - Przemyslaw Sapieha
- UNITY Biotechnology, San Francisco
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal
| |
Collapse
|
36
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2025; 35:399-411. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
37
|
Jiang T, Jin H, Ji X, Zheng X, Xu CX, Zhang PJ. Drivers of centrosome abnormalities: Senescence progression and tumor immune escape. Semin Cancer Biol 2025; 110:56-64. [PMID: 39929410 DOI: 10.1016/j.semcancer.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/18/2025]
Abstract
Centrosome abnormalities are a distinguishing feature of cancer and play a role in the aging process. Cancer cells may evade the immune system by activating immune checkpoints, altering their surrounding microenvironment, abnormalities in antigen presentation and recognition, and metabolic reprogramming to inhibit T-cell activity, allowing cancer cells to survive and spread within the host. When the centrosomes are abnormally shaped or numbered, mitotic errors can occur, cellular senescence occurs, cell death occurs, genomic instability occurs, and aneuploidy forms, resulting in diseases such as cancer. The present study is exploring the strategy of research progress in which centrosome abnormalities contribute to the aging process in various different ways as well as fuel immune escape from cancer cells, providing a new direction for cancer immunotherapy.
Collapse
Affiliation(s)
- Tao Jiang
- Medicine Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xintong Ji
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing 40003, China
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
38
|
Tak KY, Kim J, Park M, Kim W, Lee S, Park N, Kim MJ, Kang JB, Koh Y, Yang HY, Yum MK, Kim I, Yang YR, Jeong WI, Yang J, Lee C, Kim C, Park JE. Quasi-spatial single-cell transcriptome based on physical tissue properties defines early aging associated niche in liver. NATURE AGING 2025; 5:929-949. [PMID: 40325195 DOI: 10.1038/s43587-025-00857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/27/2025] [Indexed: 05/07/2025]
Abstract
Aging is associated with the accumulation of senescent cells, which are triggered by tissue injury response and often escape clearance by the immune system. The specific traits and diversity of these cells in aged tissues, along with their effects on the tissue microenvironment, remain largely unexplored. Despite the advances in single-cell and spatial omics technologies to understand complex tissue architecture, senescent cell populations are often neglected in general analysis pipelines due to their scarcity and the technical bias in current omics toolkits. Here we used the physical properties of tissue to enrich the age-associated fibrotic niche and subjected them to single-cell RNA sequencing and single-nuclei ATAC sequencing (ATAC-seq) analysis and named this method fibrotic niche enrichment sequencing (FiNi-seq). Fibrotic niche of the tissue was selectively enriched based on its resistance to enzymatic digestion, enabling quasi-spatial analysis. We profiled young and old livers of male mice using FiNi-seq, discovered Wif1- and Smoc1-producing mesenchymal cell populations showing senescent phenotypes, and investigated the early immune responses within this fibrotic niche. Finally, FiNi-ATAC-seq revealed age-associated epigenetic changes enriched in fibrotic niche cells. Thus, our quasi-spatial, single-cell profiling method allows the detailed analysis of initial aging microenvironments, providing potential therapeutic targets for aging prevention.
Collapse
Affiliation(s)
- Kwon Yong Tak
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Juyeon Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wooseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seoyeong Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Narae Park
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Min Jeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju-Bin Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yongjun Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hae Young Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Min Kyu Yum
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheolju Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
39
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
40
|
Herbstein F, Rosmino J, Guitelman MA, Cagliero J, Gonilski‐Pacin D, Ciancio Del Giudice N, Fiz M, Fuertes M, Arzt E. New insights in cellular senescence: The pituitary model. J Neuroendocrinol 2025; 37:e70008. [PMID: 40032281 PMCID: PMC12045676 DOI: 10.1111/jne.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/06/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Pituitary tumors are characterized by slow proliferation rates and a high prevalence within the population. The pathogenesis of these tumors remains incompletely understood, although accumulating evidence suggests that the activation of the cellular senescence program, triggered by various stressors and functioning as a brake on cellular proliferation, may contribute to their typically benign nature. Multiple mediators of the senescence response are implicated in this process. Interleukin-6 (IL-6), a proinflammatory cytokine, plays a dual role in pituitary tumor biology. It is involved in both physiological pituitary growth and the senescence-associated secretory phenotype (SASP), where it mediates paracrine-proliferative signals. In addition to its secretory functions, IL-6 has been implicated in the regulation of pituitary senescence through non-secretory mechanisms. Other factors, such as growth hormone (GH), the pituitary tumor-transforming gene (PTTG), and interactions within the tumor microenvironment, including immune cell dynamics, also contribute to the senescence observed in these tumors. This review examines the latest evidence concerning the role of senescence in pituitary tumors, with a particular focus on the contribution of IL-6 to this process.
