1
|
Wieteska Ł, Taylor AB, Punch E, Coleman JA, Conway IO, Lin YF, Byeon CH, Hinck CS, Krzysiak T, Ishima R, López-Casillas F, Cherepanov P, Bernard DJ, Hill CS, Hinck AP. Structures of TGF-β with betaglycan and signaling receptors reveal mechanisms of complex assembly and signaling. Nat Commun 2025; 16:1778. [PMID: 40011426 PMCID: PMC11865472 DOI: 10.1038/s41467-025-56796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Betaglycan (BG) is a transmembrane co-receptor of the transforming growth factor-β (TGF-β) family of signaling ligands. It is essential for embryonic development, tissue homeostasis and fertility in adults. It functions by enabling binding of the three TGF-β isoforms to their signaling receptors and is additionally required for inhibin A (InhA) activity. Despite its requirement for the functions of TGF-βs and InhA in vivo, structural information explaining BG ligand selectivity and its mechanism of action is lacking. Here, we determine the structure of TGF-β bound both to BG and the signaling receptors, TGFBR1 and TGFBR2. We identify key regions responsible for ligand engagement, which has revealed binding interfaces that differ from those described for the closely related co-receptor of the TGF-β family, endoglin, thus demonstrating remarkable evolutionary adaptation to enable ligand selectivity. Finally, we provide a structural explanation for the hand-off mechanism underlying TGF-β signal potentiation.
Collapse
Affiliation(s)
- Łukasz Wieteska
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Faculty of Biological Sciences, Astbury Centre for Structural Studies, University of Leeds, Leeds, UK
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Emma Punch
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabella O Conway
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Troy Krzysiak
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fernando López-Casillas
- Departmento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Qi M, Chen TT, Li L, Gao PP, Li N, Zhang SH, Wei W, Sun WY. Insight into the regulatory mechanism of β-arrestin2 and its emerging role in diseases. Br J Pharmacol 2024; 181:3019-3038. [PMID: 38961617 DOI: 10.1111/bph.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
β-arrestin2, a member of the arrestin family, mediates the desensitization and internalization of most G protein-coupled receptors (GPCRs) and functions as a scaffold protein in signalling pathways. Previous studies have demonstrated that β-arrestin2 expression is dysregulated in malignant tumours, fibrotic diseases, cardiovascular diseases and metabolic diseases, suggesting its pathological roles. Transcription and post-transcriptional modifications can affect the expression of β-arrestin2. Furthermore, post-translational modifications, such as phosphorylation, ubiquitination, SUMOylation and S-nitrosylation affect the cellular localization of β-arrestin2 and its interaction with downstream signalling molecules, which further regulate the activity of β-arrestin2. This review summarizes the structure and function of β-arrestin2 and reveals the mechanisms involved in the regulation of β-arrestin2 at multiple levels. Additionally, recent studies on the role of β-arrestin2 in some major diseases and its therapeutic prospects have been discussed to provide a reference for the development of drugs targeting β-arrestin2.
Collapse
Affiliation(s)
- Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
3
|
Wieteska Ł, Taylor AB, Punch E, Coleman JA, Conway IO, Lin YF, Byeon CH, Hinck CS, Krzysiak T, Ishima R, López-Casillas F, Cherepanov P, Bernard DJ, Hill CS, Hinck AP. Structures of TGF-β with betaglycan and the signaling receptors reveal the mechanism whereby betaglycan potentiates receptor complex assembly and signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604101. [PMID: 39091787 PMCID: PMC11291015 DOI: 10.1101/2024.07.19.604101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Betaglycan (BG) is a transmembrane co-receptor of the transforming growth factor-β (TGF-β) family of signaling ligands. It is essential for embryonic development and tissue homeostasis and fertility in adults. It functions by enabling binding of the three TGF-β isoforms to their signaling receptors and is additionally required for inhibin A (InhA) activity. Despite its requirement for the functions of TGF-βs and InhA in vivo, structural information explaining BG ligand selectivity and its mechanism of action is lacking. Here, we determine the structure of TGF-β bound both to BG and the signaling receptors, TGFBR1 and TGFBR2. We identify key regions responsible for ligand engagement, which has revealed novel binding interfaces that differ from those described for the closely related co-receptor of the TGF-β family, endoglin, thus demonstrating remarkable evolutionary adaptation to enable ligand selectivity. Finally, we provide a structural explanation for the hand-off mechanism underlying TGF-β signal potentiation.
Collapse
|
4
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Glycosaminoglycan modifications of betaglycan regulate ectodomain shedding to fine-tune TGF-β signaling responses in ovarian cancer. Cell Commun Signal 2024; 22:128. [PMID: 38360757 PMCID: PMC10870443 DOI: 10.1186/s12964-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
In pathologies including cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
Affiliation(s)
- Alex S Choi
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Laura M Jenkins-Lane
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wade Barton
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Asha Kumari
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carly Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Calen Raulerson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mark D Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rebecca Arend
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrew B Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
5
|
Kee TR, Khan SA, Neidhart MB, Masters BM, Zhao VK, Kim YK, McGill Percy KC, Woo JAA. The multifaceted functions of β-arrestins and their therapeutic potential in neurodegenerative diseases. Exp Mol Med 2024; 56:129-141. [PMID: 38212557 PMCID: PMC10834518 DOI: 10.1038/s12276-023-01144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/13/2024] Open
Abstract
Arrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, β-arrestin1, β-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of β-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors. Increasing evidence suggests that β-arrestins are involved in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). β-arrestins physically interact with γ-secretase, leading to increased production and accumulation of amyloid-beta in AD. Furthermore, β-arrestin oligomers inhibit the autophagy cargo receptor p62/SQSTM1, resulting in tau accumulation and aggregation in FTD. In PD, β-arrestins are upregulated in postmortem brain tissue and an MPTP model, and the β2AR regulates SNCA gene expression. In this review, we aim to provide an overview of β-arrestin1 and β-arrestin2, and describe their physiological functions and roles in neurodegenerative diseases. The multifaceted roles of β-arrestins and their involvement in neurodegenerative diseases suggest that they may serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, 33613, USA
| | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Maya B Neidhart
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna M Masters
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Victoria K Zhao
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Yenna K Kim
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jung-A A Woo
