1
|
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3959845. [PMID: 36593773 PMCID: PMC9805398 DOI: 10.1155/2022/3959845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Vascular remodeling refers to changes in the size, contraction, distribution, and flow rate of blood vessels and even changes in vascular function. Vascular remodeling can cause cardiovascular and cerebrovascular diseases. It can also lead to other systemic diseases, such as pulmonary hypertension, pulmonary atherosclerosis, chronic obstructive pulmonary disease, stroke, and ascites of broilers. Hypoxia is one of the main causes of vascular remodeling. Prolonged hypoxia or intermittent hypoxia can lead to loss of lung ventilation, causing respiratory depression, irregular respiratory rhythms, and central respiratory failure. Animals that are unable to adapt to the highland environment are also prone to sustained constriction of the small pulmonary arteries, increased resistance to pulmonary circulation, and impaired blood circulation, leading to pulmonary hypertension and right heart failure if they live in a highland environment for long periods of time. However, limited studies have been found on the relationship between hypoxia and vascular remodeling. Therefore, this review will explore the relationship between hypoxia and vascular remodeling from the aspects of endoplasmic reticulum stress, mitochondrial dysfunction, abnormal calcium channel, disordered cellular metabolism, abnormal expression of miRNA, and other factors. This will help to understand the detailed mechanism of hypoxia-mediated smooth muscle cell proliferation and vascular remodeling for the better treatment and management of diseases due to vascular remodeling.
Collapse
|
2
|
Nejat R, Sadr AS. Are losartan and imatinib effective against SARS-CoV2 pathogenesis? A pathophysiologic-based in silico study. In Silico Pharmacol 2020; 9:1. [PMID: 33294307 PMCID: PMC7716628 DOI: 10.1007/s40203-020-00058-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Proposing a theory about the pathophysiology of cytokine storm in COVID19, we were to find the potential drugs to treat this disease and to find any effect of these drugs on the virus infectivity through an in silico study. COVID-19-induced ARDS is linked to a cytokine storm phenomenon not explainable solely by the virus infectivity. Knowing that ACE2, the hydrolyzing enzyme of AngII and SARS-CoV2 receptor, downregulates when the virus enters the host cells, we hypothesize that hyperacute AngII upregulation is the eliciting factor of this ARDS. We were to validate this theory through reviewing previous studies to figure out the role of overzealous activation of AT1R in ARDS. According to this theory losartan may attenuate ARDS in this disease. Imatinib, has previously been elucidated to be promising in modulating lung inflammatory reactions and virus infectivity in SARS and MERS. We did an in silico study to uncover any probable other unconsidered inhibitory effects of losartan and imatinib against SARS-CoV2 pathogenesis. Reviewing the literature, we could find that over-activation of AT1R could explain precisely the mechanism of cytokine storm in COVID19. Our in silico study revealed that losartan and imatinib could probably: (1) decline SARS-CoV2 affinity to ACE2. (2) inhibit the main protease and furin, (3) disturb papain-like protease and p38MAPK functions. Our reviewing on renin-angiotensin system showed that overzealous activation of AT1R by hyper-acute excess of AngII due to acute downregulation of ACE2 by SARS-CoV2 explains precisely the mechanism of cytokine storm in COVID-19. Besides, based on our in silico study we concluded that losartan and imatinib are promising in COVID19.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shahir Sadr
- Bioinformatics Research Center, Cheragh Medical Institute and Hospital, Kabul, Afghanistan
- Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
3
|
Garat CV, Majka SM, Sullivan TM, Crossno JT, Reusch JE, Klemm DJ. CREB depletion in smooth muscle cells promotes medial thickening, adventitial fibrosis and elicits pulmonary hypertension. Pulm Circ 2020; 10:2045894019898374. [PMID: 32313640 PMCID: PMC7158261 DOI: 10.1177/2045894019898374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
Levels of the cAMP-responsive transcription factor, CREB, are reduced in medial smooth muscle cells in remodeled pulmonary arteries from hypertensive calves and rats with chronic hypoxia-induced pulmonary hypertension. Here, we show that chronic hypoxia fails to promote CREB depletion in pulmonary artery smooth muscle cells or elicit significant remodeling of the pulmonary arteries in mice, suggesting that sustained CREB expression prevents hypoxia-induced pulmonary artery remodeling. This hypothesis was tested by generating mice, in which CREB was ablated in smooth muscle cells. Loss of CREB in smooth muscle cells stimulated pulmonary artery thickening, right ventricular hypertrophy, profound adventitial collagen deposition, recruitment of myeloid cells to the adventitia, and elevated right ventricular systolic pressure without exposure to chronic hypoxia. Isolated murine CREB-null smooth muscle cells exhibited serum-independent proliferation and hypertrophy in vitro and medium conditioned by CREB-null smooth muscle cells stimulated proliferation and expression of extracellular matrix proteins by adventitial fibroblasts. We conclude that CREB governs the pathologic switch from homeostatic, quiescent smooth muscle cells to proliferative, synthetic cells that drive arterial remodeling contributing to the development or pulmonary hypertension.
