1
|
Li J, Cui C, Han F, Liu J. Genome-wide identification and analysis of the UBA2 gene family in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:180. [PMID: 39987033 PMCID: PMC11847341 DOI: 10.1186/s12864-025-11352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) participate in multiple aspects of RNA metabolism, which in turn regulates gene expression, thereby involving in organism growth and development. The UBA2 family, one of the subfamilies of RBPs, has been identified in several plant species. However, few researches have been performed to investigate the role of UBA2 in wheat (Triticum aestivum). RESULTS In this study, we identified eleven TaUBA2s and divided them into three groups according to their domain characteristics. Phylogenetic analysis was conducted to forecast functional similarities among Arabidopsis, rice, maize and wheat UBA2 genes. Members within the same subfamily of TaUBA2 are relatively conserved in terms of protein structure, motifs, and gene structure. Chromosomal location and synteny analysis suggested that the segmental duplication events played important roles during TaUBA2s evolution. The cis-acting element analysis showed that TaUBA2s were involved in hormone response, development, light response, metabolism, and response to environmental stress. Furthermore, TaUBA2C contains two RNA recognition motifs (RRMs), and the first RRM is responsible for the nuclear speckle formation of TaUBA2C, whereas the two RRMs are necessary for its biological function. CONCLUSIONS Taken together, our study provides a comprehensive analysis of the TaUBA2 family in wheat and lays the foundation for the future functional investigations of TaUBA2s in wheat growth, development and stress responses.
Collapse
Affiliation(s)
- Juan Li
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Chunge Cui
- Shanxi Medical University, Taiyuan, 030000, China
| | - Fengying Han
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China.
| | - Jin Liu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China.
| |
Collapse
|
2
|
Banerjee S, Tiwari AK, Tiwari BS. Trans-kingdom Regulation of Programmed Cell Death in Plants. JOURNAL OF PLANT GROWTH REGULATION 2025. [DOI: 10.1007/s00344-025-11633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/07/2025] [Indexed: 05/04/2025]
|
3
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
5
|
Kapoor K, Geitmann A. Pollen tube invasive growth is promoted by callose. PLANT REPRODUCTION 2023; 36:157-171. [PMID: 36717422 DOI: 10.1007/s00497-023-00458-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/17/2023] [Indexed: 06/09/2023]
Abstract
Callose, a β-1,3-glucan, lines the pollen tube cell wall except for the apical growing region, and it constitutes the main polysaccharide in pollen tube plugs. These regularly deposited plugs separate the active portion of the pollen tube cytoplasm from the degenerating cell segments. They have been hypothesized to reduce the total amount of cell volume requiring turgor regulation, thus aiding the invasive growth mechanism. To test this, we characterized the growth pattern of Arabidopsis callose synthase mutants with altered callose deposition patterns. Mutant pollen tubes without callose wall lining or plugs had a wider diameter but grew slower compared to their respective wildtype. To probe the pollen tube's ability to perform durotropism in the absence of callose, we performed mechanical assays such as growth in stiffened media and assessed turgor through incipient plasmolysis. We found that mutants lacking plugs had lower invading capacity and higher turgor pressure when faced with a mechanically challenging substrate. To explain this unexpected elevation in turgor pressure in the callose synthase mutants we suspected that it is enabled by feedback-driven increased levels of de-esterified pectin and/or cellulose in the tube cell wall. Through immunolabeling we tested this hypothesis and found that the content and spatial distribution of these cell wall polysaccharides was altered in callose-deficient mutant pollen tubes. Combined, the results reveal how callose contributes to the pollen tube's invasive capacity and thus plays an important role in fertilization. In order to understand, how the pollen tube deposits callose, we examined the involvement of the actin cytoskeleton in the spatial targeting of callose synthases to the cell surface. The spatial proximity of actin with locations of callose deposition and the dramatic effect of pharmacological interference with actin polymerization suggest a potential role for the cytoskeleton in the spatial control of the characteristic wall assembly process in pollen tubes.
Collapse
Affiliation(s)
- Karuna Kapoor
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
6
|
Tariq N, Yaseen M, Xu D, Rehman HM, Bibi M, Uzair M. Rice anther tapetum: a vital reproductive cell layer for sporopollenin biosynthesis and pollen exine patterning. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:233-245. [PMID: 36350096 DOI: 10.1111/plb.13485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The tapetum is the innermost layer of the four layers of the rice anther that provides protection and essential nutrients to pollen grain development and delivers precursors for pollen exine formation. The tapetum has a key role in the normal development of pollen grains and tapetal programmed cell death (PCD) that is linked with sporopollenin biosynthesis and transport. Recently, many genes have been identified that are involved in tapetum formation in rice and Arabidopsis. Genetic mutation in PCD-associated genes could affect normal tapetal PCD, which finally leads to aborted pollen grains and male sterility in rice. In this review, we discuss the most recent research on rice tapetum development, including genomic, transcriptomic and proteomic studies. Furthermore, tapetal PCD, sporopollenin biosynthesis, ROS activity for tapetum function and its role in male reproductive development are discussed in detail. This will improve our understanding of the role of the tapetum in male fertility using rice as a model system, and provide information that can be applied in rice hybridization and that of other major crops.
Collapse
Affiliation(s)
- N Tariq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - M Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Sichuan, China
| | - D Xu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - H M Rehman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - M Bibi
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Korea
| | - M Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Leaf Senescence of the Seagrass Cymodocea nodosa in Cádiz Bay, Southern Spain. DIVERSITY 2023. [DOI: 10.3390/d15020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leaf decay in seagrasses is enhanced in some seasons since large green senescent beach-cast seagrass leaves are frequently recorded during autumn and winter seasons. Here, we explore if senescence is operating in seagrass leaf decay or if hydrodynamic stress is responsible for the seasonal leaf abscission. A seasonal study on the temperate seagrass Cymodocea nodosa was carried out in four locations with contrasting hydrodynamic regimes. The morphological, biomechanical and material properties of C. nodosa were measured. The force required to break the ligule was always lower than that required to break the blade. This could be considered an adaptive strategy to reduce acute drag forces and thus lessen the chance of plant uprooting. The absolute force needed to dislodge the blade at the ligule level varied with season and location, with the lowest forces recorded in autumn. This may indicate that senescence is operating in this species. On the other hand, the minimum estimated failure velocities for leaf abscission were also recorded in autumn. Consequently, this may cause the premature shedding of leaves in this season before the senescence process has finished and can probably explain the occurrence of green beach-cast seagrass leaves usually found during autumn and winter.
Collapse
|
8
|
Moshchenskaya YL, Galibina NA, Nikerova KM, Tarelkina TV, Korzhenevsky MA, Sofronova IN, Ershova MA, Semenova LI. Plant-Programmed Cell Death-Associated Genes Participation in Pinus sylvestris L. Trunk Tissue Formation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3438. [PMID: 36559551 PMCID: PMC9785643 DOI: 10.3390/plants11243438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases families are often considered markers of the final xylogenesis stage. In the present study, we examined the gene expression profiles of the BFN (bifunctional endonuclease) family-BFN, BFN1, BFN2, BFN3, and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age (c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem vascular and mechanical element formation and parenchyma cells' PCD during the formation of Scots pine heartwood were discussed.
