1
|
Lei X, Zhang L, Liu Y, Sun H, Yan J, Liu S. ZNF26-Associated Genes as Prognostic Signatures in Colorectal Cancer with Broad Therapeutic Implications. J Appl Genet 2025; 66:141-153. [PMID: 38568413 DOI: 10.1007/s13353-024-00854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 01/25/2025]
Abstract
The identification of biomarkers correlated with colorectal cancer (CRC) prognosis holds substantial importance from both clinical and scientific perspectives. Zinc finger protein 26 (ZNF26) has not been previously investigated or documented in solid tumors; thus, further research is necessary to ascertain its prognostic value in CRC. Gene expression profiles and clinicopathological data were acquired from The Cancer Genome Atlas (TCGA) database. Subsequently, expression correlation was assessed utilizing the TCGA CRC cohort. The prognostic value of ZNF26 was evaluated through Kaplan-Meier (KM) and ROC curve analyses. Following this, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to perform enrichment analysis between high- and low-ZNF26 expression groups. The association between immune cells, immune checkpoint genes, and ZNF26 expression levels was examined. Lastly, the research findings were further validated using CRC tissue samples. The results revealed that, in comparison to healthy controls, CRC significantly reduced ZNF26 expression. Elevated ZNF26 expression was associated with poorer overall survival in CRC patients. Additionally, high ZNF26 expression exhibited an inverse relationship with the immunological score and immune checkpoint gene expression in CRC patients. The findings from the TCGA data analysis were corroborated by the PCR results obtained from CRC tissue samples. ZNF26 is markedly upregulated in colorectal cancer tissues, potentially serving as a biomarker for CRC.
Collapse
Affiliation(s)
- Xue Lei
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Lijia Zhang
- Ethics Committee Office, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Ye Liu
- Department of Intensive Care Unit, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Heng Sun
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Jun Yan
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Songjiang Liu
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
2
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
3
|
Klein DC, Lardo SM, Hainer SJ. The ncBAF Complex Regulates Transcription in AML Through H3K27ac Sensing by BRD9. CANCER RESEARCH COMMUNICATIONS 2024; 4:237-252. [PMID: 38126767 PMCID: PMC10831031 DOI: 10.1158/2767-9764.crc-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.
Collapse
Affiliation(s)
- David C. Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Sharma G, Banerjee R, Srivastava S. Molecular Mechanisms and the Interplay of Important Chronic Obstructive Pulmonary Disease Biomarkers Reveals Novel Therapeutic Targets. ACS OMEGA 2023; 8:46376-46389. [PMID: 38107961 PMCID: PMC10719921 DOI: 10.1021/acsomega.3c07480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive, age-dependent, and unmet chronic inflammatory disease of the peripheral airways, leading to difficulty in exhalation. Several biomarkers have been tested in general towards the resolution for a long time, but no apparent success was achieved. Ongoing therapies of COPD have only symptomatic relief but no cure. Reactive oxygen species (ROS) are highly reactive species which include oxygen radicals and nonradical derivatives, and are the prominent players in COPD. They are produced as natural byproducts of cellular metabolism, but their levels can vary due to exposure to indoor air pollution, occupational pollution, and environmental pollutants such as cigarette smoke. In COPD, the lungs are continuously exposed to high levels of ROS thus leading to oxidative stress. ROS can cause damage to cells, proteins, lipids, and DNA which further contributes to the chronic inflammation in COPD and exacerbates the disease condition. Excessive ROS production can overwhelm cellular antioxidant systems and act as signaling molecules that regulate cellular processes, including antioxidant defense mechanisms involving glutathione and sirtuins which further leads to cellular apoptosis, cellular senescence, inflammation, and sarcopenia. In this review paper, we focused on COPD from different perspectives including potential markers and different cellular processes such as apoptosis, cellular senescence, inflammation, sirtuins, and sarcopenia, and tried to connect the dots between them so that novel therapeutic strategies to evaluate and target the possible underlying mechanisms in COPD could be explored.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
5
|
Zhang F, Lu JW, Lei WJ, Li MD, Pan F, Lin YK, Wang WS, Sun K. Paradoxical Induction of ALOX15/15B by Cortisol in Human Amnion Fibroblasts: Implications for Inflammatory Responses of the Fetal Membranes at Parturition. Int J Mol Sci 2023; 24:10881. [PMID: 37446059 DOI: 10.3390/ijms241310881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammation of the fetal membranes is an indispensable event of parturition, with increasing prostaglandin E2 (PGE2) synthesis as one of the ultimate products that prime labor onset. In addition to PGE2, the fetal membranes also boast a large capacity for cortisol regeneration. It is intriguing how increased PGE2 synthesis is achieved in the presence of increasing amounts of classical anti-inflammatory glucocorticoids in the fetal membranes at parturition. 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) synthesized by lipoxygenase 15/15B (ALOX15/15B) has been shown to enhance inflammation-induced PGE2 synthesis in amnion fibroblasts. Here, we examined whether glucocorticoids could induce ALOX15/15B expression and 15(S)-HETE production to promote PGE2 synthesis in amnion fibroblasts at parturition. We found that cortisol and 15(S)-HETE abundance increased parallelly in the amnion at parturition. Cortisol induced ALOX15/15B expression and 15(S)-HETE production paradoxically in amnion fibroblasts. Mechanism study revealed that this paradoxical induction was mediated by p300-mediated histone acetylation and interaction of glucocorticoid receptor with transcription factors CREB and STAT3. Conclusively, cortisol regenerated in the fetal membranes can paradoxically induce ALOX15/15B expression and 15(S)-HETE production in human amnion fibroblasts, which may further assist in the induction of PGE2 synthesis in the inflammatory responses of the fetal membranes for parturition.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| |
Collapse
|
6
|
Ozden B, Boopathi R, Barlas AB, Lone IN, Bednar J, Petosa C, Kale S, Hamiche A, Angelov D, Dimitrov S, Karaca E. Molecular Mechanism of Nucleosome Recognition by the Pioneer Transcription Factor Sox. J Chem Inf Model 2023. [PMID: 37307148 DOI: 10.1021/acs.jcim.2c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin to stimulate vital cellular processes. In this work, we dissect the universal binding mode of Sox PTF by combining extensive molecular simulations and physiochemistry approaches, along with DNA footprinting techniques. As a result, we show that when Sox consensus DNA is located at the solvent-facing DNA strand, Sox binds to the compact nucleosome without imposing any significant conformational changes. We also reveal that the base-specific Sox:DNA interactions (base reading) and Sox-induced DNA changes (shape reading) are concurrently required for sequence-specific nucleosomal DNA recognition. Among three different nucleosome positions located on the positive DNA arm, a sequence-specific reading mechanism is solely satisfied at the superhelical location 2 (SHL2). While SHL2 acts transparently for solvent-facing Sox binding, among the other two positions, SHL4 permits only shape reading. The final position, SHL0 (dyad), on the other hand, allows no reading mechanism. These findings demonstrate that Sox-based nucleosome recognition is essentially guided by intrinsic nucleosome properties, permitting varying degrees of DNA recognition.