Collapse
Affiliation(s)
- Chrystelle V. Garat
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Susan M. Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Denver, CO, USA
| | - Timothy M. Sullivan
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Joseph T. Crossno
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Jane E.B. Reusch
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Endocrinology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Dwight J. Klemm
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, USA
- Geriatric Research, Education and Clinical Center, Veterans Administration, Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
4
|
Hossain E, Anand-Srivastava MB. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors. Can J Physiol Pharmacol 2017; 95:945-953. [DOI: 10.1139/cjpp-2017-0164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
5
|
Xia XD, Lee J, Khan S, Ye L, Li Y, Dong L. Suppression of Phosphatidylinositol 3-Kinase/Akt Signaling Attenuates Hypoxia-Induced Pulmonary Hypertension Through the Downregulation of Lysyl Oxidase. DNA Cell Biol 2016; 35:599-606. [PMID: 27383273 DOI: 10.1089/dna.2016.3342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lysyl oxidase (LOX) is a copper-dependent enzyme that catalyzes covalent cross-linking of collagen. In response to hypoxia, phosphatidylinositol 3-kinase (PI3K) pathway is activated and contributes to pulmonary arterial hypertension (PAH). However, potential role of LOX in hypoxia-induced PAH is poorly understood. In this study, we explored the mechanism responsible for the development of hypoxia-induced PAH. Potent inhibitors of PI3K/Akt and LOX, wortmannin and β-aminopropionitrile (β-APN), were administrated in rat model of hypoxia-induced PAH. The cross-linking of collagen was assessed by the determination of hydroxyproline. LOX, LOXL-1, LOXL-2, LOXL-3, LOXL-4, Akt, and phospho-Akt expression was detected by real-time polymerase chain reaction and western blot analysis. We observed that collagen cross-linking and LOX activity were elevated in hypoxia-exposed rat lung tissue, but these effects were reversed by β-APN and wortmannin. In addition, exposure to hypoxia enhanced mRNA and protein expression and activity of LOX and LOXL-1 in a PI3K/Akt-dependent manner and induced the development of PAH. After the administration of wortmannin, the upregulation of LOX and cross-linking of collagen were significantly reversed in hypoxia-exposed rat pulmonary artery tissue. Taken together, the present study demonstrated that the upregulation of LOX expression and collagen cross-linking is PI3K/Akt dependent in rat with hypoxia-induced PAH. Suppression of PI3K/Akt pathway may alleviate hypoxia-induced PAH through the downregulation of LOX.