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Kim EY, Dryer SE. Role of Formyl Peptide Receptors and β-Arrestin-1 in suPAR Signal Transduction in Mouse Podocytes: Interactions with αVβ3-Integrin. Cells 2024; 13:172. [PMID: 38247863 PMCID: PMC10814688 DOI: 10.3390/cells13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The soluble urokinase plasminogen activator receptor (suPAR) has been implicated in a wide range of pathological conditions including primary nephrotic syndromes and acute kidney injuries. suPAR can trigger transduction cascades in podocytes by outside-in activation of αVβ3-integrin, but there is evidence that the functional cell surface response element is actually a complex of different types of receptors, which may also include the receptor for advanced glycation end-products (RAGE) and formyl peptide receptors (FPRs). Here we observed that ROS accumulation and Src activation could be evoked by continuous 24 h exposure to either suPAR or the FPR agonist fMLF. Responses to suPAR and fMLF were completely blocked by either the FPR antagonist WRW4 or by the αV-integrin inhibitor cilengitide. Moreover, endogenous podocyte mouse Fpr1 co-immunoprecipitates with β3-integrin, suggesting that these receptors occur as a complex on the cell surface. suPAR- and fMLF-evoked activation of Src and ROS differed in time course. Thus, robust pertussis toxin (PTX)-sensitive responses were evoked by 60 min exposures to fMLF but not to suPAR. By contrast, responses to 24 h exposures to either suPAR or fMLF were PTX-resistant and were instead abolished by knockdown of β-arrestin-1 (BAR1). FPRs, integrins, and RAGE (along with various Toll-like receptors) can all function as pattern-recognition receptors that respond to "danger signals" associated with infections and tissue injury. The fact that podocytes express such a wide array of pattern-recognition receptors suggests that the glomerular filter is designed to change its function under certain conditions, possibly to facilitate clearance of toxic macromolecules.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
7
|
Deng X, Ma N, He J, Xu F, Zou G. The Role of TGFBR3 in the Development of Lung Cancer. Protein Pept Lett 2024; 31:491-503. [PMID: 39092729 DOI: 10.2174/0109298665315841240731060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
The Transforming Growth Factor-β (TGF-β) mediates embryonic development, maintains cellular homeostasis, regulates immune function, and is involved in a wide range of other biological processes. TGF-β superfamily signaling pathways play an important role in cancer development and can promote or inhibit tumorigenesis. Type III TGF-β receptor (TGFBR3) is a co-receptor in the TGF-β signaling pathway, which often occurs with reduced or complete loss of expression in many cancer patients and can act as a tumor suppressor gene. The reduction or deletion of TGFBR3 is more pronounced compared to other elements in the TGF-β signaling pathway. In recent years, lung cancer is one of the major malignant tumors that endanger human health, and its prognosis is poor. Recent studies have reported that TGFBR3 expression decreases to varying degrees in different types of lung cancer, both at the tissue level and at the cellular level. The invasion, metastasis, angiogenesis, and apoptosis of lung cancer cells are closely related to the expression of TGFBR3, which strengthens the inhibitory function of TGFBR3 in the evolution of lung cancer. This article reviews the mechanism of TGFBR3 in lung cancer and the influencing factors associated with TGFBR3. Clarifying the physiological function of TGFBR3 and its molecular mechanism in lung cancer is conducive to the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Deng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Nuoya Ma
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Junyu He
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Fei Xu
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Guoying Zou
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| |
Collapse
|
8
|
Eissa AM, Hassanin MH, Ibrahim IAAEH. Hepatic β-arrestins: potential roles in liver health and disease. Mol Biol Rep 2023; 50:10399-10407. [PMID: 37843713 PMCID: PMC10676313 DOI: 10.1007/s11033-023-08898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Β-arrestins are intracellular scaffolding proteins that have multifaceted roles in different types of disorders. In this review article, we gave a summary about the discovery, characterization and classification of these proteins and their intracellular functions. Moreover, this review article focused on the hepatic expression of β-arrestins and their hepatocellular distribution and function in each liver cell type. Also, we showed that β-arrestins are key regulators of distinct types of hepatic disorders. On the other hand, we addressed some important points that have never been studied before regarding the role of β-arrestins in certain types of hepatic disorders which needs more research efforts to cover.
Collapse
Affiliation(s)
| | | | - Islam A A E H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
9
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Heparan sulfate modifications of betaglycan promote TIMP3-dependent ectodomain shedding to fine-tune TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555364. [PMID: 37693479 PMCID: PMC10491198 DOI: 10.1101/2023.08.29.555364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In pathologies such as cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
|
10
|
Qian W, Xu Y, Wen W, Huang L, Guo Z, Zhu W, Li Y. Exosomal miR-103a-3p from Crohn's Creeping Fat-Derived Adipose-Derived Stem Cells Contributes to Intestinal Fibrosis by Targeting TGFBR3 and Activating Fibroblasts. J Crohns Colitis 2023; 17:1291-1308. [PMID: 36897738 DOI: 10.1093/ecco-jcc/jjad042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Mesenteric adipose tissue hypertrophy is a hallmark of Crohn's disease [CD], and creeping fat [CF] is unique to CD. Adipose-derived stem cells [ASCs] from inflammatory tissue exhibited altered biological functions. The role of ASCs isolated from CF in intestinal fibrosis and the potential mechanism remain unclear. METHODS ASCs were isolated from CF [CF-ASCs] and disease-unaffected mesenteric adipose tissue [Ctrl-ASCs] of patients with CD. A series of in vitro and in vivo experiments were conducted to study the effects of exosomes from CF-ASCs [CF-Exos] on intestinal fibrosis and fibroblast activation. A micro-RNA microarray analysis was performed. Western blot, luciferase assay and immunofluorescence were performed to further detect the underlying mechanisms. RESULTS The results indicated that CF-Exos promoted intestinal fibrosis by activating fibroblasts in a dose-dependent manner. They continuously promoted progression of intestinal fibrosis even after dextran sulphate sodium withdrawal. Further analysis showed that exosomal miR-103a-3p was enriched in CF-Exos and participated in exosome-mediated fibroblast activation. TGFBR3 was identified as a target gene of miR-103a-3p. Mechanistically, CF-ASCs released exosomal miR-103a-3p and promoted fibroblast activation by targeting TGFBR3 and promoting Smad2/3 phosphorylation. We also found that the expression of miR-103a-3p in diseased intestine was positively associated with the degree of CF and fibrosis score. CONCLUSION Our findings show that exosomal miR-103a-3p from CF-ASCs promotes intestinal fibrosis by activating fibroblasts via TGFBR3 targeting, suggesting that CF-ASCs are potential therapeutic targets for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiwei Wen
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Liangyu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| |
Collapse
|
11
|
Xie B, Xiong W, Zhang F, Wang N, Luo Y, Chen Y, Cao J, Chen Z, Ma C, Chen H. The miR-103a-3p/TGFBR3 axis regulates TGF-β-induced orbital fibroblast activation and fibrosis in thyroid-eye disease. Mol Cell Endocrinol 2023; 559:111780. [PMID: 36179941 DOI: 10.1016/j.mce.2022.111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 02/03/2023]
Abstract
Molecular pathways that contribute to orbital fibroblast activation during thyroid-eye disease (TED) may promote TED progression. Non-coding RNAs, especially miRNAs, play a critical role in the pathogenesis of TED. In the present study, miR-103a-3p was dramatically upregulated and TGFBR3 was downregulated within TED orbital tissue samples and TGF-β-stimulated TED orbital fibroblasts. miR-103a-3p inhibition in TGF-β-stimulated TED orbital fibroblasts partially abolished TGF-β-induced fibrotic alterations, as manifested by the impaired fibroblast cell viability and decreased vimentin and fibronectin levels. miR-103a-3p directly targeted TGFBR3 in TED orbital samples and TGF-β-stimulated TED orbital fibroblasts. In TGF-β-stimulated TED orbital fibroblasts, TGFBR3 overexpression inhibited fibroblast cell viability and decreased vimentin and fibronectin levels. TGFBR3 overexpression partially attenuated the inhibitory effects of miR-103a-3p overexpression on TGFBR3 expression and the promotive effects of miR-103a-3p overexpression on TGF-β-induced fibrotic alterations. Under TGF-β stimulation, miR-103a-3p overexpression significantly promoted, whereas TGFBR3 overexpression inhibited the phosphorylation of Erk1/2, JNK, Smad2, and Smad3. TGFBR3 overexpression also partially abolished the effects of miR-103a-3p overexpression on Erk1/2, JNK, Smad2, and Smad3 phosphorylation. In conclusion, the miR-103a-3p/TGFBR3 axis regulated TGF-β-induced TED orbital fibroblast activation and fibrosis in TED, with the possible involvement of the Erk/JNK and TGF-β/Smad signaling pathways.