Collapse
Affiliation(s)
- Burcu Ozden
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Ramachandran Boopathi
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble 38000, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
- Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, 46 Allée d'Italie, Lyon 69007, France
| | - Ayşe Berçin Barlas
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Imtiaz N Lone
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Jan Bednar
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble 38000, France
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, Illkirch Cedex 67404, France
| | - Dimitar Angelov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, 46 Allée d'Italie, Lyon 69007, France
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble 38000, France
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| |
Collapse
|
7
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
8
|
Chu X, Wang J. Insights into the cell fate decision-making processes from chromosome structural reorganizations. BIOPHYSICS REVIEWS 2022; 3:041402. [PMID: 38505520 PMCID: PMC10914134 DOI: 10.1063/5.0107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
The cell fate decision-making process, which provides the capability of a cell transition to a new cell type, involves the reorganizations of 3D genome structures. Currently, the high temporal resolution picture of how the chromosome structural rearrangements occur and further influence the gene activities during the cell-state transition is still challenging to acquire. Here, we study the chromosome structural reorganizations during the cell-state transitions among the pluripotent embryonic stem cell, the terminally differentiated normal cell, and the cancer cell using a nonequilibrium landscape-switching model implemented in the molecular dynamics simulation. We quantify the chromosome (de)compaction pathways during the cell-state transitions and find that the two pathways having the same destinations can merge prior to reaching the final states. The chromosomes at the merging states have similar structural geometries but can differ in long-range compartment segregation and spatial distribution of the chromosomal loci and genes, leading to cell-type-specific transition mechanisms. We identify the irreversible pathways of chromosome structural rearrangements during the forward and reverse transitions connecting the same pair of cell states, underscoring the critical roles of nonequilibrium dynamics in the cell-state transitions. Our results contribute to the understanding of the cell fate decision-making processes from the chromosome structural perspective.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
9
|
Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022; 11:cells11091404. [PMID: 35563711 PMCID: PMC9105757 DOI: 10.3390/cells11091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Genome architecture, epigenetics and enhancer function control the fate and identity of cells. Reprogramming to induced pluripotent stem cells (iPSCs) changes the transcriptional profile and chromatin landscape of the starting somatic cell to that of the pluripotent cell in a stepwise manner. Changes in the regulatory networks are tightly regulated during normal embryonic development to determine cell fate, and similarly need to function in cell fate control during reprogramming. Switching off the somatic program and turning on the pluripotent program involves a dynamic reorganization of the epigenetic landscape, enhancer function, chromatin accessibility and 3D chromatin topology. Within this context, we will review here the current knowledge on the processes that control the establishment and maintenance of pluripotency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| |
Collapse
|
10
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
11
|
Pal R, Chakraborty J, Mukhopadhyay TK, Kanungo A, Saha R, Chakraborty A, Patra D, Datta A, Dutta S. Substituent effect of benzyl moiety in nitroquinoxaline small molecules upon DNA binding: Cumulative destacking of DNA nucleobases leading to histone eviction. Eur J Med Chem 2021; 229:113995. [PMID: 34802835 DOI: 10.1016/j.ejmech.2021.113995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Cooperative disruption of Watson-Crick hydrogen bonds, as well as base-destacking, is shown to be triggered by a quinoxaline-based small molecule consisting of an N,N-dimethylaminopropyl tether, and a para-substituted benzyl moiety. This events lead to superstructure formation and DNA condensation as evident from biophysical experiments and classical molecular dynamics simulations. The DNA superstructure formation by mono-quinoxaline derivatives is highly entropically favored and predominantly driven by hydrophobic interactions. Furthermore, oversupercoiling of DNA and base-destacking cumulatively induces histone eviction from in-vitro assembled nucleosomes at lower micromolar concentrations implicating biological relevance. The DNA structural modulation and histone eviction capacity of the benzyl para-substituents are in the order: -I > -CF3> -Br > -Me > -OMe > -OH, which is largely guided by the polarity of benzyl para-substituent and the resulting molecular topology. The most hydrophobic derivative 3c with para-iodo benzyl moiety causes maximal disruption of base pairing and generation of superstructures. Both these events gradually diminish as the polarity of the benzyl para-substituent increases. On the other hand, quinoxaline derivatives having heterocyclic ring instead of benzyl ring, or in the absence of N,N-dimethylamino head-group, is incapable of inducing any DNA structural change and histone eviction. Further, the quinoxaline compounds displayed potent anticancer activities against different cancer cell lines which directly correlates with the hydrophobic effects of the benzyl para-substituents. Overall, the present study provides new insights into the mechanistic approach of DNA structural modulation driven histone eviction guided by the hydrophobicity of synthesized compounds leading to cellular cytotoxicity towards cancer cells.
Collapse
Affiliation(s)
- Ritesh Pal
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jeet Chakraborty
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ajay Kanungo
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Rimita Saha
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Chakraborty
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Dipendu Patra
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Liu J, Li Y, Gan Y, Xiao Q, Tian R, Shu G, Yin G. Identification of ZNF26 as a Prognostic Biomarker in Colorectal Cancer by an Integrated Bioinformatic Analysis. Front Cell Dev Biol 2021; 9:671211. [PMID: 34178996 PMCID: PMC8226143 DOI: 10.3389/fcell.2021.671211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
The dysregulation of transcriptional factors (TFs) leads to malignant growth and the development of colorectal cancer (CRC). Herein, we sought to identify the transcription factors relevant to the prognosis of colorectal cancer patients. We found 526 differentially expressed TFs using the TCGA database of colorectal cancer patients (n = 544) for the differential analysis of TFs (n = 1,665) with 210 upregulated genes as well as 316 downregulated genes. Subsequently, GO analysis and KEGG pathway analysis were performed for these differential genes for investigating their pathways and function. At the same time, we established a genetic risk scoring model for predicting the overall survival (OS) by using the mRNA expression levels of these differentially regulated TFs, and defined the CRC into low and high-risk categories which showed significant survival differences. The genetic risk scoring model included four high-risk genes (HSF4, HEYL, SIX2, and ZNF26) and two low-risk genes (ETS2 and SALL1), and validated the OS in two GEO databases (p = 0.0023 for the GSE17536, p = 0.0193 for the GSE29623). To analyze the genetic and epigenetic changes of these six risk-related TFs, a unified bioinformatics analysis was conducted. Among them, ZNF26 is progressive in CRC and its high expression is linked with a poor diagnosis as well. Knockdown of ZNF26 inhibits the proliferative capacity of CRC cells. Moreover, the positive association between ZNF26 and cyclins (CDK2, CCNE2, CDK6, CHEK1) was also identified. Therefore, as a novel biomarker, ZNF26 may be a promising candidate in the diagnosis and prognostic evaluation of colorectal cancer.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing Xiao
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ruotong Tian
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
13
|
Klein DC, Hainer SJ. Genomic methods in profiling DNA accessibility and factor localization. Chromosome Res 2019; 28:69-85. [PMID: 31776829 PMCID: PMC7125251 DOI: 10.1007/s10577-019-09619-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022]
Abstract
Recent advancements in next-generation sequencing technologies and accompanying reductions in cost have led to an explosion of techniques to examine DNA accessibility and protein localization on chromatin genome-wide. Generally, accessible regions of chromatin are permissive for factor binding and are therefore hotspots for regulation of gene expression; conversely, genomic regions that are highly occupied by histone proteins are not permissive for factor binding and are less likely to be active regulatory regions. Identifying regions of differential accessibility can be useful to uncover putative gene regulatory regions, such as enhancers, promoters, and insulators. In addition, DNA-binding proteins, such as transcription factors that preferentially bind certain DNA sequences and histone proteins that form the core of the nucleosome, play essential roles in all DNA-templated processes. Determining the genomic localization of chromatin-bound proteins is therefore essential in determining functional roles, sequence motifs important for factor binding, and regulatory networks controlling gene expression. In this review, we discuss techniques for determining DNA accessibility and nucleosome positioning (DNase-seq, FAIRE-seq, MNase-seq, and ATAC-seq) and techniques for detecting and functionally characterizing chromatin-bound proteins (ChIP-seq, DamID, and CUT&RUN). These methods have been optimized to varying degrees of resolution, specificity, and ease of use. Here, we outline some advantages and disadvantages of these techniques, their general protocols, and a brief discussion of their development. Together, these complimentary approaches have provided an unparalleled view of chromatin architecture and functional gene regulation.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
14
|
Rojec M, Hocher A, Stevens KM, Merkenschlager M, Warnecke T. Chromatinization of Escherichia coli with archaeal histones. eLife 2019; 8:49038. [PMID: 31692448 PMCID: PMC6867714 DOI: 10.7554/elife.49038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Nucleosomes restrict DNA accessibility throughout eukaryotic genomes, with repercussions for replication, transcription, and other DNA-templated processes. How this globally restrictive organization emerged during evolution remains poorly understood. Here, to better understand the challenges associated with establishing globally restrictive chromatin, we express histones in a naive system that has not evolved to deal with nucleosomal structures: Escherichia coli. We find that histone proteins from the archaeon Methanothermus fervidus assemble on the E. coli chromosome in vivo and protect DNA from micrococcal nuclease digestion, allowing us to map binding footprints genome-wide. We show that higher nucleosome occupancy at promoters is associated with lower transcript levels, consistent with local repressive effects. Surprisingly, however, this sudden enforced chromatinization has only mild repercussions for growth unless cells experience topological stress. Our results suggest that histones can become established as ubiquitous chromatin proteins without interfering critically with key DNA-templated processes.