Collapse
Affiliation(s)
- Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Josefina Rosmino
- División EndocrinologíaHospital General de Agudos “Carlos G. Durand”Buenos AiresArgentina
| | | | - Joaquina Cagliero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - David Gonilski‐Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Nicolas Ciancio Del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
41
|
MacDonald JA, Bradshaw GA, Jochems F, Bernards R, Letai A. Apoptotic priming in senescence predicts specific senolysis by quantitative analysis of mitochondrial dependencies. Cell Death Differ 2025; 32:802-817. [PMID: 39762561 DOI: 10.1038/s41418-024-01431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 05/21/2025] Open
Abstract
Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity. We sought to identify novel drug targets in senescent cells that were insensitive to frequently implemented senolytic therapies, such as Navitoclax (ABT-263), using quantitative mass spectrometry to measure changes in the senescent proteome, compared to cells which acquire an acute sensitivity to ABT-263 with senescence induction. Inhibition of the antioxidant GPX4 or the Bcl-2 family member MCL-1 using small molecule compounds in combination with ABT-263 significantly increased the induction of apoptosis in some, but not all, previously insensitive senescent cells. We then asked if we could use BH3 profiling to measure differences in mitochondrial apoptotic priming in these models of cellular senescence and predict sensitivity to the senolytics ABT-263 or the combination of dasatinib and quercetin (D + Q). We found, despite being significantly less primed for apoptosis overall, the dependence of senescent mitochondria on BCL-XL was significantly correlated to senescent cell killing by both ABT-263 and D + Q, despite no significant changes in the gene or protein expression of BCL-XL. However, our data caution against broad classification of drugs as globally senolytic and instead provide impetus for context-specific senolytic targets and propose BH3 profiling as an effective predictive biomarker.
Collapse
Affiliation(s)
- Julie A MacDonald
- Dana Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gary A Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, CX, Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, CX, Amsterdam, The Netherlands
| | - Anthony Letai
- Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Chen S, Liu R, Mo CK, Wendl MC, Houston A, Lal P, Zhao Y, Caravan W, Shinkle AT, Abedin-Do A, Naser Al Deen N, Sato K, Li X, Targino da Costa ALN, Li Y, Karpova A, Herndon JM, Artyomov MN, Rubin JB, Jain S, Li X, Stewart SA, Ding L, Chen F. Multi-omic and spatial analysis of mouse kidneys highlights sex-specific differences in gene regulation across the lifespan. Nat Genet 2025; 57:1213-1227. [PMID: 40259083 PMCID: PMC12081296 DOI: 10.1038/s41588-025-02161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/11/2025] [Indexed: 04/23/2025]
Abstract
There is a sex bias in the incidence and progression of many kidney diseases. To better understand such sexual dimorphism, we integrated data from six platforms, characterizing 76 kidney samples from 68 mice at six developmental and adult time points, creating a molecular atlas of the mouse kidney across the lifespan for both sexes. We show that proximal tubules have the most sex-biased differentially expressed genes emerging after 3 weeks of age and are associated with hormonal regulations. We reveal potential mechanisms involving both direct and indirect regulation by androgens and estrogens. Spatial profiling identifies distinct sex-biased spatial patterns in the cortex and outer stripe of the outer medulla. Additionally, older mice exhibit more aging-related gene alterations in loops of Henle, proximal tubules and collecting ducts in a sex-dependent manner. Our results enhance the understanding of spatially resolved gene expression and hormone regulation underlying kidney sexual dimorphism across the lifespan.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew T Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Atieh Abedin-Do
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - André Luiz N Targino da Costa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - John M Herndon
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Paediatrics, Washington University School of Medicine St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine St Louis, St. Louis, MO, USA
| | - Sanjay Jain
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Paediatrics, Washington University School of Medicine St Louis, St. Louis, MO, USA
| | - Xue Li
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sheila A Stewart
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
43
|
Lin S, Jensen MD. Human Adipose Tissue Metabolism in Obesity. J Obes Metab Syndr 2025; 34:105-119. [PMID: 40194889 PMCID: PMC12066998 DOI: 10.7570/jomes25025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
The scientific understanding of adipose tissue has advanced tremendously during the past decade. Once thought to be an inert fat storage organ, we now know that adipose tissue serves important functions in energy balance and endocrinology, as well as playing a central role in the development of metabolic diseases. Adipose tissue lipid storage and lipolysis are tightly controlled by hormones, such as insulin, in response to the body's energy needs. Adipose insulin sensitivity can be measured in vivo in humans using isotopic fatty acid tracers and the insulin clamp technique. These data allow investigators to calculate the plasma insulin concentration that results in a 50% suppression of lipolysis. In obesity, insulin's action on adipose tissue lipolysis is clearly impaired, resulting in excess free fatty acids in circulation, which can lead to metabolic dysfunction. However, the cause of this impairment is unclear. The chronic, low-grade adipose tissue inflammation seen in obesity was thought to be the cause of adipose tissue insulin resistance. In this review, we discuss the structure of adipose tissue, how normal and abnormal adipose tissue metabolism contributes to metabolic diseases, and how inflammation might or might not play a role in adipose tissue insulin resistance.
