1
|
Ci D, Liu Y, Wang L, Zhu R, Chen Y, Bai G, Xu Z, Zhou H, Zhou X, Fan LM, Qian W. ALBA3 maintains male fertility under heat stress in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1413-1427. [PMID: 39822063 DOI: 10.1111/jipb.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis. ALBA3 is highly expressed in pollen, and ALBA3 is localized in the cytoplasm of both sperm and vegetative cells. Mutants lacking functional ALBA3 exhibit hypersensitivity to HS, with reduced silique length and fertility due to defects in pollen germination, pollination, pollen tube growth, and fertilization under HS. ALBA3 binds and stabilizes a subset of messenger RNAs (mRNAs) essential for pollen function, thereby protecting male fertility. Two residues in the Alba domain, K46 and L90, are critical for ALBA3's ability to bind and stabilize mRNAs and are necessary for its proper function. Interestingly, the loss of rice ALBA3 also leads to severe pollen abortion and male sterility under HS, highlighting the conserved role of ALBA3 in protecting male fertility across plant species. This study uncovers a conserved mechanism by which ALBA3 safeguards male fertility during HS by stabilizing specific mRNAs crucial for pollen function.
Collapse
Affiliation(s)
- Dong Ci
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Yi Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lishuan Wang
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Ruixian Zhu
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Yong Chen
- Beijing Life Science Academy, Beijing, 102299, China
| | - Ge Bai
- Beijing Life Science Academy, Beijing, 102299, China
| | - Ziyan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Beijing Life Science Academy, Beijing, 102299, China
| |
Collapse
|
2
|
Zadow ME, MacRaild CA, Creek DJ, Wilson DW. Alba protein-mediated gene and protein regulation in protozoan parasites. Int J Parasitol 2025:S0020-7519(25)00076-1. [PMID: 40246164 DOI: 10.1016/j.ijpara.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The success of protozoan parasites relies heavily on regulation of gene and protein expression to facilitate their persistence in harsh and often changing environments. These parasites display biology that is highly divergent from model eukaryotes, unfortunately leaving our understanding of these parasites' critical regulatory mechanisms incomplete. Alba proteins, a highly diverse group of DNA/RNA-binding proteins, are found across all domains of life and it has become increasingly apparent that these proteins play key regulatory roles in many protozoan parasite species including Plasmodium, Leishmania, Toxoplasma, and Trypanosoma. This review focusses on a subset of clinically relevant protozoan parasites and highlights the key biological processes known to have Alba protein involvement in these organisms including parasite development, survival, and virulence. In order to gain greater insight into these proteins, we also undertook a bioinformatic exploration of their protein sequences, leading us to identify previously unreported C-terminal Alba domain motifs and propose annotations for several currently unannotated protozoan Alba-like proteins. This collation of information allows us to observe common themes in Alba protein function across this group of parasites while also identifying areas of opportunity for further study.
Collapse
Affiliation(s)
- Meghan E Zadow
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia.
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia; Burnet Institute, Melbourne 3004 Victoria, Australia.
| |
Collapse
|
3
|
Matiz-González JM, Pardo-Rodriguez D, Puerta CJ, Requena JM, Nocua PA, Cuervo C. Exploring the functionality and conservation of Alba proteins in Trypanosoma cruzi: A focus on biological diversity and RNA binding ability. Int J Biol Macromol 2024; 272:132705. [PMID: 38810850 DOI: 10.1016/j.ijbiomac.2024.132705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, as well as a trypanosomatid parasite with a complex biological cycle that requires precise mechanisms for regulating gene expression. In Trypanosomatidae, gene regulation occurs mainly at the mRNA level through the recognition of cis elements by RNA-binding proteins (RBPs). Alba family members are ubiquitous DNA/RNA-binding proteins with representatives in trypanosomatid parasites functionally related to gene expression regulation. Although T. cruzi possesses two groups of Alba proteins (Alba1/2 and Alba30/40), their functional role remains poorly understood. Thus, herein, a characterization of T. cruzi Alba (TcAlba) proteins was undertaken. Physicochemical, structural, and phylogenetic analysis of TcAlba showed features compatible with RBPs, such as hydrophilicity, RBP domains/motifs, and evolutionary conservation of the Alba-domain, mainly regarding other trypanosomatid Alba. However, in silico RNA interaction analysis of T. cruzi Alba proteins showed that TcAlba30/40 proteins, but not TcAlba1/2, would directly interact with the assayed RNA molecules, suggesting that these two groups of TcAlba proteins have different targets. Given the marked differences existing between both T. cruzi Alba groups (TcAlba1/2 and TcAlba30/40), regarding sequence divergence, RNA binding potential, and life-cycle expression patterns, we suggest that they would be involved in different biological processes.
Collapse
Affiliation(s)
- J Manuel Matiz-González
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Grupo de Fitoquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia; Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paola A Nocua
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia.
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia.
| |
Collapse
|
4
|
Min H, Liang X, Wang C, Qin J, Boonhok R, Muneer A, Brashear AM, Li X, Minns AM, Adapa SR, Jiang RHY, Ning G, Cao Y, Lindner SE, Miao J, Cui L. The DEAD-box RNA helicase PfDOZI imposes opposing actions on RNA metabolism in Plasmodium falciparum. Nat Commun 2024; 15:3747. [PMID: 38702310 PMCID: PMC11068891 DOI: 10.1038/s41467-024-48140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.
Collapse
Affiliation(s)
- Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Azhar Muneer
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Awtum M Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Gang Ning
- Electron Microscopy Facility, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Nag S, Banerjee C, Goyal M, Siddiqui AA, Saha D, Mazumder S, Debsharma S, Pramanik S, Saha SJ, De R, Bandyopadhyay U. Plasmodium falciparum Alba6 exhibits DNase activity and participates in stress response. iScience 2024; 27:109467. [PMID: 38558939 PMCID: PMC10981135 DOI: 10.1016/j.isci.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Alba domain proteins, owing to their functional plasticity, play a significant role in organisms. Here, we report an intrinsic DNase activity of PfAlba6 from Plasmodium falciparum, an etiological agent responsible for human malignant malaria. We identified that tyrosine28 plays a critical role in the Mg2+ driven 5'-3' DNase activity of PfAlba6. PfAlba6 cleaves both dsDNA as well as ssDNA. We also characterized PfAlba6-DNA interaction and observed concentration-dependent oligomerization in the presence of DNA, which is evident from size exclusion chromatography and single molecule AFM-imaging. PfAlba6 mRNA expression level is up-regulated several folds following heat stress and treatment with artemisinin, indicating a possible role in stress response. PfAlba6 has no human orthologs and is expressed in all intra-erythrocytic stages; thus, this protein can potentially be a new anti-malarial drug target.
Collapse
Affiliation(s)
- Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Manish Goyal
- Department of Molecular & Cell Biology, School of Dental Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal 700135, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal 700091, India
| |
Collapse
|
6
|
Cayla M, Spanos C, McWilliam K, Waskett E, Rappsilber J, Matthews KR. Differentiation granules, a dynamic regulator of T. brucei development. Nat Commun 2024; 15:2972. [PMID: 38582942 PMCID: PMC10998879 DOI: 10.1038/s41467-024-47309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Adaptation to a change of environment is an essential process for survival, in particular for parasitic organisms exposed to a wide range of hosts. Such adaptations include rapid control of gene expression through the formation of membraneless organelles composed of poly-A RNA and proteins. The African trypanosome Trypanosoma brucei is exquisitely sensitive to well-defined environmental stimuli that trigger cellular adaptations through differentiation events that characterise its complex life cycle. The parasite has been shown to form stress granules in vitro, and it has been proposed that such a stress response could have been repurposed to enable differentiation and facilitate parasite transmission. Therefore, we explored the composition and positional dynamics of membraneless granules formed in response to starvation stress and during differentiation in the mammalian host between the replicative slender and transmission-adapted stumpy forms. We find that T. brucei differentiation does not reflect the default response to environmental stress. Instead, the developmental response of the parasites involves a specific and programmed hierarchy of membraneless granule assembly, with distinct components and regulation by protein kinases such as TbDYRK, that are required for the parasite to successfully progress through its life cycle development and prepare for transmission.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kirsty McWilliam
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eliza Waskett
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Girasol MJ, Briggs EM, Marques CA, Batista JM, Beraldi D, Burchmore R, Lemgruber L, McCulloch R. Immunoprecipitation of RNA-DNA hybrid interacting proteins in Trypanosoma brucei reveals conserved and novel activities, including in the control of surface antigen expression needed for immune evasion by antigenic variation. Nucleic Acids Res 2023; 51:11123-11141. [PMID: 37843098 PMCID: PMC10639054 DOI: 10.1093/nar/gkad836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
RNA-DNA hybrids are epigenetic features of genomes that provide a diverse and growing range of activities. Understanding of these functions has been informed by characterising the proteins that interact with the hybrids, but all such analyses have so far focused on mammals, meaning it is unclear if a similar spectrum of RNA-DNA hybrid interactors is found in other eukaryotes. The African trypanosome is a single-cell eukaryotic parasite of the Discoba grouping and displays substantial divergence in several aspects of core biology from its mammalian host. Here, we show that DNA-RNA hybrid immunoprecipitation coupled with mass spectrometry recovers 602 putative interactors in T. brucei mammal- and insect-infective cells, some providing activities also found in mammals and some lineage-specific. We demonstrate that loss of three factors, two putative helicases and a RAD51 paralogue, alters T. brucei nuclear RNA-DNA hybrid and DNA damage levels. Moreover, loss of each factor affects the operation of the parasite immune survival mechanism of antigenic variation. Thus, our work reveals the broad range of activities contributed by RNA-DNA hybrids to T. brucei biology, including new functions in host immune evasion as well as activities likely fundamental to eukaryotic genome function.