Collapse
Affiliation(s)
- Maria Rojec
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Antoine Hocher
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kathryn M Stevens
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthias Merkenschlager
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Generation of Remosomes by the SWI/SNF Chromatin Remodeler Family. Sci Rep 2019; 9:14212. [PMID: 31578361 PMCID: PMC6775096 DOI: 10.1038/s41598-019-50572-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Chromatin remodelers are complexes able to both alter histone-DNA interactions and to mobilize nucleosomes. The mechanism of their action and the conformation of remodeled nucleosomes remain a matter of debates. In this work we compared the type and structure of the products of nucleosome remodeling by SWI/SNF and ACF complexes using high-resolution microscopy combined with novel biochemical approaches. We find that SWI/SNF generates a multitude of nucleosome-like metastable particles termed "remosomes". Restriction enzyme accessibility assay, DNase I footprinting and AFM experiments reveal perturbed histone-DNA interactions within these particles. Electron cryo-microscopy shows that remosomes adopt a variety of different structures with variable irregular DNA path, similar to those described upon RSC remodeling. Remosome DNA accessibility to restriction enzymes is also markedly increased. We suggest that the generation of remosomes is a common feature of the SWI/SNF family remodelers. In contrast, the ACF remodeler, belonging to ISWI family, only produces repositioned nucleosomes and no evidence for particles associated with extra DNA, or perturbed DNA paths was found. The remosome generation by the SWI/SNF type of remodelers may represent a novel mechanism involved in processes where nucleosomal DNA accessibility is required, such as DNA repair or transcription regulation.
Collapse
|
16
|
Han D, Huang M, Wang T, Li Z, Chen Y, Liu C, Lei Z, Chu X. Lysine methylation of transcription factors in cancer. Cell Death Dis 2019; 10:290. [PMID: 30926778 PMCID: PMC6441099 DOI: 10.1038/s41419-019-1524-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a critical and dynamic post-translational modification that can regulate protein stability and function. This post-translational modification is regulated by lysine methyltransferases and lysine demethylases. Recent studies using mass-spectrometric techniques have revealed that in addition to histones, a great number of transcription factors are also methylated, often at multiple sites and to different degrees (mono-, di-, trimethyl lysine). The biomedical significance of transcription factor methylation in human diseases, including cancer, has been explored recently. Some studies have demonstrated that interfering with transcription factor lysine methylation both in vitro and in vivo can inhibit cancer cell proliferation, thereby reversing tumor progression. The inhibitors targeting lysine methyltransferases and lysine demethylases have been under development for the past two decades, and may be used as potential anticancer agents in the clinic. In this review, we focus on the current findings of transcription factor lysine methylation, and the effects on both transcriptional activity and target gene expression. We outlined the biological significance of transcription factor lysine methylation on tumor progression and highlighted its clinical value in cancer therapy.
Collapse
Affiliation(s)
- Dong Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhiping Li
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Veil M, Yampolsky LY, Grüning B, Onichtchouk D. Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation. Genome Res 2019; 29:383-395. [PMID: 30674556 PMCID: PMC6396415 DOI: 10.1101/gr.240572.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
The zebrafish embryo is transcriptionally mostly quiescent during the first 10 cell cycles, until the main wave of zygotic genome activation (ZGA) occurs, accompanied by fast chromatin remodeling. At ZGA, homologs of the mammalian stem cell transcription factors (TFs) Pou5f3, Nanog, and Sox19b bind to thousands of developmental enhancers to initiate transcription. So far, how these TFs influence chromatin dynamics at ZGA has remained unresolved. To address this question, we analyzed nucleosome positions in wild-type and maternal-zygotic (MZ) mutants for pou5f3 and nanog by MNase-seq. We show that Nanog, Sox19b, and Pou5f3 bind to the high nucleosome affinity regions (HNARs). HNARs are spanning over 600 bp, featuring high in vivo and predicted in vitro nucleosome occupancy and high predicted propeller twist DNA shape value. We suggest a two-step nucleosome destabilization-depletion model, in which the same intrinsic DNA properties of HNAR promote both high nucleosome occupancy and differential binding of TFs. In the first step, already before ZGA, Pou5f3 and Nanog destabilize nucleosomes at HNAR centers genome-wide. In the second step, post-ZGA, Nanog, Pou5f3, and SoxB1 maintain open chromatin state on the subset of HNARs, acting synergistically. Nanog binds to the HNAR center, whereas the Pou5f3 stabilizes the flanks. The HNAR model will provide a useful tool for genome regulatory studies in a variety of biological systems.
Collapse
Affiliation(s)
- Marina Veil
- Department of Developmental Biology, Institute of Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104, Freiburg, Germany
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614-1710, USA.,Zoological Institute, Basel University, Basel, CH-4051 Switzerland
| | - Björn Grüning
- Department of Computer Science, Albert Ludwigs University of Freiburg, 79110, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104, Freiburg, Germany
| | - Daria Onichtchouk
- Department of Developmental Biology, Institute of Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104, Freiburg, Germany.,Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.,Institute of Developmental Biology RAS, 119991 Moscow, Russia
| |
Collapse
|
18
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
19
|
Bonifer C, Cockerill PN. Chromatin priming of genes in development: Concepts, mechanisms and consequences. Exp Hematol 2017; 49:1-8. [PMID: 28185904 DOI: 10.1016/j.exphem.2017.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
Abstract
During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review, we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We show that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, and at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
20
|
Resetting the epigenome for heart regeneration. Semin Cell Dev Biol 2016; 58:2-13. [DOI: 10.1016/j.semcdb.2015.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
|
21
|
Charles Richard JL, Shukla MS, Menoni H, Ouararhni K, Lone IN, Roulland Y, Papin C, Ben Simon E, Kundu T, Hamiche A, Angelov D, Dimitrov S. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC. PLoS Genet 2016; 12:e1006221. [PMID: 27467129 PMCID: PMC4965029 DOI: 10.1371/journal.pgen.1006221] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/06/2016] [Indexed: 01/14/2023] Open
Abstract
FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER. In the nucleus, DNA is packaged into chromatin. The repeating unit of chromatin, the nucleosome, consists of a histone octamer around which DNA is wrapped into two superhelical turns. The nucleosome is a barrier for various nuclear processes which require access to DNA. To repair lesions on DNA, this barrier has to be overcome by either nucleosome remodeling or by histone eviction. Here we present evidence that FACT, a protein known to be involved in transcription, is also involved in BER, by boosting nucleosome remodeling. Upon in vivo oxidized DNA lesion induction, FACT exhibits a BER-like protein behavior, and it is recruited to the sites of DNA damages. In vitro experiments show that FACT boosts the remodeling activity of the chromatin remodeler RSC and is implicated in DNA repair. The presence of FACT greatly facilitates the removal of uracil from nucleosomal, but not from naked DNA, in a RSC-mediated reaction. Taken collectively, our in vitro and in vivo data reveal a role of FACT in BER by helping the remodeling of chromatin at the sites of lesions.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Université Joseph Fourier-Grenoble 1, INSERM Institut Albert Bonniot U823, Site Santé, Grenoble, France
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, LBMC CNRS/ENSL/UCBL UMR5239 & Institut NeuroMyoGène–INMG CNRS/UCBL UMR5310, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manu Shubhdarshan Shukla
- Université Joseph Fourier-Grenoble 1, INSERM Institut Albert Bonniot U823, Site Santé, Grenoble, France
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, LBMC CNRS/ENSL/UCBL UMR5239 & Institut NeuroMyoGène–INMG CNRS/UCBL UMR5310, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hervé Menoni
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, LBMC CNRS/ENSL/UCBL UMR5239 & Institut NeuroMyoGène–INMG CNRS/UCBL UMR5310, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Khalid Ouararhni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’Innovation, Illkirch, France
| | - Imtiaz Nisar Lone
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, LBMC CNRS/ENSL/UCBL UMR5239 & Institut NeuroMyoGène–INMG CNRS/UCBL UMR5310, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Yohan Roulland
- Université Joseph Fourier-Grenoble 1, INSERM Institut Albert Bonniot U823, Site Santé, Grenoble, France
| | - Christophe Papin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’Innovation, Illkirch, France
| | - Elsa Ben Simon
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, LBMC CNRS/ENSL/UCBL UMR5239 & Institut NeuroMyoGène–INMG CNRS/UCBL UMR5310, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Tapas Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’Innovation, Illkirch, France
- * E-mail: (AH); (DA); (SD)
| | - Dimitar Angelov
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, LBMC CNRS/ENSL/UCBL UMR5239 & Institut NeuroMyoGène–INMG CNRS/UCBL UMR5310, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (AH); (DA); (SD)
| | - Stefan Dimitrov
- Université Joseph Fourier-Grenoble 1, INSERM Institut Albert Bonniot U823, Site Santé, Grenoble, France
- * E-mail: (AH); (DA); (SD)
| |
Collapse
|
22
|
Scovell WM. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression. World J Biol Chem 2016; 7:206-222. [PMID: 27247709 PMCID: PMC4877529 DOI: 10.4331/wjbc.v7.i2.206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023] Open
Abstract
High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.
