1
|
Lin ME, Hsu YC, Chiu HL, Yao CY, Liu CH, Kao CJ, Yuan CT, Hsu CL, Yang YT, Hou HA, Chou WC, Tien HF. Inhibition of DOCK1 suppresses Notch signalling pathway and impairs leukaemogenesis. Br J Haematol 2025. [PMID: 40355246 DOI: 10.1111/bjh.20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Dedicator of cytokinesis 1 (DOCK1), a guanine nucleotide exchange factor for the small GTPase Rac, has been implicated in various biological processes, but its pathological roles in acute myeloid leukaemia (AML) remain unexplored. In this study, we analysed the clinical impacts of DOCK1 expression in 341 patients with de novo non-M3 AML treated with standard chemotherapy. The results showed that high DOCK1 expression is an independent adverse prognostic factor. Consistent with this, experiments using cell lines, xenografts and Dock1 conditional-knockout mice all demonstrated the pro-survival effects of DOCK1 in AML cells. This observation was corroborated by findings that the absence of Dock1 ameliorated the MN1-induced AML phenotypes. Transcriptome analyses demonstrated an association between DOCK1 expression and upregulated Notch signalling, and the causal relationship was supported by cell line experiments. Furthermore, single-cell RNA sequencing of MN1-induced mouse AML cells revealed a unique cluster with upregulated stem cell functions and Hes1, a Notch target, in the Dock1 wild type but not knockout background. These findings underscore the clinical and pathogenic significance of DOCK1 in AML and support its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ming-En Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yueh-Chwen Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Ling Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Yao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hua Liu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Tsung Yang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Haddadin L, Sun X. Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies. Cells 2025; 14:538. [PMID: 40214491 PMCID: PMC11988674 DOI: 10.3390/cells14070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Stem cells have emerged as a pivotal area of research in the field of oncology, offering new insights into the mechanisms of cancer initiation, progression, and resistance to therapy. This review provides a comprehensive overview of the role of stem cells in cancer, focusing on cancer stem cells (CSCs), their characteristics, and their implications for cancer therapy. We discuss the origin and identification of CSCs, their role in tumorigenesis, metastasis, and drug resistance, and the potential therapeutic strategies targeting CSCs. Additionally, we explore the use of normal stem cells in cancer therapy, focusing on their role in tissue regeneration and their use as delivery vehicles for anticancer agents. Finally, we highlight the challenges and future directions in stem cell research in cancer.
Collapse
Affiliation(s)
| | - Xueqin Sun
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
4
|
Elmitwalli O, Darwish R, Al-Jabery L, Algahiny A, Roy S, Butler AE, Hasan AS. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int J Mol Sci 2024; 25:13209. [PMID: 39684919 DOI: 10.3390/ijms252313209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In the context of cell cycle inhibition, anti-proliferation, and the dysregulation observed in certain cancer pathologies, the protein p21 assumes a pivotal role. p21 links DNA damage responses to cellular processes such as apoptosis, senescence, and cell cycle arrest, primarily functioning as a regulator of the cell cycle. However, accumulating empirical evidence suggests that p21 is both directly and indirectly linked to a number of different metabolic processes. Intriguingly, recent investigations indicate that p21 significantly contributes to the pathogenesis of diabetes. In this review, we present a comprehensive evaluation of the scientific literature regarding the involvement of p21 in metabolic processes, diabetes etiology, pancreatic function, glucose homeostasis, and insulin resistance. Furthermore, we provide an encapsulated overview of therapies that target p21 to alleviate metabolic disorders. A deeper understanding of the complex interrelationship between p21 and diabetes holds promise for informing current and future therapeutic strategies to address this rapidly escalating health crisis.
Collapse
Affiliation(s)
- Omar Elmitwalli
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Radwan Darwish
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Lana Al-Jabery
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ahmed Algahiny
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Sornali Roy
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Alexandra E Butler
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ammar S Hasan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| |
Collapse
|
5
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 PMCID: PMC11539620 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
6
|
Wang N, Yang S, Li Y, Gou F, Lv Y, Zhao X, Wang Y, Xu C, Zhou B, Dong F, Ju Z, Cheng T, Cheng H. p21/Zbtb18 repress the expression of cKit to regulate the self-renewal of hematopoietic stem cells. Protein Cell 2024; 15:840-857. [PMID: 38721703 PMCID: PMC11528518 DOI: 10.1093/procel/pwae022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT- HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.
Collapse
Affiliation(s)
- Nini Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Fanglin Gou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300270, China
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Chang Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Bin Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
7
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
8
|
Li H, Cao Z, Liu Y, Xue Z, Li Y, Xing H, Xu Y, Gu R, Qiu S, Wei H, Wang M, Rao Q, Wang J. Slow-replicating leukemia cells represent a leukemia stem cell population with high cell-surface CD74 expression. Mol Oncol 2024; 18:2554-2568. [PMID: 38922758 PMCID: PMC11459046 DOI: 10.1002/1878-0261.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/25/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Persistence of quiescent leukemia stem cells (LSCs) after treatment most likely contributes to chemotherapy resistance and poor prognosis of leukemia patients. Identification of this quiescent cell population would facilitate eradicating LSCs. Here, using a cell-tracing PKH26 (PKH) dye that can be equally distributed to daughter cells following cell division in vivo, we identify a label-retaining slow-cycling leukemia cell population from AML1-ETO9a (AE9a) leukemic mice. We find that, compared with cells not maintaining PKH-staining, a higher proportion of PKH-retaining cells are in G0 phase, and PKH-retaining cells exhibit increased colony formation ability and leukemia initiation potential. In addition, PKH-retaining cells possess high chemo-resistance and are more likely to be localized to the endosteal bone marrow region. Based on the transcriptional signature, HLA class II histocompatibility antigen gamma chain (Cd74) is highly expressed in PKH-retaining leukemia cells. Furthermore, cell surface CD74 was identified to be highly expressed in LSCs of AE9a mice and CD34+ human leukemia cells. Compared to Lin-CD74- leukemia cells, Lin-CD74+ leukemia cells of AE9a mice exhibit higher stemness properties. Collectively, our findings reveal that the identified slow-cycling leukemia cell population represents an LSC population, and CD74+ leukemia cells possess stemness properties, suggesting that CD74 is a candidate LSC surface marker.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Zhijie Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yiming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Zhenya Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yishuang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
9
|
Jiang L, Tian J, Yang J, Luo R, Zhang Y, Shao C, Guo B, Wu X, Dan J, Luo Y. p21 Regulates Wnt-Notch balance via DREAM/MMB/Rb-E2F1 and maintains intestinal stem cell homeostasis. Cell Death Discov 2024; 10:413. [PMID: 39341834 PMCID: PMC11438959 DOI: 10.1038/s41420-024-02192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The crosstalk and balance regulation of Wnt-Notch have been known to be essential for cell fate decision and tissue regeneration, however, how this balance is maintained and how the Wnt-Notch pathways are connected with cell cycle regulation is still not clear. By analyzing the molecular alterations in mouse model with accelerated aging phenotypes due to loss of p21 function in a Werner syndrome background, we observed that Wnt3 and β-Catenin were down-regulated, while Notch1 and Hes1 were up-regulated. This disruption in Wnt-Notch signaling was accompanied by the loss of intestinal stem cell compartment, increase in Bmi1 positive cells, loss of Olfm4/Lgr5 positive cells, and reduced secretory Paneth cells and goblet cells in the intestinal crypts of p21TKO mice. BrdU incorporation, cleaved caspase 3, and Tunel assay results revealed the fast turnover of intestinal epithelia, which may result in abnormal stem cell mobilization and exhaustion of the stem cell reservoir in the intestinal crypts. We further identified shift of DREAM complex towards MMB complex due to the loss of p21 as the cause for faster turnover of intestinal epithelia. Importantly, we identified the E2F1 as the transcriptional regulator for Notch1, which linked the p21-DREAM/MMB/Rb-E2F1 pathway with Wnt-Notch pathway. The overexpression of p21 rescued the DREAM pathway, as well as the imbalance of Wnt-Notch pathway. In summary, our data identify p21 as an important factor in maintaining sequential mobilization, proliferation, and homeostasis of intestinal stem cells.