Collapse
Affiliation(s)
- Mark J Girasol
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
- University of the Philippines Manila, College of Medicine, Manila, Philippines
| | - Emma M Briggs
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
| | - Catarina A Marques
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - José M Batista
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Dario Beraldi
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Richard Burchmore
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Leandro Lemgruber
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Richard McCulloch
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| |
Collapse
|
8
|
Ashby EC, Havens JL, Rollosson LM, Hardin J, Schulz D. Chemical Inhibition of Bromodomain Proteins in Insect-Stage African Trypanosomes Perturbs Silencing of the Variant Surface Glycoprotein Repertoire and Results in Widespread Changes in the Transcriptome. Microbiol Spectr 2023; 11:e0014723. [PMID: 37097159 PMCID: PMC10269879 DOI: 10.1128/spectrum.00147-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
The eukaryotic protozoan parasite Trypanosoma brucei is transmitted by the tsetse fly to both humans and animals, where it causes a fatal disease called African trypanosomiasis. While the parasite lacks canonical DNA sequence-specific transcription factors, it does possess histones, histone modifications, and proteins that write, erase, and read histone marks. Chemical inhibition of chromatin-interacting bromodomain proteins has previously been shown to perturb bloodstream specific trypanosome processes, including silencing of the variant surface glycoprotein (VSG) genes and immune evasion. Transcriptomic changes that occur in bromodomain-inhibited bloodstream parasites mirror many of the changes that occur as parasites developmentally progress from the bloodstream to the insect stage. We performed transcriptome sequencing (RNA-seq) time courses to determine the effects of chemical bromodomain inhibition in insect-stage parasites using the compound I-BET151. We found that treatment with I-BET151 causes large changes in the transcriptome of insect-stage parasites and also perturbs silencing of VSG genes. The transcriptomes of bromodomain-inhibited parasites share some features with early metacyclic-stage parasites in the fly salivary gland, implicating bromodomain proteins as important for regulating transcript levels for developmentally relevant genes. However, the downregulation of surface procyclin protein that typically accompanies developmental progression is absent in bromodomain-inhibited insect-stage parasites. We conclude that chemical modulation of bromodomain proteins causes widespread transcriptomic changes in multiple trypanosome life cycle stages. Understanding the gene-regulatory processes that facilitate transcriptome remodeling in this highly diverged eukaryote may shed light on how these mechanisms evolved. IMPORTANCE The disease African trypanosomiasis imposes a severe human and economic burden for communities in sub-Saharan Africa. The parasite that causes the disease is transmitted to the bloodstream of a human or ungulate via the tsetse fly. Because the environments of the fly and the bloodstream differ, the parasite modulates the expression of its genes to accommodate two different lifestyles in these disparate niches. Perturbation of bromodomain proteins that interact with histone proteins around which DNA is wrapped (chromatin) causes profound changes in gene expression in bloodstream-stage parasites. This paper reports that gene expression is also affected by chemical bromodomain inhibition in insect-stage parasites but that the genes affected differ depending on life cycle stage. Because trypanosomes diverged early from model eukaryotes, an understanding of how trypanosomes regulate gene expression may lend insight into how gene-regulatory mechanisms evolved. This could also be leveraged to generate new therapeutic strategies.
Collapse
Affiliation(s)
- Ethan C. Ashby
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | | | | | - Johanna Hardin
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
9
|
RNA-seq reveals that overexpression of TcUBP1 switches the gene expression pattern towards that of the infective form of Trypanosoma cruzi. J Biol Chem 2023; 299:104623. [PMID: 36935010 PMCID: PMC10141520 DOI: 10.1016/j.jbc.2023.104623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Trypanosomes regulate gene expression mainly by using post-transcriptional mechanisms. Key factors responsible for carrying out this regulation are RNA-binding proteins (RBPs), affecting subcellular localization, translation, and/or transcript stability. Trypanosoma cruzi U-rich RBP 1 (TcUBP1) is a small protein that modulates the expression of several surface glycoproteins of the trypomastigote infective stage of the parasite. Its mRNA targets are known but the impact of its overexpression at the transcriptome level in the insect-dwelling epimastigote cells has not yet been investigated. Thus, in the present study, by using a tetracycline-inducible system, we generated a population of TcUBP1-overexpressing parasites and analyzed its effect by RNA-seq methodology. This allowed us to identify 793 up- and 371 down-regulated genes with respect to the wild-type control sample. Among the up-regulated genes, it was possible to identify members coding for the TcS superfamily, MASP, MUCI/II, and protein kinases, whereas among the down-regulated transcripts, we found mainly genes coding for ribosomal, mitochondrial, and synthetic pathway proteins. RNA-seq comparison with two previously published datasets revealed that the expression profile of this TcUBP1-overexpressing replicative epimastigote form resembles the transition to the infective metacyclic trypomastigote stage. We identified novel cis-regulatory elements in the 3'-untranslated region of the affected transcripts and confirmed that UBP1m -a signature TcUBP1 binding element previously characterized in our lab- is enriched in the list of stabilized genes. We can conclude that the overall effect of TcUBP1 overexpression on the epimastigote transcriptome is mainly the stabilization of mRNAs coding for proteins that are important for parasite infection.
Collapse
|
10
|
Oliveira C, Holetz FB, Alves LR, Ávila AR. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens 2022; 12:pathogens12010032. [PMID: 36678380 PMCID: PMC9865030 DOI: 10.3390/pathogens12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.
Collapse
Affiliation(s)
- Camila Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Centre de Recherche CERVO, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Fabíola Barbieri Holetz
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center, University Laval, Québec City, QC G1V 4G2, Canada
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Correspondence: ; Tel.: +55-41-33163230
| |
Collapse
|
11
|
Inoue AH, Domingues PF, Serpeloni M, Hiraiwa PM, Vidal NM, Butterfield ER, Del Pino RC, Ludwig A, Boehm C, Field MC, Ávila AR. Proteomics Uncovers Novel Components of an Interactive Protein Network Supporting RNA Export in Trypanosomes. Mol Cell Proteomics 2022; 21:100208. [PMID: 35091090 PMCID: PMC8938319 DOI: 10.1016/j.mcpro.2022.100208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022] Open
Abstract
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
Collapse
Affiliation(s)
| | | | | | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Adriana Ludwig
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK; Biology Centre, University of South Bohemia, České Budějovice, Czech Republic.
| | | |
Collapse
|
12
|
Hutchinson S, Foulon S, Crouzols A, Menafra R, Rotureau B, Griffiths AD, Bastin P. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands. PLoS Pathog 2021; 17:e1009904. [PMID: 34543350 PMCID: PMC8509897 DOI: 10.1371/journal.ppat.1009904] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/12/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
The long and complex Trypanosoma brucei development in the tsetse fly vector culminates when parasites gain mammalian infectivity in the salivary glands. A key step in this process is the establishment of monoallelic variant surface glycoprotein (VSG) expression and the formation of the VSG coat. The establishment of VSG monoallelic expression is complex and poorly understood, due to the multiple parasite stages present in the salivary glands. Therefore, we sought to further our understanding of this phenomenon by performing single-cell RNA-sequencing (scRNA-seq) on these trypanosome populations. We were able to capture the developmental program of trypanosomes in the salivary glands, identifying populations of epimastigote, gamete, pre-metacyclic and metacyclic cells. Our results show that parasite metabolism is dramatically remodeled during development in the salivary glands, with a shift in transcript abundance from tricarboxylic acid metabolism to glycolytic metabolism. Analysis of VSG gene expression in pre-metacyclic and metacyclic cells revealed a dynamic VSG gene activation program. Strikingly, we found that pre-metacyclic cells contain transcripts from multiple VSG genes, which resolves to singular VSG gene expression in mature metacyclic cells. Single molecule RNA fluorescence in situ hybridisation (smRNA-FISH) of VSG gene expression following in vitro metacyclogenesis confirmed this finding. Our data demonstrate that multiple VSG genes are transcribed before a single gene is chosen. We propose a transcriptional race model governs the initiation of monoallelic expression. African trypanosomes are parasitic protists which cause endemic disease in sub-Saharan Africa. To evade mammalian immune responses the parasite has developed a system of antigenic variation, where the surface of the cell is covered in a tightly packed coat of variant surface glycoproteins (VSGs). Each cell expresses only one variant surface glycoprotein at a time, and this is periodically switched to evade new antibodies. The process of singular gene expression is termed monoallelic expression and this has two components, establishment and maintenance, i.e. how a single gene is selected for expression and how its singular expression is maintained throughout successive generations. The establishment of monoallelic VSG gene expression occurs in the salivary gland of the tsetse fly vector, although this process is not well understood. We used single cell gene expression profiling applied to thousands of single cells in the salivary gland of the fly. We show that in order to select a single gene, trypanosomes initially transcribe multiple VSGs before a single gene is selected for high-level expression. We propose a model where this process is driven by a race to accumulate transcription factors at a single VSG gene.