Collapse
|
23
|
Konstantinov NK, Ulff-Møller CJ, Dimitrov S. Histone variants and melanoma: facts and hypotheses. Pigment Cell Melanoma Res 2016; 29:426-33. [DOI: 10.1111/pcmr.12467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Stefan Dimitrov
- Institut Albert Bonniot; U823, INSERM/Université Joseph Fourier; Grenoble Cedex 9 France
| |
Collapse
|
24
|
Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler. Br J Nutr 2015; 115:411-21. [DOI: 10.1017/s0007114515004511] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractThis study was conducted to investigate the effect of in ovo feeding (IOF) of folic acid on the folate metabolism, immune function and the involved epigenetic modification of broilers. A total of 400 (Cobb) hatching eggs were randomly divided into four groups (0, 50, 100 and 150 µg injection of folic acid at embryonic age 11 d), and chicks hatched from each treatment were randomly divided into six replicates with 12 broilers/replicate after incubation. The results indicated that, in ovo, 100- and 150-µg folic acid injections improved the hatchability. The average daily gain and feed conversion ratio increased in the 150-µg group during the late growth stage. Simultaneously, in the 100- and 150-µg groups, an increase was observed in hepatic folate content and the expression of methylenetetrahydrofolate reductase (d1 and 42) and methionine synthase reductase (d21). IgG and IgM concentrations, as well as plasma lysozyme activity of broilers, showed a marked increase along with increasing folic acid levels. The splenic expression levels of IL-2 and IL-4 were up-regulated, whereas that of IL-6 was down-regulated, in the 100- and 150-µg folic acid treatment groups. In addition, histone methylation in IL-2 and IL-4 promoters exhibited an enrichment of H3K4m2 but a loss of H3K9me2 with the increased amount of folic acid additive. In contrast, a decrease in H3K4m2 and an increase in H3K9me2 were observed in the IL-6 promoter in folic acid treatments. Furthermore, in ovo, the 150-µg folic acid injection improved the chromatin tightness of the IL-2 and IL-4 promoter regions. Our findings suggest that IOF of 150 µg of folic acid can improve the growth performance and folate metabolism of broilers, and enhance the relationship between immune function and epigenetic regulation of immune genes, which are involved with the alterations in chromatin conformation and histone methylation in their promoters.
Collapse
|
25
|
Enroth S, Andersson R, Bysani M, Wallerman O, Termén S, Tuch BB, De La Vega FM, Heldin CH, Moustakas A, Komorowski J, Wadelius C. Nucleosome regulatory dynamics in response to TGFβ. Nucleic Acids Res 2014; 42:6921-34. [PMID: 24771338 PMCID: PMC4066760 DOI: 10.1093/nar/gku326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleosomes play important roles in a cell beyond their basal functionality in chromatin compaction. Their placement affects all steps in transcriptional regulation, from transcription factor (TF) binding to messenger ribonucleic acid (mRNA) synthesis. Careful profiling of their locations and dynamics in response to stimuli is important to further our understanding of transcriptional regulation by the state of chromatin. We measured nucleosome occupancy in human hepatic cells before and after treatment with transforming growth factor beta 1 (TGFβ1), using massively parallel sequencing. With a newly developed method, SuMMIt, for precise positioning of nucleosomes we inferred dynamics of the nucleosomal landscape. Distinct nucleosome positioning has previously been described at transcription start site and flanking TF binding sites. We found that the average pattern is present at very few sites and, in case of TF binding, the double peak surrounding the sites is just an artifact of averaging over many loci. We systematically searched for depleted nucleosomes in stimulated cells compared to unstimulated cells and identified 24 318 loci. Depending on genomic annotation, 44–78% of them were over-represented in binding motifs for TFs. Changes in binding affinity were verified for HNF4α by qPCR. Strikingly many of these loci were associated with expression changes, as measured by RNA sequencing.
Collapse
Affiliation(s)
- Stefan Enroth
- The Linnaeus Centre for Bioinformatics, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Robin Andersson
- The Linnaeus Centre for Bioinformatics, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Madhusudhan Bysani
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, BMC, Box 815, Uppsala University, SE-75108 Uppsala, Sweden
| | - Ola Wallerman
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, BMC, Box 815, Uppsala University, SE-75108 Uppsala, Sweden
| | - Stefan Termén
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-75124 Uppsala, Sweden
| | - Brian B Tuch
- Applied Biosystems, part of Life Technologies, Foster City, CA 94404, USA
| | | | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-75124 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-75124 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-75123 Uppsala, Sweden
| | - Jan Komorowski
- The Linnaeus Centre for Bioinformatics, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, BMC, Box 815, Uppsala University, SE-75108 Uppsala, Sweden
| |
Collapse
|
26
|
Kim JS, Szleifer I. Crowding-induced formation and structural alteration of nuclear compartments: insights from computer simulations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:73-108. [PMID: 24380593 DOI: 10.1016/b978-0-12-800046-5.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Our understanding of the structural and dynamical characteristics of nuclear structures such as chromosomes and nuclear bodies (NBs) has increased significantly in recent days owing to advances in biophysical and biochemical techniques. These techniques include the use of computer simulations, which have provided further physical insights complementary to findings from experiments. In this chapter, we review recent computer simulation studies on the structural alteration of chromosome subcompartments and the formation and maintenance of NBs in the highly crowded cell nucleus. It is found that because of macromolecular crowding, the degree of chromosome compaction changes significantly and the formation of NBs is facilitated. We further discuss the physical consequences of these phenomena, which may be of critical importance in understanding genome processes.
Collapse
Affiliation(s)
- Jun Soo Kim
- Department of Chemistry and Nano Science, Global Top5 Research Program, Ewha Womans University, Seoul, Republic of Korea.
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
27
|
Miranda TB, Morris SA, Hager GL. Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor. Mol Cell Endocrinol 2013; 380:16-24. [PMID: 23499945 PMCID: PMC3724757 DOI: 10.1016/j.mce.2013.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor regulates transcriptional output through complex interactions with the genome. These events require continuous remodeling of chromatin, interactions of the glucocorticoid receptor with chaperones and other accessory factors, and recycling of the receptor by the proteasome. Therefore, the cohort of factors expressed in a particular cell type can determine the physiological outcome upon treatment with glucocorticoid hormones. In addition, circadian and ultradian cycling of hormones can also affect GR response. Here we will discuss revision of the classical static model of GR binding to response elements to incorporate recent findings from single cell and genome-wide analyses of GR regulation. We will highlight how these studies have changed our views on the dynamics of GR recruitment and its modulation of gene expression.