Collapse
Affiliation(s)
- Bingyu Xie
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Nuo Wang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yong Luo
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yizhi Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhuokun Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Chen Ma
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Haiyan Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
12
|
Park S, Ma Z, Zarkada G, Papangeli I, Paluri S, Nazo N, Rivera‐Molina F, Toomre D, Rajagopal S, Chun HJ. Endothelial β-arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia. Pulm Circ 2022; 12:e12167. [PMID: 36532314 PMCID: PMC9751664 DOI: 10.1002/pul2.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Modulation of endothelial cell behavior and phenotype by hemodynamic forces involves many signaling components, including cell surface receptors, intracellular signaling intermediaries, transcription factors, and epigenetic elements. Many of the signaling mechanisms that underlie mechanotransduction by endothelial cells are inadequately defined. Here we sought to better understand how β-arrestins, intracellular proteins that regulate agonist-mediated desensitization and integration of signaling by transmembrane receptors, may be involved in the endothelial cell response to shear stress. We performed both in vitro studies with primary endothelial cells subjected to β-arrestin knockdown, and in vivo studies using mice with endothelial specific deletion of β-arrestin 1 and β-arrestin 2. We found that β-arrestins are localized to primary cilia in endothelial cells, which are present in subpopulations of endothelial cells in relatively low shear states. Recruitment of β-arrestins to cilia involved its interaction with IFT81, a component of the flagellar transport protein complex in the cilia. β-arrestin knockdown led to marked reduction in shear stress response, including induction of NOS3 expression. Within the cilia, β-arrestins were found to associate with the type II bone morphogenetic protein receptor (BMPR-II), whose disruption similarly led to an impaired endothelial shear response. β-arrestins also regulated Smad transcription factor phosphorylation by BMPR-II. Mice with endothelial specific deletion of β-arrestin 1 and β-arrestin 2 were found to have impaired retinal angiogenesis. In conclusion, we have identified a novel role for endothelial β-arrestins as key transducers of ciliary mechanotransduction that play a central role in shear signaling by BMPR-II and contribute to vascular development.
Collapse
Affiliation(s)
- Saejeong Park
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| | - Zhiyuan Ma
- Department of MedicineDivision of Cardiology, Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Georgia Zarkada
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| | - Irinna Papangeli
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| | - Sarin Paluri
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Nour Nazo
- Department of MedicineDivision of Cardiology, Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Felix Rivera‐Molina
- Department of Cell BiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Derek Toomre
- Department of Cell BiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Sudarshan Rajagopal
- Department of MedicineDivision of Cardiology, Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Hyung J. Chun
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
13
|
Chen D, Tang H, Jiang H, Sun L, Zhao W, Qian F. ACPA Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β-Smad2/3 Signaling-Mediated Lung Fibroblast Activation. Front Pharmacol 2022; 13:835979. [PMID: 35355726 PMCID: PMC8959577 DOI: 10.3389/fphar.2022.835979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is a group of life-threatening diseases with limited therapeutic options. The involvement of cannabinoid type 1 receptors (CB1R) has been indicated in fibrotic diseases, but whether or not the activation of CB1R can be a benefit for fibrosis treatment is controversial. In this study, we investigated the effects of arachidonoylcyclopropylamide (ACPA), as a selective CB1R agonist, on bleomycin (BLM)-induced pulmonary fibrosis. We showed that ACPA treatment significantly improved the survival rate of BLM-treated mice, alleviated BLM-induced pulmonary fibrosis, and inhibited the expressions of extracellular matrix (ECM) markers, such as collagen, fibronectin, and α-SMA. The enhanced expressions of ECM markers in transforming growth factor-beta (TGF-β)-challenged primary lung fibroblasts isolated from mouse lung tissues were inhibited by ACPA treatment in a dose-dependent manner, and the fibroblast migration triggered by TGF-β was dose-dependently diminished after ACPA administration. Moreover, the increased mRNA levels of CB1R were observed in both lung fibroblasts of BLM-induced fibrotic mice in vivo and TGF-β-challenged primary lung fibroblasts in vitro. CB1R-specific agonist ACPA significantly diminished the activation of TGF-β–Smad2/3 signaling, i.e., the levels of p-Smad2 and p-Smad3, and decreased the expressions of downstream effector proteins including slug and snail, which regulate ECM production, in TGF-β-challenged primary lung fibroblasts. Collectively, these findings demonstrated that CB1R-specific agonist ACPA exhibited antifibrotic efficacy in both in vitro and in vivo models of pulmonary fibrosis, revealing a novel anti-fibrosis approach to fibroblast-selective inhibition of TGF-β-Smad2/3 signaling by targeting CB1R.
Collapse
Affiliation(s)
- Dongxin Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huirong Tang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hongchao Jiang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
14
|
Quantitative Analysis of Membrane Receptor Trafficking Manipulated by Optogenetic Tools. Methods Mol Biol 2021. [PMID: 34050458 DOI: 10.1007/978-1-0716-1258-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Membrane receptors play a crucial role in transmitting external signals inside cells. Signal molecule-bound receptors activate multiple downstream pathways, the dynamics of which are modulated by intracellular trafficking. A significant contribution of β-arrestin to intracellular trafficking has been suggested, but the underlying mechanism is poorly understood. Here, we describe a protocol for manipulating β-arrestin-regulated membrane receptor trafficking using photo-induced dimerization of cryptochrome-2 from Arabidopsis thaliana and its binding partner CIBN. Additionally, the protocol guides analytical methods to quantify the changes in localization and modification of membrane receptors during trafficking.
Collapse
|
15
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
16
|
Tazat K, Pomeraniec-Abudy L, Hector-Greene M, Szilágyi SS, Sharma S, Cai EM, Corona AL, Ehrlich M, Blobe GC, Henis YI. ALK1 regulates the internalization of endoglin and the type III TGF-β receptor. Mol Biol Cell 2021; 32:605-621. [PMID: 33566682 PMCID: PMC8101464 DOI: 10.1091/mbc.e20-03-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | - Swati Sharma
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elise M Cai
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Armando L Corona
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Amanso AM, Kamalakar A, Bitarafan S, Abramowicz S, Drissi H, Barnett JV, Wood LB, Goudy SL. Osteoinductive effect of soluble transforming growth factor beta receptor 3 on human osteoblast lineage. J Cell Biochem 2021; 122:538-548. [PMID: 33480071 DOI: 10.1002/jcb.29888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023]
Abstract
The development of bone requires carefully choregraphed signaling to bone progenitors to form bone. Our group recently described the requirement of transforming growth factor beta receptor 3 (TGFβR3), a receptor involved in TGFβ pathway signaling, during osteoblast lineage commitment in mice. The TGFβ pathway is known to play multiple osteo-inductive and osteo-inhibitory roles during osteoblast development and TGFβR3 human mutations are associated with reduced bone mineral density, making TGFβR3 a unique target for bone inductive therapy. In this article, we demonstrated increased mineralization of human pediatric bone-derived osteoblast-like cells (HBO) when treated with soluble TGFβR3 (sR3) using Alizarin Red staining. Osteogenic commitment of HBO cells was demonstrated by induction of osteogenic genes RUNX2, osteocalcin, osteopontin, and osterix. Evaluation of the canonical TGFβ pathway signaling demonstrated that sR3 was able to induce bone formation in HBO cells, mainly through activation of noncanonical targets of TGFβ pathway signaling including AKT, ERK, and p38 MAP kinases. Inhibition of these osteogenic noncanonical pathways in the HBO cells also inhibited mineralization, suggesting they are each required. Although no induction of SMAD1, 5, and 9 was observed, there was the activation of SMAD2 and 3 suggesting that sR3 is primarily signaling via the noncanonical pathways during osteogenic induction of the HBO. Our results highlight the important role of TGFβR3 in osteoblast induction of mineralization in human bone cells through noncanonical targets of TGFβ signaling. Future studies will focus on the ability of sR3 to induce bone regeneration in vivo using animal models.