Collapse
Affiliation(s)
- Sebastian Hutchinson
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
- * E-mail:
| | - Sophie Foulon
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Aline Crouzols
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| | - Roberta Menafra
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| | - Andrew D. Griffiths
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Gao J, Xiao C, Liao S, Tu X. Crystal structure of TbAlba1 from Trypanosoma brucei. J Struct Biol 2021; 213:107751. [PMID: 34107324 DOI: 10.1016/j.jsb.2021.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
Alba (Acetylation lowers binding affinity) domain is a small, dimeric nucleic acid-binding domain, which is widely distributed in archaea and numbers of eukaryotes. Alba domain containing proteins have been reported to be involved in many cellular processes, such as regulation of translation, maintaining genome stability, regulation of RNA processing and so on. In Trypanosoma brucei (T. brucei), there are four Alba proteins identified, which are named TbAlba1 to TbAlba4. However, the structure and function of TbAlba proteins are still unknown. Here, we solved the crystal structure of TbAlba1 to a resolution of 2.46 Å. TbAlba1 adopts a similar Alba-fold, which comprises of four β-strands (β1-β4) and three long α-helices (α1-α3). Furthermore, TbAlba1 displays some structural features quite different from other Alba proteins. These differences may imply the diverse biological roles of Alba family members.
Collapse
Affiliation(s)
- Jie Gao
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China; Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, PR China
| | - Cong Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
14
|
Melo do Nascimento L, Egler F, Arnold K, Papavasiliou N, Clayton C, Erben E. Functional insights from a surface antigen mRNA-bound proteome. eLife 2021; 10:e68136. [PMID: 33783358 PMCID: PMC8051951 DOI: 10.7554/elife.68136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 01/13/2023] Open
Abstract
Trypanosoma brucei is the causative agent of human sleeping sickness. The parasites' variant surface glycoprotein (VSG) enables them to evade adaptive immunity via antigenic variation. VSG comprises 10% of total cell protein and the high stability of VSG mRNA is essential for trypanosome survival. To determine how VSG mRNA stability is maintained, we used mRNA affinity purification to identify all its associated proteins. CFB2 (cyclin F-box protein 2), an unconventional RNA-binding protein with an F-box domain, was specifically enriched with VSG mRNA. We demonstrate that CFB2 is essential for VSG mRNA stability, describe cis acting elements within the VSG 3'-untranslated region that regulate the interaction, identify trans-acting factors that are present in the VSG messenger ribonucleoprotein particle, and mechanistically explain how CFB2 stabilizes the mRNA of this key pathogenicity factor. Beyond T. brucei, the mRNP purification approach has the potential to supply detailed biological insight into metabolism of relatively abundant mRNAs in any eukaryote.
Collapse
Affiliation(s)
| | - Franziska Egler
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Katharina Arnold
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Nina Papavasiliou
- Division of Immune Diversity, Deutsche Krebsforschungszentrum (DKFZ)HeidelbergGermany
| | - Christine Clayton
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Esteban Erben
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
- Division of Immune Diversity, Deutsche Krebsforschungszentrum (DKFZ)HeidelbergGermany
| |
Collapse
|
15
|
Náprstková A, Malínská K, Záveská Drábková L, Billey E, Náprstková D, Sýkorová E, Bousquet-Antonelli C, Honys D. Characterization of ALBA Family Expression and Localization in Arabidopsis thaliana Generative Organs. Int J Mol Sci 2021; 22:1652. [PMID: 33562109 PMCID: PMC7914821 DOI: 10.3390/ijms22041652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
ALBA DNA/RNA-binding proteins form an ancient family, which in eukaryotes diversified into two Rpp25-like and Rpp20-like subfamilies. In most studied model organisms, their function remains unclear, but they are usually associated with RNA metabolism, mRNA translatability and stress response. In plants, the enriched number of ALBA family members remains poorly understood. Here, we studied ALBA dynamics during reproductive development in Arabidopsis at the levels of gene expression and protein localization, both under standard conditions and following heat stress. In generative tissues, ALBA proteins showed the strongest signal in mature pollen where they localized predominantly in cytoplasmic foci, particularly in regions surrounding the vegetative nucleus and sperm cells. Finally, we demonstrated the involvement of two Rpp25-like subfamily members ALBA4 and ALBA6 in RNA metabolism in mature pollen supported by their co-localization with poly(A)-binding protein 3 (PABP3). Collectively, we demonstrated the engagement of ALBA proteins in male reproductive development and the heat stress response, highlighting the involvement of ALBA4 and ALBA6 in RNA metabolism, storage and/or translational control in pollen upon heat stress. Such dynamic re-localization of ALBA proteins in a controlled, developmentally and environmentally regulated manner, likely reflects not only their redundancy but also their possible functional diversification in plants.
Collapse
Affiliation(s)
- Alena Náprstková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| | - Kateřina Malínská
- Imaging Facility, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| | - Elodie Billey
- CNRS LGDP-UMR5096, 58 Av. Paul Alduy, 66860 Perpignan, France; (E.B.); (C.B.-A.)
- LGDP-UMR5096, Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | - Dagmar Náprstková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| | - Eva Sýkorová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská, 612 00 Brno, Czech Republic;
| | - Cécile Bousquet-Antonelli
- CNRS LGDP-UMR5096, 58 Av. Paul Alduy, 66860 Perpignan, France; (E.B.); (C.B.-A.)
- LGDP-UMR5096, Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| |
Collapse
|
16
|
Bevkal S, Naguleswaran A, Rehmann R, Kaiser M, Heller M, Roditi I. An Alba-domain protein required for proteome remodelling during trypanosome differentiation and host transition. PLoS Pathog 2021; 17:e1009239. [PMID: 33493187 PMCID: PMC7861527 DOI: 10.1371/journal.ppat.1009239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
The transition between hosts is a challenge for digenetic parasites as it is unpredictable. For Trypanosoma brucei subspecies, which are disseminated by tsetse flies, adaptation to the new host requires differentiation of stumpy forms picked up from mammals to procyclic forms in the fly midgut. Here we show that the Alba-domain protein Alba3 is not essential for mammalian slender forms, nor is it required for differentiation of slender to stumpy forms in culture or in mice. It is crucial, however, for the development of T. brucei procyclic forms during the host transition. While steady state levels of mRNAs in differentiating cells are barely affected by the loss of Alba3, there are major repercussions for the proteome. Mechanistically, Alba3 aids differentiation by rapidly releasing stumpy forms from translational repression and stimulating polysome formation. In its absence, parasites fail to remodel their proteome appropriately, lack components of the mitochondrial respiratory chain and show reduced infection of tsetse. Interestingly, Alba3 and the closely related Alba4 are functionally redundant in slender forms, but Alba4 cannot compensate for the lack of Alba3 during differentiation from the stumpy to the procyclic form. We postulate that Alba-domain proteins play similar roles in regulating translation in other protozoan parasites, in particular during life-cycle and host transitions. Trypanosoma brucei is a unicellular eukaryotic parasite that is responsible for African trypanosomiasis. The parasite needs two hosts, mammals and tsetse flies, in order to complete its life cycle. Throughout its developmental cycle, T. brucei encounters diverse environments to which it has to adapt in order to maintain its transmission and infectivity. Successful adaptation to the new environment and transition to different life-cycle stages are the general challenges faced by many digenetic parasites. In this study we show that the Alba-domain protein Alba3 is essential for differentiation of the mammalian stumpy form (transition form) to the procyclic form in the tsetse host. An Alba3 deletion mutant infects mice and shows characteristic waves of parasitaemia, but is severely compromised in its ability to infect tsetse flies. Stumpy forms are translationally repressed, but are poised to resume protein synthesis during differentiation. We show that Alba3 is key to efficient escape from translation repression; in its absence, there is a delay in the formation of polysomes and resumption of protein synthesis. This impacts the formation of procyclic-specific mitochondrial respiratory complex proteins as well as the repression of some bloodstream-specific proteins. This is the first time that a single protein has been shown to have a major influence on translation as an adaptive response to changing hosts. It is also the first time that a mechanism has been established for Alba-domain proteins in parasites.