Collapse
Affiliation(s)
- Yulia L. Moshchenskaya
- Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya st., 185910 Petrozavodsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Qian R, Zhao H, Liang X, Sun N, Zhang N, Lin X, Sun C. Autophagy alleviates indium-induced programmed cell death in wheat roots. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129600. [PMID: 35870211 DOI: 10.1016/j.jhazmat.2022.129600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Indium released in agroecosystems is becoming an emerging plant stressor, causing cellular damage and consequently crop yield losses. Previous studies have focused on indium-induced toxicity in plants, while plant adaptive responses to such emerging metal xenobiotics are poorly understood. Here, we explored the relationship of autophagy and programmed cell death (PCD) in wheat roots under indium stress. Indium treatment significantly decreased root activity and cell viability, and suppressed the length of root epidermal cells in the elongation zones. These symptoms may be associated with indium-induced PCD, as indium-stressed wheat roots displayed condensed and granular nuclei, increased number of TUNEL-positive nuclei, enhanced nuclear DNA fragmentation and caspase-3-like protease activity compared to untreated roots. Accordingly, indium enhanced the expression levels of TaMCA1 and TaMCA4, two major metacaspase genes mediated PCD in wheat plants. The enhanced expression of autophagy genes and formation of autophagosomes indicate that autophagy could regulate metabolic adaptation and repair stress-induced damage in wheat roots. Furthermore, reinforcing autophagy by activator rapamycin significantly decreased the number of TUNEL-positive nuclei and the activity of caspase-3-like protease, whereas inhibition of autophagy by 3-methyladenine aggravated diagnostic markers for PCD. These results together suggest that autophagy suppresses indium-induced PCD in wheat roots.
Collapse
Affiliation(s)
- Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Liu F, Zhang P, Li J, Zhang T, Xie L, Gong C. miR2119, a Novel Transcriptional Regulator, Plays a Positive Role in Woody Plant Drought Tolerance by Mediating the Degradation of the CkBI-1 Gene Associated with Apoptosis. Int J Mol Sci 2022; 23:6306. [PMID: 35682985 PMCID: PMC9181555 DOI: 10.3390/ijms23116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Caragana korshinskii, an important vegetation restoration species with economic and ecological benefits in the arid region of northwest China, is characterized by significant drought tolerance. However, the underlying molecular mechanisms by which miRNAs confer this trait in C. korshinskii are unclear. Here, we investigate the effect of CkmiR2119 on drought tolerance and identified its target gene, CkBI-1. A negative correlation of CkmiR2119 and CkBI-1 in both stems and leaves in a drought gradient treatment followed by target gene validation suggest that CkmiR2119 might negatively regulate CkBI-1. Consistently, a decrease in the expression of the CkBI-1 gene was observed after both transient transformation and stable transformation of CkamiR2119 in tobacco (Nicotiana tabacum). Moreover, the physiological analysis of CkamiR2119 and CkBI-1 transgenic plants further indicate that CkmiR2119 can enhance the drought tolerance of C. korshinskii in two aspects: (i) downregulating CkBI-1 expression to accelerate vessel maturation in stems; (ii) contributing to a higher level of CkBI-1 in mesophyll cells to inhibit programmed cell death (PCD). This work reveals that CkmiR2119 can increase plants' drought tolerance by downregulating the expression of CkBI-1, providing a theoretical basis to improve plants' ability to withstand stress tolerance by manipulating miRNAs.
Collapse
Affiliation(s)
- Furong Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (F.L.); (P.Z.); (T.Z.); (L.X.)
| | - Puzhi Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (F.L.); (P.Z.); (T.Z.); (L.X.)
| | - Jiayang Li
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Tianxin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (F.L.); (P.Z.); (T.Z.); (L.X.)
| | - Lifang Xie
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (F.L.); (P.Z.); (T.Z.); (L.X.)
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China;
| |
Collapse
|
11
|
Li J, Feng H, Liu S, Liu P, Chen X, Yang J, He L, Yang J, Chen J. Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein. PLoS Pathog 2022; 18:e1010412. [PMID: 35294497 PMCID: PMC8959173 DOI: 10.1371/journal.ppat.1010412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it’s the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants. Chinese wheat mosaic virus (CWMV) causes a damaging disease in cereal plants. However, CWMV interacts with host factors to facilitate virus infection is not clear yet. Here, we found that S162 and S165 of CWMV cysteine-rich protein (CRP) are phosphorylated by SAPK7 in vivo and in vitro. Mutational analyses have indicated that these two phosphorylation sites of CRP (CRPS162/165D) promoting CWMV infection in plants, due to the supressed cell death and H2O2 production. Further investigations found the CRPS162/165D can interact with TaUBA2C, while the non-phosphorylatable mutant of CRP (CRPS162/165A) does not. Futhermore, we have determined that CRPS162/165D and TaUBA2C interaction inhibited the formation of TaUBA2C speckles in nucleus to attenuate its RNA- and DNA-binding activity. We also showed that TaUBA2C recruit the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to up-regulated these genes expressions and then induce cell death and H2O2 production in plant. This effect can be supressed by the expression of CRPS162/165D, in a dose-dependent manner. Taken together, our discovery may provide a new sight for the arms race between virus and its host plants.
Collapse
Affiliation(s)
- Juan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shuang Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| |
Collapse
|
12
|
Elhiti M, Stasolla C. Transduction of Signals during Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:178. [PMID: 35050066 PMCID: PMC8779037 DOI: 10.3390/plants11020178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the explants respond to inductive signals (mostly plant growth regulators, PRGs), and de-differentiate into embryogenic cells. Such cells, "canalized" into the embryogenic developmental pathway, are able to generate embryos comparable in structure and physiology to their in vivo counterparts. Genomic and transcriptomic studies have identified several pathways governing the initial stages of the embryogenic process. In this review, the authors emphasize the importance of the developmental signals required for the progression of embryo development, starting with the de-differentiation of somatic cells and culminating with tissue patterning during the formation of the embryo body. The action and interaction of PGRs are highlighted, along with the participation of master regulators, mostly transcription factors (TFs), and proteins involved in stress responses and the signal transduction required for the initiation of the embryogenic process.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
13
|
Ye C, Zheng S, Jiang D, Lu J, Huang Z, Liu Z, Zhou H, Zhuang C, Li J. Initiation and Execution of Programmed Cell Death and Regulation of Reactive Oxygen Species in Plants. Int J Mol Sci 2021; 22:ijms222312942. [PMID: 34884747 PMCID: PMC8657872 DOI: 10.3390/ijms222312942] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.
Collapse
Affiliation(s)
- Chanjuan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongna Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
14
|
Koga J, Yazawa M, Miyamoto K, Yumoto E, Kubota T, Sakazawa T, Hashimoto S, Sato M, Yamane H. Sphingadienine-1-phosphate levels are regulated by a novel glycoside hydrolase family 1 glucocerebrosidase widely distributed in seed plants. J Biol Chem 2021; 297:101236. [PMID: 34563538 PMCID: PMC8571087 DOI: 10.1016/j.jbc.2021.101236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Long-chain base phosphates (LCBPs) such as sphingosine-1-phosphate and phytosphingosine-1-phosphate function as abscisic acid (ABA)-mediated signaling molecules that regulate stomatal closure in plants. Recently, a glycoside hydrolase family 1 (GH1) β-glucosidase, Os3BGlu6, was found to improve drought tolerance by stomatal closure in rice, but the biochemical functions of Os3BGlu6 have remained unclear. Here we identified Os3BGlu6 as a novel GH1 glucocerebrosidase (GCase) that catalyzes the hydrolysis of glucosylceramide to ceramide. Phylogenetic and enzymatic analyses showed that GH1 GCases are widely distributed in seed plants and that pollen or anthers of all seed plants tested had high GCase activity, but activity was very low in ferns and mosses. Os3BGlu6 had high activity for glucosylceramides containing (4E,8Z)-sphingadienine, and GCase activity in leaves, stems, roots, pistils, and anthers of Os3BGlu6-deficient rice mutants was completely absent relative to that of wild-type rice. The levels of ceramides containing sphingadienine were correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. The levels of LCBPs synthesized from ceramides, especially the levels of sphingadienine-1-phosphate, were also correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. These results indicate that Os3BGlu6 regulates the level of ceramides containing sphingadienine, influencing the regulation of sphingadienine-1-phosphate levels and subsequent improvement of drought tolerance via stomatal closure in rice.