Collapse
Affiliation(s)
- Liangxia Jiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun Yang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ronggang Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yongjin Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chihao Shao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Bing Guo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
10
|
Zuo H, Wu A, Wang M, Hong L, Wang H. tRNA m 1A modification regulate HSC maintenance and self-renewal via mTORC1 signaling. Nat Commun 2024; 15:5706. [PMID: 38977676 PMCID: PMC11231335 DOI: 10.1038/s41467-024-50110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Haematopoietic stem cells (HSCs) possess unique physiological adaptations to sustain blood cell production and cope with stress responses throughout life. To maintain these adaptations, HSCs rely on maintaining a tightly controlled protein translation rate. However, the mechanism of how HSCs regulate protein translation remains to be fully elucidated. In this study, we investigate the role of transfer RNA (tRNA) m1A58 'writer' proteins TRMT6 and TRMT61A in regulating HSCs function. Trmt6 deletion promoted HSC proliferation through aberrant activation of mTORC1 signaling. TRMT6-deficient HSCs exhibited an impaired self-renewal ability in competitive transplantation assay. Mechanistically, single cell RNA-seq analysis reveals that the mTORC1 signaling pathway is highly upregulated in HSC-enriched cell populations after Trmt6 deletion. m1A-tRNA-seq and Western blot analysis suggest that TRMT6 promotes methylation modification of specific tRNA and expression of TSC1, fine-tuning mTORC1 signaling levels. Furthermore, Pharmacological inhibition of the mTORC1 pathway rescued functional defect in TRMT6-deficient HSCs. To our knowledge, this study is the first to elucidate a mechanism by which TRMT6-TRMT61A complex-mediated tRNA-m1A58 modification regulates HSC homeostasis.
Collapse
Affiliation(s)
- Hongna Zuo
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingwei Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
11
|
Pourebrahim R, Montoya RH, Akiyama H, Ostermann L, Khazaei S, Muftuoglu M, Baran N, Zhao R, Lesluyes T, Liu B, Khoury JD, Gagea M, Van Loo P, Andreeff M. Age-specific induction of mutant p53 drives clonal hematopoiesis and acute myeloid leukemia in adult mice. Cell Rep Med 2024; 5:101558. [PMID: 38733986 PMCID: PMC11148800 DOI: 10.1016/j.xcrm.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.
Collapse
Affiliation(s)
- Rasoul Pourebrahim
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Heinz Montoya
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroki Akiyama
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shayuan Khazaei
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muharrem Muftuoglu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ran Zhao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tom Lesluyes
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Wang Z, Sim HJ, Liu W, Kim JC, Lee JC, Kook SH, Kim SH. Differential Effects of Endurance Exercise on Musculoskeletal and Hematopoietic Modulation in Old Mice. Aging Dis 2024; 15:755-766. [PMID: 37548936 PMCID: PMC10917547 DOI: 10.14336/ad.2023.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
One of the most important strategies for successful aging is exercise. However, the effect of exercise can differ among individuals, even with exercise of the same type and intensity. Therefore, this study aims to confirm whether endurance training (ETR) has the same health-promoting effects on the musculoskeletal and hematopoietic systems regardless of age. Ten weeks of ETR improved endurance exercise capacity, with increased skeletal muscle mitochondrial enzymes in both young and old mice. In addition, age-related deterioration of muscle fiber size and bone microstructure was improved. The expression levels of myostatin, muscle RING-finger protein-1, and muscle atrophy F-box in skeletal muscle and peroxisome proliferator-activated receptor-γ in the femur increased with age but decreased after ETR. ETR differentially modulated hematopoietic stem cells (HSCs) depending on age; ETR induced HSC quiescence in young mice but caused HSC senescence in old mice. ETR has differential effects on modulation of the musculoskeletal and hematopoietic systems in old mice. In other words, endurance exercise is a double-edged sword for successful aging, and great effort is required to establish exercise strategies for healthy aging.
Collapse
Affiliation(s)
- Zilin Wang
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Wenduo Liu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jae Cheol Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
13
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
14
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Wu Q, Leng X, Zhang Q, Zhu YZ, Zhou R, Liu Y, Mei C, Zhang D, Liu S, Chen S, Wang X, Lin A, Lin X, Liang T, Shen L, Feng XH, Xia B, Xu P. IRF3 activates RB to authorize cGAS-STING-induced senescence and mitigate liver fibrosis. SCIENCE ADVANCES 2024; 10:eadj2102. [PMID: 38416816 PMCID: PMC10901380 DOI: 10.1126/sciadv.adj2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
Cytosolic double-stranded DNA surveillance by cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) signaling triggers cellular senescence, autophagy, biased mRNA translation, and interferon-mediated immune responses. However, detailed mechanisms and physiological relevance of STING-induced senescence are not fully understood. Here, we unexpectedly found that interferon regulatory factor 3 (IRF3), activated during innate DNA sensing, forms substantial endogenous complexes in the nucleus with retinoblastoma (RB), a key cell cycle regulator. The IRF3-RB interaction attenuates cyclin-dependent kinase 4/6 (CDK4/6)-mediated RB hyperphosphorylation that mobilizes RB to deactivate E2 family (E2F) transcription factors, thereby driving cells into senescence. STING-IRF3-RB signaling plays a notable role in hepatic stellate cells (HSCs) within various murine models, pushing activated HSCs toward senescence. Accordingly, IRF3 global knockout or conditional deletion in HSCs aggravated liver fibrosis, a process mitigated by the CDK4/6 inhibitor. These findings underscore a straightforward yet vital mechanism of cGAS-STING signaling in inducing cellular senescence and unveil its unexpected biology in limiting liver fibrosis.
Collapse
Affiliation(s)
- Qirou Wu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Leng
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ye-Zhang Zhu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yutong Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chen Mei
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Dan Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310058, China
| | - Shasha Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaojian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Lin
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Bing Xia
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310058, China
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Lipskaia L, Breau M, Cayrou C, Churikov D, Braud L, Jacquet J, Born E, Fouillade C, Curras-Alonso S, Bauwens S, Jourquin F, Fiore F, Castellano R, Josselin E, Sánchez-Ferrer C, Giovinazzo G, Lachaud C, Gilson E, Flores I, Londono-Vallejo A, Adnot S, Géli V. mTert induction in p21-positive cells counteracts capillary rarefaction and pulmonary emphysema. EMBO Rep 2024; 25:1650-1684. [PMID: 38424230 PMCID: PMC10933469 DOI: 10.1038/s44319-023-00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Christelle Cayrou
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Dmitri Churikov
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Laura Braud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Juliette Jacquet
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Emmanuelle Born
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Charles Fouillade
- Institut Curie, Inserm U1021, CNRS UMR 3347, University Paris-Saclay, PSL Research University, Orsay, France
| | - Sandra Curras-Alonso
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Frederic Jourquin
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Frederic Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Rémy Castellano
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Emmanuelle Josselin
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | | | - Giovanna Giovinazzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Christophe Lachaud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Team DNA Interstrand Crosslink Lesions and Blood Disorders, Marseille, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Adnot
- Institute for Lung Health, Justus Liebig University, Giessen, Germany.