Collapse
Affiliation(s)
- Shubha Bevkal
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | | | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Marcel Kaiser
- Department of Medical and Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Cayla M, Matthews KR, Ivens AC. A global analysis of low-complexity regions in the Trypanosoma brucei proteome reveals enrichment in the C-terminus of nucleic acid binding proteins providing potential targets of phosphorylation. Wellcome Open Res 2020; 5:219. [PMID: 33274300 PMCID: PMC7682498 DOI: 10.12688/wellcomeopenres.16286.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Low-complexity regions (LCRs) on proteins have attracted increasing attention recently due to their role in the assembly of membraneless organelles or granules by liquid-liquid phase separation. Several examples of such granules have been shown to sequester RNA and proteins in an inactive state, providing an important mechanism for dynamic post-transcriptional gene regulation. In trypanosome parasites, post-transcriptional control overwhelmingly dominates gene regulation due to the organisation of their genome into polycistronic transcription units. The purpose of the current study was to generate a substantially more comprehensive genome-wide survey of LCRs on trypanosome proteins than currently available . Methods: Using the Shannon's entropy method, provided in the R package 'entropy', we identified LCRs in the proteome of Trypanosoma brucei. Our analysis predicts LCRs and their positional enrichment in distinct protein cohorts and superimposes on this a range of post-translational modifications derived from available experimental datasets. Results: We have identified 8162 LCRs present on 4914 proteins, representing 42% of the proteome, placing Trypanosoma brucei among the eukaryotes with the highest percentage of LCRs . Our results highlight the enrichment of LCRs in the C-terminal region of predicted nucleic acid binding proteins, these acting as favoured sites for potential phosphorylation. Phosphorylation represents 51% of the post-translational modifications present on LCRs compared to 16% on the rest of the proteome. Conclusions: The post-translational modifications of LCRs, and in particular phosphorylation events, could contribute to post-transcriptional gene expression control and the dynamics of protein targeting to membraneless organelles in kinetoplastid parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Alasdair C. Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| |
Collapse
|
18
|
Cayla M, Matthews KR, Ivens AC. A global analysis of low-complexity regions in the Trypanosoma brucei proteome reveals enrichment in the C-terminus of nucleic acid binding proteins providing potential targets of phosphorylation. Wellcome Open Res 2020; 5:219. [PMID: 33274300 PMCID: PMC7682498 DOI: 10.12688/wellcomeopenres.16286.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 03/31/2024] Open
Abstract
Background: Low-complexity regions (LCRs) on proteins have attracted increasing attention recently due to their role in the assembly of membraneless organelles or granules by liquid-liquid phase separation. Several examples of such granules have been shown to sequester RNA and proteins in an inactive state, providing an important mechanism for dynamic post-transcriptional gene regulation. In trypanosome parasites, post-transcriptional control overwhelmingly dominates gene regulation due to the organisation of their genome into polycistronic transcription units. The purpose of the current study was to generate a substantially more comprehensive genome-wide survey of LCRs on trypanosome proteins than currently available . Methods: Using the Shannon's entropy method, provided in the R package 'entropy', we identified LCRs in the proteome of Trypanosoma brucei. Our analysis predicts LCRs and their positional enrichment in distinct protein cohorts and superimposes on this a range of post-translational modifications derived from available experimental datasets. Results: Our results highlight the enrichment of LCRs in the C-terminal region of predicted nucleic acid binding proteins, these acting as favoured sites for potential phosphorylation. Conclusions: The post-translational modifications of LCRs, and in particular the phosphorylation events, could contribute to post-transcriptional gene expression control and the dynamics of protein targeting to membraneless organelles in kinetoplastid parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Alasdair C. Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| |
Collapse
|
19
|
Hyjek‐Składanowska M, Bajczyk M, Gołębiewski M, Nuc P, Kołowerzo‐Lubnau A, Jarmołowski A, Smoliński DJ. Core spliceosomal Sm proteins as constituents of cytoplasmic mRNPs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1155-1173. [PMID: 32369637 PMCID: PMC7540296 DOI: 10.1111/tpj.14792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/15/2023]
Abstract
In recent years, research has increasingly focused on the key role of post-transcriptional regulation of messenger ribonucleoprotein (mRNP) function and turnover. As a result of the complexity and dynamic nature of mRNPs, the full composition of a single mRNP complex remains unrevealed and mRNPs are poorly described in plants. Here we identify canonical Sm proteins as part of the cytoplasmic mRNP complex, indicating their function in the post-transcriptional regulation of gene expression in plants. Sm proteins comprise an evolutionarily ancient family of small RNA-binding proteins involved in pre-mRNA splicing. The latest research indicates that Sm could also impact on mRNA at subsequent stages of its life cycle. In this work we show that in the microsporocyte cytoplasm of Larix decidua, the European larch, Sm proteins accumulate within distinct cytoplasmic bodies, also containing polyadenylated RNA. To date, several types of cytoplasmic bodies involved in the post-transcriptional regulation of gene expression have been described, mainly in animal cells. Their role and molecular composition in plants remain less well established, however. A total of 222 mRNA transcripts have been identified as cytoplasmic partners for Sm proteins. The specific colocalization of these mRNAs with Sm proteins within cytoplasmic bodies has been confirmed via microscopic analysis. The results from this work support the hypothesis, that evolutionarily conserved Sm proteins have been adapted to perform a whole repertoire of functions related to the post-transcriptional regulation of gene expression in Eukaryota. This adaptation presumably enabled them to coordinate the interdependent processes of splicing element assembly, mRNA maturation and processing, and mRNA translation regulation, and its degradation.
Collapse
Affiliation(s)
- Malwina Hyjek‐Składanowska
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
- Present address:
Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology4 Trojdena St.02‐109WarsawPoland
| | - Mateusz Bajczyk
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Marcin Gołębiewski
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
- Department of Plant Physiology and BiotechnologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
| | - Przemysław Nuc
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Agnieszka Kołowerzo‐Lubnau
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
| | - Artur Jarmołowski
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
| |
Collapse
|
20
|
Licon MH, Yates PA. Purine-responsive expression of the Leishmania donovani NT3 purine nucleobase transporter is mediated by a conserved RNA stem-loop. J Biol Chem 2020; 295:8449-8459. [PMID: 32354744 PMCID: PMC7307198 DOI: 10.1074/jbc.ra120.012696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/28/2020] [Indexed: 01/17/2023] Open
Abstract
The ability to modulate gene expression in response to changes in the host environment is essential for survival of the kinetoplastid parasite Leishmania Unlike most eukaryotes, gene expression in kinetoplastids is predominately regulated posttranscriptionally. Consequently, RNA-binding proteins and mRNA-encoded sequence elements serve as primary determinants of gene regulation in these organisms; however, few have defined roles in specific stress response pathways. Leishmania species cannot synthesize purines de novo and must scavenge these essential nutrients from the host. Leishmania have evolved a robust stress response to withstand sustained periods of purine scarcity during their life cycle. The purine nucleobase transporter LdNT3 is among the most substantially up-regulated proteins in purine-starved Leishmania donovani parasites. Here we report that the posttranslational stability of the LdNT3 protein is unchanged in response to purine starvation. Instead, LdNT3 up-regulation is primarily mediated by a 33-nucleotide-long sequence in the LdNT3 mRNA 3' UTR that is predicted to adopt a stem-loop structure. Although this sequence is highly conserved within the mRNAs of orthologous transporters in multiple kinetoplastid species, putative stem-loops from L. donovani and Trypanosoma brucei nucleobase transporter mRNAs were not functionally interchangeable for purine-responsive regulation. Through mutational analysis of the element, we demonstrate that species specificity is attributable to just three variant bases within the predicted loop. Finally, we provide evidence that the abundance of the trans-acting factor that binds the LdNT3 stem-loop in vivo is substantially higher than required for regulation of LdNT3 alone, implying a potential role in regulating other purine-responsive genes.
Collapse
Affiliation(s)
- M Haley Licon
- Department of Molecular Microbiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Phillip A Yates
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
21
|
Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci 2020; 21:ijms21082981. [PMID: 32340274 PMCID: PMC7215931 DOI: 10.3390/ijms21082981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.
Collapse
|
22
|
Romagnoli BAA, Holetz FB, Alves LR, Goldenberg S. RNA Binding Proteins and Gene Expression Regulation in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:56. [PMID: 32154189 PMCID: PMC7045066 DOI: 10.3389/fcimb.2020.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/03/2020] [Indexed: 01/24/2023] Open
Abstract
The regulation of gene expression in trypanosomatids occurs mainly at the post-transcriptional level. In the case of Trypanosoma cruzi, the characterization of messenger ribonucleoprotein (mRNP) particles has allowed the identification of several classes of RNA binding proteins (RBPs), as well as non-canonical RBPs, associated with mRNA molecules. The protein composition of the mRNPs as well as the localization and functionality of the mRNAs depend on their associated proteins. mRNPs can also be organized into larger complexes forming RNA granules, which function as stress granules or P-bodies depending on the associated proteins. The fate of mRNAs in the cell, and consequently the genes expressed, depends on the set of proteins associated with the messenger molecule. These proteins allow the coordinated expression of mRNAs encoding proteins that are related in function, resulting in the formation of post-transcriptional operons. However, the puzzle posed by the combinatorial association of sets of RBPs with mRNAs and how this relates to the expressed genes remain to be elucidated. One important tool in this endeavor is the use of the CRISPR/CAS system to delete genes encoding RBPs, allowing the evaluation of their effect on the formation of mRNP complexes and associated mRNAs in the different compartments of the translation machinery. Accordingly, we recently established this methodology for T. cruzi and deleted the genes encoding RBPs containing zinc finger domains. In this manuscript, we will discuss the data obtained and the potential of the CRISPR/CAS methodology to unveil the role of RBPs in T. cruzi gene expression regulation.
Collapse
Affiliation(s)
- Bruno A A Romagnoli
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Fabiola B Holetz
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Lysangela R Alves
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Samuel Goldenberg
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| |
Collapse
|
23
|
Szöőr B, Silvester E, Matthews KR. A Leap Into the Unknown - Early Events in African Trypanosome Transmission. Trends Parasitol 2020; 36:266-278. [PMID: 32014419 DOI: 10.1016/j.pt.2019.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 12/25/2019] [Indexed: 01/09/2023]
Abstract
African trypanosomes are mainly transmitted by tsetse flies. In recent years there has been good progress in understanding how the parasites prepare for transmission, detect their changed environment through the perception of different environmental cues, and respond by changing their developmental gene expression. In this review, we discuss the different signals and signaling mechanisms used by the parasites to carry out the early events necessary for their establishment in the fly. We also compare Trypanosoma brucei and Trypanosoma congolense, parasites that share a common pathway in the early stages of fly colonization but apparently use different mechanisms to achieve this.