Collapse
Affiliation(s)
- Jinichiro Koga
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan.
| | - Makoto Yazawa
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Koji Miyamoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - Tomoyoshi Kubota
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Tomoko Sakazawa
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Syun Hashimoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Masaki Sato
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Hisakazu Yamane
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
15
|
Rojas-Méndez KJ, Sánchez Segura L, Chagolla A, Lino B, González de la Vara LE. Voltage-Dependent Anion-Selective Channels and Other Mitochondrial Membrane Proteins Form Diverse Complexes in Beetroots Subjected to Flood-Induced Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2021; 12:714847. [PMID: 34567029 PMCID: PMC8457146 DOI: 10.3389/fpls.2021.714847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In plants, programmed cell death (PCD) is involved in both the development and the response to biotic and abiotic aggressions. In early stages of PCD, mitochondrial membranes are made permeable by the formation of permeability transition pores, whose protein composition is debated. Cytochrome c (cyt c) is then released from mitochondria, inducing the degradation of chromatin characteristic of PCD. Since flooding stress can produce PCD in several plant species, the first goal of this study was to know if flooding stress could be used to induce PCD in Beta vulgaris roots. To do this, 2-month-old beet plants were flood-stressed from 1 to 5 days, and the alterations indicating PCD in stressed beetroot cells were observed with a confocal fluorescence microscope. As expected, nuclei were deformed, and chromatin was condensed and fragmented in flooded beetroots. In addition, cyt c was released from mitochondria. After assessing that flood stress induced PCD in beetroots, the composition of mitochondrial protein complexes was observed in control and flood-stressed beetroots. Protein complexes from isolated mitochondria were separated by native gel electrophoresis, and their proteins were identified by mass spectrometry. The spectra count of three isoforms of voltage-dependent anion-selective channels (VDACs) increased after 1 day of flooding. In addition, the size of the complexes formed by VDAC was higher in flood-stressed beetroots for 1 day (∼200 kDa) compared with non-stressed ones (∼100 kDa). Other proteins, such as chaperonin CPN60-2, also formed complexes with different masses in control and flood-stressed beetroots. Finally, possible interactions of VDAC with other proteins were found performing a cluster analysis. These results indicate that mitochondrial protein complexes formed by VDAC could be involved in the process of PCD in flood-stressed beetroots. Data are available via ProteomeXchange with identifier PXD027781.
Collapse
Affiliation(s)
- Karla J. Rojas-Méndez
- Laboratorio de Bioenergética y Biomembranas, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Lino Sánchez Segura
- Laboratorio de Microscopía, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Alicia Chagolla
- Laboratorio de Proteómica, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Bárbara Lino
- Laboratorio de Bioenergética y Biomembranas, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Luis E. González de la Vara
- Laboratorio de Bioenergética y Biomembranas, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
16
|
Rice Lesion Mimic Mutants (LMM): The Current Understanding of Genetic Mutations in the Failure of ROS Scavenging during Lesion Formation. PLANTS 2021; 10:plants10081598. [PMID: 34451643 PMCID: PMC8400881 DOI: 10.3390/plants10081598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023]
Abstract
Rice lesion mimic mutants (LMMs) form spontaneous lesions on the leaves during vegetative growth without pathogenic infections. The rice LMM group includes various mutants, including spotted leaf mutants, brown leaf mutants, white-stripe leaf mutants, and other lesion-phenotypic mutants. These LMM mutants exhibit a common phenotype of lesions on the leaves linked to chloroplast destruction caused by the eruption of reactive oxygen species (ROS) in the photosynthesis process. This process instigates the hypersensitive response (HR) and programmed cell death (PCD), resulting in lesion formation. The reasons for lesion formation have been studied extensively in terms of genetics and molecular biology to understand the pathogen and stress responses. In rice, the lesion phenotypes of most rice LMMs are inherited according to the Mendelian principles of inheritance, which remain in the subsequent generations. These rice LMM genetic traits have highly developed innate self-defense mechanisms. Thus, although rice LMM plants have undesirable agronomic traits, the genetic principles of LMM phenotypes can be used to obtain high grain yields by deciphering the efficiency of photosynthesis, disease resistance, and environmental stress responses. From these ailing rice LMM plants, rice geneticists have discovered novel proteins and physiological causes of ROS in photosynthesis and defense mechanisms. This review discusses recent studies on rice LMMs for the Mendelian inheritances, molecular genetic mapping, and the genetic definition of each mutant gene.
Collapse
|
17
|
Xu T, Wang X, Ma H, Su L, Wang W, Meng J, Xu Y. Functional Characterization of VDACs in Grape and Its Putative Role in Response to Pathogen Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:670505. [PMID: 34220892 PMCID: PMC8242593 DOI: 10.3389/fpls.2021.670505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Voltage-dependent anion channels (VDACs) are the most abundant proteins in the mitochondrial outer membranes of all eukaryotic cells. They participate in mitochondrial energy metabolism, mitochondria-mediated apoptosis, and cell growth and reproduction. Here, the chromosomal localizations, gene structure, conserved domains, and phylogenetic relationships were analyzed. The amino acid sequences of VDACs were found to be highly conserved. The tissue-specific transcript analysis from transcriptome data and qRT-PCR demonstrated that grapevine VDACs might play an important role in plant growth and development. It was also speculated that VDAC3 might be a regulator of modulated leaf and berry development as the expression patterns during these developmental stages are up-regulated. Further, we screened the role of all grape VDACs' response to pathogen stress and found that VDAC3 from downy mildew Plasmopara viticola-resistant Chinese wild grapevine species Vitis piasezkii "Liuba-8" had a higher expression than the downy mildew susceptible species Vitis vinifera cv. "Thompson Seedless" after inoculation with P. viticola. Overexpression of VpVDAC3 resulted in increased resistance to pathogens, which was found to prevent VpVDAC3 protein accumulation through protein post-transcriptional regulation. Taken together, these data indicate that VpVDAC3 plays a role in P. viticola defense and provides the evidence with which to understand the mechanism of grape response to pathogen stress.
Collapse
Affiliation(s)
- Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaowei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenyuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
19
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
20
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
21
|
Abstract
Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, The University of Texas at Arlington, 655 Mitchell St., Arlington, TX 76019, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
22
|
Gu J, Sun J, Liu N, Sun X, Liu C, Wu L, Liu G, Zeng F, Hou C, Han S, Zhen W, Wang D. A novel cysteine-rich receptor-like kinase gene, TaCRK2, contributes to leaf rust resistance in wheat. MOLECULAR PLANT PATHOLOGY 2020; 21:732-746. [PMID: 32196909 PMCID: PMC7170779 DOI: 10.1111/mpp.12929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/04/2023]
Abstract
Leaf rust, caused by Puccinia triticina, is one of the most destructive fungal diseases in wheat production worldwide. The hypersensitive reaction (HR) is an important defence response against P. triticina infection. In this study, the physiological races 165 and 260 of P. triticina were combined with a line derived from the bread wheat cultivar Thatcher with the leaf rust resistance locus Lr26 to form compatible and incompatible combinations, respectively. Based on an RNA-Seq database of the interaction systems, a new wheat cysteine-rich receptor-like kinase gene, TaCRK2, is specifically induced and up-regulated in the incompatible combination. We identified that TaCRK2 was regulated in a Ca2+ -dependent manner. Knockdown of TaCRK2 by virus-induced gene silencing and RNAi leads to a dramatic increase in HR area and the number of haustorial mother cells at the single infection site. In addition, urediniospores, a P. triticina-specific pathogenic marker in compatible combinations, were observed on leaf surfaces of silenced plants at approximately 15 days after inoculation in the incompatible combination. Moreover, transcription levels of TaPR1, TaPR2, and TaPR5 were obviously reduced in TaCRK2-silenced plants. TaCRK2 overexpression in Nicotiana benthamiana induced strong HR-like cell death. Finally, transient expression of green fluorescent protein fused with TaCRK2 in N. benthamiana indicated that TaCRK2 localizes in the endoplasmic reticulum. Thus, TaCRK2 plays an important role in the resistance to P. triticina infection and has a positive regulation effect on the HR cell death process induced by P. triticina.