Collapse
Affiliation(s)
- Shuhao Lin
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
44
|
Baker JR, Daly L, Hassibi S, Kimura G, Nishimoto Y, Kizawa Y, Ito K. Senolytic therapy reduces inflammation in epithelial cells from COPD patients and in smoke-exposure mice. Front Med (Lausanne) 2025; 12:1451056. [PMID: 40357269 PMCID: PMC12066254 DOI: 10.3389/fmed.2025.1451056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a disease of accelerated lung aging, with increased numbers of senescent cells found within the COPD Lung. Senescent cells may drive pathology by causing defective tissue repair and driving chronic inflammation via the release of inflammatory mediators known as the senescence-associated secretory phenotype (SASP). Senolytics are a new class of drugs that selectively remove senescent cells but have not previously been studied in COPD. We examined whether senescent cells are maintained during differentiation of COPD airway epithelial cells at the air-liquid interface and examined the role of the senolytic combination of dasatinib and quercetin on these cells and in a smoke-exposure mouse model. Methods Non-smoker and COPD bronchial epithelial cells were differentiated at air-liquid interface (ALI). Senescence markers (p16INKA and p21WAF1) were determined using Western blotting and SASP factors via Olink proteomics and Meso Scale Diagnostics (MSD). Cells and 11 days cigarette smoke (CS)-exposed mice were treated with the senolytic cocktail of dasatinib and quercetin (D + Q). Results Increased senescence markers were maintained in COPD ALI epithelium when differentiated at air-liquid interface, and treatment with D + Q reduced senescence markers, proteases, and Th2 cytokines. Therapeutic oral treatment of D + Q to CS-exposed mice reduced senescence burden while reducing inflammatory cell infiltrates and mouse CXCL1. Conclusion COPD subjects show increased airway epithelial senescence, and these cells can be cleared therapeutically using the senolytic cocktail of D + Q, reducing broad-spectrum pulmonary inflammation in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan R. Baker
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Leah Daly
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Shyreen Hassibi
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Genki Kimura
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Yuki Nishimoto
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Yasuo Kizawa
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
45
|
Zhou Y, Zhu H, Zhao L, Zhao G, Sun J. Bidirectional Mendelian randomization and potential mechanistic insights into the causal relationship between gut microbiota and malignant mesothelioma. Medicine (Baltimore) 2025; 104:e42245. [PMID: 40295238 PMCID: PMC12040020 DOI: 10.1097/md.0000000000042245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Malignant mesothelioma (MM) is a rare but aggressive cancer originating from mesothelial cells, which presents significant challenges to patients' physical and psychological well-being. The gut-lung axis underscores the connection between gut microbiota and respiratory diseases, with emerging evidence suggesting a strong association between gut microbiota and the development of MM. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to investigate the potential causal relationship between gut microbiota and MM, while also exploring the underlying mechanisms through bioinformatics approaches. Gut microbiota summary data were obtained from the MiBioGen consortium, while MM data were sourced from the FinnGen R11 dataset. Causality was examined using the inverse variance weighted method as the primary analysis. Additional methods, including the weighted median, simple mode, MR-Egger, and weighted mode, were also employed. The robustness of the findings was validated through sensitivity analyses, and reverse causality was considered to further strengthen the MR results. Moreover, bioinformatics analyses were conducted