Collapse
Affiliation(s)
- Xiao-Dong Xia
- 1 Department of Respiratory Medicine, Qilu Hospital of Shandong University , Jinan, China .,2 Department of Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, China
| | - Jasmine Lee
- 3 Department of Respiratory Medicine, Royal Free and Barnet Hospital , London NHS Foundation Trust, London, United Kingdom
| | - Sajid Khan
- 3 Department of Respiratory Medicine, Royal Free and Barnet Hospital , London NHS Foundation Trust, London, United Kingdom
| | - Leping Ye
- 2 Department of Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, China
| | - Yuan Li
- 2 Department of Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, China
| | - Liang Dong
- 1 Department of Respiratory Medicine, Qilu Hospital of Shandong University , Jinan, China
| |
Collapse
|
6
|
Pi L, Chung PY, Sriram S, Rahman MM, Song WY, Scott EW, Petersen BE, Schultz GS. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells. World J Biol Chem 2015; 6:379-388. [PMID: 26629321 PMCID: PMC4657117 DOI: 10.4331/wjbc.v6.i4.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling. METHODS The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance (SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β (PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. RESULTS In the LexA-based yeast two-hybrid system, cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein LexA. Yeast co-transformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine, tryptophan, and uracil. In liquid β-galactosidase assays, CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity, at 29.88 ± 0.91 fold above controls (P < 0.01). Cells containing the cystine knot of BMP-4 expressed the second most activity, with a 24.77 ± 0.47 fold increase (P < 0.01). Cells that contained the cystine knot of TGF-β1 had a 3.80 ± 0.66 fold increase (P < 0.05) and the ones with the cystine knot of PDGF-B had a 2.64 ± 0.33 fold increase of β-galactosidase activity (P < 0.01). Further SPR analysis showed that the association rate between VEGF-A 165 and CTGF was faster than PDGF-BB and CTGF. The calculated dissociation constant (KD) of CTGF to VEGF165 and PDGF-BB was 1.8 and 43 nmol/L respectively. PDGF-BB ligand and PDGFRβ receptor formed a stable complex with a low dissociation constant 1.4 nmol/L. Increasing the concentration of CTGF up to 263.2 nmol/L significantly the ligand/receptor binding. In addition, CTGF potentiated phosphorylation of PDGFRβ and AKT in rabbit corneal fibroblast cells stimulated by PDGF-BB in tissue culture condition. In contrast, CTGF did not affect PDGF-B induced phosphorylation of ERK1/2. CONCLUSION CTGF has a differential binding affinity to VEGF-A, PDGF-B, BMP-4, and TGF-β. Its weak association with PDGF-B may represent a novel mechanism to enhance PDGF-B signaling.
Collapse
|
7
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
8
|
Demoulin JB, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25:273-83. [DOI: 10.1016/j.cytogfr.2014.03.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 01/05/2023]
|
9
|
Garat CV, Crossno JT, Sullivan TM, Reusch JEB, Klemm DJ. Inhibition of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary artery remodeling and suppresses CREB depletion in arterial smooth muscle cells. J Cardiovasc Pharmacol 2013; 62:539-48. [PMID: 24084215 PMCID: PMC4143163 DOI: 10.1097/fjc.0000000000000014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypoxia-induced pulmonary hypertension is characterized by progressive remodeling of the pulmonary artery (PA) system and loss of the transcription factor, cAMP response element binding protein (CREB) in PA smooth muscle cells (SMCs). Previous in vitro studies suggested that platelet-derived growth factor, a mitogen produced in the hypoxic arterial wall, elicits loss of CREB in medial SMCs via the PI3K/Akt pathway. These events trigger switching of SMCs from a quiescent, contractile phenotype to a proliferative, migratory, dedifferentiated, and synthetic phenotype, which contributes to PA thickening. Here, we investigated whether inhibition of PI3K or Akt could attenuate arterial remodeling in the lung and prevent CREB loss in PA medial SMCs in rats subjected to chronic hypoxia. Inhibition of either enzyme-blunted hypoxia-induced PA remodeling and SMC CREB depletion and diminished SMC proliferation and collagen deposition. Inhibition of Akt, but not PI3K, suppressed muscularization of distal arterioles and blunted right ventricular hypertrophy. Interestingly, mean PA pressure was elevated equally by hypoxia in untreated and inhibitor-treated groups but was normalized acutely by the Rho kinase inhibitor, Fasudil. We conclude that PI3K and Akt inhibitors can attenuate hypoxia-induced PA remodeling and SMC CREB depletion but fail to block the development of pulmonary hypertension because of their inability to repress Rho kinase-mediated vasoconstriction.