Collapse
Affiliation(s)
| | - Archana Kamalakar
- Department of Otolaryngology, Emory University, Atlanta, Georgia, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shelly Abramowicz
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Emory University, Atlanta, Georgia, USA
| | - Hicham Drissi
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA.,Department of Orthopaedics, Emory University, Atlanta, Georgia, USA.,The Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Joey Victor Barnett
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Levi Benjamin Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - S L Goudy
- Department of Otolaryngology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Wu YC, Chiang YC, Chou SH, Pan CL. Wnt signalling and endocytosis: Mechanisms, controversies and implications for stress responses. Biol Cell 2020; 113:95-106. [PMID: 33253438 DOI: 10.1111/boc.202000099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Wnt signalling is one of a few conserved pathways that control diverse aspects of development and morphogenesis in all metazoan species. Endocytosis is a key mechanism that regulates the secretion and graded extracellular distribution of Wnt glycoproteins from the source cells, as well as Wnt signal transduction in the receiving cells. However, controversies exist regarding the requirement of clathrin-dependent endocytosis in Wnt signalling. Various lines of evidence from recent studies suggest that Wnt-β-catenin signalling is also involved in the regulation of cellular stress responses in adulthood, a role that is beyond its canonical functions in animal development. In this review, we summarise recent advances in the molecular and cellular mechanisms by which endocytosis modulates Wnt signalling. We also discuss how Wnt signalling could be repurposed to regulate mitochondrial stress response in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Chen Chiang
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Hua Chou
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
β-arrestin 2 as an activator of cGAS-STING signaling and target of viral immune evasion. Nat Commun 2020; 11:6000. [PMID: 33243993 PMCID: PMC7691508 DOI: 10.1038/s41467-020-19849-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Virus infection may induce excessive interferon (IFN) responses that can lead to host tissue injury or even death. β-arrestin 2 regulates multiple cellular events through the G protein-coupled receptor (GPCR) signaling pathways. Here we demonstrate that β-arrestin 2 also promotes virus-induced production of IFN-β and clearance of viruses in macrophages. β-arrestin 2 interacts with cyclic GMP-AMP synthase (cGAS) and increases the binding of dsDNA to cGAS to enhance cyclic GMP-AMP (cGAMP) production and the downstream stimulator of interferon genes (STING) and innate immune responses. Mechanistically, deacetylation of β-arrestin 2 at Lys171 facilitates the activation of the cGAS–STING signaling and the production of IFN-β. In vitro, viral infection induces the degradation of β-arrestin 2 to facilitate immune evasion, while a β-blocker, carvedilol, rescues β-arrestin 2 expression to maintain the antiviral immune response. Our results thus identify a viral immune-evasion pathway via the degradation of β-arrestin 2, and also hint that carvedilol, approved for treating heart failure, can potentially be repurposed as an antiviral drug candidate. Excessive interferon (IFN) responses often follow viral infection to induce pathology or even death. Here the authors show that a signaling adaptor, β-arrestin 2, enhances the cGAS/STING innate immunity signaling pathway to promote IFN-β production, but may be degraded in infected cells to serve as a target of viral immune evasion.
Collapse
|
20
|
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells 2020; 38:1520-1531. [PMID: 32896043 DOI: 10.1002/stem.3273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/β-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 2020; 129:110287. [PMID: 32540643 DOI: 10.1016/j.biopha.2020.110287] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant scar formation, which includes keloid and hypertrophic scars, is associated with a pathological disorganized wound healing process with chronic inflammation. The TGF-β/Smad signaling pathway is the most canonical pathway through which the formation of collagen in the fibroblasts and myofibroblasts is regulated. Sustained activation of the TGF-β/Smad signaling pathway results in the long-term overactivation of fibroblasts and myofibroblasts, which is necessary for the excessive collagen formation in aberrant scars. There are two categories of therapeutic strategies that aim to target the TGF-β/Smad signaling pathway in fibroblasts and myofibroblasts to interfere with their cellular functions and reduce cell proliferation. The first therapeutic strategy includes medications, and the second strategy is composed of genetic and cellular therapeutics. Therefore, the focus of this review is to critically evaluate these two main therapeutic strategies that target the TGF-β/Smad pathway to attenuate abnormal skin scar formation.
Collapse
|
22
|
Fang WY, Kuo YZ, Chang JY, Hsiao JR, Kao HY, Tsai ST, Wu LW. The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12061375. [PMID: 32471132 PMCID: PMC7352722 DOI: 10.3390/cancers12061375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
The TGF-β type III receptor (TGFBR3) is an essential constituent of the TGF-β signaling. In this study, we observed a down-regulation of TGFBR3 in oral cancer, a subtype of head and neck cancer (HNC), and patients with low TGFBR3 had poor clinical outcomes. Ectopic expression of TGFBR3 decreased migration and invasion of oral cancer cells and lymph node metastasis of tumors, whereas depletion of TGFBR3 had the opposite effect. In SMAD4-positive OC-2 oral cancer cells, TGFBR3-mediated suppression requires both of its cytoplasmic interacting partners ARRB2 and GIPC1. We demonstrated that TGFBR3 induces the abundance of secreted angiogenin (ANG), a known pro-angiogenic factor, and ANG is essential and sufficient to mediate TGFBR3-dependent inhibition of migration and invasion of oral cancer cells. Notably, in SMAD4-deficient CAL-27 oral cancer cells, only GIPC1 is essential for TGFBR3-induced suppressive activity. Accordingly, HNC patients with low expressions of both TGFBR3 and GIPC1 had the poorest overall survival. In summary, we conclude that TGFBR3 is as a tumor suppressor via SMAD4-dependent and -independent manner in both tumor and stromal cells during oral carcinogenesis. Our study should facilitate the possibility of using TGFBR3-mediated tumor suppression for HNC treatment.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Institutes of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan;
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 43210, USA;
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| |
Collapse
|
23
|
β-arrestin2 deficiency protects against hepatic fibrosis in mice and prevents synthesis of extracellular matrix. Cell Death Dis 2020; 11:389. [PMID: 32439968 PMCID: PMC7242363 DOI: 10.1038/s41419-020-2596-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022]
Abstract
Hepatic fibrosis is a disease of the wound-healing response following chronic liver injury, and activated hepatic stellate cells (HSCs) play a crucial role in the progression of hepatic fibrosis. β-arrestin2 functions as a multiprotein scaffold to coordinate complex signal transduction networks. Although β-arrestin2 transduces diverse signals in cells, little is known about its involvement in the regulation of liver fibrosis. Our current study utilized a porcine serum-induced liver fibrosis model and found increased expression of β-arrestin2 in hepatic tissues with the progression of hepatic fibrosis, which was positively correlated with collagen levels. Furthermore, changes in human fibrotic samples were also observed. We next used β-arrestin2−/− mice to demonstrate that β-arrestin2 deficiency ameliorates CCl4-induced liver fibrosis and decreases collagen deposition. The in vitro depletion and overexpression experiments showed that decreased β-arrestin2 inhibited HSCs collagen production and elevated TβRIII expression, thus downregulating the TGF-β1 pathway components Smad2, Smad3 and Akt. These findings suggest that β-arrestin2 deficiency ameliorates liver fibrosis in mice, and β-arrestin2 may be a potential treatment target in hepatic fibrosis.