Collapse
|
28
|
Lone IN, Shukla MS, Charles Richard JL, Peshev ZY, Dimitrov S, Angelov D. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1. PLoS Genet 2013; 9:e1003830. [PMID: 24086160 PMCID: PMC3784511 DOI: 10.1371/journal.pgen.1003830] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/12/2013] [Indexed: 01/29/2023] Open
Abstract
NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. In eukaryotes DNA is hierarchically packaged into chromatin by histones. The fundamental subunit of chromatin is the nucleosome. The packaging of DNA into nucleosomes not only restricts DNA accessibility for regulatory proteins but also provides opportunities to regulate DNA based processes. Accessibility of transcription factor NF-κB to their recognition sequences embedded in nucleosomes is highly controversial. On one hand in vivo studies have suggested that packaging of DNA into chromatin plays an important role in regulating the expression of NF-κB dependent genes, and on the other hand some in vitro studies reported that NF-κB can bind by itself to its recognition sequences embedded in the nucleosome. In this study, we show that NF-κB can specifically bind to its recognition sequences placed at the end of the nucleosome but not when placed inside the nucleosome core. We then demonstrate that disruption of nucleosome is necessary for the productive binding of NF-κB. Finally, we show that the presence of histone H1 does not affect the specific binding of NF-κB to its cognate sequence, when its binding region overlaps with the binding site of NF-κB. We propose that histone eviction is needed for NF-κB to bind specifically to its recognition sequence embedded in the nucleosome.
Collapse
Affiliation(s)
- Imtiaz Nisar Lone
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manu Shubhdarshan Shukla
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
| | - John Lalith Charles Richard
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
| | - Zahary Yordanov Peshev
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefan Dimitrov
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
- * E-mail: (SD); (DA)
| | - Dimitar Angelov
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (SD); (DA)
| |
Collapse
|
29
|
Abstract
Reprogramming to induced pluripotent stem cells (iPSCs) proceeds in a stepwise manner with reprogramming factor binding, transcription, and chromatin states changing during transitions. Evidence is emerging that epigenetic priming events early in the process may be critical for pluripotency induction later. Chromatin and its regulators are important controllers of reprogramming, and reprogramming factor levels, stoichiometry, and extracellular conditions influence the outcome. The rapid progress in characterizing reprogramming is benefiting applications of iPSCs and is already enabling the rational design of novel reprogramming factor cocktails. However, recent studies have also uncovered an epigenetic instability of the X chromosome in human iPSCs that warrants careful consideration.
Collapse
Affiliation(s)
- Bernadett Papp
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
30
|
Nowak-Lovato K, Alexandrov LB, Banisadr A, Bauer AL, Bishop AR, Usheva A, Mu F, Hong-Geller E, Rasmussen KØ, Hlavacek WS, Alexandrov BS. Binding of nucleoid-associated protein fis to DNA is regulated by DNA breathing dynamics. PLoS Comput Biol 2013; 9:e1002881. [PMID: 23341768 PMCID: PMC3547798 DOI: 10.1371/journal.pcbi.1002881] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/29/2012] [Indexed: 12/23/2022] Open
Abstract
Physicochemical properties of DNA, such as shape, affect protein-DNA recognition. However, the properties of DNA that are most relevant for predicting the binding sites of particular transcription factors (TFs) or classes of TFs have yet to be fully understood. Here, using a model that accurately captures the melting behavior and breathing dynamics (spontaneous local openings of the double helix) of double-stranded DNA, we simulated the dynamics of known binding sites of the TF and nucleoid-associated protein Fis in Escherichia coli. Our study involves simulations of breathing dynamics, analysis of large published in vitro and genomic datasets, and targeted experimental tests of our predictions. Our simulation results and available in vitro binding data indicate a strong correlation between DNA breathing dynamics and Fis binding. Indeed, we can define an average DNA breathing profile that is characteristic of Fis binding sites. This profile is significantly enriched among the identified in vivo E. coli Fis binding sites. To test our understanding of how Fis binding is influenced by DNA breathing dynamics, we designed base-pair substitutions, mismatch, and methylation modifications of DNA regions that are known to interact (or not interact) with Fis. The goal in each case was to make the local DNA breathing dynamics either closer to or farther from the breathing profile characteristic of a strong Fis binding site. For the modified DNA segments, we found that Fis-DNA binding, as assessed by gel-shift assay, changed in accordance with our expectations. We conclude that Fis binding is associated with DNA breathing dynamics, which in turn may be regulated by various nucleotide modifications. Cellular transcription factors (TFs) are proteins that regulate gene expression, and thereby cellular activity and fate, by binding to specific DNA segments. The physicochemical determinants of protein-DNA binding specificity are not completely understood. Here, we report that the propensity of transient opening and re-closing of the double helix, resulting from thermal fluctuations, aka “DNA breathing” or “DNA bubbles,” can be associated with binding affinity in the case of Fis, a well-studied nucleoid-associated protein in Escherichia coli. We found that a particular breathing profile is characteristic of high-affinity Fis binding sites and that DNA fragments known to bind Fis in vivo are statistically enriched for this profile. Furthermore, we used simulations of DNA breathing dynamics to guide design of gel-shift experiments aimed at testing the idea that local breathing influences Fis binding. As a result, we show that via nucleotide modifications but without modifying nucleotides that directly contact Fis, we were able to transform a low-affinity Fis binding site into a high-affinity site and vice versa. The nucleotide modifications were designed only based on DNA breathing simulations. Our study suggests that strong Fis-DNA binding depends on DNA breathing - a novel physicochemical characteristic that could be used for prediction and rational design of TF binding sites.
Collapse
Affiliation(s)
- Kristy Nowak-Lovato
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ludmil B. Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Afsheen Banisadr
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amy L. Bauer
- X-Theoretical Design Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan R. Bishop
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Anny Usheva
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Fangping Mu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Elizabeth Hong-Geller
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Kim Ø. Rasmussen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail: (WSH); (BSA)
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail: (WSH); (BSA)
| |
Collapse
|
31
|
Joshi SR, Sarpong YC, Peterson RC, Scovell WM. Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding. Nucleic Acids Res 2012; 40:10161-71. [PMID: 22941653 PMCID: PMC3488250 DOI: 10.1093/nar/gks815] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
High mobility group protein 1 (HMGB1) interacts with DNA and chromatin to influence the regulation of transcription, DNA repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, ATP-independent manner. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N′ and N″) remain stable and exhibit characteristics distinctly different from the canonical nucleosome. These findings complement previous studies that showed (i) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (ii) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that one aspect of the mechanism of HMGB1 action involves a restructuring of the nucleosome that appears to relax structural constraints within the nucleosome.
Collapse
Affiliation(s)
- Sachindra R Joshi
- Department of Chemistry and Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | |
Collapse
|
32
|
Roles of lineage-determining transcription factors in establishing open chromatin: lessons from high-throughput studies. Curr Top Microbiol Immunol 2012; 356:1-15. [PMID: 21744305 DOI: 10.1007/82_2011_142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interpretation of the regulatory information of the genome by sequence-specific transcription factors lies at the heart of the specification of cellular identity and function. While most cells in a complex metazoan organism express hundreds of such transcription factors, the underlying mechanisms by which they ultimately achieve their functional locations within different cell types remain poorly understood. Here, we contrast various models of how cell type-specific binding patterns may arise using available evidence from ChIP-Seq experiments obtained in tractable developmental model systems, particularly the hematopoietic system. The data suggests a model whereby relatively small sets of lineage-determining transcription factors jointly compete with nucleosomes to establish their cell type-specific binding patterns. These binding sites gain histone marks indicative of active cis-regulatory elements and define a large fraction of the enhancer-like regions differentiated cell types. The formation of these regions of open chromatin enables the recruitment of secondary transcription factors that contribute additional transcription regulatory functionality required for the cell type-appropriate expression of genes with both general and specialized cellular functions.