Collapse
Affiliation(s)
- Balázs Szöőr
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| |
Collapse
|
24
|
Chame DF, Souza DDL, Vieira HGS, Tahara EB, Macedo AM, Machado CR, Franco GR. Trypanosoma cruzi RNA-binding protein ALBA30 aggregates into cytoplasmic foci under nutritional stress. Parasitol Res 2020; 119:749-753. [PMID: 31897792 DOI: 10.1007/s00436-019-06554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 11/30/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has a complex life cycle that requires the adaptation to different environments. In the absence of traditional mechanisms for regulation of gene expression, this parasite relies on posttranscriptional control events, which allow the progression of its life cycle in different hosts and stress conditions. In this context, different stress conditions trigger the aggregation of RNA-binding proteins and their target mRNAs into cytoplasmic foci known as RNA granules, which act as RNA-sorting centers. In this study, we have characterized the T. cruzi RNA-binding protein ALBA30 during nutritional stress conditions. Using a recombinant form of TcALBA30 to facilitate its detection (rTcALBA30), we showed that this protein resides in the cytoplasm in normal growth conditions but is recruited into cytoplasmic foci after starvation. Moreover, evaluation of rTcALBA30 in parasites that reached the stationary phase of growth also showed the recruitment of this protein into cytoplasmic foci. Our results indicate that, similar to TbALBA3, TcALBA30 aggregates into stress granules in parasites submitted to nutritional stress.
Collapse
Affiliation(s)
- Daniela Ferreira Chame
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniela De Laet Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Erich Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
25
|
Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet 2019; 15:e1008452. [PMID: 31710597 PMCID: PMC6872171 DOI: 10.1371/journal.pgen.1008452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/21/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied-despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania.
Collapse
Affiliation(s)
- Megan A. Sloan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Karen Brooks
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Thomas D. Otto
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Mandy J. Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - James A. Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Magwanga RO, Kirungu JN, Lu P, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Agong SG, Wang K, Liu F. Knockdown of ghAlba_4 and ghAlba_5 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1292. [PMID: 31681384 PMCID: PMC6804553 DOI: 10.3389/fpls.2019.01292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/17/2019] [Indexed: 05/29/2023]
Abstract
We found 33, 17, and 20 Alba genes in Gossypium hirsutum, Gossypium arboretum, and Gossypium raimondii, respectively. The Alba protein lengths ranged from 62 to 312 aa, the molecular weight (MW) from 7.003 to 34.55 kDa, grand average hydropathy values of -1.012 to 0.609 and isoelectric (pI) values of -3 to 11. Moreover, miRNAs such as gra-miR8770 targeted four genes, gra-miR8752 and gra-miR8666 targeted three genes, and each and gra-miR8657 a, b, c, d, e targeted 10 genes each, while the rests targeted 1 to 2 genes each. Similarly, various cis-regulatory elements were detected with significant roles in enhancing abiotic stress tolerance, such as CBFHV (RYCGAC) with a role in cold stress acclimation among others. Two genes, Gh_D01G0884 and Gh_D01G0922, were found to be highly induced under water deficit and salt stress conditions. Through virus-induced gene silencing (VIGS), the VIGS cotton plants were found to be highly susceptible to both water deficit and salt stresses; the VIGS plants exhibited a significant reduction in root growth, low cell membrane stability (CMS), saturated leaf weight (SLW), chlorophyll content levels, and higher excised leaf water loss (ELWL). Furthermore, the stress-responsive genes and ROS scavenging enzymes were significantly reduced in the VIGS plants compared to either the wild type (WT) and or the positively controlled plants. The VIGS plants registered higher concentration levels of hydrogen peroxide and malondialdehyde, with significantly lower levels of the various antioxidants evaluated an indication that the VIGS plants were highly affected by salt and drought stresses. This result provides a key foundation for future exploration of the Alba proteins in relation to abiotic stress.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Joy Nyangasi Kirungu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Pu Lu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xiaoyan Cai
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yanchao Xu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xingxing Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Zhongli Zhou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yuqing Hou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Stephen Gaya Agong
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Kunbo Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Fang Liu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| |
Collapse
|
27
|
Clay DM, Kim H, Landweber LF. Transformation with Artificial Chromosomes in Oxytricha trifallax and Their Applications. G3 (BETHESDA, MD.) 2019; 9:3119-3127. [PMID: 31506318 PMCID: PMC6778790 DOI: 10.1534/g3.119.400298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/17/2019] [Indexed: 01/26/2023]
Abstract
Oxytricha trifallax, like other ciliates, has separate germline and somatic nuclei. The diploid germline genome in the micronucleus is composed of long conventional chromosomes. The macronucleus contains a somatic genome which is naturally fragmented into thousands of kilobase-sized chromosomes. Here, we develop a method to stably incorporate artificial chromosomes into the macronucleus. We report two cases of successful transformation and demonstrate the use of somatic transformation to investigate gene regulation and gene function in Oxytricha We show that the transformed artificial chromosomes are maintained through multiple asexual divisions. Furthermore, they support the transcriptional regulation of the native chromosome from which they were derived and are translated to produce functional proteins. To test if transformed chromosomes are amenable to practical applications, we generated a tagged version of a representative gene (AL1) and used it to co-precipitate associated proteins. This revealed an association with nucleic acid binding proteins, specifically RNA-binding proteins, and RNA immunoprecipitation of AL1 revealed its association with multiple RNAs. The use of artificial chromosomes in Oxytricha enables an array of genetic and molecular biological assays, as well as new avenues of inquiry into the epigenetic programming of macronuclear development and genome rearrangement.
Collapse
Affiliation(s)
- Derek M Clay
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia University, New York, NY
- Department of Molecular Biology, Princeton University, Princeton, NJ, and
| | - Hoyon Kim
- Department of Biological Sciences, Columbia University, New York, NY
| | - Laura F Landweber
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia University, New York, NY,
| |
Collapse
|
28
|
Wippel HH, Malgarin JS, Inoue AH, Leprevost FDV, Carvalho PC, Goldenberg S, Alves LR. Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiol 2019; 19:128. [PMID: 31185899 PMCID: PMC6560856 DOI: 10.1186/s12866-019-1505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Background RNA-binding proteins (RBPs) are well known as key factors in gene expression regulation in eukaryotes. These proteins associate with mRNAs and other proteins to form mRNP complexes that ultimately determine the fate of target transcripts in the cell. This association is usually mediated by an RNA-recognition motif (RRM). In the case of trypanosomatids, these proteins play a paramount role, as gene expression regulation is mostly posttranscriptional. Despite their relevance in the life cycle of Trypanosoma cruzi, the causative agent of Chagas’ disease, to date, few RBPs have been characterized in this parasite. Results We investigated the role of DRBD2 in T. cruzi, an RBP with two RRM domains that is associated with cytoplasmic translational complexes. We show that DRBD2 is an ortholog of the Gbp2 in yeast, an SR-rich protein involved in mRNA quality control and export. We used an immunoprecipitation assay followed by shotgun proteomics and RNA-seq to assess the interaction partners of the DRBD2-mRNP complex in epimastigotes. The analysis identified mostly proteins involved in RNA metabolism and regulation, such as ALBA1, ALBA3, ALBA4, UBP1, UBP2, DRBD3, and PABP2. The RNA-seq results showed that most of the transcripts regulated by the DRBD2 complex mapped to hypothetical proteins related to multiple processes, such as to biosynthetic process, DNA metabolic process, protein modification, and response to stress. Conclusions The identification of regulatory proteins in the DRBD2-mRNP complex corroborates the important role of DRBD2 in gene expression regulation in T. cruzi. We consider these results an important contribution to future studies regarding gene expression regulation in T. cruzi, especially in the field of RNA-binding proteins. Electronic supplementary material The online version of this article (10.1186/s12866-019-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | | | - Alexandre Haruo Inoue
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.,Molecular Biology Institute-Paraná, Curitiba, Brazil
| | - Felipe da Veiga Leprevost
- Medical Science Unit I, Department of Pathology, University of Michigan, EUA, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paulo Costa Carvalho
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Lysangela Ronalte Alves
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.