Collapse
Affiliation(s)
- Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Jiawei Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Na Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Xizhe Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | | | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Gang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Wenchao Zhen
- Key Laboratory of Regulation and Control of Crop Growth of HebeiCollege of AgronomyHebei Agriculture UniversityBaodingChina
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| |
Collapse
|
23
|
Zafar SA, Patil SB, Uzair M, Fang J, Zhao J, Guo T, Yuan S, Uzair M, Luo Q, Shi J, Schreiber L, Li X. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. THE NEW PHYTOLOGIST 2020; 225:356-375. [PMID: 31433495 DOI: 10.1111/nph.16133] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
Degeneration of apical spikelets and reduced panicle fertility are common reasons for low seed-setting rate in rice (Oryza sativa). However, little is known about the underlying molecular mechanisms. Here, we report a novel degenerated panicle and partial sterility 1 (dps1) mutant that showed panicle apical degeneration and reduced fertility in middle spikelets. dps1 plants were characterized by small whitish anthers with altered cuticle morphology and absence of pollen grains. Amounts of cuticular wax and cutin were significantly reduced in dps1 anthers. Panicles of dps1 plants showed an accumulation of reactive oxygen species (ROS), lower antioxidant activity, and increased programmed cell death. Map-based cloning revealed that DPS1 encodes a mitochondrial-localized protein containing a cystathionine β-synthase domain that showed the highest expression in panicles and anthers. DPS1 physically interacted with mitochondrial thioredoxin proteins Trx1 and Trx20, and it participated in ROS scavenging. Global gene expression analysis in dps1 revealed that biological processes related to fatty acid metabolism and ROS homeostasis were significantly affected, and the expression of key genes involved in wax and cutin biosynthesis were downregulated. These results suggest that DPS1 plays a vital role in regulating ROS homeostasis, anther cuticle formation, and panicle development in rice.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
24
|
Fraser MS, Dauphinee AN, Gunawardena AHLAN. Determining the effect of calcium on cell death rate and perforation formation during leaf development in the novel model system, the lace plant (Aponogeton madagascariensis). J Microsc 2019; 278:132-144. [PMID: 31875955 DOI: 10.1111/jmi.12859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
Programmed cell death (PCD) is the destruction of unwanted cells through an intracellularly mediated process. Perforation formation in the lace plant (Aponogeton madagascariensis) provides an excellent model for studying developmentally regulated PCD. Ca2+ fluxes have previously been identified as important signals for PCD in plants and mammals. The fundamental goal of this project was to determine the influence of Ca2+ on the rate of cell death and perforation formation during leaf development in the lace plant. This was investigated using the application of various known calcium modulators including lanthanum III chloride (LaCl3 ), ruthenium red and calcium ionophore A23187. Detached lace plant leaves at an early stage of development were treated with these modulators in both short- and long-term exposure assays and analysed using live cell imaging. Results from this study indicate that calcium plays a vital role in developmentally regulated PCD in the lace plant as application of the modulators significantly altered the rate of cell death and perforation formation during leaf development. In conclusion, this study exemplifies the suitability of the lace plant for live cell imaging and detached leaf experiments to study cell death and provides insight into the importance of Ca2+ in developmentally regulated PCD in planta.
Collapse
Affiliation(s)
| | - Adrian N Dauphinee
- Department of Biology, Dalhousie University, Halifax, Canada.,Current address: Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
25
|
Four hundred years of cork imaging: New advances in the characterization of the cork structure. Sci Rep 2019; 9:19682. [PMID: 31873094 PMCID: PMC6928211 DOI: 10.1038/s41598-019-55193-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023] Open
Abstract
In 1665, Robert Hooke was the first to observe cork cells and their characteristic hexagonal shape, using the first optical microscope, which was invented by him at that time. With the evolution of imaging techniques, the structure of cork has been analysed with greater accuracy over time. This work presents the latest advances in the characterization of this unique material through a multiscale approach. Such investigation brings new insight into the architecture of cork, particularly the differences between the cells of the phellem and those bordering the lenticels. In the latter case, cell differentiation from the lenticular phellogen was restricted to one cell layer, which leads to a cell wall that is 10 times thicker for lenticels. They also displayed a different chemical composition because of unsuberization and a high lignin content in lenticels. Such advances in the knowledge of the structure and composition of cork cells contributes to a better understanding of the macroporosity of cork, down to the nanoscale.
Collapse
|
26
|
Sorin C, Mariette F, Musse M. NMR study of fresh cut salads: Influence of temperature and storage time on leaf structure and water distribution in escarole. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:626-637. [PMID: 30868626 DOI: 10.1002/mrc.4865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Consumption of fresh-cut vegetables has rapidly increased over the past decades. Among salads, escarole is one of the most popular varieties. Specific packaging limits gas exchange and consequently water loss and bacterial respiration, increasing the shelf life of salads. Although the major cause of quality loss for minimally processed salads is the leaf textural changes, this aspect has rarely been investigated. Therefore, investigating structural changes of leaves during storage is important in order to understand and minimize quality loss of salads. In this study, we focused on the impact of storage duration and temperature on the escarole leaf structure. The complex leaf structure was investigated by relaxation NMR, via transverse relaxation times, which allows the specific description of vacuolar water compartment of the cell. The storage duration (maximum 12 days) and temperatures (4°C, 7°C, 10°C, and 12°C) have been chosen in order to represent the conditions registered in factory. The results showed that the temperature did not have significant impact on the salad structure during the first week. During the second week, changes in the water distribution and changes in the relaxation time T2 have been observed. The changes in transverse relaxation times associated with vacuolar water are related to lost of cell membrane and wall integrity. The NMR results confirmed the effect of storage temperature on the degradation process of the cell before visual detection of the salad leaf degradation. The present study confirmed the sensibility of NMR relaxometry for monitoring water changes in the leaf.
Collapse
|
27
|
Riegman M, Bradbury MS, Overholtzer M. Population Dynamics in Cell Death: Mechanisms of Propagation. Trends Cancer 2019; 5:558-568. [PMID: 31474361 PMCID: PMC7310667 DOI: 10.1016/j.trecan.2019.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Cell death can occur through numerous regulated mechanisms that are categorized by their molecular machineries and differing effects on physiology. Apoptosis and necrosis, for example, have opposite effects on tissue inflammation due to their different modes of execution. Another feature that can distinguish different forms of cell death is that they have distinct intrinsic effects on the cell populations in which they occur. For example, a regulated mechanism of necrosis called ferroptosis has the unusual ability to spread between cells in a wave-like manner, thereby eliminating entire cell populations. Here we discuss the ways in which cell death can propagate between cells in normal physiology and disease, as well as the potential exploitation of cell death propagation for cancer therapy.