Collapse
|
33
|
Gong H, Xie J, Zhang N, Yao L, Zhang Y. MEF2A binding to the Glut4 promoter occurs via an AMPKα2-dependent mechanism. Med Sci Sports Exerc 2011; 43:1441-50. [PMID: 21233771 DOI: 10.1249/mss.0b013e31820f6093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The role of AMP-activated protein kinase α2 (AMPKα2) in regulating MEF2A nucleus translocation, nuclear histone deacetylase 5 (HDAC5) association with MEF2, HDAC5 nuclear export, MEF2A binding to the Glut4 promoter, and GLUT4 expression was investigated. METHODS This was investigated in muscles from AMPKα2 overexpression (OE) mice, AMPKα2 knockout (KO) mice, and corresponding wild-type (WT) mice that had undertaken a 28-d program of treadmill training by: 1) AMPKα-Thr172 phosphorylation by Western blot, 2) total and nuclear MEF2A by Western blot, 3) nuclear HDAC5 association with MEF2 by coimmunoprecipitation, 4) total and nuclear HDAC5 by Western blot, 5) bound MEF2A at the Glut4 MEF2 cis-element by chromatin immunoprecipitation, and 6) GLUT4 expression by real-time polymerase chain reaction and Western blot. RESULTS OE or KO of AMPKα2 isoform heightened or attenuated the training-induced increase in nuclear MEF2A content, Glut4 promoter-bound MEF2A. However, OE or KO of the AMPKα2 isoform did not have any effect on the content of nuclear HDAC5 association with MEF2 after 28 d of exercise training, although 35% lower nuclear HDAC5 protein content was found in α2-OE training muscles. Lastly, OE of the α2-isoform was associated with 120% and 155% higher GLUT4 protein and mRNA in training muscles. However, the training-induced increases of GLUT4 protein and mRNA contents were normal in α2-KO muscles despite the reduced AMPK signaling. CONCLUSIONS Exercise training increases the nuclear MEF2A content and binding of MEF2A to their binding sites on the Glut4 gene by an AMPKα2-dependent mechanism, but intracellular signaling molecules other than AMPKα2 are important in regulating training-induced HDAC5 nuclear export. Furthermore, although AMPKα2 mediates the training-induced increase in Glut4 promoter-bound MEF2A, the present data do not support an essential role of AMPKα2 in regulating training-induced GLUT4 expression in skeletal muscle.
Collapse
|
34
|
Abstract
Steroid hormone receptors regulate gene transcription in a highly tissue-specific manner. The local chromatin structure underlying promoters and hormone response elements is a major component involved in controlling these highly restricted expression patterns. Chromatin remodeling complexes, as well as histone and DNA modifying enzymes, are directed to gene-specific regions and create permissive or repressive chromatin environments. These structures further enable proper communication between transcription factors, co-regulators and basic transcription machinery. The regulatory elements active at target genes can be either constitutively accessible to receptors or subject to rapid receptor-dependent modification. The chromatin states responsible for these processes are in turn determined during development and differentiation. Thus access of regulatory factors to elements in chromatin provides a major level of cell selective regulation.
Collapse
Affiliation(s)
- Malgorzata Wiench
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | |
Collapse
|
35
|
Abstract
Chromatin is by its very nature a repressive environment which restricts the recruitment of transcription factors and acts as a barrier to polymerases. Therefore the complex process of gene activation must operate at two levels. In the first instance, localized chromatin decondensation and nucleosome displacement is required to make DNA accessible. Second, sequence-specific transcription factors need to recruit chromatin modifiers and remodellers to create a chromatin environment that permits the passage of polymerases. In this review I will discuss the chromatin structural changes that occur at active gene loci and at regulatory elements that exist as DNase I hypersensitive sites.
Collapse
Affiliation(s)
- Peter N Cockerill
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, UK.
| |
Collapse
|
36
|
Li Z, Schug J, Tuteja G, White P, Kaestner KH. The nucleosome map of the mammalian liver. Nat Struct Mol Biol 2011; 18:742-6. [PMID: 21623366 PMCID: PMC3148658 DOI: 10.1038/nsmb.2060] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Binding to nucleosomal DNA is critical for 'pioneer' transcription factors such as the winged-helix transcription factors Foxa1 and Foxa2 to regulate chromatin structure and gene activation. Here we report the genome-wide map of nucleosome positions in the mouse liver, with emphasis on transcriptional start sites, CpG islands, Foxa2 binding sites and their correlation with gene expression. Despite the heterogeneity of liver tissue, we could clearly discern the nucleosome pattern of the predominant liver cell, the hepatocyte. By analyzing nucleosome occupancy and the distributions of heterochromatin protein 1 (Hp1), CBP (also known as Crebbp) and p300 (Ep300) in Foxa1- and Foxa2-deficient livers, we find that the maintenance of nucleosome position and chromatin structure surrounding Foxa2 binding sites is independent of Foxa1 and Foxa2.
Collapse
Affiliation(s)
- Zhaoyu Li
- Department of Genetics and Institute of Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute of Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geetu Tuteja
- Department of Genetics and Institute of Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter White
- Department of Genetics and Institute of Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H. Kaestner
- Department of Genetics and Institute of Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Joshi SR, Ghattamaneni RB, Scovell WM. Expanding the paradigm for estrogen receptor binding and transcriptional activation. Mol Endocrinol 2011; 25:980-94. [PMID: 21527498 DOI: 10.1210/me.2010-0302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Estrogen receptor (ER) binds to a spectrum of functional estrogen response elements (ERE) within the human genome, including ERE half-sites (HERE), inverted and direct repeats. This has been confounding, because ER has been reported to bind weakly, if at all, to these sites in vitro. We show that ER binds strongly to these nonconventional EREs, and the binding is enhanced by the presence of high-mobility group protein B1 (HMGB1). Collectively, these and previous findings reinforce the notion of the plasticity of strong ER/ERE interactions, consistent with their broader range of observed binding specificity. In addition, transient transfection studies using luciferase reporter gene assays show that these EREs drive luciferase activity, and HMGB1 enhances transcriptional activity. Furthermore, HMGB1 gene expression knockdown results in a precipitous drop in luciferase activity, suggesting a prominent role for HMGB1 in activation of estrogen/ER-responsive genes. Therefore, these data advocate that the minimal target site for ER is a cHERE (consensus HERE) that occurs in many different contexts and that HMGB1 enhances both the binding affinity and transcriptional activity. This challenges the current paradigm for ER binding affinity and functional activity and suggests that the paradigm requires significant reevaluation and modification. These findings also suggest a possible mechanism for a cross talk between genes regulated by ER and class II nuclear receptors.
Collapse
Affiliation(s)
- S R Joshi
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | | | |
Collapse
|
38
|
Kim JS, Backman V, Szleifer I. Crowding-induced structural alterations of random-loop chromosome model. PHYSICAL REVIEW LETTERS 2011; 106:168102. [PMID: 21599416 DOI: 10.1103/physrevlett.106.168102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Indexed: 05/30/2023]
Abstract
We investigate structural alterations of random-loop polymers due to changes in the crowding condition, as a model to study environmental effects on the structure of chromosome subcompartments. The polymer structure is changed in a nonmonotonic fashion with an increasing density of crowders: condensed at small volume fractions; decondensed at high crowding volume fractions. The nonmonotonic behavior is a manifestation of the nontrivial distance dependence of the depletion interactions. We also show that crowding-induced structural alterations affect the access of binding proteins to the surface of polymer segments and are distinguished from structural changes due to the increased number of specific polymer loops.
Collapse
Affiliation(s)
- Jun Soo Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
39
|
Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro Genebra de Jesus I, Kerkhoven RM, Bussemaker HJ, van Steensel B. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 2010; 143:212-24. [PMID: 20888037 PMCID: PMC3119929 DOI: 10.1016/j.cell.2010.09.009] [Citation(s) in RCA: 702] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/02/2010] [Accepted: 08/27/2010] [Indexed: 01/03/2023]
Abstract
Chromatin is important for the regulation of transcription and other functions, yet the diversity of chromatin composition and the distribution along chromosomes are still poorly characterized. By integrative analysis of genome-wide binding maps of 53 broadly selected chromatin components in Drosophila cells, we show that the genome is segmented into five principal chromatin types that are defined by unique yet overlapping combinations of proteins and form domains that can extend over > 100 kb. We identify a repressive chromatin type that covers about half of the genome and lacks classic heterochromatin markers. Furthermore, transcriptionally active euchromatin consists of two types that differ in molecular organization and H3K36 methylation and regulate distinct classes of genes. Finally, we provide evidence that the different chromatin types help to target DNA-binding factors to specific genomic regions. These results provide a global view of chromatin diversity and domain organization in a metazoan cell.