on genetic loci associated with both gut microbiota and MM to explore potential underlying mechanisms. Our study suggests that genetically predicted increases in class.Bacilli, family.Rikenellaceae, genus.Clostridium innocuum group, and order.Lactobacillales were suggestively associated with a higher risk of MM, whereas increases in genus.Ruminococcaceae UCG004, genus.Flavonifractor, phylum.Firmicutes, genus.Anaerofilum, genus.Clostridium sensu stricto 1, and genus.Lactobacillus appeared to confer protective effects. Bioinformatics analysis indicated that differentially expressed genes near loci associated with gut microbiota might affect MM by modulating pathways and the tumor microenvironment. The results of this study point to a potential genetic predisposition linking gut microbiota to MM. Further experimental validation is crucial to confirm these candidate microbes, establish causality, and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yinjie Zhou
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Huangkai Zhu
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Long Zhao
- Department of Cardiovascular Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Jiaen Sun
- Department of Cardiovascular Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
46
|
Casanova V, Rodríguez-Agustín A, Ayala-Suárez R, Moraga E, Maleno MJ, Mallolas J, Martínez E, Sánchez-Palomino S, Miró JM, Alcamí J, Climent N. HIV-Tat upregulates the expression of senescence biomarkers in CD4 + T-cells. Front Immunol 2025; 16:1568762. [PMID: 40342418 PMCID: PMC12058733 DOI: 10.3389/fimmu.2025.1568762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Current antiretroviral therapy (ART) for HIV infection reduces plasma viral loads to undetectable levels and has increased the life expectancy of people with HIV (PWH). However, this increased lifespan is accompanied by signs of accelerated aging and a higher prevalence of age-related comorbidities. Tat (Trans-Activator of Transcription) is a key protein for viral replication and pathogenesis. Tat is encoded by 2 exons, with the full-length Tat ranging from 86 to 101 aa (Tat101). Introducing a stop codon in position 73 generates a 1 exon, synthetic 72aa Tat (Tat72). Intracellular, full-length Tat activates the NF-κB pro-inflammatory pathway and increases antiapoptotic signals and ROS generation. These effects may initiate a cellular senescence program, characterized by cell cycle arrest, altered cell metabolism, and increased senescence-associated secretory phenotype (SASP) mediator release However, the precise role of HIV-Tat in inducing a cellular senescence program in CD4+ T-cells is currently unknown. Methods Jurkat Tetoff cell lines stably transfected with Tat72, Tat101, or an empty vector were used. Flow cytometry and RT-qPCR were used to address senescence biomarkers, and 105 mediators were assessed in cell supernatants with an antibody-based membrane array. Key results obtained in Jurkat-Tat cells were addressed in primary, resting CD4+ T-cells by transient electroporation of HIV-Tat-FLAG plasmid DNA. Results In the Jurkat cell model, expression of Tat101 increased the levels of the senescence biomarkers BCL-2, CD87, and p21, and increased the release of sCD30, PDGF-AA, and sCD31, among other factors. Tat101 upregulated CD30 and CD31 co-expression in the Jurkat cell surface, distinguishing these cells from Tat72 and Tetoff Jurkats. The percentage of p21+, p16+, and γ-H2AX+ cells were higher in Tat-expressing CD4+ T-cells, detected as a FLAG+ population compared to their FLAG- (Tat negative) counterparts. Increased levels of sCD31 and sCD26 were also detected in electroporated CD4+ T-cell supernatants. Discussion Intracellular, full-length HIV-Tat expression increases several senescence biomarkers in Jurkat and CD4+ T-cells, and SASP/Aging mediators in cell supernatants. Intracellular HIV-Tat may initiate a cellular senescence program, contributing to the premature aging phenotype observed in PWH.