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France.
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France.
| |
Collapse
|
17
|
Wu J, Ma L, Gong Q, Chen Y, Chen L, Shi C. NEAR-INFRARED DYE IR-780 ALLEVIATES HEMATOPOIETIC SYSTEM DAMAGE BY PROMOTING HEMATOPOIETIC STEM CELLS INTO QUIESCENCE. Shock 2024; 61:442-453. [PMID: 38411611 DOI: 10.1097/shk.0000000000002317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
ABSTRACT Potential radiation exposure is a general concern, but there still lacks radioprotective countermeasures. Here, we found a small molecular near-infrared dye IR-780, which promoted hematopoietic stem cells (HSCs) into quiescence to resist stress. When mice were treated with IR-780 before stress, increased HSC quiescence and better hematopoietic recovery were observed in mice in stress conditions. However, when given after radiation, IR-780 did not show obvious benefit. Transplantation assay and colony-forming assay were carried out to determine self-renewal ability and repopulation capacity of HSCs. Furthermore, IR-780 pretreatment reduced the generation of reactive oxygen species (ROS) and DNA damage in HSCs after radiation. In homeostasis, the percentage of Lineage - , Sca-1 + , and c-Kit + cells and long-term HSCs (LT-HSCs) were improved, and more HSCs were in G0 state after administration of IR-780. Further investigations showed that IR-780 selectively accumulated in mitochondria membrane potential high LT-HSCs (MMP-high LT-HSCs). Finally, IR-780 promoted human CD34 + HSC reconstruction ability in NOD-Prkdc scid Il2rg null mice after transplantation and improved repopulation capacity in vitro culture. Our research showed that IR-780 selectively entered MMP-high LT-HSCs and promoted them into dormancy, thus reducing hematopoietic injury and improving regeneration capacity. This novel approach might hold promise as a potential countermeasure for radiation injury.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
18
|
Oshima S, Sinha R, Ohno M, Nishi K, Eto K, Takaori-Kondo A, Nishi E, Yamamoto R. Nardilysin determines hematopoietic stem cell fitness by regulating protein synthesis. Biochem Biophys Res Commun 2024; 693:149355. [PMID: 38096617 DOI: 10.1016/j.bbrc.2023.149355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.
Collapse
Affiliation(s)
- Shinichiro Oshima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, 94305, USA
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Ryo Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
19
|
Ma K, Wang X, Wu L, Yu L, Ye J, Li X, Geng L, Shi Z, Yang H, Zhang X, Zhang Y, Wu S, Yuan P, Zhang Y, Dong F, Hao S, Hu L, Wei W, Fang R, Cheng T. CEA cell adhesion molecule 5 enriches functional human hematopoietic stem cells capable of long-term multi-lineage engraftment. iScience 2023; 26:108561. [PMID: 38144459 PMCID: PMC10746536 DOI: 10.1016/j.isci.2023.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Hematopoietic stem cell (HSC) surface markers improve the understanding of cell identity and function. Here, we report that human HSCs can be distinguished by their expression of the CEA Cell Adhesion Molecule 5 (CEACAM5, CD66e), which serves as a marker and a regulator of HSC function. CD66e+ cells exhibited a 5.5-fold enrichment for functional long term HSCs compared to CD66e- cells. CD66e+CD34+CD90+CD45RA- cells displayed robust multi-lineage repopulation and serial reconstitution ability in immunodeficient mice compared to CD66e-CD34+CD90+CD45RA-cells. CD66e expression also identified almost all repopulating HSCs within the CD34+CD90+CD45RA- population. Together, these results indicated that CEACAM5 is a marker that enriches functional human hematopoietic stem cells capable of long-term multi-lineage engraftment.
Collapse
Affiliation(s)
- Kuiying Ma
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Xuan Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Linjie Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lingling Yu
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Jinhui Ye
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xueling Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lili Geng
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Zhongyu Shi
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Huihui Yang
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Xijuan Zhang
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Yongjian Zhang
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Shuchang Wu
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Pengfei Yuan
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Riguo Fang
- EdiGene Inc., Life Science Park, Changping District, Beijing 102206, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300000, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300000, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
20
|
Eram N, Sachan S, Singh J, Shreya, Dwivedi U, Das D, Rai G, Rajan M. Growth Factor Independence-1 (GFI-1) Gene Expression in Hematopoietic Stem Cell Lineage Differentiation in Low Birth Weight Newborns Compared With Normal Birth Weight Newborns at Term Pregnancy. Cureus 2023; 15:e50696. [PMID: 38239528 PMCID: PMC10796131 DOI: 10.7759/cureus.50696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Low birth weight (LBW), which is a risk factor for noncommunicable diseases throughout life, is a significant public health concern. In addition to regulating myeloid cell differentiation and proliferation, a transcriptional repressor identified as growth factor independence-1 (GFI-1) is essential for hematopoietic stem cell maintenance and self-renewal. The current study was designed to compare the expression of the GFI-1 gene in the differentiation of hematopoietic stem cells in newborns with LBW and those with normal birth weight (NBW). Methods A prospective comparative analytical study was carried out from September 2019 to September 2021 after obtaining Institute Ethical Committee approval at a tertiary care center in north India. The GFI-1 gene expression levels in 50 cord blood samples from women with term gestation and LBW newborns (<2500 grams) were measured using quantitative real-time polymerase chain reaction (RT-PCR) and compared to gene expression levels in 50 cord blood samples from women with term gestation and NBW newborns (≥2500 grams). The data were analyzed using IBM SPSS statistics software version 24.0 (IBM Corp., Armonk, NY). Results The median GFI-1 expression in LBW newborns is 3.1, whereas among NBW newborns it is 9.39. The difference is significant (P <0.001). The level of GFI-1 gene expression in LBW newborns was correlated with their birth weight. The coefficient of correlation was found to be weakly positive (r = 0.223). The birth weight of NBW newborns was correlated to the level of expression of the GFI-1 gene, which was found to be positively correlated (r = 0.332). Conclusion The levels of the GFI-1 gene and newborn birth weight were compared in LBW infants, which were weakly positively correlated. The level of GFI-1 gene expression at birth was compared to the birth weight of NBW newborns, which was positively correlated.