| |
Collapse
|
29
|
A Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes. Curr Biol 2018; 28:3802-3814.e3. [DOI: 10.1016/j.cub.2018.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
|
30
|
Wippel HH, Inoue AH, Vidal NM, da Costa JF, Marcon BH, Romagnoli BAA, Santos MDM, Carvalho PC, Goldenberg S, Alves LR. Assessing the partners of the RBP9-mRNP complex in Trypanosoma cruzi using shotgun proteomics and RNA-seq. RNA Biol 2018; 15:1106-1118. [PMID: 30146924 PMCID: PMC6161725 DOI: 10.1080/15476286.2018.1509660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Gene expression regulation in trypanosomes differs from other eukaryotes due to absence of transcriptional regulation for most of their genes. RNA-binding proteins (RBPs) associate with mRNAs and other regulatory proteins to form ribonucleoprotein complexes (mRNPs), which play a major role in post-transcriptional regulation. Here, we show that RBP9 is a cytoplasmic RBP in Trypanosoma cruzi with one RNA-recognition motif (RRM). The RBP9 sedimentation profile in a sucrose gradient indicated its presence in cytoplasmic translational complexes, suggesting its involvement in translation regulation. Taking this result as a motivation, we used shotgun proteomics and RNA-seq approaches to assess the core of the RBP9-mRNP complex. In epimastigotes in exponential growth, the complex was composed mostly by RBPs involved in RNA metabolism, such as ZC3H39, UBP1/2, NRBD1, and ALBA3/4. When parasites were subjected to nutritional stress, our analysis identified regulatory RBPs and the translation initiation factors eIF4E5, eIF4G5, eIF4G1, and eIF4G4. The RNA-seq results showed that RBP9-mRNP complex regulates transcripts encoding some RBPs - e.g. RBP5, RBP6, and RBP10 -, and proteins involved in metabolic processes. Therefore, we argue that RBP9 is part of cytoplasmic mRNPs complexes associated with mRNA metabolism and translation regulation in T. cruzi.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| | - Alexandre Haruo Inoue
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
- Molecular Biology Institute of Paraná, IBMP, Curitiba, PR, Brazil
| | | | | | | | | | | | - Paulo Costa Carvalho
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| | | |
Collapse
|
31
|
Awuoche EO, Weiss BL, Mireji PO, Vigneron A, Nyambega B, Murilla G, Aksoy S. Expression profiling of Trypanosoma congolense genes during development in the tsetse fly vector Glossina morsitans morsitans. Parasit Vectors 2018; 11:380. [PMID: 29970164 PMCID: PMC6029126 DOI: 10.1186/s13071-018-2964-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background The tsetse transmitted parasitic flagellate Trypanosoma congolense causes animal African trypanosomosis (AAT) across sub-Saharan Africa. AAT negatively impacts agricultural, economic, nutritional and subsequently, health status of the affected populace. The molecular mechanisms that underlie T. congolense’s developmental program within tsetse are largely unknown due to considerable challenges with obtaining sufficient parasite cells to perform molecular studies. Methods In this study, we used RNA-seq to profile T. congolense gene expression during development in two distinct tsetse tissues, the cardia and proboscis. Indirect immunofluorescent antibody test (IFA) and confocal laser scanning microscope was used to localize the expression of a putative protein encoded by the hypothetical protein (TcIL3000_0_02370). Results Consistent with current knowledge, genes coding several variant surface glycoproteins (including metacyclic specific VSGs), and the surface coat protein, congolense epimastigote specific protein, were upregulated in parasites in the proboscis (PB-parasites). Additionally, our results indicate that parasites in tsetse’s cardia (C-parasites) and PB employ oxidative phosphorylation and amino acid metabolism for energy. Several genes upregulated in C-parasites encoded receptor-type adenylate cyclases, surface carboxylate transporter family proteins (or PADs), transport proteins, RNA-binding proteins and procyclin isoforms. Gene ontology analysis of products of genes upregulated in C-parasites showed enrichment of terms broadly associated with nucleotides, microtubules, cell membrane and its components, cell signaling, quorum sensing and several transport activities, suggesting that the parasites colonizing the cardia may monitor their environment and regulate their density and movement in this tissue. Additionally, cell surface protein (CSP) encoding genes associated with the Fam50 ‘GARP’, ‘iii’ and ‘i’ subfamilies were also significantly upregulated in C-parasites, suggesting that they are important for the long non-dividing trypomastigotes to colonize tsetse’s cardia. The putative products of genes that were upregulated in PB-parasites were linked to nucleosomes, cytoplasm and membrane-bound organelles, which suggest that parasites in this niche undergo cell division in line with prior findings. Most of the CSPs upregulated in PB-parasites were hypothetical, thus requiring further functional characterization. Expression of one such hypothetical protein (TcIL3000_0_02370) was analyzed using immunofluorescence and confocal laser scanning microscopy, which together revealed preferential expression of this protein on the entire surface coat of T. congolense parasite stages that colonize G. m. morsitans’ proboscis. Conclusion Collectively, our results provide insight into T. congolense gene expression profiles in distinct niches within the tsetse vector. Our results show that the hypothetical protein TcIL3000_0_02370, is expressed on the entire surface of the trypanosomes inhabiting tsetse’s proboscis. We discuss our results in terms of their relevance to disease transmission processes. Electronic supplementary material The online version of this article (10.1186/s13071-018-2964-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erick O Awuoche
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya. .,Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Private Bag, Maseno, Kenya. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA. .,Department of Agriculture, School of Agriculture and Food Science, Meru University of Science and Technology, Meru, Kenya.
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Benson Nyambega
- Department of Medical Biochemistry, School of Medicine, Maseno University, Private Bag, Maseno, Kenya
| | - Grace Murilla
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
32
|
Zoltner M, Krienitz N, Field MC, Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl Trop Dis 2018; 12:e0006679. [PMID: 30040867 PMCID: PMC6075789 DOI: 10.1371/journal.pntd.0006679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/03/2018] [Accepted: 07/10/2018] [Indexed: 01/17/2023] Open
Abstract
Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nina Krienitz
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
33
|
An T, Li Z. An orphan kinesin controls trypanosome morphology transitions by targeting FLAM3 to the flagellum. PLoS Pathog 2018; 14:e1007101. [PMID: 29813136 PMCID: PMC5993322 DOI: 10.1371/journal.ppat.1007101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/08/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma brucei undergoes life cycle form transitions from trypomastigotes to epimastigotes in the insect vector by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. The mechanism underlying these dramatic morphology transitions remains poorly understood. Here we report the regulatory role of the orphan kinesin KIN-E in controlling trypanosome morphology transitions. KIN-E localizes to the flagellum and is enriched at the flagellar tip, and this localization depends on the C-terminal m-calpain domain III-like domains. Depletion of KIN-E in the trypomastigote form of T. brucei causes major morphology changes and a gradual increase in the level of EP procyclin, generating epimastigote-like cells. Mechanistically, through its C-terminal importin α-like domain, KIN-E targets FLAM3, a flagellar protein involved in morphology transitions, to the flagellum to promote elongation of the flagellum attachment zone and positioning of the flagellum and flagellum-associated cytoskeletal structure, thereby maintaining trypomastigote cell morphology. Our findings suggest that morphology transitions in trypanosomes require KIN-E-mediated transport of FLAM3 to the flagellum. Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa, has a complex life cycle by alternating between the tsetse fly vector and the mammalian hosts. In the gut of tsetse flies, trypanosomes undergo life cycle transitions from the trypomastigote form to the epimastigote form by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. Previous work demonstrated that elongation of the flagellum attachment zone plays an important role in controlling morphology transitions, but how it is regulated remains poorly understood. This work discovered that an orphan kinesin plays an essential role in regulating trypanosome morphology transitions. This novel kinesin localizes to the flagellum and targets FLAM3, one of the two flagellar proteins involved in morphology transitions, to the flagellum. This work suggests that trypanosome morphology transitions require kinesin-mediated transport of FLAM3 to the flagellum to promote the elongation of the flagellum attachment zone, thereby maintaining flagellum-cell body attachment and positioning the flagellum and flagellum-associated cytoskeletal structures to assume trypomastigote cell morphology.
Collapse
Affiliation(s)
- Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
34
|
Genome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Rice Alba Genes. Genes (Basel) 2018; 9:genes9040183. [PMID: 29597290 PMCID: PMC5924525 DOI: 10.3390/genes9040183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/17/2022] Open
Abstract
Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa, Zea mays, Sorghum bicolor, Cicer arietinum, and Vitis vinifera, and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii, Physcomitrella patens, and Amborella trichopoda, revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice (OsAlba), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.
Collapse
|
35
|
Erben ED. High-throughput Methods for Dissection of Trypanosome Gene Regulatory Networks. Curr Genomics 2018; 19:78-86. [PMID: 29491736 PMCID: PMC5814965 DOI: 10.2174/1389202918666170815125336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/22/2016] [Accepted: 02/03/2017] [Indexed: 12/24/2022] Open
Abstract
From synthesis to decay, mRNA associates with RNA-binding proteins (RBPs) establishing dynamic ribonucleoprotein particles (RNPs). Understanding the composition and function of RNPs is fundamental to understanding how eukaryotic mRNAs are controlled. This is especially relevant for trypanosomes and related kinetoplastid parasites, which mostly rely on post-transcriptional mechanisms to control gene expression. Crucial for trypanosome differentiation, development, or even response to heat shock, RBPs are known to be essential modulators of diverse molecular processes. The recent application of large-scale quantitative methods, such as Next-Generation Sequencing (NGS) and quantitative mass spectrometry, has revealed new exciting features about the parasite RNA-related metabolism. Novel proteins carrying RNA-binding activity, including many proteins without RNA-related ontology were discovered setting a necessary groundwork to get in insights into RNA biology. Conclusion: This review aims to give the reader an understanding of current trypanosome RNP research, highlighting the progress made using high-throughput approaches.
Collapse
Affiliation(s)
- Esteban D Erben
- Zentrum fur Molekulare Biologie der Universitet Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120Heidelberg, Germany
| |
Collapse
|
36
|
The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Pathogens 2017; 6:pathogens6040055. [PMID: 29077018 PMCID: PMC5750579 DOI: 10.3390/pathogens6040055] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatid protozoa are unusual eukaryotes that are well known for having unusual ways of controlling their gene expression. The lack of a refined mode of transcriptional control in these organisms is compensated by several post-transcriptional control mechanisms, such as control of mRNA turnover and selection of mRNA for translation, that may modulate protein synthesis in response to several environmental conditions found in different hosts. In other eukaryotes, selection of mRNA for translation is mediated by the complex eIF4F, a heterotrimeric protein complex composed by the subunits eIF4E, eIF4G, and eIF4A, where the eIF4E binds to the 5'-cap structure of mature mRNAs. In this review, we present and discuss the characteristics of six trypanosomatid eIF4E homologs and their associated proteins that form multiple eIF4F complexes. The existence of multiple eIF4F complexes in trypanosomatids evokes exquisite mechanisms for differential mRNA recognition for translation.