Collapse
Affiliation(s)
- Michelle Riegman
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
28
|
Genome-Wide Identification and Expression Analysis of the Metacaspase Gene Family in Gossypium Species. Genes (Basel) 2019; 10:genes10070527. [PMID: 31336941 PMCID: PMC6679041 DOI: 10.3390/genes10070527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
Metacaspases (MCs) are cysteine proteases that are important for programmed cell death (PCD) in plants. In this study, we identified 89 MC genes in the genomes of four Gossypium species (Gossypium raimondii, Gossypium barbadense, Gossypium hirsutum, and Gossypium arboreum), and classified them as type-I or type-II genes. All of the type-I and type-II MC genes contain a sequence encoding the peptidase C14 domain. During developmentally regulated PCD, type-II MC genes may play an important role related to fiber elongation, while type-I genes may affect the thickening of the secondary wall. Additionally, 13 genes were observed to be differentially expressed between two cotton lines with differing fiber strengths, and four genes (GhMC02, GhMC04, GhMC07, and GhMC08) were predominantly expressed in cotton fibers at 5–30 days post-anthesis (DPA). During environmentally induced PCD, the expression levels of four genes were affected in the root, stem, and leaf tissues within 6 h of an abiotic stress treatment. In general, the MC gene family affects the development of cotton fibers, including fiber elongation and fiber thickening while four prominent fiber- expressed genes were identified. The effects of the abiotic stress and hormone treatments imply that the cotton MC gene family may be important for fiber development. The data presented herein may form the foundation for future investigations of the MC gene family in Gossypium species.
Collapse
|
29
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Novák O, Strnad M, Forzani C, Hirt H, Havaux M, Monnet F. OXI1 and DAD Regulate Light-Induced Cell Death Antagonistically through Jasmonate and Salicylate Levels. PLANT PHYSIOLOGY 2019; 180:1691-1708. [PMID: 31123095 PMCID: PMC6752932 DOI: 10.1104/pp.19.00353] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Singlet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate OXI1 expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing OXI1 in Arabidopsis (Arabidopsis thaliana) increased plant sensitivity to high light and induced early senescence of mature leaves. Both phenomena rely on a marked accumulation of jasmonate and salicylate. DAD1 or DAD2 overexpression decreased OXI1 expression, jasmonate levels, and sensitivity to photooxidative stress. Knock-out mutants of DAD1 or DAD2 exhibited the opposite responses. Exogenous applications of jasmonate upregulated salicylate biosynthesis genes and caused leaf damage in wild-type plants but not in the salicylate biosynthesis mutant Salicylic acid induction-deficient2, indicating that salicylate plays a crucial role in PCD downstream of jasmonate. Treating plants with salicylate upregulated the DAD genes and downregulated OXI1 We conclude that OXI1 and DAD are antagonistic regulators of cell death through modulating jasmonate and salicylate levels. High light-induced PCD thus results from a tight control of the relative activities of these regulating proteins, with DAD exerting a negative feedback control on OXI1 expression.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Stefano D'Alessandro
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michel Havaux
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Fabien Monnet
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
- Université d'Avignon et des Pays de Vaucluse, F-84000 Avignon, France
| |
Collapse
|
30
|
Zhao XY, Qi CH, Jiang H, Zheng PF, Zhong MS, Zhao Q, You CX, Li YY, Hao YJ. Functional identification of apple on MdHIR4 in biotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:396-406. [PMID: 31128710 DOI: 10.1016/j.plantsci.2018.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
In plants, hypersensitive-induced reaction (HIR) proteins are involved in stress responses, especially biotic stress. However, the potential molecular mechanisms of HIR-mediated biotic resistance in plants are rarely reported. We found that apple (Malus domestica) MdHIR4 was localized in the cell nucleus and membrane similar to AtHIR1 in Arabidopsis. Moreover, salicylic acid and the bacterial flagellin flg22 (a conserved, 22-amino acid motif), which are relevant to biotic stress, could induce MdHIR4 expression. Additionally, the transcription level of MdHIR4 was increased by Methyl jasmonate treatment. Ectopic expression of MdHIR4 in Arabidopsis and Nicotiana benthamiana reduced sensitivity to Methyl jasmonate and enhanced resistance to the bacterial pathogen Pst DC3000 (Pseudomonas syringae tomato DC3000). The interaction between MdHIR4 and AtJAZs proteins (AtJAZ3, AtJAZ4, and AtJAZ9) implied that MdHIR4 participated in the jasmonic acid (JA) signaling pathway. We found the expression of JA-related genes and PRs to change in transgenic plants, further demonstrating that MdHIR4 mediated biotic stress through the JA signaling pathway. Repressing the expression of MdHIR4 in apple leaves and calli increased resistance to Botryosphaeria dothidea by influencing the transcription of resistance-related genes. Our findings reveal the resistant function to biotic stress of MdHIR4 in transgenic plants, including Arabidopsis, tobacco, and apple, and identify the regulating mechanism of MdHIR4-related biotic resistance.
Collapse
Affiliation(s)
- Xian-Yan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen-Hui Qi
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng-Fei Zheng
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Ming-Shuang Zhong
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qiang Zhao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
31
|
Li D, Wu D, Li S, Guo N, Gao J, Sun X, Cai Y. Transcriptomic profiling identifies differentially expressed genes associated with programmed cell death of nucellar cells in Ginkgo biloba L. BMC PLANT BIOLOGY 2019; 19:91. [PMID: 30819114 PMCID: PMC6396491 DOI: 10.1186/s12870-019-1671-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/01/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Previously, we demonstrated that pollen chamber formation (PCF) in G. biloba ovules was a process of programmed cell death (PCD) within the nucellar cells at the micropylar end. However, the signal triggering the cascades of the programmed events in these nucellar cells remains unexplored. RESULTS A transcriptomic strategy was employed to unravel the mechanism underlying the nucellar PCD via the comparative profiles of RNA-seq between pre-PCF and post-PCF ovules. A total of 5599 differentially expressed genes (DEGs) with significance was identified from G. biloba ovules and classified into three main categories of GO annotation, including 17 biological processes, 15 cellular components and 17 molecular functions. KEGG analysis showed that 72 DEGs were enriched in "Plant hormone signal transduction". Furthermore, 99 DEGs were found to be associated with the PCD process, including the genes involved in ethylene signaling pathway, PCD initiation, and PCD execution. Moreover, calcium-cytochemical localization indicated that calcium could play a role in regulating PCD events within the nucellar cells during pollen chamber formation in G. biloba ovules. CONCLUSIONS A putative working model, consisting of three overlapping processes, is proposed for the nucellar PCD: at the stage of PCD preparation, ethylene signaling pathway is activated for transcriptional regulation of the downstream targets; subsequently, at the stage of PCD initiation, the upregulated expression of several transcription factors, i.e., NAC, bHLH, MADS-box, and MYB, further promotes the corresponding transcript levels of CYTOCHROME C and CALMODULINs, thereby, leads to the PCD initiation via the calcium-dependent signaling cascade; finally, at the stage of PCD execution, some proteases like metacaspases and vacuolar processing enzyme for hydrolysis, together with the process of autophagy, play roles in the clearance of cellular components. Afterwards, a pollen chamber is generated from the removal of specific nucellar cells in the developing ovule.
Collapse
Affiliation(s)
- Dahui Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Di Wu
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Shizhou Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Ning Guo
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Junshan Gao
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Xu Sun
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Yongping Cai
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
32
|
Gao X, Ruan X, Sun Y, Wang X, Feng B. BAKing up to Survive a Battle: Functional Dynamics of BAK1 in Plant Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2019; 9:1913. [PMID: 30671069 PMCID: PMC6331536 DOI: 10.3389/fpls.2018.01913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 05/12/2023]
Abstract
In plants, programmed cell death (PCD) has diverse, essential roles in vegetative and reproductive development, and in the responses to abiotic and biotic stresses. Despite the rapid progress in understanding the occurrence and functions of the diverse forms of PCD in plants, the signaling components and molecular mechanisms underlying the core PCD machinery remain a mystery. The roles of BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1), an essential co-receptor of multiple receptor complexes, in the regulation of immunity and development- and defense-related PCD have been well characterized. However, the ways in which BAK1 functions in mediating PCD need to be further explored. In this review, different forms of PCD in both plants and mammals are discussed. Moreover, we mainly summarize recent advances in elucidating the functions and possible mechanisms of BAK1 in controlling diverse forms of PCD. We also highlight the involvement of post-translational modifications (PTMs) of multiple signaling component proteins in BAK1-mediated PCD.