Collapse
Affiliation(s)
- Guillaume J. Filion
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joke G. van Bemmel
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ulrich Braunschweig
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Wendy Talhout
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jop Kind
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Lucas D. Ward
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St. Nicholas Ave., New York, NY 10032, USA
| | - Wim Brugman
- Central Microarray Facility, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | - Ron M. Kerkhoven
- Central Microarray Facility, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St. Nicholas Ave., New York, NY 10032, USA
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
40
|
Clarke DL, Clifford RL, Jindarat S, Proud D, Pang L, Belvisi M, Knox AJ. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein. J Biol Chem 2010; 285:29101-10. [PMID: 20833730 PMCID: PMC2937941 DOI: 10.1074/jbc.m109.0999952] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 07/02/2010] [Indexed: 01/14/2023] Open
Abstract
Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease.
Collapse
Affiliation(s)
- Deborah L Clarke
- Nottingham Respiratory Biomedical Research Unit, City Hospital, University of Nottingham, Nottingham NG5 1PB, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Clarke DL, Clifford RL, Jindarat S, Proud D, Pang L, Belvisi M, Knox AJ. TNFα and IFNγ Synergistically Enhance Transcriptional Activation of CXCL10 in Human Airway Smooth Muscle Cells via STAT-1, NF-κB, and the Transcriptional Coactivator CREB-binding Protein. J Biol Chem 2010. [DOI: 10.1074/jbc.m109.099952] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Babbitt GA, Tolstorukov MY, Kim Y. The molecular evolution of nucleosome positioning through sequence-dependent deformation of the DNA polymer. J Biomol Struct Dyn 2010; 27:765-80. [PMID: 20232932 DOI: 10.1080/07391102.2010.10508584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The computational prediction of nucleosome positioning from DNA sequence now allows for in silico investigation of the molecular evolution of biophysical properties of the DNA molecule responsible for primary chromatin organization in the genome. To discern what signal components driving nucleosome positioning in the yeast genome are potentially targeted by natural selection, we compare the performance of various models predictive of nucleosome positioning within the context of a simple statistical test, the repositioned mutation test. We demonstrate that while nucleosome occupancy is driven largely by translational exclusion in response to AT content, there is also a strong signature of evolutionary conservation of regular patterns within nucleosomal DNA sequence related to the structural organization of the nucleosome core (e.g., 10-bp dinucleotide periodicity). We also use computer simulations to investigate hypothetical coding and regulatory constraints on the ability of sequence properties affecting nucleosome formation to adaptively evolve. Our results demonstrate that natural selection may act independently on different DNA sequence properties responsible for local chromatin organization. Furthermore, at least with respect to the deformation energy of the DNA molecule in the nucleosome, the presence of the genetic code has greatly restricted the ability of sequences to evolve the dynamic nucleosome organization typically observed in promoter regions.
Collapse
Affiliation(s)
- G A Babbitt
- School of Biological and Medical Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | |
Collapse
|
43
|
Wang D, Ulyanov NB, Zhurkin VB. Sequence-dependent Kink-and-Slide deformations of nucleosomal DNA facilitated by histone arginines bound in the minor groove. J Biomol Struct Dyn 2010; 27:843-59. [PMID: 20232937 PMCID: PMC2987563 DOI: 10.1080/07391102.2010.10508586] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In addition to bending and twisting deformabilities, the lateral displacements of the DNA axis (Kink-and-Slide) play an important role in DNA wrapping around the histone core (M. Y. Tolstorukov, A. V. Colasanti, D. M. McCandlish, W. K. Olson, V. B. Zhurkin, J. Mol. Biol. 371, 725-738 (2007)). Here, we show that these Kink-and-Slide deformations are likely to be stabilized by the arginine residues of histones interacting with the minor groove of DNA. The arginines are positioned asymmetrically in the minor groove, being closer to one strand. The asymmetric arginine-DNA interactions facilitate lateral displacement of base pairs across the DNA grooves, thus leading to a stepwise accumulation of the superhelical pitch of nucleosomal DNA. To understand the sequence dependence of such Kink-and-Slide deformations, we performed all-atom calculations of DNA hexamers with the YR and RY steps in the center. We found that when the unrestrained DNA deformations are allowed, the YR steps tend to bend into the major groove, and RY steps bend into the minor groove. However, when the nucleosomal Kink-and-Slide deformation is considered, the YR steps prove to be more favorable for bending into the minor groove. Overall, the Kink-and-Slide deformation energy of DNA increases in the order TA < CA < CG < GC < AC < AT. We propose a simple stereochemical model accounting for this sequence dependence. Our results agree with experimental data indicating that the TA step most frequently occurs in the minor-groove kink positions in the most stable nucleosomes. Our computations demonstrate that the Kink-and-Slide distortion is accompanied by the BI to BII transition. This fact, together with irregularities in the two-dimensional (Roll, Slide) energy contour maps, suggest that the Kink-and-Slide deformations represent a nonharmonic behavior of the duplex. This explains the difference between the two estimates of the DNA deformation energy in nucleosome - the earlier one made using knowledge-based elastic energy functions, and the current one based on all-atom calculations. Our findings are useful for refining the score functions for the prediction of nucleosome positioning. In addition, the reverse bending behavior of the YR and RY steps revealed under the Kink-and-Slide constraint is important for understanding the molecular mechanisms of binding transcription factors (such as p53) to DNA exposed on the surface of nucleosome.
Collapse
Affiliation(s)
- Difei Wang
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nikolai B. Ulyanov
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94158-2517, USA
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 2010; 5:e10531. [PMID: 20479880 PMCID: PMC2866533 DOI: 10.1371/journal.pone.0010531] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/13/2010] [Indexed: 01/07/2023] Open
Abstract
An open chromatin architecture devoid of compact chromatin is thought to be associated with pluripotency in embryonic stem cells. Establishing this distinct epigenetic state may also be required for somatic cell reprogramming. However, there has been little direct examination of global structural domains of chromatin during the founding and loss of pluripotency that occurs in preimplantation mouse development. Here, we used electron spectroscopic imaging to examine large-scale chromatin structural changes during the transition from one-cell to early postimplantation stage embryos. In one-cell embryos chromatin was extensively dispersed with no noticeable accumulation at the nuclear envelope. Major changes were observed from one-cell to two-cell stage embryos, where chromatin became confined to discrete blocks of compaction and with an increased concentration at the nuclear envelope. In eight-cell embryos and pluripotent epiblast cells, chromatin was primarily distributed as an extended meshwork of uncompacted fibres and was indistinguishable from chromatin organization in embryonic stem cells. In contrast, lineage-committed trophectoderm and primitive endoderm cells, and the stem cell lines derived from these tissues, displayed higher levels of chromatin compaction, suggesting an association between developmental potential and chromatin organisation. We examined this association in vivo and found that deletion of Oct4, a factor required for pluripotency, caused the formation of large blocks of compact chromatin in putative epiblast cells. Together, these studies show that an open chromatin architecture is established in the embryonic lineages during development and is sufficient to distinguish pluripotent cells from tissue-restricted progenitor cells.
Collapse
Affiliation(s)
- Kashif Ahmed
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hesam Dehghani
- Department of Physiology, School of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Peter Rugg-Gunn
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eden Fussner
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janet Rossant
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David P. Bazett-Jones
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
45
|
He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q, Zhang Y, Xu K, Ni M, Lupien M, Mieczkowski P, Lieb JD, Zhao K, Brown M, Liu XS. Nucleosome dynamics define transcriptional enhancers. Nat Genet 2010; 42:343-7. [PMID: 20208536 PMCID: PMC2932437 DOI: 10.1038/ng.545] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/09/2010] [Indexed: 12/16/2022]
Abstract
Chromatin plays a central role in eukaryotic gene regulation. We performed genome-wide mapping of epigenetically marked nucleosomes to determine their position both near transcription start sites and at distal regulatory elements, including enhancers. In prostate cancer cells, where androgen receptor binds primarily to enhancers, we found that androgen treatment dismisses a central nucleosome present at androgen receptor binding sites that is flanked by a pair of marked nucleosomes. A new quantitative model built on the behavior of such nucleosome pairs correctly identified regions bound by the regulators of the immediate androgen response, including androgen receptor and FOXA1. More importantly, this model also correctly predicted previously unidentified binding sites for other transcription factors present after prolonged androgen stimulation, including OCT1 and NKX3-1. Therefore, quantitative modeling of enhancer structure provides a powerful predictive method to infer the identity of transcription factors involved in cellular responses to specific stimuli.