Collapse
Affiliation(s)
- Najma Eram
- Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| | - Shikha Sachan
- Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| | - Jigyasa Singh
- Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| | - Shreya
- Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| | - Utkarsh Dwivedi
- Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| | - Doli Das
- Molecular and Human Genetics, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| | - Geeta Rai
- Molecular and Human Genetics, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| | - Mamta Rajan
- Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, IND
| |
Collapse
|
21
|
Cao H, Naik SH, Amann-Zalcenstein D, Hickey P, Salim A, Cao B, Nilsson SK, Keightley MC, Lieschke GJ. Late fetal hematopoietic failure results from ZBTB11 deficiency despite abundant HSC specification. Blood Adv 2023; 7:6506-6519. [PMID: 37567157 PMCID: PMC10632610 DOI: 10.1182/bloodadvances.2022009580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Hematopoiesis produces diverse blood cell lineages to meet the basal needs and sudden demands of injury or infection. A rapid response to such challenges requires the expansion of specific lineages and a prompt return to balanced steady-state levels, necessitating tightly coordinated regulation. Previously we identified a requirement for the zinc finger and broad complex, tramtrak, bric-a-brac domain-containing 11 (ZBTB11) transcription factor in definitive hematopoiesis using a forward genetic screen for zebrafish myeloid mutants. To understand its relevance to mammalian systems, we extended these studies to mice. When Zbtb11 was deleted in the hematopoietic compartment, embryos died at embryonic day (E) 18.5 with hematopoietic failure. Zbtb11 hematopoietic knockout (Zbtb11hKO) hematopoietic stem cells (HSCs) were overabundantly specified from E14.5 to E17.5 compared with those in controls. Overspecification was accompanied by loss of stemness, inability to differentiate into committed progenitors and mature lineages in the fetal liver, failure to seed fetal bone marrow, and total hematopoietic failure. The Zbtb11hKO HSCs did not proliferate in vitro and were constrained in cell cycle progression, demonstrating the cell-intrinsic role of Zbtb11 in proliferation and cell cycle regulation in mammalian HSCs. Single-cell RNA sequencing analysis identified that Zbtb11-deficient HSCs were underrepresented in an erythroid-primed subpopulation and showed downregulation of oxidative phosphorylation pathways and dysregulation of genes associated with the hematopoietic niche. We identified a cell-intrinsic requirement for Zbtb11-mediated gene regulatory networks in sustaining a pool of maturation-capable HSCs and progenitor cells.
Collapse
Affiliation(s)
- Huimin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Shalin H. Naik
- Department of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniela Amann-Zalcenstein
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter Hickey
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Agus Salim
- Mathematics and Statistics, La Trobe University, Bundoora, VIC, Australia
- Melbourne School of Population and Global Health, School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Susan K. Nilsson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - M. Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
22
|
Burocziova M, Danek P, Oravetzova A, Chalupova Z, Alberich-Jorda M, Macurek L. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia 2023; 37:2209-2220. [PMID: 37709843 PMCID: PMC10624630 DOI: 10.1038/s41375-023-02030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.
Collapse
Affiliation(s)
- Monika Burocziova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Anna Oravetzova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Zuzana Chalupova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, V Uvalu 84, Praha, 150 06, Czech Republic.
| | - Libor Macurek
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
| |
Collapse
|
23
|
Chen J, Ren C, Yao C, Baruscotti M, Wang Y, Zhao L. Identification of the natural chalcone glycoside hydroxysafflor yellow A as a suppressor of P53 overactivation-associated hematopoietic defects. MedComm (Beijing) 2023; 4:e352. [PMID: 37638339 PMCID: PMC10449056 DOI: 10.1002/mco2.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Enhanced P53 signaling may lead to hematopoietic disorders, yet an effective therapeutic strategy is still lacking. Our study, along with previous research, suggests that P53 overactivation and hematopoietic defects are major consequences of zinc deficiency. However, the relationship between these two pathological processes remains unclear. In this study, we observed a severe reduction in the number of hematopoietic stem cells (HSCs) and multi-lineage progenitor cells in zebrafish treated with the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and showed the indispensable role of P53 signaling in the process. Next, we took advantage of HSCs-labeled transgenic zebrafish and conducted a highly efficient phenotypic screening for small molecules against P53-dependent hematopoietic disorders. Hydroxysafflor yellow A (HSYA), a natural chalcone glycoside, exhibited potent protection against hematopoietic failure in zinc-deficient zebrafish and strongly inhibited the P53 pathway. We confirmed the protective effect of HSYA in zinc-deficient mice bone marrow nucleated cells, which showed a significant suppression of P53 signaling and oxidative stress. Furthermore, the hematopoietic-protective activity of HSYA was validated using a mice model of myelotoxicity induced by 5-FU. In summary, our work provides an effective phenotypic screening strategy for identifying hematopoietic-protective agents and reveals the novel role of HSYA as a promising lead compound in rescuing hematopoietic disorders associated with P53 overactivation.
Collapse
Affiliation(s)
- Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Can Ren
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Chong Yao
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | | | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhouChina
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
25
|
Wu T, Pelus LM, Plett PA, Sampson CH, Chua HL, Fisher A, Feng H, Liu L, Li H, Ortiz M, Chittajallu S, Luo Q, Bhatwadekar AD, Meyer TB, Zhang X, Zhou D, Fischer KD, McKinzie DL, Miller SJ, Orschell CM. Further Characterization of Multi-Organ DEARE and Protection by 16,16 Dimethyl Prostaglandin E2 in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. Radiat Res 2023; 199:468-489. [PMID: 37014943 PMCID: PMC10278147 DOI: 10.1667/rade-22-00208.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Survivors of acute radiation exposure suffer from the delayed effects of acute radiation exposure (DEARE), a chronic condition affecting multiple organs, including lung, kidney, heart, gastrointestinal tract, eyes, and brain, and often causing cancer. While effective medical countermeasures (MCM) for the hematopoietic-acute radiation syndrome (H-ARS) have been identified and approved by the FDA, development of MCM for DEARE has not yet been successful. We previously documented residual bone marrow damage (RBMD) and progressive renal and cardiovascular DEARE in murine survivors of H-ARS, and significant survival efficacy of 16,16-dimethyl prostaglandin E2 (dmPGE2) given as a radioprotectant or radiomitigator for H-ARS. We now describe additional DEARE (physiological and neural function, progressive fur graying, ocular inflammation, and malignancy) developing after sub-threshold doses in our H-ARS model, and detailed analysis of the effects of dmPGE2 administered before (PGE-pre) or after (PGE-post) lethal total-body irradiation (TBI) on these DEARE. Administration of PGE-pre normalized the twofold reduction of white blood cells (WBC) and lymphocytes seen in vehicle-treated survivors (Veh), and increased the number of bone marrow (BM) cells, splenocytes, thymocytes, and phenotypically defined hematopoietic progenitor cells (HPC) and hematopoietic stem cells (HSC) to levels equivalent to those in non-irradiated age-matched controls. PGE-pre significantly protected HPC colony formation ex vivo by >twofold, long term-HSC in vivo engraftment potential up to ninefold, and significantly blunted TBI-induced myeloid skewing. Secondary transplantation documented continued production of LT-HSC with normal lineage differentiation. PGE-pre reduced development of DEARE cardiovascular pathologies and renal damage; prevented coronary artery rarefication, blunted progressive loss of coronary artery endothelia, reduced inflammation and coronary early senescence, and blunted radiation-induced increase in blood urea nitrogen (BUN). Ocular monocytes were significantly lower in PGE-pre mice, as was TBI-induced fur graying. Increased body weight and decreased frailty in male mice, and reduced incidence of thymic lymphoma were documented in PGE-pre mice. In assays measuring behavioral and cognitive functions, PGE-pre reduced anxiety in females, significantly blunted shock flinch response, and increased exploratory behavior in males. No effect of TBI was observed on memory in any group. PGE-post, despite significantly increasing 30-day survival in H-ARS and WBC and hematopoietic recovery, was not effective in reducing TBI-induced RBMD or any other DEARE. In summary, dmPGE2 administered as an H-ARS MCM before lethal TBI significantly increased 30-day survival and ameliorated RBMD and multi-organ and cognitive/behavioral DEARE to at least 12 months after TBI, whereas given after TBI, dmPGE2 enhances survival from H-ARS but has little impact on RBMD or other DEARE.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Louis M. Pelus