Collapse
Affiliation(s)
- Víctor Casanova
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Andrea Rodríguez-Agustín
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rubén Ayala-Suárez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Elisa Moraga
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - María José Maleno
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Josep Mallolas
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Esteban Martínez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Reial Academia de Medicina de Catalunya (RAMC), Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M. Miró
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Reial Academia de Medicina de Catalunya (RAMC), Barcelona, Spain
| | - José Alcamí
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Climent
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
47
|
Zhang T, Nunes ADC, Lee J, Larocca D, Camussi G, Lim SK, Bascones VU, Angelini L, O'Kelly RD, Dong X, Niedernhofer LJ, Robbins PD. Identification of Senomorphic miRNAs in Embryonic Progenitor and Adult Stem Cell-Derived Extracellular Vesicles. Aging Cell 2025:e70071. [PMID: 40275616 DOI: 10.1111/acel.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Extracellular vesicles (EVs) are secreted by most cell types, transmitting crucial signaling molecules like proteins, small RNAs, and DNA. We previously demonstrated that EVs from murine and human mesenchymal stem cells (MSCs) functioned as senomorphics to suppress markers of senescence and the inflammatory senescence-associated secretory phenotype (SASP) in cell culture and in aged mice. Here we demonstrate that EVs from additional types of human adult stem cells and embryonic progenitor cells have a senomorphic activity. Based on their miRNA profiles showing prevalence in stem cell EVs versus nonstem cell EVs and the number of age-related genes targeted, we identified eight miRNAs as potential senomorphic miRNAs. Analysis of these miRNAs by transfection into etoposide-induced senescent IMR90 human fibroblasts revealed that each of the miRNAs alone regulated specific senescence and SASP markers, but none had complete senomorphic activity. Evaluation of ~300 combinations of miRNAs for senotherapeutic activity identified a senomorphic cocktail of miR-181a-5p, miR-92a-3p, miR-21-5p, and miR-186-5p that markedly reduced the expression of p16INK4a, p21Cip1, IL-1β, and IL-6 and the percentage of SA-ß-gal-positive cells. Transcriptome analysis identified multiple pathways affected by the miRNA cocktail, including cellular senescence and inhibition of PCAF and HIPK2 in the p53 signaling pathway. Finally, treatment of aged mice with liposomes containing the four miRNA cocktail suppressed markers of senescence and inflammation in multiple tissues. These studies suggest that EVs derived from stem cells suppress senescence and inflammation, at least in part, through miRNAs and that a senomorphic miRNA cocktail could be used to target senescence and inflammation to extend health span.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allancer D C Nunes
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jieun Lee
- AgeX Therapeutics, Inc., Alameda, California, USA
| | - Dana Larocca
- AgeX Therapeutics, Inc., Alameda, California, USA
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Turin, Italy
| | - Sai Kiang Lim
- Institute of Medical Biology, ASTAR, Singapore, Singapore
| | - Vicky U Bascones
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Luise Angelini
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan D O'Kelly
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao Dong
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul D Robbins
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
48
|
Liu X, Yan L, Wang J, Effah CY, Lan H, Ding L, Wu Y. Mass spectrometry analysis of PM 2.5 in poultry farms and the cytotoxicity and metabolism perturbation of BEAS-2B cells. Anal Bioanal Chem 2025:10.1007/s00216-025-05871-7. [PMID: 40266321 DOI: 10.1007/s00216-025-05871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
To evaluate the potential risks posed by farm-derived fine particulate matter (PM2.5), we conducted a comprehensive analysis of PM2.5 samples collected from chicken farms. Specifically, water-soluble ions, metal and metalloids, and volatile organic compounds (VOCs) were quantitatively determined via ion chromatography, inductively coupled plasma mass spectrometry (ICP-MS), and gas chromatography‒mass spectrometry (GC‒MS), respectively. Furthermore, the microbial composition was elucidated through 16S ribosomal RNA (rRNA) high-throughput sequencing and ribosomal DNA (rDNA)-internal transcribed spacer (ITS) analysis. The study revealed that the water-soluble ion profile of PM2.5 was dominated by NO3-, NH4+, and SO42-, among others. Notably, aluminum, zinc, and manganese emerged as metals with relatively high concentrations. The primary VOCs identified were formic acid, acetic acid, and propionic acid. Microbiologically, Aspergillus and Faecalibacterium were the predominant genera detected. Upon exposure to PM2.5, BEAS-2B cells exhibited marked morphological alterations and a decrease in cell viability. Additionally, a dose-dependent increase in intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels was observed, accompanied by a decrease in superoxide dismutase (SOD) activity. This oxidative stress was further corroborated by elevated levels of inflammatory cytokines, including IL-6, IL-8, and TNF-α. Our findings suggest that livestock-generated PM2.5 significantly impacts cellular metabolism, particularly amino acid and nucleotide metabolism. Notably, PM2.5 from these environments can elicit cellular oxidative stress and inflammatory responses, which, with prolonged exposure, may lead to adverse health outcomes in both animals and humans. Therefore, the physical, chemical, and microbial characteristics of PM2.5 in poultry farms cannot be overlooked, emphasizing the critical need to improve the air quality within these facilities.