Collapse
|
24
|
Lei B, Wang D, Zhang M, Deng Y, Jiang H, Li Y. miR-615-3p promotes the epithelial-mesenchymal transition and metastasis of breast cancer by targeting PICK1/TGFBRI axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:71. [PMID: 32336285 PMCID: PMC7183699 DOI: 10.1186/s13046-020-01571-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 02/22/2023]
Abstract
Background Increasing evidence indicates that epithelial-mesenchymal transition (EMT) can be regulated by microRNAs (miRNAs). miR-615-3p was shown to be involved in tumor development. However, the role of miR-615-3p in the metastasis of breast cancer remains largely unknown. Methods The expression of miR-615-3p in breast cancer cells and tissues was assessed by qRT-PCR and situ hybridization assays. Effects of miR-615-3p on tumor metastasis were evaluated with experiments in vitro and mouse model. EMT markers were detected by western blot and immunofluorescence assays. Molecular mechanism of miR-615-3p in the regulation of breast cancer cell metastasis was analyzed by Western Blot, Co-immunoprecipitation, and Luciferase assay. Results In the present study, we found that miR-615-3p was significantly elevated in breast cancer cells and tissues, especially in those with metastasis. In breast cancer cell lines, stable overexpression of miR-615-3p was sufficient to promote cell motility in vitro, and pulmonary metastasis in vivo, accompanied by the reduced expression of epithelial markers and the increased levels of mesenchymal markers. Further studies revealed that the reintroduction of miR-615-3p increased the downstream signaling of TGF-β, the type I receptor (TGFBRI) by targeting the 3′-untranslated regions (3′-UTR) of PICK1. PICK1 inhibits the binding of DICER1 to Smad2/3 and the processing of pre-miR-615-3p to mature miR-615-3p in breast cancer cells, thus exerting a negative feedback loop. Conclusions Our data highlight an important role of miR-615-3p in the molecular etiology of breast cancer, and implicate the potential application of miR-615-3p in cancer therapy.
Collapse
Affiliation(s)
- Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150086, China
| | - Dandan Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Ming Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150086, China
| | - Yuwei Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| | - Yiwen Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
25
|
Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules 2020; 10:biom10030487. [PMID: 32210029 PMCID: PMC7175140 DOI: 10.3390/biom10030487] [Citation(s) in RCA: 503] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
Collapse
|
26
|
He X, Wang Y, Fan X, Lei N, Tian Y, Zhang D, Pan W. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor III. J Hepatol 2020; 72:519-527. [PMID: 31738999 DOI: 10.1016/j.jhep.2019.10.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/06/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS MicroRNAs (MiRNAs) derived from parasites, and even from plants, have been detected in body fluids and are known to modulate host genes. In this study, we aimed to investigate if the schistosome miRNAs are involved in the occurrence and progression of hepatic fibrosis during Schistosoma japonicum (S. japonicum) infection. METHODS The presence of miRNAs from S. japonicum (sja-miRNAs) in hepatic stellate cells (HSCs) was detected by RNA sequencing. sja-miRNAs were screened by transfecting HSCs with sja-miRNA mimics. The role of sja-miR-2162 in hepatic fibrosis was evaluated by either elevating its expression in naïve mice or by inhibiting its activity in infected mice, through administration of recombinant adeno-associated virus serotype 8 vectors expressing sja-miR-2162 or miRNA sponges, respectively. RESULTS We identified a miRNA of S. japonicum, sja-miR-2162, that was consistently present in the HSCs of infected mice. Transfection of sja-miR-2162 mimics led to activation of HSC cells in vitro, characterized by elevation of collagens and α-SMA. The rAAV8-mediated delivery of sja-miR-2162 to naïve mice induced hepatic fibrosis, while sustained inhibition of sja-miR-2162 in infected mice attenuated hepatic fibrosis. The transforming growth factor beta receptor III (TGFBR3), a negative regulator of TGF-β signaling, was a direct target of sja-miR-2162 in HSCs. CONCLUSIONS This study demonstrated that pathogen-derived miRNAs directly promote hepatic fibrogenesis in a cross-species manner, and their efficient and sustained inhibition might present a promising therapeutic intervention for infectious diseases. LAY SUMMARY A schistosome-specific microRNA, sja-miR-2162, is consistently present in the hepatic stellate cells of mice infected with S. japonicum, where it promotes hepatic fibrosis in the host through cross-species regulation of host fibrosis-related genes. The efficient and sustained inhibition of pathogen-derived micRNAs may represent a novel therapeutic intervention for infectious diseases.
Collapse
Affiliation(s)
- Xing He
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China.
| | - Yange Wang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Xiaobin Fan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Nanhang Lei
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Yini Tian
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Dongmei Zhang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China.
| | - Weiqing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China.
| |
Collapse
|
27
|
Kim SK, Henen MA, Hinck AP. Structural biology of betaglycan and endoglin, membrane-bound co-receptors of the TGF-beta family. Exp Biol Med (Maywood) 2019; 244:1547-1558. [PMID: 31601110 PMCID: PMC6920675 DOI: 10.1177/1535370219881160] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Betaglycan and endoglin, membrane-bound co-receptors of the TGF-β family, are required to mediate the signaling of a select subset of TGF-β family ligands, TGF-β2 and InhA, and BMP-9 and BMP-10, respectively. Previous biochemical and biophysical methods suggested alternative modes of ligand binding might be responsible for these co-receptors to selectively recognize and potentiate the functions of their ligands, yet the molecular details were lacking. Recent progress determining structures of betaglycan and endoglin, both alone and as bound to their cognate ligands, is presented herein. The structures reveal relatively minor, but very significant structural differences that lead to entirely different modes of ligand binding. The different modes of binding nonetheless share certain commonalities, such as multivalency, which imparts the co-receptors with very high affinity for their cognate ligands, but at the same time provides a mechanism for release by stepwise binding of the signaling receptors, both of which are essential for their functions.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Structural Biology, University of Pittsburgh,
Pittsburgh, PA 15260, USA
- Department of Biochemistry and Biophysics, University California
San Francisco, San Francisco, CA 94158, USA
| | - Morkos A Henen
- Department of Structural Biology, University of Pittsburgh,
Pittsburgh, PA 15260, USA
- Faculty of Pharmacy, Mansoura University, Mansoura 35516,
Egypt
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh,
Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
Nakamura Y, Kita S, Tanaka Y, Fukuda S, Obata Y, Okita T, Kawachi Y, Tsugawa-Shimizu Y, Fujishima Y, Nishizawa H, Miyagawa S, Sawa Y, Sehara-Fujisawa A, Maeda N, Shimomura I. A disintegrin and metalloproteinase 12 prevents heart failure by regulating cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 2019; 318:H238-H251. [PMID: 31774689 DOI: 10.1152/ajpheart.00496.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteinase (ADAM)12 is considered to promote cardiac dysfunction based on the finding that a small-molecule ADAM12 inhibitor, KB-R7785, ameliorated cardiac function in a transverse aortic constriction (TAC) model by inhibiting the proteolytic activation of heparin-binding-EGF signaling. However, this compound has poor selectivity for ADAM12, and the role of ADAM12 in cardiac dysfunction has not yet been investigated using genetic loss-of-function mice. We revealed that ADAM12 knockout mice showed significantly more advanced cardiac hypertrophy and higher mortality rates than wild-type mice 4 wk after TAC surgery. An ADAM12 deficiency resulted in significantly more expanded cardiac fibrosis accompanied by increased collagen-related gene expression in failing hearts. The results of a genome-wide transcriptional analysis suggested a strongly enhanced focal adhesion- and fibrosis-related signaling pathway in ADAM12 knockout hearts. The loss of ADAM12 increased the abundance of the integrinβ1 subunit and transforming growth factor (TGF)-β receptor types I and III, and this was followed by the phosphorylation of focal adhesion kinase, Akt, mammalian target of rapamycin, ERK, and Smad2/3 in the heart, which resulted in cardiac dysfunction. The present results revealed that the loss of ADAM12 enhanced focal adhesion and canonical TGF-β signaling by regulating the abundance of the integrinβ1 and TGF-β receptors.NEW & NOTEWORTHY In contrast to a long-believed cardio-damaging role of a disintegrin and metalloproteinase (ADAM)12, cardiac hypertrophy was more severe, cardiac function was lower, and mortality was higher in ADAM12 knockout mice than in wild-type mice after transverse aortic constriction surgery. The loss of ADAM12 enhanced focal adhesion- and fibrosis-related signaling pathways in the heart, which may compromise cardiac function. These results provide insights for the development of novel therapeutics that target ADAM12 to treat heart failure.