Collapse
|
37
|
Muñoz EE, Hart KJ, Walker MP, Kennedy MF, Shipley MM, Lindner SE. ALBA4 modulates its stage-specific interactions and specific mRNA fates during Plasmodium yoelii growth and transmission. Mol Microbiol 2017; 106:266-284. [PMID: 28787542 DOI: 10.1111/mmi.13762] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Transmission of the malaria parasite occurs in an unpredictable moment, when a mosquito takes a blood meal. Plasmodium has therefore evolved strategies to prepare for transmission, including translationally repressing and protecting mRNAs needed to establish the infection. However, mechanisms underlying these critical controls are not well understood, including whether Plasmodium changes its translationally repressive complexes and mRNA targets in different stages. Efforts to understand this have been stymied by severe technical limitations due to substantial mosquito contamination of samples. Here using P. yoelii, for the first time we provide a proteomic comparison of a protein complex across asexual blood, sexual and sporozoite stages, along with a transcriptomic comparison of the mRNAs that are affected in these stages. We find that the Apicomplexan-specific ALBA4 RNA-binding protein acts to regulate development of the parasite's transmission stages, and that ALBA4 associates with both stage-specific and stage-independent partners to produce opposing mRNA fates. These efforts expand our understanding and ability to interrogate both sexual and sporozoite transmission stages and the molecular preparations they evolved to perpetuate their infectious cycle.
Collapse
Affiliation(s)
- Elyse E Muñoz
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Michael P Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mark F Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
38
|
da Costa KS, Galúcio JMP, Leonardo ES, Cardoso G, Leal É, Conde G, Lameira J. Structural and evolutionary analysis of Leishmania Alba proteins. Mol Biochem Parasitol 2017; 217:23-31. [PMID: 28847609 DOI: 10.1016/j.molbiopara.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/23/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023]
Abstract
The Alba superfamily proteins share a common RNA-binding domain. These proteins participate in a variety of regulatory pathways by controlling developmental gene expression. They also interact with ribosomal subunits, translation factors, and other RNA-binding proteins. The Leishmania infantum genome encodes two Alba-domain proteins, LiAlba1 and LiAlba3. In this work, we used homology modeling, protein-protein docking, and molecular dynamics (MD) simulations to explore the details of the Alba1-Alba3-RNA complex from Leishmania infantum at the molecular level. In addition, we compared the structure of LiAlba3 with the human ribonuclease P component, Rpp20. We also mapped the ligand-binding residues on the Alba3 surface to analyze its druggability and performed mutational analyses in Alba3 using alanine scanning to identify residues involved in its function and structural stability. These results suggest that the RGG-box motif of LiAlba1 is important for protein function and stability. Finally, we discuss the function of Alba proteins in the context of pathogen adaptation to host cells. The data provided herein will facilitate further translational research regarding Alba structure and function.
Collapse
Affiliation(s)
- Kauê Santana da Costa
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | | | - Elvis Santos Leonardo
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Guelber Cardoso
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Guilherme Conde
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
39
|
Schuster S, Krüger T, Subota I, Thusek S, Rotureau B, Beilhack A, Engstler M. Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife 2017; 6. [PMID: 28807106 PMCID: PMC5570225 DOI: 10.7554/elife.27656] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.
Collapse
Affiliation(s)
- Sarah Schuster
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Ines Subota
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Sina Thusek
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Andreas Beilhack
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Christiano R, Kolev NG, Shi H, Ullu E, Walther TC, Tschudi C. The proteome and transcriptome of the infectious metacyclic form of Trypanosoma brucei define quiescent cells primed for mammalian invasion. Mol Microbiol 2017; 106:74-92. [PMID: 28742275 DOI: 10.1111/mmi.13754] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 01/22/2023]
Abstract
The infectious metacyclic forms of Trypanosoma brucei result from a complex development in the tsetse fly vector. When they infect mammals, they cause African sleeping sickness in humans. Due to scarcity of biological material and difficulties of the tsetse fly as an experimental system, very limited information is available concerning the gene expression profile of metacyclic forms. We used an in vitro system based on expressing the RNA binding protein 6 to obtain infectious metacyclics and determined their protein and mRNA repertoires by mass-spectrometry (MS) based proteomics and mRNA sequencing (RNA-Seq) in comparison to non-infectious procyclic trypanosomes. We showed that metacyclics are quiescent cells, and propose this influences the choice of a monocistronic variant surface glycoprotein expression site. Metacyclics have a largely bloodstream-form type transcriptome, and thus are programmed to translate a bloodstream-form type proteome upon entry into the mammalian host and resumption of cell division. Genes encoding cell surface components showed the largest changes between procyclics and metacyclics, observed at both the transcript and protein levels. Genes encoding metabolic enzymes exhibited expression in metacyclics with features of both procyclic and bloodstream forms, suggesting that this intermediate-type metabolism is dictated by the availability of nutrients in the tsetse fly vector.
Collapse
Affiliation(s)
- Romain Christiano
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Elisabetta Ullu
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Internal Medicine, School of Medicine, Yale University, 330 Cedar St, Boardman 110, New Haven, CT 06520, USA
| | - Tobias C Walther
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Harvard T.H. Chan School of Public Health Boston, MA 02115, USA
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| |
Collapse
|
41
|
De Pablos LM, Kelly S, de Freitas Nascimento J, Sunter J, Carrington M. Characterization of RBP9 and RBP10, two developmentally regulated RNA-binding proteins in Trypanosoma brucei. Open Biol 2017; 7:rsob.160159. [PMID: 28381627 PMCID: PMC5413900 DOI: 10.1098/rsob.160159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
The fate of an mRNA is determined by its interaction with proteins and small RNAs within dynamic complexes called ribonucleoprotein complexes (mRNPs). In Trypanosoma brucei and related kinetoplastids, responses to internal and external signals are mainly mediated by post-transcriptional processes. Here, we used proximity-dependent biotin identification (BioID) combined with RNA-seq to investigate the changes resulting from ectopic expression of RBP10 and RBP9, two developmentally regulated RNA-binding proteins (RBPs). Both RBPs have reduced expression in insect procyclic forms (PCFs) compared with bloodstream forms (BSFs). Upon overexpression in PCFs, both proteins were recruited to cytoplasmic foci, co-localizing with the processing body marker SCD6. Further, both RBPs altered the transcriptome from a PCF- to a BSF-like pattern. Notably, upon expression of BirA*-RBP9 and BirA*-RBP10, BioID yielded more than 200 high confidence protein interactors (more than 10-fold enriched); 45 (RBP9) and 31 (RBP10) were directly related to mRNA metabolism. This study validates the use of BioID for investigating mRNP components but also illustrates the complexity of mRNP function.
Collapse
Affiliation(s)
- Luis Miguel De Pablos
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.,Centre for Immunology and Infection (CII). Biology Dept., University of York, York YO10 5DD, UK
| | - Steve Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Jack Sunter
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
42
|
Pérez-Díaz L, Silva TC, Teixeira SMR. Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi. Mol Biochem Parasitol 2016; 211:1-8. [PMID: 27986451 DOI: 10.1016/j.molbiopara.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Abstract
Amastins are surface glycoproteins, first identified in amastigotes of T. cruzi but later found to be expressed in several Leishmania species, as well as in T. cruzi epimastigotes. Amastins are encoded by a diverse gene family that can be grouped into four subfamilies named α, β, γ, and δ amastins. Differential expression of amastin genes results from regulatory mechanisms involving changes in mRNA stability and/or translational control. Although distinct regulatory elements were identified in the 3' UTR of T. cruzi and Leishmania amastin mRNAs, RNA binding proteins involved with amastin gene regulation have only being characterized in L. infantum where an Alba-domain protein (LiAlba20) able to bind to the 3' UTR of a δ-amastin mRNA was identified. Here we investigated the role of TcAlba30, the LiAlba20 homologue in T. cruzi, in the post transcriptional regulation of amastin genes. TcAlba30 transcripts are present in all stages of the T. cruzi life cycle. RNA immunoprecipitation assays using a transfected cell line expressing a cMyc tagged TcAlba30 revealed that TcAlba30 can interact with β-amastin mRNA. In addition, over-expression of TcAlba30 in epimastigotes resulted in 50% decreased levels of β-amastin mRNAs compared to wild type parasites. Since luciferase assays indicated the presence of regulatory elements in the 3' UTR of β-amastin mRNA and reduced levels of luciferase mRNA were found in parasites over expressing TcAlba30, we conclude that TcAlba30 acts as a T. cruzi RNA binding protein involved in the negative control of β-amastin expression through interactions with its 3'UTR.
Collapse
Affiliation(s)
- Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Tais Caroline Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
43
|
Oakley MS, Verma N, Zheng H, Anantharaman V, Takeda K, Gao Y, Myers TG, Pham PT, Mahajan B, Kumar N, Sangweme D, Tripathi AK, Mlambo G, Aravind L, Kumar S. Molecular Markers of Radiation Induced Attenuation in Intrahepatic Plasmodium falciparum Parasites. PLoS One 2016; 11:e0166814. [PMID: 27911910 PMCID: PMC5135057 DOI: 10.1371/journal.pone.0166814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2016] [Indexed: 11/24/2022] Open
Abstract
Experimental immunization with radiation attenuated sporozoites (RAS) and genetically attenuated sporozoites has proved to be a promising approach for malaria vaccine development. However, parasite biomarkers of growth attenuation and enhanced immune protection in response to radiation remain poorly understood. Here, we report on the effect of an attenuating dose of γ-irradiation (15 krad) on the Plasmodium falciparum sporozoite (PfSPZ) ultrastructure by electron microscopy, growth rate of liver stage P. falciparum in liver cell cultures, and genome-wide transcriptional profile of liver stage parasites by microarray. We find that γ-irradiation treated PfSPZ retained a normal cellular structure except that they were vacuous with a partially disrupted plasma membrane and inner membrane complex. A similar infection rate was observed by γ-irradiation-treated and untreated PfSPZ in human HCO-4 liver cells (0.47% versus 0.49%, respectively) on day 3 post-infection. In the microarray studies, cumulatively, 180 liver stage parasite genes were significantly transcriptionally altered on day 3 and/or 6 post-infection. Among the transcriptionally altered biomarkers, we identified a signature of seven candidate parasite genes that associated with functionally diverse pathways that may regulate radiation induced cell cycle arrest of the parasite within the hepatocyte. A repertoire of 14 genes associated with protein translation is transcriptionally overexpressed within the parasite by radiation. Additionally, 37 genes encode proteins expressed on the cell surface or exported into the host cell, 4 encode membrane associated transporters, and 10 encode proteins related to misfolding and stress-related protein processing. These results have significantly increased the repertoire of novel targets for 1) biomarkers of safety to define proper attenuation, 2) generating genetically attenuated parasite vaccine candidates, and 3) subunit candidate vaccines against liver stage malaria.