Collapse
Affiliation(s)
- Xia Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Yan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hanmin Lan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
49
|
Ramonell RP, Oriss TB, McCreary-Partyka JC, Kale SL, Brandon NR, Ross MA, Gauthier MC, Yue M, Nee TJ, Das S, Chen W, Joglekar AV, Ray P, St Croix CM, Rajasundaram D, Wenzel SE, Ray A. CD8+ TEMRAs in severe asthma associate with asthma symptom duration and escape proliferation arrest. JCI Insight 2025; 10:e185061. [PMID: 40048261 PMCID: PMC12016929 DOI: 10.1172/jci.insight.185061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
Aberrant immune response is a hallmark of asthma, with 5%-10% of patients suffering from severe disease exhibiting poor response to standard treatment. A better understanding of the immune responses contributing to disease heterogeneity is critical for improving asthma management. T cells are major players in the orchestration of asthma, in both mild and severe disease, but it is unclear whether specific T cell subsets influence asthma symptom duration. Here we show a significant association of airway CD8+ effector memory T cells re-expressing CD45RA (TEMRAs), but not CD8+CD45RO+ or tissue-resident memory T cells, with asthma duration in patients with severe asthma (SA) but not mild to moderate asthma (MMA). Higher frequencies of IFN-γ+CD8+ TEMRAs compared with IFN-γ+CD45RO+ T cells were detected in SA airways, and the TEMRAs from patients with SA but not MMA proliferated ex vivo, although both expressed cellular senescence-associated biomarkers. Prompted by the transcriptomic profile of SA CD8+ TEMRAs and proliferative response to IL-15, airway IL15 expression was higher in patients with SA compared with MMA. Additionally, IL15 expression in asthmatic airways negatively correlated with lung function. Our findings add what we believe is a new dimension to understanding asthma heterogeneity, identifying IL-15 as a potential target for treatment.
Collapse
Affiliation(s)
- Richard P. Ramonell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
| | - Timothy B. Oriss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Sagar L. Kale
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Mark A. Ross
- Department of Cell Biology
- Center for Biological Imaging
| | - Marc C. Gauthier
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
| | | | - Taylor J. Nee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
| | - Sudipta Das
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | | | | | - Prabir Ray
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
- Department of Immunology
| | | | | | - Sally E. Wenzel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
- Department of Immunology
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
- Department of Immunology
| |
Collapse
|
50
|
Agrawal N, Afzal M, Almalki WH, Ballal S, Sharma GC, Krithiga T, Panigrahi R, Saini S, Ali H, Goyal K, Rana M, Abida Khan. Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence. Biogerontology 2025; 26:94. [PMID: 40259024 DOI: 10.1007/s10522-025-10229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Cardiac aging is a multistep process that results in a loss of various structural and functional heart abilities, increasing the risk of heart disease. Since its remarkable discovery in the early 1800s, when limestone is heated, calcium's importance has been defined in numerous ways. It can help stiffen shells and bones, function as a reducing agent in chemical reactions, and play a central role in cellular signalling. The movement of calcium ions in and out of cells and between those is referred to as calcium signalling. It influences the binding of the ligand, enzyme activity, electrochemical gradients, and other cellular processes. Calcium signalling is critical for both contraction and relaxation under the sliding filament model of heart muscle. However, with age, the heart undergoes changes that lead to increases in cardiac dysfunction, such as myocardial fibrosis, decreased cardiomyocyte function, and noxious disturbances in calcium homeostasis. Additionally, when cardiac tissues age, cellular senescence, a state of irreversible cell cycle arrest, accumulates and begins to exacerbate tissue inflammation and fibrosis. This review explores the most recent discoveries regarding the role of senescent cell accumulation and calcium signalling perturbances in cardiac aging. Additionally, new treatment strategies are used to reduce aged-related heart dysfunction by targeting senescent cells and modulating calcium homeostasis.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Abida Khan
- Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|