Collapse
Affiliation(s)
- Yuto Nakamura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.,Tokyo New Drug Laboratories, Kowa Company, Limited, Tokyo, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshimitsu Tanaka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshinari Obata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomonori Okita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Kawachi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuri Tsugawa-Shimizu
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Medical Center for Translational Research, Osaka University Hospital, Osaka, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier 11 Medical Sciences, Kyoto University, Kyoto, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Wen Y, He J, Xue X, Qiu J, Xu Y, Tang Z, Qian H, Qin L, Yang X. β-arrestin2 Inhibits Apoptosis and Liver Inflamation Induced by Ischemia-reperfusion in Mice via AKT and TLR4 Pathway. Arch Med Res 2019; 50:413-422. [PMID: 31760331 DOI: 10.1016/j.arcmed.2019.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022]
|
30
|
Williams DW, Askew LC, Jones E, Clements JE. CCR2 Signaling Selectively Regulates IFN-α: Role of β-Arrestin 2 in IFNAR1 Internalization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:105-118. [PMID: 30504423 PMCID: PMC6310093 DOI: 10.4049/jimmunol.1800598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/28/2018] [Indexed: 01/06/2023]
Abstract
An integral component of the antiviral response, type I IFNs require regulation to modulate immune activation. We identify β-arrestin 2 as a key modulator of type I IFN in primary human macrophages, an essential component of the innate immune response. β-Arrestin 2 was selectively activated by CCL2/CCR2 signaling, which induced a decrease in IFN-α, but not IFN-β expression. Small interfering RNA knockdown of β-arrestin 2 demonstrated its role in IFNAR1 internalization, as well as STAT1 and IRF3 activation. As a result, cytokine responses were not propagated following HIV infection and TLR3 activation. However, remnants of IFN signaling remained intact, despite β-arrestin 2 activation, as IFN-β, IFN-γ, IFN-λ1, IRF7, TRAIL, and MxA expression were sustained. Similar effects of β-arrestin 2 on IFN signaling occurred in hepatocytes, suggesting that arrestins may broadly modulate IFN responses in multiple cell types. In summary, we identify a novel role of β-arrestin 2 as an integral regulator of type I IFN through its internalization of IFNAR1 and a subsequent selective loss of downstream IFN signaling.
Collapse
Affiliation(s)
- Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lauren C Askew
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elonna Jones
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
31
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
32
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
33
|
Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-β-dependent and -independent mechanisms. Oncogene 2018; 37:2197-2212. [PMID: 29391598 PMCID: PMC5906456 DOI: 10.1038/s41388-017-0084-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
TGF-β regulates both the tumor-forming and migratory abilities of various types of cancer cells. However, it is unclear how the loss of TGF-β signaling components affects these abilities in clear-cell renal cell carcinoma (ccRCC). In this study, we investigated the role of TGFBR3 (TGF-β type III receptor, also known as betaglycan) in ccRCC. Database analysis revealed decreased expression of TGFBR3 in ccRCC tissues, which correlated with poor prognosis in patients. Orthotopic inoculation experiments using immunocompromised mice indicated that low TGFBR3 expression in ccRCC cells enhanced primary tumor formation and lung metastasis. In the presence of TGFBR3, TGF-β2 decreased the aldehyde dehydrogenase (ALDH)-positive ccRCC cell population, in which renal cancer-initiating cells are enriched. Loss of TGFBR3 also enhanced cell migration in cell culture and induced expression of several mesenchymal markers in a TGF-β-independent manner. Increased lamellipodium formation by FAK-PI3K signaling was observed with TGFBR3 downregulation, and this contributed to TGF-β-independent cell migration in ccRCC cells. Taken together, our findings reveal that loss of TGFBR3 endows ccRCC cells with multiple metastatic abilities through TGF-β-dependent and independent pathways.
Collapse
|
34
|
Unique Roles of β-Arrestin in GPCR Trafficking Revealed by Photoinducible Dimerizers. Sci Rep 2018; 8:677. [PMID: 29330504 PMCID: PMC5766490 DOI: 10.1038/s41598-017-19130-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Intracellular trafficking of G protein-coupled receptors (GPCRs) controls their localization and degradation, which affects a cell's ability to adapt to extracellular stimuli. Although the perturbation of trafficking induces important diseases, these trafficking mechanisms are poorly understood. Herein, we demonstrate an optogenetic method using an optical dimerizer, cryptochrome (CRY) and its partner protein (CIB), to analyze the trafficking mechanisms of GPCRs and their regulatory proteins. Temporally controlling the interaction between β-arrestin and β2-adrenergic receptor (ADRB2) reveals that the duration of the β-arrestin-ADRB2 interaction determines the trafficking pathway of ADRB2. Remarkably, the phosphorylation of ADRB2 by G protein-coupled receptor kinases is unnecessary to trigger clathrin-mediated endocytosis, and β-arrestin interacting with unphosphorylated ADRB2 fails to activate mitogen-activated protein kinase (MAPK) signaling, in contrast to the ADRB2 agonist isoproterenol. Temporal control of β-arrestin-GPCR interactions will enable the investigation of the unique roles of β-arrestin and the mechanism by which it regulates β-arrestin-specific trafficking pathways of different GPCRs.
Collapse
|
35
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
36
|
Yakymovych I, Yakymovych M, Heldin CH. Intracellular trafficking of transforming growth factor β receptors. Acta Biochim Biophys Sin (Shanghai) 2018; 50:3-11. [PMID: 29186283 DOI: 10.1093/abbs/gmx119] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGFβ) family members signal via heterotetrameric complexes of type I (TβRI) and type II (TβRII) dual specificity kinase receptors. The availability of the receptors on the cell surface is controlled by several mechanisms. Newly synthesized TβRI and TβRII are delivered from the Golgi apparatus to the cell surface via separate routes. On the cell surface, TGFβ receptors are distributed between different microdomains of the plasma membrane and can be internalized via clathrin- and caveolae-mediated endocytic mechanisms. Although receptor endocytosis is not essential for TGFβ signaling, localization of the activated receptor complexes on the early endosomes promotes TGFβ-induced Smad activation. Caveolae-mediated endocytosis, which is widely regarded as a mechanism that facilitates the degradation of TGFβ receptors, has been shown to be required for TGFβ signaling via non-Smad pathways. The importance of proper control of TGFβ receptor intracellular trafficking is emphasized by clinical data, as mislocalization of receptors has been described in connection with several human diseases. Thus, control of intracellular trafficking of the TGFβ receptors together with the regulation of their expression, posttranslational modifications and down-regulation, ensure proper regulation of TGFβ signaling.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Mariya Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
37
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
38
|
Wang J, Song Y, Li H, Shen Q, Shen J, An X, Wu J, Zhang J, Wu Y, Xiao H, Zhang Y. Exacerbated cardiac fibrosis induced by β-adrenergic activation in old mice due to decreased AMPK activity. Clin Exp Pharmacol Physiol 2017; 43:1029-1037. [PMID: 27389807 DOI: 10.1111/1440-1681.12622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 12/26/2022]
Abstract
Senescent hearts exhibit defective responses to β-adrenergic receptor (β-AR) over-activation upon stress, leading to more severe pathological cardiac remodelling. However, the underlying mechanisms remain unclear. Here, we investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in protecting against ageing-associated cardiac remodelling in mice upon β-AR over-activation. 10-week-old (young) and 18-month-old (old) mice were subcutaneously injected with the β-AR agonist isoproterenol (ISO; 5 mg/kg). More extensive cardiac fibrosis was found in old mice upon ISO exposure than in young mice. Meanwhile, ISO treatment decreased AMPK activity and increased β-arrestin 1, but not β-arrestin 2, expression, and the effects of ISO on AMPK and β-arrestin 1 were greater in old mice than in young mice. Similarly, young AMPKα2-knockout (KO) mice showed more extensive cardiac fibrosis upon ISO exposure than that was observed in age-matched wild-type (WT) littermates. The extent of cardiac fibrosis in WT old mice was similar to that in young KO mice. Additionally, AMPK activities were decreased and β-arrestin 1 expression increased in KO mice. In contrast, the AMPK activator metformin decreased β-arrestin 1 expression and attenuated cardiac fibrosis in both young and old mice upon ISO exposure. In conclusion, more severe cardiac fibrosis is induced by ISO in old mice than in young mice. A decrease in AMPK activity, which further increases β-arrestin 1 expression, is the central mechanism underlying the ageing-related cardiac fibrosis induced by ISO. The AMPK activator metformin is a promising therapeutic agent for treating ageing-related cardiac remodelling upon β-AR over-activation.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hao Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Qiang Shen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jing Shen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiangbo An
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jimin Wu
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jianshu Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yunong Wu
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Han Xiao
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
| |
Collapse
|
39
|
Zhou XE, He Y, de Waal PW, Gao X, Kang Y, Van Eps N, Yin Y, Pal K, Goswami D, White TA, Barty A, Latorraca NR, Chapman HN, Hubbell WL, Dror RO, Stevens RC, Cherezov V, Gurevich VV, Griffin PR, Ernst OP, Melcher K, Xu HE. Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell 2017; 170:457-469.e13. [PMID: 28753425 PMCID: PMC5567868 DOI: 10.1016/j.cell.2017.07.002] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/04/2017] [Accepted: 07/06/2017] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.