Collapse
Affiliation(s)
- Miranda S. Oakley
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Nitin Verma
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Hong Zheng
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States
| | - Kazuyo Takeda
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Yamei Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Timothy G. Myers
- Genomics Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States
| | - Phuong Thao Pham
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Babita Mahajan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Nirbhay Kumar
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Davison Sangweme
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Abhai K. Tripathi
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Godfree Mlambo
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States
| | - Sanjai Kumar
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
- * E-mail:
| |
Collapse
|
44
|
Reichel M, Liao Y, Rettel M, Ragan C, Evers M, Alleaume AM, Horos R, Hentze MW, Preiss T, Millar AA. In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. THE PLANT CELL 2016; 28:2435-2452. [PMID: 27729395 PMCID: PMC5134986 DOI: 10.1105/tpc.16.00562] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Accepted: 10/11/2016] [Indexed: 05/17/2023]
Abstract
RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based.
Collapse
Affiliation(s)
- Marlene Reichel
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Yalin Liao
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Mandy Rettel
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Chikako Ragan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Maurits Evers
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | | | - Rastislav Horos
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
45
|
Caljon G, De Muylder G, Durnez L, Jennes W, Vanaerschot M, Dujardin JC. Alice in microbes' land: adaptations and counter-adaptations of vector-borne parasitic protozoa and their hosts. FEMS Microbiol Rev 2016; 40:664-85. [PMID: 27400870 DOI: 10.1093/femsre/fuw018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/24/2022] Open
Abstract
In the present review, we aim to provide a general introduction to different facets of the arms race between pathogens and their hosts/environment, emphasizing its evolutionary aspects. We focus on vector-borne parasitic protozoa, which have to adapt to both invertebrate and vertebrate hosts. Using Leishmania, Trypanosoma and Plasmodium as main models, we review successively (i) the adaptations and counter-adaptations of parasites and their invertebrate host, (ii) the adaptations and counter-adaptations of parasites and their vertebrate host and (iii) the impact of human interventions (chemotherapy, vaccination, vector control and environmental changes) on these adaptations. We conclude by discussing the practical impact this knowledge can have on translational research and public health.
Collapse
Affiliation(s)
- Guy Caljon
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Health, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Géraldine De Muylder
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Lies Durnez
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Wim Jennes
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Manu Vanaerschot
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium Columbia University, College of Physicians and Surgeons, Department of Microbiology and Immunology, Fidock Lab, New York, NY 10032, USA
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, B-2000 Antwerp, Belgium University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Health, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
46
|
Lueong S, Merce C, Fischer B, Hoheisel JD, Erben ED. Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol Microbiol 2016; 100:457-71. [PMID: 26784394 DOI: 10.1111/mmi.13328] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Control of gene expression at the post-transcriptional level is essential in all organisms, and RNA-binding proteins play critical roles from mRNA synthesis to decay. To fully understand this process, it is necessary to identify the complete set of RNA-binding proteins and the functional consequences of the protein-mRNA interactions. Here, we provide an overview of the proteins that bind to mRNAs and their functions in the pathogenic bloodstream form of Trypanosoma brucei. We describe the production of a small collection of open-reading frames encoding proteins potentially involved in mRNA metabolism. With this ORFeome collection, we used tethering to screen for proteins that play a role in post-transcriptional control. A yeast two-hybrid screen showed that several of the discovered repressors interact with components of the CAF1/NOT1 deadenylation complex. To identify the RNA-binding proteins, we obtained the mRNA-bound proteome. We identified 155 high-confidence candidates, including many not previously annotated as RNA-binding proteins. Twenty seven of these proteins affected reporter expression in the tethering screen. Our study provides novel insights into the potential trypanosome mRNPs composition, architecture and function.
Collapse
Affiliation(s)
- Smiths Lueong
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Clementine Merce
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| | - Bernd Fischer
- Computational Genome Biology, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Esteban D Erben
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| |
Collapse
|
47
|
Romaniuk MA, Cervini G, Cassola A. Regulation of RNA binding proteins in trypanosomatid protozoan parasites. World J Biol Chem 2016; 7:146-157. [PMID: 26981203 PMCID: PMC4768119 DOI: 10.4331/wjbc.v7.i1.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/04/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening parasites affecting people in Sub-saharan Africa or in the Americas. In these parasites the classic view of regulation of transcription initiation to modulate the products of a given gene cannot be applied. This is due to the presence of transcription start sites that give rise to long polycistronic units that need to be processed costranscriptionally by trans-splicing and polyadenylation to give mature monocistronic mRNAs. Posttranscriptional mechanisms such as mRNA degradation and translational repression are responsible for the final synthesis of the required protein products. In this context, RNA-binding proteins (RBPs) in trypanosomes have a relevant role as modulators of mRNA abundance and translational repression by associating to the 3’ untranslated regions in mRNA. Many different RBPs have been proposed to modulate cohorts of mRNAs in trypanosomes. However, the current understanding of their functions lacks a dynamic view on the different steps at which these RBPs are regulated. Here, we discuss different evidences to propose regulatory events for different RBPs in these parasites. These events vary from regulated developmental expression, to biogenesis of cytoplasmic ribonucleoprotein complexes in the nucleus, and condensation of RBPs and mRNA into large cytoplasmic granules. Finally, we discuss how newly identified posttranslational modifications of RBPs and mRNA metabolism-related proteins could have an enormous impact on the modulation of mRNA abundance. To understand these modifications is especially relevant in these parasites due to the fact that the enzymes involved could be interesting targets for drug therapy.
Collapse
|
48
|
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:570-83. [PMID: 26900088 DOI: 10.1016/j.bbapap.2016.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/05/2023]
Abstract
Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far.
Collapse
Affiliation(s)
- Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
49
|
Sunter JD, Gull K. The Flagellum Attachment Zone: 'The Cellular Ruler' of Trypanosome Morphology. Trends Parasitol 2016; 32:309-324. [PMID: 26776656 PMCID: PMC4827413 DOI: 10.1016/j.pt.2015.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/27/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022]
Abstract
A defining feature of Trypanosoma brucei cell shape is the lateral attachment of the flagellum to the cell body, mediated by the flagellum attachment zone (FAZ). The FAZ is a complex cytoskeletal structure that connects the flagellum skeleton through two membranes to the cytoskeleton. The FAZ acts as a ‘cellular ruler’ of morphology by regulating cell length and organelle position and is therefore critical for both cell division and life cycle differentiations. Here we provide an overview of the advances in our understanding of the composition, assembly, and function of the FAZ. The flagellum attachment zone (FAZ) is a large cytoskeletal structure that connects the flagellum skeleton to the cell body cytoskeleton through the membrane of both the flagellum and the cell body. The structure can be divided into eight zones. The FAZ is a key morphogenetic structure regulating both cell length and organelle positioning. Recent studies have identified numerous FAZ proteins. The function of a subset of these proteins has been studied by RNAi, revealing a range of different phenotypes from flagellum detachment to organelle positioning effects. The assembly of the FAZ occurs at its proximal end – the opposite polarity to that of the flagellar axoneme and paraflagellar rod.
Collapse
Affiliation(s)
- Jack D Sunter
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
50
|
Hu H, Zhou Q, Li Z. SAS-4 Protein in Trypanosoma brucei Controls Life Cycle Transitions by Modulating the Length of the Flagellum Attachment Zone Filament. J Biol Chem 2015; 290:30453-63. [PMID: 26504079 DOI: 10.1074/jbc.m115.694109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily conserved centriole/basal body protein SAS-4 regulates centriole duplication in metazoa and basal body duplication in flagellated and ciliated organisms. Here, we report that the SAS-4 homolog in the flagellated protozoan Trypanosoma brucei, TbSAS-4, plays an unusual role in controlling life cycle transitions by regulating the length of the flagellum attachment zone (FAZ) filament, a specialized cytoskeletal structure required for flagellum adhesion and cell morphogenesis. TbSAS-4 is concentrated at the distal tip of the FAZ filament, and depletion of TbSAS-4 in the trypomastigote form disrupts the elongation of the new FAZ filament, generating cells with a shorter FAZ associated with a longer unattached flagellum and repositioned kinetoplast and basal body, reminiscent of epimastigote-like morphology. Further, we show that TbSAS-4 associates with six additional FAZ tip proteins, and depletion of TbSAS-4 disrupts the enrichment of these FAZ tip proteins at the new FAZ tip, suggesting a role of TbSAS-4 in maintaining the integrity of this FAZ tip protein complex. Together, these results uncover a novel function of TbSAS-4 in regulating the length of the FAZ filament to control basal body positioning and life cycle transitions in T. brucei.
Collapse
Affiliation(s)
- Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030
| | - Qing Zhou
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030
| |
Collapse
|