Collapse
Affiliation(s)
- Xiquan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xinsen Ruan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Baomin Feng
- Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
33
|
Propagation of cell death in dropdead1, a sorghum ortholog of the maize lls1 mutant. PLoS One 2018; 13:e0201359. [PMID: 30199528 PMCID: PMC6130852 DOI: 10.1371/journal.pone.0201359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 07/14/2018] [Indexed: 02/08/2023] Open
Abstract
We describe dropdead1-1 (ded1), an EMS-induced recessive lesion mimic mutant of sorghum. It is characterized by the formation of spreading necrotic lesions that share many attributes with those associated with the maize lethal leaf spot1 (lls1) and Arabidopsis accelerated cell death1 (acd1) mutation. We show that as in lls1, ded1 lesions are initiated by wounding and require light for continued propagation, and that loss of chloroplast integrity is responsible for ded1 cell death. Consistent with these parallels, we demonstrate that ded1 is an ortholog of lls1 and encodes pheophorbide a oxidase (PaO) with 93% identity at the protein level. The mutant ded1 allele resulted from a stop codon-inducing single base pair change in exon 6 of the sorghum ortholog of lls1. The ded1 transcript was rapidly and transiently induced after wounding and substantially elevated in leaves containing ded1 lesions. Given that PaO is a key enzyme of the chlorophyll degradation pathway, its dysfunction would result in the accumulation of pheophorbide, a potent photosensitizer that results in the production of singlet oxygen. Consistent with this, cell death associated with ded1 lesions is most likely caused by singlet oxygen as our results exclude superoxide and H2O2 from this role. We explore the signal responsible for the propagation of lesions affecting both ded1 and lls1 lesions and find that both developmental age and ethylene increase the rate of lesion expansion in both mutants.
Collapse
|
34
|
Pandey SS, Singh S, Pathak C, Tiwari BS. "Programmed Cell Death: A Process of Death for Survival" - How Far Terminology Pertinent for Cell Death in Unicellular Organisms. J Cell Death 2018; 11:1179066018790259. [PMID: 30116103 PMCID: PMC6088462 DOI: 10.1177/1179066018790259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/22/2018] [Indexed: 02/01/2023] Open
Abstract
Programmed cell death (PCD) is genetically regulated phenomenon of selective elimination of target cells that are either under pathological conditions or unwanted for organism’s normal growth and development due to other reasons. The process although being genetically controlled is physiological in nature that renders some hallmarks like blebs in the cell membrane, lobe formation in nuclear membrane, DNA nicks resulting to DNA ladder of 200 bp, and downstream activation of caspases. Moreover, as the process refers to the death of “targeted cell”, the term is exclusively suitable for multicellular organisms. Number of reports advocate similar type of cell death process in unicellular organisms. As cell death in unicellular organisms is also reflected by the signature of PCD obtained in metazoans, such cell death has been grouped under the broad category of PCD. It is pertinent to mention that by definition a unicellular organism is made of a single cell wherein it carries out all of its life processes. Using the term “Programmed Cell Death” with a preset “survival strategy of the organism” for unicellular organisms looks misnomer. Therefore, this correspondence argues and requests recommendation committee on cell death to revisit for the nomenclature of the cell death process in the unicellular organisms.
Collapse
Affiliation(s)
- Shiv Shanker Pandey
- Crop Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Samer Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Chandramani Pathak
- Plant Cell Biology & Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, India
| | - Budhi Sagar Tiwari
- Plant Cell Biology & Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, India
| |
Collapse
|
35
|
Ramírez V, Xiong G, Mashiguchi K, Yamaguchi S, Pauly M. Growth- and stress-related defects associated with wall hypoacetylation are strigolactone-dependent. PLANT DIRECT 2018; 2:e00062. [PMID: 31245725 PMCID: PMC6508513 DOI: 10.1002/pld3.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 05/15/2018] [Indexed: 05/24/2023]
Abstract
Mutants affected in the Arabidopsis TBL29/ESK1 xylan O-acetyltransferase display a strong reduction in total wall O-acetylation accompanied by a dwarfed plant stature, collapsed xylem morphology, and enhanced freezing tolerance. A newly identified tbl29/esk1 suppressor mutation reduces the expression of the MAX4 gene, affecting the biosynthesis of methyl carlactonoate (MeCLA), an active strigolactone (SL). Genetic and biochemical evidence suggests that blocking the biosynthesis of this SL is sufficient to recover all developmental and stress-related defects associated with the TBL29/ESK1 loss of function without affecting its direct effect-reduced wall O-acetylation. Altered levels of the MAX4 SL biosynthetic gene, reduced branch number, and higher levels of MeCLA, were also found in tbl29/esk1 plants consistent with a constitutive activation of the SL pathway. These results suggest that the reduction in O-acetyl substituents in xylan is not directly responsible for the observed tbl29/esk1 phenotypes. Alternatively, plants may perceive defects in the structure of wall polymers and/or wall architecture activating the SL hormonal pathway as a compensatory mechanism.
Collapse
Affiliation(s)
- Vicente Ramírez
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Guangyan Xiong
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Department of Anatomical Sciences and NeurobiologySchool of MedicineUniversity of LouisvileLouisvilleKentucky
| | - Kiyoshi Mashiguchi
- Department of Biomolecular SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shinjiro Yamaguchi
- Department of Biomolecular SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Markus Pauly
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
36
|
Rantong G, Gunawardena AH. Vacuolar processing enzymes, AmVPE1 and AmVPE2, as potential executors of ethylene regulated programmed cell death in the lace plant ( Aponogeton madagascariensis). BOTANY 2018. [PMID: 0 DOI: 10.1139/cjb-2017-0184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Perforation formation in Aponogeton madagascariensis (Mirb.) H.Bruggen (lace plant) is an excellent model for studying developmentally regulated programmed cell death (PCD). In this study, we isolated and identified two lace plant vacuolar processing enzymes (VPEs) and investigated their involvement in PCD and throughout leaf development. Lace plant VPE transcript levels were determined during seven different stages of leaf development. PCD and non-PCD cells from “window” stage leaves (in which perforations are forming) were separated through laser-capture microscopy and their transcript levels were also determined. VPE activity was also studied between the cell types, through a VPE activity-based probe JOPD1. Additionally, VPE transcript levels were studied in plants treated with an ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG). The two isolated VPEs, AmVPE1 and AmVPE2, are vegetative type VPEs. AmVPE1 had higher transcript levels during a pre-perforation developmental stage, immediately prior to visible signs of PCD. AmVPE2 transcript levels were higher later during window and late window stages. Both VPEs had higher transcript and activity levels in PCD compared with the non-PCD cells. AVG treatment inhibited PCD and associated increases in VPE transcript levels. Our results suggested that VPEs are involved in the execution of the ethylene-related PCD in the lace plant.