Collapse
Affiliation(s)
- X Edward Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yuanzheng He
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Parker W de Waal
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Xiang Gao
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yanyong Kang
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yanting Yin
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Kuntal Pal
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Devrishi Goswami
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Thomas A White
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Henry N Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany; Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Raymond C Stevens
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karsten Melcher
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
40
|
TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022145. [PMID: 27920038 DOI: 10.1101/cshperspect.a022145] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transforming growth factor β (TGF-β) family controls many fundamental aspects of cellular behavior. With advances in the molecular details of the TGF-β signaling cascade and its cross talk with other signaling pathways, we now have a more coherent understanding of the cytostatic program induced by TGF-β. However, the molecular mechanisms are still largely elusive for other cellular processes that are regulated by TGF-β and determine a cell's proliferation and survival, apoptosis, dormancy, autophagy, and senescence. The difficulty in defining TGF-β's roles partly stems from the context-dependent nature of TGF-β signaling. Here, we review our current understanding and recent progress on the biological effects of TGF-β at the cellular level, with the hope of providing a framework for understanding how cells respond to TGF-β signals in specific contexts, and why disruption of such mechanisms may result in different human diseases including cancer.
Collapse
|
41
|
Freedman NJ, Shenoy SK. Regulation of inflammation by β-arrestins: Not just receptor tales. Cell Signal 2017; 41:41-45. [PMID: 28189586 DOI: 10.1016/j.cellsig.2017.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 01/14/2023]
Abstract
The ubiquitously expressed, multifunctional scaffolding proteins β-arrestin1 and β-arrestin2 each affect inflammatory signaling in a variety of cell lines. In addition to binding the carboxyl-terminal tails of innumerable 7-transmembrane receptors, β-arrestins scaffold untold numbers of other plasma membrane and cytoplasmic proteins. Consequently, the effects of β-arrestins on inflammatory signaling are diverse, and context-specific. This review highlights the roles of β-arrestins in regulating canonical activation of the pro-inflammatory transcription factor NFκB.
Collapse
Affiliation(s)
- Neil J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North, Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North, Carolina, USA.
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North, Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North, Carolina, USA.
| |
Collapse
|
42
|
Abstract
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, D-97082 Wuerzburg, Germany
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
- Department of Biological Chemistry and Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O'Connell K, Mythreye K. Altering the Proteoglycan State of Transforming Growth Factor β Type III Receptor (TβRIII)/Betaglycan Modulates Canonical Wnt/β-Catenin Signaling. J Biol Chem 2016; 291:25716-25728. [PMID: 27784788 DOI: 10.1074/jbc.m116.748624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperactive Wnt/β-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/β-catenin signaling vital. Transforming growth factor β type III receptor (TβRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TβRIII, independent of its TGFβ co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains. Our findings revealed, for the first time, opposing functions for the different GAG modifications on TβRIII suggesting that Wnt interactions with the TβRIII heparan sulfate chains result in inhibition of Wnt signaling, likely via Wnt sequestration, whereas the chondroitin sulfate GAG chains on TβRIII promote Wnt3a signaling. These studies identify a novel, dual role for TβRIII/betaglycan and define a key requirement for the balance between chondroitin sulfate and heparan sulfate chains in dictating ligand responses with implications for both development and cancer.
Collapse
Affiliation(s)
- Laura M Jenkins
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Priyanka Singh
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Archana Varadaraj
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Nam Y Lee
- the Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Shreya Shah
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Haley V Flores
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Kathleen O'Connell
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Karthikeyan Mythreye
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, .,the Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, and
| |
Collapse
|
44
|
Lou J, Zhao D, Zhang LL, Song SY, Li YC, Sun F, Ding XQ, Yu CJ, Li YY, Liu MT, Dong CJ, Ji Y, Li H, Chu W, Zhang ZR. Type III Transforming Growth Factor-β Receptor Drives Cardiac Hypertrophy Through β-Arrestin2–Dependent Activation of Calmodulin-Dependent Protein Kinase II. Hypertension 2016; 68:654-66. [PMID: 27432858 DOI: 10.1161/hypertensionaha.116.07420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023]
Abstract
The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in human cardiac hypertrophic samples. Consistently, TβRIII expression was substantially increased in transverse aortic constriction (TAC)– and isoproterenol-induced mouse cardiac hypertrophy in vivo and in isoproterenol-induced cardiomyocyte hypertrophy in vitro. Overexpression of TβRIII resulted in cardiomyocyte hypertrophy, whereas isoproterenol-induced cardiomyocyte hypertrophy was greatly attenuated by knockdown of TβRIII in vitro. Cardiac-specific transgenic expression of TβRIII independently led to cardiac hypertrophy in mice, which was further aggravated by isoproterenol and TAC treatment. Cardiac contractile function of the mice was not altered in TβRIII transgenic mice; however, TAC led to significantly decreased cardiac contractile function in TβRIII transgenic mice compared with control mice. Conversely, isoproterenol- and TAC-induced cardiac hypertrophy and TAC-induced cardiac contractile function impairment were partially reversed by suppression of TβRIII in vivo. Our data suggest that TβRIII mediates stress-induced cardiac hypertrophy through activation of Ca
2+
/calmodulin-dependent protein kinase II, which requires a physical interaction of β-arrestin2 with both TβRIII and calmodulin-dependent protein kinase II. Our findings indicate that stress-induced increase in TβRIII expression results in cardiac hypertrophy through β-arrestin2–dependent activation of calmodulin-dependent protein kinase II and that transforming growth factor-β and β-adrenergic receptor signaling are not involved in spontaneous cardiac hypertrophy in cardiac-specific transgenic expression of TβRIII mice. Our findings may provide a novel target for control of myocardial hypertrophy.