Collapse
Affiliation(s)
- Housheng Hansen He
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Hyunjin Shin
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Shannon T Bailey
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gang Wei
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Qianben Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Yong Zhang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Kexin Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Min Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Mathieu Lupien
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Mieczkowski
- Department of Biology, Carolina Center for the Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280
| | - Jason D Lieb
- Department of Biology, Carolina Center for the Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Xiaole Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
46
|
Tolstorukov MY, Kharchenko PV, Park PJ. Analysis of primary structure of chromatin with next-generation sequencing. Epigenomics 2010; 2:187-197. [PMID: 22022339 DOI: 10.2217/epi.09.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The recent development of next-generation sequencing technology has enabled significant progress in chromatin structure analysis. Here, we review the experimental and bioinformatic approaches to studying nucleosome positioning and histone modification profiles on a genome scale using this technology. These studies advanced our knowledge of the nucleosome positioning patterns of both epigenetically modified and bulk nucleosomes and elucidated the role of such patterns in regulation of gene expression. The identification and analysis of large sets of nucleosome-bound DNA sequences allowed better understanding of the rules that govern nucleosome positioning in organisms of various complexity. We also discuss the existing challenges and prospects of using next-generation sequencing for nucleosome positioning analysis and outline the importance of such studies for the entire chromatin structure field.
Collapse
Affiliation(s)
- Michael Y Tolstorukov
- Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St., Boston, MA 02115 USA
| | | | | |
Collapse
|
47
|
Buranapramest M, Chakravarti D. Chromatin remodeling and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:193-234. [PMID: 20374705 DOI: 10.1016/s1877-1173(09)87006-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear receptors (NRs) constitute a large family of ligand-dependent transcription factors that play key roles in development, differentiation, metabolism, and homeostasis. They participate in these processes by coordinating and regulating the expression of their target genes. The eukaryotic genome is packaged as chromatin and is generally inhibitory to the process of transcription. NRs overcome this barrier by recruiting two classes of chromatin remodelers, histone modifying enzymes and ATP-dependent chromatin remodelers. These remodelers alter chromatin structure at target gene promoters by posttranslational modification of histone tails and by disrupting DNA-histone interactions, respectively. In the presence of ligand, NRs promote transcription by recruiting remodeling enzymes that increase promoter accessibility to the basal transcription machinery. In the absence of ligand a subset of NRs recruit remodelers that establish and maintain a closed chromatin environment, to ensure efficient gene silencing. This chapter reviews the chromatin remodeling enzymes associated with NR gene control, with an emphasis on the mechanisms of NR-mediated repression.
Collapse
Affiliation(s)
- Manop Buranapramest
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
48
|
Vicent GP, Zaurin R, Ballaré C, Nacht AS, Beato M. Erk signaling and chromatin remodeling in MMTV promoter activation by progestins. NUCLEAR RECEPTOR SIGNALING 2009; 7:e008. [PMID: 20087429 PMCID: PMC2807634 DOI: 10.1621/nrs.07008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/27/2009] [Indexed: 12/05/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by progestins. The progesterone receptor (PR) binds to a cluster of five hormone responsive elements (HREs) and activates the promoter by synergistic interactions with the ubiquitous transcription factor, nuclear factor 1 (NF1). Progesterone treatment of cells in culture leads to activation of the Src/Ras/Erk/Msk1 cascade. Selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV activation. A complex of activated PR, Erk and Msk1 is recruited to promoter after 5 min of hormone treatment and phosphorylates histone H3 at serine 10. This modification promotes the displacement of HP1γ and subsequent chromatin remodeling. Progestin treatment leads to the recruitment of the BAF complex, which selectively displaces histones H2A and H2B from the nucleosome containing the HREs. The acetyltransferase PCAF is also required for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark, which interacts with Brg1 and Brm, anchoring the BAF complex to chromatin. In nucleosomes assembled on either MMTV or mouse rDNA promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV, but not from the rDNA nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on DNA sequence. The resultant H3/H4 tetramer particle is then the substrate for subsequent events in induction. Thus, initial activation of the MMTV promoter requires activation of several kinases and PCAF leading to phosphoacetylation of H3, and recruitment of BAF with subsequent removal of H2A/H2B.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
49
|
Blanquet PR, Mariani J, Fournier B. Temporal assessment of histone H3 phospho-acetylation and casein kinase 2 activation in dentate gyrus from ischemic rats. Brain Res 2009; 1302:10-20. [PMID: 19765564 DOI: 10.1016/j.brainres.2009.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/31/2009] [Accepted: 09/08/2009] [Indexed: 11/30/2022]
Abstract
Hippocampal dentate gyrus possesses an exceptional capacity of adaptation to ischemic insults. Recently, using a transient global ischemic model in the adult rat, we identified a neuroprotective signalling cascade in the dentate gyrus involving calcium/calmodulin-dependent protein kinase IV (CaMKIV), cyclic AMP response element (CRE)-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), a major regulator of survival. We have shown that intracerebroventricular injections of anti-BDNF and anti-CREB are sufficient to cause substantial tissular damages and apoptotic deaths in late periods (48-72 h) after ischemia. Herein, we provide immunohistochemical and biochemical evidence that antibody-induced impairment of the protective CaMKIV/CREB/BDNF pathway induces an apparent duality of response in the dentate gyrus. The experimental protocol is performed as follows: (a) rats are anesthetized and vertebral arteries are occluded by electrocauterization; (b) on the following day, transient global ischemia is produced by occlusion of carotid arteries for 25 min; (c) finally, rats are infused with the pharmacologic agents into the left cerebral ventricle and then perfusion-fixed at different time points after ischemia for immunohistochemical and immunoblotting analyses. After infusion with anti-CaMKIV, phosphorylation of mitogen-activated protein kinases (MAPK) MKK3, MKK6 and p38 and phospho-acetylation of histone H3 occur at 6 h after ischemia without presence of any caspase-9 activation and cellular injuries. In contrast, infusion of anti-BDNF or anti-CREB surprisingly results in a remarkable stimulation of casein kinase 2 (CK2) and caspase-9 activities at 48-72 h post-insult. This is accompanied by the disappearance of phosphorylation of MKK(3/6) and p38 and phospho-acetylation of histone H3. These results suggest that: (1) activation of a MKK(3/6)/p38/H3 cascade at early periods post-ischemia may be capable of causing a short transient protective effect in the dentate gyrus; (2) CK2 might be implicated in inhibition of activity of molecules such as MKK(3/6), p38 and deacetylases at late periods post-insult, thereby promoting injuries and cell deaths in the dentate cell layer.
Collapse
Affiliation(s)
- P R Blanquet
- Laboratoire Développement et Vieillissement du Système Nerveux, UMR 7102 CNRS-UPMC (Neurobiologie des Processus Adaptatifs), Université P & M Curie, 9 Quai Saint-Bernard, Bâtiment B, 4(e)Etage, Boîte 14, 75005, Paris, France.
| | | | | |
Collapse
|
50
|
MacArthur S, Li XY, Li J, Brown JB, Chu HC, Zeng L, Grondona BP, Hechmer A, Simirenko L, Keränen SVE, Knowles DW, Stapleton M, Bickel P, Biggin MD, Eisen MB. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol 2009; 10:R80. [PMID: 19627575 PMCID: PMC2728534 DOI: 10.1186/gb-2009-10-7-r80] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/15/2009] [Accepted: 07/23/2009] [Indexed: 01/05/2023] Open
Abstract
Distinct developmental fates in Drosophila melanogaster are specified by quantitative differences in transcription factor occupancy on a common set of bound regions. Background We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. Results Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. Conclusions It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.
Collapse
Affiliation(s)
- Stewart MacArthur
- Genomics Division, Lawrence Berkeley National Laboratory, Cyclotron Road MS 84-181, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|