Collapse
Affiliation(s)
- Gaolathe Rantong
- Department of Biology, Dalhousie University, 1355 Oxford Street, Life Sciences Centre, Halifax, NS B3H 4R2, Canada
- Department of Biology, Dalhousie University, 1355 Oxford Street, Life Sciences Centre, Halifax, NS B3H 4R2, Canada
| | - Arunika H.L.A.N. Gunawardena
- Department of Biology, Dalhousie University, 1355 Oxford Street, Life Sciences Centre, Halifax, NS B3H 4R2, Canada
- Department of Biology, Dalhousie University, 1355 Oxford Street, Life Sciences Centre, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
37
|
Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska-Zadworna A. Plant organ senescence - regulation by manifold pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:167-181. [PMID: 29178615 DOI: 10.1111/plb.12672] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well-defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.
Collapse
Affiliation(s)
- N Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Sobieszczuk-Nowicka
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - A Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
38
|
Blum A, Tuberosa R. Dehydration survival of crop plants and its measurement. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:975-981. [PMID: 29325054 PMCID: PMC6018961 DOI: 10.1093/jxb/erx445] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 05/07/2023]
Abstract
Dehydration survival under drought stress is defined in this review as the transition from plant activity into a quiescent state of life preservation, which will be terminated by either recovery or death, depending on the stress regime and the plant's resilience. Dehydration survival is a popular phenotype by which functional genomics attempts to test gene function in drought resistance and survival. The available reports on phenotyping and genotyping of dehydration survival in genomic studies indicate that the measurement of this trait is often biased to the extent that misguided interpretations are likely to occur. This review briefly discusses the physiological basis of dehydration survival in resurrection plants and crop plants, and concludes that in phenotyping dehydration survival there is a need to distinguish between dehydration avoidance and dehydration tolerance (also termed desiccation tolerance) in affecting survival and recovery. Without this distinction, functional genomics studies of the trait might be biased. Survival due to dehydration avoidance is expressed by the capacity to maintain a relatively high plant water status as the plant is desiccated. Survival due to dehydration tolerance is expressed by delayed mortality (mortality at a relatively low plant water status) as affected by the resilience of plant metabolism. The common test of dehydration survival, using the relative recovery after a given number of stress days, is therefore insufficient because it is mainly driven by dehydration avoidance and so ignores a possible role for dehydration tolerance. Conceivable methods for more accurate phenotyping of the two components of dehydration survival are proposed and discussed.
Collapse
Affiliation(s)
| | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna, Viale Fanin, Bologna, Italy
| |
Collapse
|
39
|
Torres DP, Proels RK, Schempp H, Hückelhoven R. Silencing of RBOHF2 Causes Leaf Age-Dependent Accelerated Senescence, Salicylic Acid Accumulation, and Powdery Mildew Resistance in Barley. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:906-918. [PMID: 28795634 DOI: 10.1094/mpmi-04-17-0088-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant RBOH (RESPIRATORY BURST OXIDASE HOMOLOGS)-type NADPH oxidases produce superoxide radical anions and have a function in developmental processes and in response to environmental challenges. Barley RBOHF2 has diverse reported functions in interaction with the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Here, we analyzed, in detail, plant leaf level- and age-specific susceptibility of stably RBOHF2-silenced barley plants. This revealed enhanced susceptibility to fungal penetration of young RBOHF2-silenced leaf tissue but strongly reduced susceptibility of older leaves when compared with controls. Loss of susceptibility in old RBOHF2-silenced leaves was associated with spontaneous leaf-tip necrosis and constitutively elevated levels of free and conjugated salicylic acid. Additionally, these leaves more strongly expressed pathogenesis-related genes, both constitutively and during interaction with B. graminis f. sp. hordei. Together, this supports the idea that barley RBOHF2 contributes to basal resistance to powdery mildew infection in young leaf tissue but is required to control leaf cell death, salicylic acid accumulation, and defense gene expression in older leaves, explaining leaf age-specific resistance of RBOHF2-silenced barley plants.
Collapse
Affiliation(s)
- Denise Pereira Torres
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Reinhard K Proels
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Harald Schempp
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
40
|
Kurusu T, Kuchitsu K. Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants. JOURNAL OF PLANT RESEARCH 2017; 130:491-499. [PMID: 28364377 DOI: 10.1007/s10265-017-0934-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is one of the major cellular processes of recycling of proteins, metabolites and intracellular organelles, and plays crucial roles in the regulation of innate immunity, stress responses and programmed cell death (PCD) in many eukaryotes. It is also essential in development and sexual reproduction in many animals. In plants, although autophagy-deficient mutants of Arabidopsis thaliana show phenotypes in abiotic and biotic stress responses, their life cycle seems normal and thus little had been known until recently about the roles of autophagy in development and reproduction. Rice mutants defective in autophagy show sporophytic male sterility and immature pollens, indicating crucial roles of autophagy during pollen maturation. Enzymatic production of reactive oxygen species (ROS) by respiratory burst oxidase homologues (Rbohs) play multiple roles in regulating anther development, pollen tube elongation and fertilization. Significance of autophagy and ROS in the regulation of PCD of transient cells during plant sexual reproduction is discussed in comparison with animals.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
41
|
Iakimova ET, Woltering EJ. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. PLANTA 2017; 245:681-705. [PMID: 28194564 PMCID: PMC5357506 DOI: 10.1007/s00425-017-2656-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Collapse
Affiliation(s)
| | - Ernst J Woltering
- Wageningen University and Research, Food and Biobased Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
- Wageningen University, Horticulture and Product Physiology, P.O. Box 630, 6700 AP, Wageningen, The Netherlands.
| |
Collapse
|
42
|
Betsch L, Savarin J, Bendahmane M, Szecsi J. Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development. Results Probl Cell Differ 2017; 64:149-172. [PMID: 29149407 DOI: 10.1007/978-3-319-67591-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a conserved protein which expression was associated with several biochemical and cellular functions. Loss-of-function mutants are lethal both in animals and in plants, making the identification of its exact role difficult. Recent data using the model plant Arabidopsis thaliana provided the first viable adult knockout for TCTP and helped addressing the biological role of TCTP during organ development and the functional conservation between plants and animals. This chapter summarizes our up to date knowledge about the role of TCTP in plants and discuss about conserved functions and mechanisms between plants and animals.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
43
|
Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6040054] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Siddiqui AA, Khaki PSS, Bano B. Interaction of almond cystatin with pesticides: Structural and functional analysis. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Azad Alam Siddiqui
- Department of Biochemistry, Faculty of life Sciences; Aligarh Muslim University; Aligarh India
| | | | - Bilqees Bano
- Department of Biochemistry, Faculty of life Sciences; Aligarh Muslim University; Aligarh India
| |
Collapse
|
45
|
Chen L, Chen Q, Zhu Y, Hou L, Mao P. Proteomic Identification of Differentially Expressed Proteins during Alfalfa ( Medicago sativa L.) Flower Development. FRONTIERS IN PLANT SCIENCE 2016; 7:1502. [PMID: 27757120 PMCID: PMC5047909 DOI: 10.3389/fpls.2016.01502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/21/2016] [Indexed: 05/23/2023]
Abstract
Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and contributes to the understanding of the basic molecular mechanisms during the alfalfa flowering process. These results may offer insight into potential strategies for improving seed yield, quality, and stress tolerance in alfalfa.
Collapse
Affiliation(s)
- Lingling Chen
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
- Chifeng Academy of Agricultural and Animal SciencesChifeng, China
| | - Quanzhu Chen
- Chengdu Municipal Development and Reform CommissionChengdu, China
| | - Yanqiao Zhu
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
| | - Longyu Hou
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
| | - Peisheng Mao
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
| |
Collapse
|
46
|
Islam MZ, Yun HK. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens. THE PLANT PATHOLOGY JOURNAL 2016; 32:347-56. [PMID: 27493610 PMCID: PMC4968645 DOI: 10.5423/ppj.oa.11.2015.0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 05/22/2023]
Abstract
Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines.