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carol H. Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hailin Feng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Liqiong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hongge Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Miguel Ortiz
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Supriya Chittajallu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Qianyi Luo
- Department of Ophthalmology, and Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ashay D. Bhatwadekar
- Department of Ophthalmology, and Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Timothy B. Meyer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xin Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32611
| | - Daohong Zhou
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32611
| | - Kathryn D. Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David L. McKinzie
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Steven J. Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christie M. Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
26
|
Zhan Q, Wang J, Zhang H, Zhang L. E3 ubiquitin ligase on the biological properties of hematopoietic stem cell. J Mol Med (Berl) 2023; 101:543-556. [PMID: 37081103 PMCID: PMC10163092 DOI: 10.1007/s00109-023-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Jing Wang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
27
|
Herrejon Chavez F, Luo H, Cifani P, Pine A, Chu EL, Joshi S, Barin E, Schurer A, Chan M, Chang K, Han GYQ, Pierson AJ, Xiao M, Yang X, Kuehm LM, Hong Y, Nguyen DTT, Chiosis G, Kentsis A, Leslie C, Vu LP, Kharas MG. RNA binding protein SYNCRIP maintains proteostasis and self-renewal of hematopoietic stem and progenitor cells. Nat Commun 2023; 14:2290. [PMID: 37085479 PMCID: PMC10121618 DOI: 10.1038/s41467-023-38001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Tissue homeostasis is maintained after stress by engaging and activating the hematopoietic stem and progenitor compartments in the blood. Hematopoietic stem cells (HSCs) are essential for long-term repopulation after secondary transplantation. Here, using a conditional knockout mouse model, we revealed that the RNA-binding protein SYNCRIP is required for maintenance of blood homeostasis especially after regenerative stress due to defects in HSCs and progenitors. Mechanistically, we find that SYNCRIP loss results in a failure to maintain proteome homeostasis that is essential for HSC maintenance. SYNCRIP depletion results in increased protein synthesis, a dysregulated epichaperome, an accumulation of misfolded proteins and induces endoplasmic reticulum stress. Additionally, we find that SYNCRIP is required for translation of CDC42 RHO-GTPase, and loss of SYNCRIP results in defects in polarity, asymmetric segregation, and dilution of unfolded proteins. Forced expression of CDC42 recovers polarity and in vitro replating activities of HSCs. Taken together, we uncovered a post-transcriptional regulatory program that safeguards HSC self-renewal capacity and blood homeostasis.
Collapse
Affiliation(s)
- Florisela Herrejon Chavez
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alli Pine
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eren L Chu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell School of Medical Sciences, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ersilia Barin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program of the Weill Cornell Graduate School of Medicine Sciences, New York, NY, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandy Chan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grace Y Q Han
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aspen J Pierson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Xiao
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Diu T T Nguyen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ly P Vu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Tang X, Wang Z, Wang J, Cui S, Xu R, Wang Y. Functions and regulatory mechanisms of resting hematopoietic stem cells: a promising targeted therapeutic strategy. Stem Cell Res Ther 2023; 14:73. [PMID: 37038215 PMCID: PMC10088186 DOI: 10.1186/s13287-023-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the common and essential precursors of all blood cells, including immune cells, and they are responsible for the lifelong maintenance and damage repair of blood tissue homeostasis. The vast majority (> 95%) of HSCs are in a resting state under physiological conditions and are only activated to play a functional role under stress conditions. This resting state affects their long-term survival and is also closely related to the lifelong maintenance of hematopoietic function; however, abnormal changes may also be an important factor leading to the decline of immune function in the body and the occurrence of diseases in various systems. While the importance of resting HSCs has attracted increasing research attention, our current understanding of this topic remains insufficient, and the direction of clinical targeted treatments is unclear. Here, we describe the functions of HSCs, analyze the regulatory mechanisms that affect their resting state, and discuss the relationship between resting HSCs and different diseases, with a view to providing guidance for the future clinical implementation of related targeted treatments.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
29
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
30
|
Zhao Y, Li H, Guo Q, Hui H. Multiple characteristic alterations and available therapeutic strategies of cellular senescence. J Zhejiang Univ Sci B 2023; 24:101-114. [PMID: 36751697 PMCID: PMC9936135 DOI: 10.1631/jzus.b2200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Given its state of stable proliferative inhibition, cellular senescence is primarily depicted as a critical mechanism by which organisms delay the progression of carcinogenesis. Cells undergoing senescence are often associated with the alteration of a series of specific features and functions, such as metabolic shifts, stemness induction, and microenvironment remodeling. However, recent research has revealed more complexity associated with senescence, including adverse effects on both physiological and pathological processes. How organisms evade these harmful consequences and survive has become an urgent research issue. Several therapeutic strategies targeting senescence, including senolytics, senomorphics, immunotherapy, and function restoration, have achieved initial success in certain scenarios. In this review, we describe in detail the characteristic changes associated with cellular senescence and summarize currently available countermeasures.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Huang L, Li F, Ye L, Yu F, Wang C. Epigenetic regulation of embryonic ectoderm development in stem cell differentiation and transformation during ontogenesis. Cell Prolif 2023; 56:e13413. [PMID: 36727213 PMCID: PMC10068960 DOI: 10.1111/cpr.13413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Dynamic chromatin accessibility regulates stem cell fate determination and tissue homeostasis via controlling gene expression. As a histone-modifying enzyme that predominantly mediates methylation of lysine 27 in histone H3 (H3K27me1/2/3), Polycomb repressive complex 2 (PRC2) plays the canonical role in targeting developmental regulators during stem cell differentiation and transformation. Embryonic ectoderm development (EED), the core scaffold subunit of PRC2 and as an H3K27me3-recognizing protein, has been broadly implicated with PRC2 stabilization and allosterically stimulated PRC2. Accumulating evidences from experimental data indicate that EED-associating epigenetic modifications are indispensable for stem cell maintenance and differentiation into specific cell lineages. In this review, we discuss the most updated advances to summarize the structural architecture of EED and its contributions and underlying mechanisms to mediating lineage differentiation of different stem cells during epigenetic modification to expand our understanding of PRC2.