Collapse
Affiliation(s)
- Jie Lou
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Dan Zhao
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.).
| | - Ling-Ling Zhang
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Shu-Ying Song
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Yan-Chao Li
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Fei Sun
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Xiao-Qing Ding
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Chang-Jiang Yu
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Yuan-Yuan Li
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Mei-Tong Liu
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Chang-Jiang Dong
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Yong Ji
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Hongliang Li
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Wenfeng Chu
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.).
| | - Zhi-Ren Zhang
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.).
| |
Collapse
|
45
|
Hsieh SC, Wu CC, Hsu SL, Feng CH, Yen JH. Gallic acid attenuates TGF-β1-stimulated collagen gel contraction via suppression of RhoA/Rho-kinase pathway in hypertrophic scar fibroblasts. Life Sci 2016; 161:19-26. [DOI: 10.1016/j.lfs.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/24/2023]
|
46
|
Chen G, Xie RG, Gao YJ, Xu ZZ, Zhao LX, Bang S, Berta T, Park CK, Lay M, Chen W, Ji RR. β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nat Commun 2016; 7:12531. [PMID: 27538456 PMCID: PMC5477285 DOI: 10.1038/ncomms12531] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mechanisms of acute pain transition to chronic pain are not fully understood. Here we demonstrate an active role of β-arrestin 2 (Arrb2) in regulating spinal cord NMDA receptor (NMDAR) function and the duration of pain. Intrathecal injection of the mu-opioid receptor agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin produces paradoxical behavioural responses: early-phase analgesia and late-phase mechanical allodynia which requires NMDAR; both phases are prolonged in Arrb2 knockout (KO) mice. Spinal administration of NMDA induces GluN2B-dependent mechanical allodynia, which is prolonged in Arrb2-KO mice and conditional KO mice lacking Arrb2 in presynaptic terminals expressing Nav1.8. Loss of Arrb2 also results in prolongation of inflammatory pain and neuropathic pain and enhancement of GluN2B-mediated NMDA currents in spinal lamina IIo not lamina I neurons. Finally, spinal over-expression of Arrb2 reverses chronic neuropathic pain after nerve injury. Thus, spinal Arrb2 may serve as an intracellular gate for acute to chronic pain transition via desensitization of NMDAR. The cellular mechanisms underlying acute pain transitions to chronic pain are poorly understood. Here the authors show that the scaffolding protein β-arrestin 2 contributes to these processes via desensitization of NMDA receptors in spinal neurons.
Collapse
Affiliation(s)
- Gang Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rou-Gang Xie
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Anesthesiology and Pain Management, Xijing Hospital, Department of Neuroscience, Fourth Military Medical University, Xian, Shanxi 710032, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhen-Zhong Xu
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 3100058, China
| | - Lin-Xia Zhao
- Pain Research Laboratory, Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Sangsu Bang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | - Chul-Kyu Park
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Physiology, College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Mark Lay
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
47
|
Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, Liu Q, Du J. Metformin Enhances the Therapy Effects of Anti-IGF-1R mAb Figitumumab to NSCLC. Sci Rep 2016; 6:31072. [PMID: 27488947 PMCID: PMC4973270 DOI: 10.1038/srep31072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays a critical role in tumorigenesis, highlighting the potential of targeting IGF-1R as an anti-cancer therapy. Although multiple anti-IGF-1R monoclonal antibody (mAb) drugs have been developed, challenges remain in the validation of the therapeutic effects and understanding the molecular mechanism of these mAbs. Herein, we conducted a study to validate the effect of Figitumumab (CP), an anti-IGF-1R mAb, in a panel of non-small cell lung cancer (NSCLC) cell lines. We found all tested cell lines were sensitive to CP, and CP could block IGF-1R and the downstream PI3K/AKT pathway activation. Unexpectedly, we found CP could activate ERK signaling pathway in IGF-1R kinase independent manner, which we further verified was mainly mediated by β-arrestin2. We also investigated the anti-tumor effect of metformin alone as well as its combination with CP to target NSCLC. Metformin could target IGF-1R signaling pathway by attenuating PI3K/AKT and MEK/ERK signaling pathways and down-regulating IGF-1R. Finally, we found that combining metformin with CP could further induce IGF-1R down-regulation and was more effective to target NSCLC cells. Our data suggests the combining of metformin with CP has additive therapeutic value against NSCLC.
Collapse
Affiliation(s)
- Hongxin Cao
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China.,Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Shandong University, Jinan, P.R. China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Hongchang Shen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Jun Xu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Linhai Zhu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| |
Collapse
|
48
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
49
|
Clark CR, Robinson JY, Sanchez NS, Townsend TA, Arrieta JA, Merryman WD, Trykall DZ, Olivey HE, Hong CC, Barnett JV. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells. Cell Signal 2016; 28:688-98. [PMID: 26970186 DOI: 10.1016/j.cellsig.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Epithelial-Mesenchymal Transformation (EMT) and the subsequent invasion of epicardial and endocardial cells during cardiac development is critical to the development of the coronary vessels and heart valves. The transformed cells give rise to cardiac fibroblasts and vascular smooth muscle cells or valvular interstitial cells, respectively. The Type III Transforming Growth Factor β (TGFβR3) receptor regulates EMT and cell invasion in both cell types, but the signaling mechanisms downstream of TGFβR3 are not well understood. Here we use epicardial and endocardial cells in in vitro cell invasion assays to identify common mechanisms downstream of TGFβR3 that regulate cell invasion. Inhibition of NF-κB activity blocked cell invasion in epicardial and endocardial cells. NF-κB signaling was found to be dysregulated in Tgfbr3(-/-) epicardial cells which also show impaired cell invasion in response to ligand. TGFβR3-dependent cell invasion is also dependent upon Activin Receptor-Like Kinase (ALK) 2, ALK3, and ALK5 activity. A TGFβR3 mutant that contains a threonine to alanine substitution at residue 841 (TGFβR3-T841A) induces ligand-independent cell invasion in both epicardial and endocardial cells in vitro. These findings reveal a role for NF-κB signaling in the regulation of epicardial and endocardial cell invasion and identify a mutation in TGFβR3 which stimulates ligand-independent signaling.
Collapse
Affiliation(s)
- Cynthia R Clark
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Jamille Y Robinson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Nora S Sanchez
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Todd A Townsend
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Julian A Arrieta
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - W David Merryman
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212.
| | - David Z Trykall
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Harold E Olivey
- Dept. of Biology, Indiana University-Northwest, Gary, IN 46408, United States.
| | - Charles C Hong
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Research Medicine, Veterans Affairs TVHS, Nashville, TN 37212, United States.
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
50
|
Abstract
β-arrestin2 (β-arr2), identified as a scaffolding protein in G-protein-coupled receptor desensitization, is a negative regulator of inflammation in polymicrobial sepsis. In this study, we wanted to investigate the role of β-arr2 in intestinal inflammation, a site of persistent microbial stimulation. In the absence of β-arr2, mice exhibited greater extent of mucosal inflammation determined by cellular infiltration and expression of inflammatory mediators even under homeostatic conditions. Furthermore, β-arr2-deficient mice were more susceptible to dextran sulfate sodium-induced colitis as demonstrated by greater body weight loss, higher disease activity index, and shortened colon as compared with wild-type mice. We also show that T cells from β-arr2 knockout mice exhibit altered activation status under both basal and colitic conditions, implicating their involvement in disease induction. Further assessment of the role of β-arr2 in intrinsic T-cell differentiation confirmed its importance in T-cell polarization. Using the T-cell transfer model of colitis, we demonstrate that T-cell-specific β-arr2 is important in limiting colitic inflammation; however, it plays a paradoxical role in concurrent systemic wasting disease. Together, our study highlights a critical negative regulatory role of β-arr2 in intestinal inflammation and demonstrates a distinct role of T-cell-specific β-arr2 in systemic wasting disease.
Collapse
|