Collapse
Affiliation(s)
| | - Hae Keun Yun
- Corresponding author. Phone) +82-53-810-2942, FAX) +82-53-810-4659, E-mail)
| |
Collapse
|
47
|
Bhat SA, Bhat WF, Bano B. Spectroscopic evaluation of the interaction between pesticides and chickpea cystatin: comparative binding and toxicity analyses. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:872-81. [PMID: 27327564 DOI: 10.1039/c6em00195e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The binding study of pesticides with proteins is of great importance in ecotoxicology. In this study, a comparative interaction mechanism of phytocystatin with three pesticides has been presented, each from a different class-glyphosate herbicide (GPS), chlorpyrifos insecticide (CPF), and mancozeb fungicide (MCZ). The interaction of purified chickpea cystatin (CPC) has been characterized by fluorescence, UV, and circular dichroism (CD) spectroscopic methods. The study revealed association constants (Ka) of 52 M(-1), 1.145 × 10(3) M(-1), and 36.12 M(-1) for the interaction of CPF, MCZ, and GPS with CPC, respectively, signifying the high affinity interaction for MCZ. Structural changes (at tertiary and secondary levels) were confirmed by UV-visible, intrinsic fluorescence and CD spectroscopy. The results showed that the effect on the CPC structure was more pronounced in the case of MCZ, which was followed by CPF and then GPS. The functional analysis of the pesticide treated inhibitor showed a decline in antipapain activity which varied with the time and dose as well as the class of pesticide. MCZ was relatively much more toxic as compared to CPF and GPS. Reactive oxygen species responsible for inhibitor damage were also analyzed. The results obtained implicate that the exposure of plants to pesticides may lead to physicochemical changes in proteins such as phytocystatins leading to physiological damage to the plant system.
Collapse
Affiliation(s)
- Sheraz Ahmad Bhat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India.
| | - Waseem Feeroze Bhat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India.
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India.
| |
Collapse
|
48
|
Jiang Y, Ye J, Veromann LL, Niinemets Ü. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. TREE PHYSIOLOGY 2016; 36:856-72. [PMID: 27225874 DOI: 10.1093/treephys/tpw035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Fungal infections result in decreases in photosynthesis, induction of stress and signaling volatile emissions and reductions in constitutive volatile emissions, but the way different physiological processes scale with the severity of infection is poorly known. We studied the effects of infection by the obligate biotrophic fungal pathogen Melampsora larici-populina Kleb., the causal agent of poplar leaf rust disease, on photosynthetic characteristics, and constitutive isoprene and induced volatile emissions in leaves of Populus balsamifera var. suaveolens (Fisch.) Loudon. exhibiting different degrees of damage. The degree of fungal damage, quantified by the total area of chlorotic and necrotic leaf areas, varied between 0 (noninfected control) and ∼60%. The rates of all physiological processes scaled quantitatively with the degree of visual damage, but the scaling with damage severity was weaker for photosynthetic characteristics than for constitutive and induced volatile release. Over the whole range of damage severity, the net assimilation rate per area (AA) decreased 1.5-fold, dry mass per unit area 2.4-fold and constitutive isoprene emissions 5-fold, while stomatal conductance increased 1.9-fold and dark respiration rate 1.6-fold. The emissions of key stress and signaling volatiles (methanol, green leaf volatiles, monoterpenes, sesquiterpenes and methyl salicylate) were in most cases nondetectable in noninfested leaves, and increased strongly with increasing the spread of infection. The moderate reduction in AA resulted from the loss of photosynthetically active biomass, but the reduction in constitutive isoprene emissions and the increase in induced volatile emissions primarily reflected changes in the activities of corresponding biochemical pathways. Although all physiological alterations in fungal-infected leaves occurred in a stress severity-dependent manner, modifications in primary and secondary metabolic pathways scaled differently due to contrasting operational mechanisms.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia College of Art, Changzhou University, Gehu 1, Changzhou 213164, Jiangsu, China
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Linda-Liisa Veromann
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
49
|
Wu YR, Lin YC, Chuang HW. Laminarin modulates the chloroplast antioxidant system to enhance abiotic stress tolerance partially through the regulation of the defensin-like gene expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:83-92. [PMID: 27095402 DOI: 10.1016/j.plantsci.2016.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/24/2016] [Accepted: 03/19/2016] [Indexed: 05/21/2023]
Abstract
Algae wall polysaccharide, laminarin (Lam), has an established role on induction of plant disease resistance. In this study, application of Lam increased Arabidopsis fresh weight and enhanced tolerance to salt and heat stress by stabilizing chloroplast under adverse environment. Transcriptome analysis indicated that, in addition to induced a large number of genes associated with the host defense, genes involved in the regulation of abiotic stress tolerance mostly the heat stress response constituted the largest group of the up-regulated genes. Lam induced expression of IRT1, ZIP8, and copper transporters involved in transport of Fe, Zn, Cu ions associated with the activity of chloroplast antioxidant system. Lam also up-regulated genes involved in the synthesis of terpenoid, a plastidial-derived secondary metabolite with antioxidant activity. Overexpression of a Lam-induced defensin like 202 (DEFL202) resulted in increased chloroplast stability under salt stress and increased plant growth activity after heat stress. Expression of antioxidant enzymes including SOD and ascorbate peroxidase (APX), photosystem PsbA-D1 and ABA-dependent responsive to desiccation 22 (RD22) was induced to higher levels in the transgenic seedlings. In sum, our results suggest that Lam is an potent inducer for induction of chloroplastic antioxidant activity. Lam affect plant abiotic stress tolerance partially through regulation of the DEFL-mediated pathway.
Collapse
Affiliation(s)
- Yi-Ru Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Chen Lin
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Huey-wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
50
|
Romanova AK, Semenova GA, Ignat'ev AR, Novichkova NS, Fomina IR. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf. PROTOPLASMA 2016; 253:719-727. [PMID: 26666552 DOI: 10.1007/s00709-015-0923-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
The comparative study of biochemical and ultrastructure features in senescing sugar beet (Beta vulgaris L.) leaves was carried out. One group of plants was grown under normal conditions in washed river sand and poured in turn with nitrate-containing mineral solution or water (N plants). Another group of plants, after 1 month of normal growth, was further grown with nitrate omitted in the nutritive solution (defN plants). The starting point of normal leaf senescence in N plants was identified by the maximal content of soluble protein. Soluble carbohydrate pools were statistically constant in senescing N plants, whereas glucose pools varied noticeably. A decrease in the contents of soluble protein and chlorophyll (a + b) in the course of senescing was typical for N plant leaves. The cell membrane in N plant leaves remained mostly intact; the central vacuoles in the leaf cells were large, and their membranes remained intact. The chloroplasts and mitochondria in senescing N plant leaves became swollen. The vesicles that were present in the cytoplasm of N plant leaves were especially large in the oldest leaves. It was concluded that senescing of sugar beet leaves at sufficient nitrate nutrition occurs according to a "vacuolar" scenario. In the case of nitrate deficiency, the content of soluble carbohydrates in defN leaves first reached maximum and then decreased in older leaves; the protein and chlorophyll (a + b) contents were totally lower than those in normal leaves and continuously decreased during the experiments. Chloroplasts in mesophyll cells of defN plant leaves became more rounded; starch grains in chloroplasts degraded and the number and size of lipid globules increased. The multitude of membrane impairments and lots of large vesicles-"crystals" appeared during the experiment. The results showed the controlling action of nitrogen nutrition in the senescing of sugar beet leaves.
Collapse
Affiliation(s)
- Alla K Romanova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Galina A Semenova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexander R Ignat'ev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Natalia S Novichkova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina R Fomina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Biosphere Systems International Foundation, Tucson, AZ, 85755, USA.
| |
Collapse
|