Collapse
Affiliation(s)
- Liuyan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Liu B, Zhou Y, Wu Q, Fu Y, Zhang X, Wang Z, Yi W, Wang H, Chen Z, Song Z, Xiong W, Qiu Y, He W, Ju Z. EVA1A regulates hematopoietic stem cell regeneration via ER-mitochondria mediated apoptosis. Cell Death Dis 2023; 14:71. [PMID: 36717548 PMCID: PMC9887066 DOI: 10.1038/s41419-023-05559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023]
Abstract
Excessive protein synthesis upon enhanced cell proliferation frequently results in an increase of unfolded or misfolded proteins. During hematopoietic regeneration, to replenish the hematopoietic system, hematopoietic stem cells (HSCs) are activated and undergo a rapid proliferation. But how the activated HSCs respond to the proliferation pressure is still ambiguous; The proper control of the functional reservoir in the activated HSCs remains poorly understood. Here, we show a significant upregulation of EVA1A protein associated with the increase of ER stress during hematopoietic regeneration. Deletion of Eva1a significantly enhances the regeneration capacity of HSCs by inhibiting the ER stress-induced apoptosis. Mechanistically, the expression of EVA1A protein was upregulated by CHOP, and thereby promoted the ER-mitochondria interlinking via MCL1, which resulted in mitochondria-mediated apoptosis. These findings reveal a pathway for ER stress responses of HSCs by the EVA1A mediated apoptosis, which play an important role in HSCs regeneration.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Yuanyuan Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Qiaofeng Wu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Yuting Fu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Xianli Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhenkun Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Weiwei Yi
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Hu Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yugang Qiu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
33
|
RUNX3 in Stem Cell and Cancer Biology. Cells 2023; 12:cells12030408. [PMID: 36766749 PMCID: PMC9913995 DOI: 10.3390/cells12030408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The runt-related transcription factors (RUNX) play prominent roles in cell cycle progression, differentiation, apoptosis, immunity and epithelial-mesenchymal transition. There are three members in the mammalian RUNX family, each with distinct tissue expression profiles. RUNX genes play unique and redundant roles during development and adult tissue homeostasis. The ability of RUNX proteins to influence signaling pathways, such as Wnt, TGFβ and Hippo-YAP, suggests that they integrate signals from the environment to dictate cell fate decisions. All RUNX genes hold master regulator roles, albeit in different tissues, and all have been implicated in cancer. Paradoxically, RUNX genes exert tumor suppressive and oncogenic functions, depending on tumor type and stage. Unlike RUNX1 and 2, the role of RUNX3 in stem cells is poorly understood. A recent study using cancer-derived RUNX3 mutation R122C revealed a gatekeeper role for RUNX3 in gastric epithelial stem cell homeostasis. The corpora of RUNX3R122C/R122C mice showed a dramatic increase in proliferating stem cells as well as inhibition of differentiation. Tellingly, RUNX3R122C/R122C mice also exhibited a precancerous phenotype. This review focuses on the impact of RUNX3 dysregulation on (1) stem cell fate and (2) the molecular mechanisms underpinning early carcinogenesis.
Collapse
|
34
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
35
|
Shiroshita K, Kobayashi H, Watanuki S, Karigane D, Sorimachi Y, Fujita S, Tamaki S, Haraguchi M, Itokawa N, Aoyoama K, Koide S, Masamoto Y, Kobayashi K, Nakamura-Ishizu A, Kurokawa M, Iwama A, Okamoto S, Kataoka K, Takubo K. A culture platform to study quiescent hematopoietic stem cells following genome editing. CELL REPORTS METHODS 2022; 2:100354. [PMID: 36590688 PMCID: PMC9795334 DOI: 10.1016/j.crmeth.2022.100354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Other than genetically engineered mice, few reliable platforms are available for the study of hematopoietic stem cell (HSC) quiescence. Here we present a platform to analyze HSC cell cycle quiescence by combining culture conditions that maintain quiescence with a CRISPR-Cas9 genome editing system optimized for HSCs. We demonstrate that preculture of HSCs enhances editing efficiency by facilitating nuclear transport of ribonucleoprotein complexes. For post-editing culture, mouse and human HSCs edited based on non-homologous end joining and cultured under low-cytokine, low-oxygen, and high-albumin conditions retain their phenotypes and quiescence better than those cultured under the proliferative conditions. Using this approach, HSCs regain quiescence even after editing by homology-directed repair. Our results show that low-cytokine culture conditions for gene-edited HSCs are a useful approach for investigating HSC quiescence ex vivo.
Collapse
Affiliation(s)
- Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Naoki Itokawa
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazumasa Aoyoama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Cellular and Molecular Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
36
|
Englund JI, Bui H, Dinç DD, Paavolainen O, McKenna T, Laitinen S, Munne P, Klefström J, Peuhu E, Katajisto P. Laminin matrix adhesion regulates basal mammary epithelial cell identity. J Cell Sci 2022; 135:285829. [DOI: 10.1242/jcs.260232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
ABSTRACT
Mammary epithelium is a bilayered ductal network composed of luminal and basal epithelial cells, which together drive the growth and functional differentiation of the gland. Basal mammary epithelial cells (MECs) exhibit remarkable plasticity and progenitor activity that facilitate epithelial expansion. However, their activity must be tightly regulated to restrict excess basal cell activity. Here, we show that adhesion of basal cells to laminin α5-containing basement membrane matrix, which is produced by luminal cells, presents such a control mechanism. Adhesion to laminin α5 directs basal cells towards a luminal cell fate, and thereby results in a marked decrease of basal MEC progenitor activity in vitro and in vivo. Mechanistically, these effects are mediated through β4-integrin and activation of p21 (encoded by CDKN1A). Thus, we demonstrate that laminin matrix adhesion is a key determinant of basal identity and essential to building and maintaining a functional multicellular epithelium.
Collapse
Affiliation(s)
- Johanna I. Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Hien Bui
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Defne D. Dinç
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Tomás McKenna
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
| | - Suvi Laitinen
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
- University of Helsinki 6 Faculty of Biological and Environmental Sciences , , Helsinki FI-00014 , Finland
| |
Collapse
|
37
|
Shah SS, Salo PT, Lyons FG, Mitha AP, Krawetz RJ. Prx1 + MPCs Accumulate in the Dura Mater of Wild-Type and p21 -/- Mice Followed by a Specific Reduction in p21 -/- Dural MPCs. Adv Biol (Weinh) 2022; 6:e2101304. [PMID: 36190137 DOI: 10.1002/adbi.202101304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/23/2022] [Indexed: 12/23/2022]
Abstract
Epidural fat contains a population of mesenchymal progenitor cells (MPCs), and this study explores the behavior of these cells on the adjacent dura mater during growth and in response to injury in a p21 knockout mouse model. p21-/- mice are known to have increased cell proliferation and enhanced tissue regeneration post-injury. Therefore, it is hypothesized that the process by which epidural fat MPCs maintain the dura mater can be accelerated in p21-/- mice. Using a Prx1 lineage tracing mouse model, the epidural fat MPCs are found to increase in the dura mater over time in both C57BL/6 (p21+/+ ) and p21-/- mice; however, by 3 weeks post-tamoxifen induction, few MPCs are observed in p21-/- mice. These endogenous MPCs also localize to dural injuries in both mouse strains, with MPCs in p21-/- mice demonstrating increased proliferation. When epidural fat MPCs derived from p21-/- mice are transplanted into dural injuries in C57BL/6 mice, these MPCs are found in the injury site. It is demonstrated that epidural fat MPCs play a role in dural tissue maintenance and are able to directly contribute to dural injury repair. This suggests that these MPCs have the potential to treat injuries and/or pathologies in tissues surrounding the spinal cord.
Collapse
Affiliation(s)
- Sophia S Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Paul T Salo
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Frank G Lyons
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Alim P Mitha
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Roman J Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
38
|
Rumman M, Dhawan J. PTPRU, a quiescence-induced receptor tyrosine phosphatase negatively regulates osteogenic differentiation of human mesenchymal stem cells. Biochem Biophys Res Commun 2022; 636:41-49. [DOI: 10.1016/j.bbrc.2022.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
39
|
Zhou S, Zhu J, Zhou PK, Gu Y. Alveolar type 2 epithelial cell senescence and radiation-induced pulmonary fibrosis. Front Cell Dev Biol 2022; 10:999600. [PMID: 36407111 PMCID: PMC9666897 DOI: 10.3389/fcell.2022.999600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a chronic and progressive respiratory tract disease characterized by collagen deposition. The pathogenesis of RIPF is still unclear. Type 2 alveolar epithelial cells (AT2), the essential cells that maintain the structure and function of lung tissue, are crucial for developing pulmonary fibrosis. Recent studies indicate the critical role of AT2 cell senescence during the onset and progression of RIPF. In addition, clearance of senescent AT2 cells and treatment with senolytic drugs efficiently improve lung function and radiation-induced pulmonary fibrosis symptoms. These findings indicate that AT2 cell senescence has the potential to contribute significantly to the innovative treatment of fibrotic lung disorders. This review summarizes the current knowledge from basic and clinical research about the mechanism and functions of AT2 cell senescence in RIPF and points to the prospects for clinical treatment by targeting senescent AT2 cells.
Collapse
Affiliation(s)
- Shenghui Zhou
- Hengyang Medical College, University of South China, Hengyang, China,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Jiaojiao Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ping-Kun Zhou
- Hengyang Medical College, University of South China, Hengyang, China,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China,*Correspondence: Yongqing Gu, ; Ping-Kun Zhou,
| | - Yongqing Gu
- Hengyang Medical College, University of South China, Hengyang, China,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China,*Correspondence: Yongqing Gu, ; Ping-Kun Zhou,
| |
Collapse
|
40
|
Jabbar S, Mathews P, Wang X, Sundaramoorthy P, Chu E, Piryani SO, Ding S, Shen X, Doan PL, Kang Y. Thioredoxin-1 regulates self-renewal and differentiation of murine hematopoietic stem cells through p53 tumor suppressor. Exp Hematol Oncol 2022; 11:83. [PMID: 36316713 PMCID: PMC9624023 DOI: 10.1186/s40164-022-00329-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.
Collapse
Affiliation(s)
- Shaima Jabbar
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
- Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
41
|
Aichinger G, Pahlke G, Puntscher H, Groestlinger J, Grabher S, Braun D, Tillmann K, Plasenzotti R, Del Favero G, Warth B, Höger H, Marko D. Markers for DNA damage are induced in the rat colon by the Alternaria toxin altertoxin-II, but not a complex extract of cultured Alternaria alternata. FRONTIERS IN TOXICOLOGY 2022; 4:977147. [PMID: 36353200 PMCID: PMC9638006 DOI: 10.3389/ftox.2022.977147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2024] Open
Abstract
Mycotoxins produced by Alternaria spp. act genotoxic in cell-based studies, but data on their toxicity in vivo is scarce and urgently required for risk assessment. Thus, male Sprague-Dawley rats received single doses of a complex Alternaria toxin extract (CE; 50 mg/kg bw), altertoxin II (ATX-II; 0.21 mg/kg bw) or vehicle by gavage, one of the most genotoxic metabolites in vitro and were sacrificed after 3 or 24 h, respectively. Using SDS-PAGE/Western Blot, a significant increase of histone 2a.X phosphorylation and depletion of the native protein was observed for rats that were exposed to ATX-II for 24 h. Applying RT-PCR array technology we identified genes of interest for qRT-PCR testing, which in turn confirmed an induction of Rnf8 transcription in the colon of rats treated with ATX-II for 3 h and CE for 24 h. A decrease of Cdkn1a transcription was observed in rats exposed to ATX-II for 24 h, possibly indicating tissue repair after chemical injury. In contrast to the observed response in the colon, no markers for genotoxicity were induced in the liver of treated animals. We hereby provide the first report of ATX-II as a genotoxicant in vivo. Deviating results for similar concentrations of ATX-II in a natural Alternaria toxin mixture argue for substantial mixture effects.
Collapse
Affiliation(s)
- Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Laboratory of Toxicology, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Gudrun Pahlke
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Stephanie Grabher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Katharina Tillmann
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Harald Höger
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Li J, Williams MJ, Park HJ, Bastos HP, Wang X, Prins D, Wilson NK, Johnson C, Sham K, Wantoch M, Watcham S, Kinston SJ, Pask DC, Hamilton TL, Sneade R, Waller AK, Ghevaert C, Vassiliou GS, Laurenti E, Kent DG, Göttgens B, Green AR. STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood 2022; 140:1592-1606. [PMID: 35767701 PMCID: PMC7614316 DOI: 10.1182/blood.2021014009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/21/2022] [Indexed: 02/02/2023] Open
Abstract
Adult hematopoietic stem cells (HSCs) are predominantly quiescent and can be activated in response to acute stress such as infection or cytotoxic insults. STAT1 is a pivotal downstream mediator of interferon (IFN) signaling and is required for IFN-induced HSC proliferation, but little is known about the role of STAT1 in regulating homeostatic hematopoietic stem/progenitor cells (HSPCs). Here, we show that loss of STAT1 altered the steady state HSPC landscape, impaired HSC function in transplantation assays, delayed blood cell regeneration following myeloablation, and disrupted molecular programs that protect HSCs, including control of quiescence. Our results also reveal STAT1-dependent functional HSC heterogeneity. A previously unrecognized subset of homeostatic HSCs with elevated major histocompatibility complex class II (MHCII) expression (MHCIIhi) displayed molecular features of reduced cycling and apoptosis and was refractory to 5-fluorouracil-induced myeloablation. Conversely, MHCIIlo HSCs displayed increased megakaryocytic potential and were preferentially expanded in CALR mutant mice with thrombocytosis. Similar to mice, high MHCII expression is a feature of human HSCs residing in a deeper quiescent state. Our results therefore position STAT1 at the interface of stem cell heterogeneity and the interplay between stem cells and the adaptive immune system, areas of broad interest in the wider stem cell field.
Collapse
Affiliation(s)
- Juan Li
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Williams
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hyun Jung Park
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hugo P. Bastos
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Prins
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K. Wilson
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Carys Johnson
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michelle Wantoch
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Watcham
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Kinston
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dean C. Pask
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Tina L. Hamilton
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Sneade
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Amie K. Waller
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Cedric Ghevaert
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Laurenti
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - David G. Kent
- Department of Biology, University of York, York, United Kingdom
| | - Berthold Göttgens
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Wei Y, Chen Q, Huang S, Liu Y, Li Y, Xing Y, Shi D, Xu W, Liu W, Ji Z, Wu B, Chen X, Jiang J. The Interaction between DNMT1 and High-Mannose CD133 Maintains the Slow-Cycling State and Tumorigenic Potential of Glioma Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202216. [PMID: 35798319 PMCID: PMC9475542 DOI: 10.1002/advs.202202216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 05/24/2023]
Abstract
The quiescent/slow-cycling state preserves the self-renewal capacity of cancer stem cells (CSCs) and leads to the therapy resistance of CSCs. The mechanisms maintaining CSCs quiescence remain largely unknown. Here, it is demonstrated that lower expression of MAN1A1 in glioma stem cell (GSC) resulted in the formation of high-mannose type N-glycan on CD133. Furthermore, the high-mannose type N-glycan of CD133 is necessary for its interaction with DNMT1. Activation of p21 and p27 by the CD133-DNMT1 interaction maintains the slow-cycling state of GSC, and promotes chemotherapy resistance and tumorigenesis of GSCs. Elimination of the CD133-DNMT1 interaction by a cell-penetrating peptide or MAN1A1 overexpression inhibits the tumorigenesis of GSCs and increases the sensitivity of GSCs to temozolomide. Analysis of glioma samples reveals that the levels of high-mannose type N-glycan are correlated with glioma recurrence. Collectively, the high mannose CD133-DNMT1 interaction maintains the slow-cycling state and tumorigenic potential of GSC, providing a potential strategy to eliminate quiescent GSCs.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yingchao Liu
- Department of NeurosurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021P. R. China
| | - Yinan Li
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yang Xing
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Danfang Shi
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Wenlong Xu
- Division of NeurosurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Zhi Ji
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Bingrui Wu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
44
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
45
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
46
|
Singh S, Sarkar T, Jakubison B, Gadomski S, Spradlin A, Gudmundsson KO, Keller JR. Inhibitor of DNA binding proteins revealed as orchestrators of steady state, stress and malignant hematopoiesis. Front Immunol 2022; 13:934624. [PMID: 35990659 PMCID: PMC9389078 DOI: 10.3389/fimmu.2022.934624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adult mammalian hematopoiesis is a dynamic cellular process that provides a continuous supply of myeloid, lymphoid, erythroid/megakaryocyte cells for host survival. This process is sustained by regulating hematopoietic stem cells (HSCs) quiescence, proliferation and activation under homeostasis and stress, and regulating the proliferation and differentiation of downstream multipotent progenitor (MPP) and more committed progenitor cells. Inhibitor of DNA binding (ID) proteins are small helix-loop-helix (HLH) proteins that lack a basic (b) DNA binding domain present in other family members, and function as dominant-negative regulators of other bHLH proteins (E proteins) by inhibiting their transcriptional activity. ID proteins are required for normal T cell, B cell, NK and innate lymphoid cells, dendritic cell, and myeloid cell differentiation and development. However, recent evidence suggests that ID proteins are important regulators of normal and leukemic hematopoietic stem and progenitor cells (HSPCs). This chapter will review our current understanding of the function of ID proteins in HSPC development and highlight future areas of scientific investigation.
Collapse
Affiliation(s)
- Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Andrew Spradlin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Kristbjorn O. Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- *Correspondence: Jonathan R. Keller,
| |
Collapse
|
47
|
Takihara Y, Higaki T, Yokomizo T, Umemoto T, Ariyoshi K, Hashimoto M, Sezaki M, Takizawa H, Inoue T, Suda T, Mizuno H. Bone marrow imaging reveals the migration dynamics of neonatal hematopoietic stem cells. Commun Biol 2022; 5:776. [PMID: 35918480 PMCID: PMC9346000 DOI: 10.1038/s42003-022-03733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are produced from the blood vessel walls and circulate in the blood during the perinatal period. However, the migration dynamics of how HSCs enter the bone marrow remain elusive. To observe the dynamics of HSCs over time, the present study develops an intravital imaging method to visualize bone marrow in neonatal long bones formed by endochondral ossification which is essential for HSC niche formation. Endogenous HSCs are labeled with tdTomato under the control of an HSC marker gene Hlf, and a customized imaging system with a bone penetrating laser is developed for intravital imaging of tdTomato-labeled neonatal HSCs in undrilled tibia, which is essential to avoid bleeding from fragile neonatal tibia by bone drilling. The migration speed of neonatal HSCs is higher than that of adult HSCs. Neonatal HSCs migrate from outside to inside the tibia via the blood vessels that penetrate the bone, which is a transient structure during the neonatal period, and settle on the blood vessel wall in the bone marrow. The results obtained from direct observations in vivo reveal the motile dynamics and colonization process of neonatal HSCs during bone marrow formation. An intravital imaging method reveals the in vivo motile dynamics and colonization process of neonatal hematopoietic stem cells during bone marrow formation.
Collapse
Affiliation(s)
- Yuji Takihara
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan.,International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kazunori Ariyoshi
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Michihiro Hashimoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Maiko Sezaki
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Hitoshi Takizawa
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Toshihiro Inoue
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, 117599, Singapore, Singapore. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan.
| | - Hidenobu Mizuno
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
48
|
Abstract
Hematopoietic stem cell (HSC) regeneration is the remarkable process by which extremely rare, normally inactive cells of the bone marrow can replace an entire organ if called to do so by injury or harnessed by transplantation. HSC research is arguably the first quantitative single-cell science and the foundation of adult stem cell biology. Bone marrow transplant is the oldest and most refined technique of regenerative medicine. Here we review the intertwined history of the discovery of HSCs and bone marrow transplant, the molecular and cellular mechanisms of HSC self-renewal, and the use of HSCs and their derivatives for cell therapy.
Collapse
Affiliation(s)
- Mitch Biermann
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tannishtha Reya
- Department of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
49
|
He Y, Alejo S, Venkata PP, Johnson JD, Loeffel I, Pratap UP, Zou Y, Lai Z, Tekmal RR, Kost ER, Sareddy GR. Therapeutic Targeting of Ovarian Cancer Stem Cells Using Estrogen Receptor Beta Agonist. Int J Mol Sci 2022; 23:7159. [PMID: 35806169 PMCID: PMC9266546 DOI: 10.3390/ijms23137159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Ovarian cancer (OCa) is the deadliest gynecologic cancer. Emerging studies suggest ovarian cancer stem cells (OCSCs) contribute to chemotherapy resistance and tumor relapse. Recent studies demonstrated estrogen receptor beta (ERβ) exerts tumor suppressor functions in OCa. However, the status of ERβ expression in OCSCs and the therapeutic utility of the ERβ agonist LY500307 for targeting OCSCs remain unknown. OCSCs were enriched from ES2, OV90, SKOV3, OVSAHO, and A2780 cells using ALDEFLUOR kit. RT-qPCR results showed ERβ, particularly ERβ isoform 1, is highly expressed in OCSCs and that ERβ agonist LY500307 significantly reduced the viability of OCSCs. Treatment of OCSCs with LY500307 significantly reduced sphere formation, self-renewal, and invasion, while also promoting apoptosis and G2/M cell cycle arrest. Mechanistic studies using RNA-seq analysis demonstrated that LY500307 treatment resulted in modulation of pathways related to cell cycle and apoptosis. Western blot and RT-qPCR assays demonstrated the upregulation of apoptosis and cell cycle arrest genes such as FDXR, p21/CDKN1A, cleaved PARP, and caspase 3, and the downregulation of stemness markers SOX2, Oct4, and Nanog. Importantly, treatment of LY500307 significantly attenuated the tumor-initiating capacity of OCSCs in orthotopic OCa murine xenograft models. Our results demonstrate that ERβ agonist LY500307 is highly efficacious in reducing the stemness and promoting apoptosis of OCSCs and shows significant promise as a novel therapeutic agent in treating OCa.
Collapse
Affiliation(s)
- Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Jessica D. Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Ilanna Loeffel
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.L.)
| | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Edward R. Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
50
|
Romiplostim addition to conditioning prior to HSCT allows chemotherapy reduction while maintaining engraftment levels. Blood Adv 2022; 6:4485-4489. [PMID: 35736667 DOI: 10.1182/bloodadvances.2022007566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) offers are curative treatment approach for certain benign and malignant hematologic diseases. The actual HSCT is preceded by a conditioning therapy that reduces host-versus HSCT graft rejection and creates niche space for transplanted Hematopoietic Stem and Progenitor Cells (HSPCs). Conditioning consists of chemotherapy with or without irradiation and is a major cause of side-effects in HSCT. However, reduction of the intensity of cytotoxic conditioning leads to higher rates of engrafment failure and increased rates of relapse. In the present study, we investigated in how far sensitization of HSPCs to chemotherapy allows a reduction of the dose of drugs used as conditioning regimen in an HSCT mouse model. The thrombopoietin receptor agonist Romiplostim was shown to induce cell cycling activity in Hematopoietic Stem Cells (HSCs). We thus tested if the addition of Romiplostim to the clinically applied conditioning chemotherapy regimen cyclophosphamide and busulfan leads to increased efficacy of the chemotherapeutic regimen. We found that Romiplostim not only sensitizes HSCs to chemotherapy but also enables a reduction of the main chemotherapeutic component Busulfan by half, while HSC engraftment levels are maintained in long-term, serial transplantation assays.
Collapse
|