Collapse
MESH Headings
- Animals
- Arterioles/drug effects
- Arterioles/metabolism
- Arterioles/pathology
- Cell Proliferation/drug effects
- Cyclic AMP Response Element-Binding Protein/agonists
- Cyclic AMP Response Element-Binding Protein/metabolism
- Enzyme Inhibitors/therapeutic use
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/physiopathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Stability/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Circulation/drug effects
- Rats
- Rats, Inbred WKY
- Signal Transduction/drug effects
- Vasodilator Agents/pharmacology
- Vasodilator Agents/therapeutic use
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Chrystelle V. Garat
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Pulmonary Science and Critical Care Medicine, University of Colorado Anschutz Medical campus, Aurora, CO
| | - Joseph T. Crossno
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Pulmonary Science and Critical Care Medicine, University of Colorado Anschutz Medical campus, Aurora, CO
| | - Timothy M. Sullivan
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jane E. B. Reusch
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Endocrinology, University of Colorado Anschutz Medical campus, Aurora, CO
- Research and Endocrine Services, Veterans Affairs Medical Center, Denver, CO
| | - Dwight J. Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Pulmonary Science and Critical Care Medicine, University of Colorado Anschutz Medical campus, Aurora, CO
| |
Collapse
|
10
|
Cabello-Verrugio C, Morales MG, Cabrera D, Vio CP, Brandan E. Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles. J Cell Mol Med 2012; 16:752-64. [PMID: 21645240 PMCID: PMC3822846 DOI: 10.1111/j.1582-4934.2011.01354.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Connective tissue growth factor (CTGF/CCN-2) is mainly involved in the induction of extracellular matrix (ECM) proteins. The levels of CTGF correlate with the degree and severity of fibrosis in many tissues, including dystrophic skeletal muscle. The CTGF overexpression in tibialis anterior skeletal muscle using an adenoviral vector reproduced many of the features observed in dystrophic muscles including muscle damage and regeneration, fibrotic response and decrease in the skeletal muscle strength. The renin-angiotensin system is involved in the genesis and progression of fibrotic diseases through its main fibrotic components angiotensin-II and its transducer receptor AT-1. The use of AT-1 receptor blockers (ARB) has been shown to decrease fibrosis. In this paper, we show the effect of AT-1 receptor blockade on CTGF-dependent biological activity in skeletal muscle cells as well as the response to CTGF overexpression in normal skeletal muscle. Our results show that in myoblasts ARB decreased CTGF-mediated increase of ECM protein levels, extracellular signal regulated kinases 1/2 (ERK-1/2) phosphorylation and stress fibres formation. In tibialis anterior muscle overexpressing CTGF using an adenovirus, ARB treatment decreased CTGF-mediated increase of ECM molecules, α-SMA and ERK-1/2 phosphorylation levels. Quite remarkable, ARB was able to prevent the loss of contractile force of tibialis anterior muscles overexpressing CTGF. Finally, we show that ARB decreased the levels of fibrotic proteins, CTGF and ERK-1/2 phosphorylation augmented in a dystrophic skeletal muscle from mdx mice. We propose that ARB is a novel pharmacological tool that can be used to decrease the fibrosis induced by CTGF in skeletal muscle associated with muscular dystrophies.
Collapse
Affiliation(s)
- Claudio Cabello-Verrugio
- Laboratorio de Diferenciación Celular y Patología, Centro de Regulación Celular y Patología (CRCP), Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
11
|
Treebak JT, Taylor EB, Witczak CA, An D, Toyoda T, Koh HJ, Xie J, Feener EP, Wojtaszewski JFP, Hirshman MF, Goodyear LJ. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. Am J Physiol Cell Physiol 2009; 298:C377-85. [PMID: 19923418 DOI: 10.1152/ajpcell.00297.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TBC1D4 (also known as AS160) regulates glucose transporter 4 (GLUT4) translocation and glucose uptake in adipocytes and skeletal muscle. Its mode of action involves phosphorylation of serine (S)/threonine (T) residues by upstream kinases resulting in inactivation of Rab-GTPase-activating protein (Rab-GAP) activity leading to GLUT4 mobilization. The majority of known phosphorylation sites on TBC1D4 lie within the Akt consensus motif and are phosphorylated by insulin stimulation. However, the 5'-AMP-activated protein kinase (AMPK) and other kinases may also phosphorylate TBC1D4, and therefore we hypothesized the presence of additional phosphorylation sites. Mouse skeletal muscles were contracted or stimulated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), and muscle lysates were subjected to mass spectrometry analyses resulting in identification of novel putative phosphorylation sites on TBC1D4. The surrounding amino acid sequence predicted that S711 would be recognized by AMPK. Using a phosphospecific antibody against S711, we found that AICAR and contraction increased S711 phosphorylation in mouse skeletal muscle, and this increase was abolished in muscle-specific AMPKalpha2 kinase-dead transgenic mice. Exercise in human vastus lateralis muscle also increased TBC1D4 S711 phosphorylation. Recombinant AMPK, but not Akt1, Akt2, or PKCzeta, phosphorylated purified muscle TBC1D4 on S711 in vitro. Interestingly, S711 was also phosphorylated in response to insulin in an Akt2- and rapamycin-independent, but a wortmannin-sensitive, manner, suggesting this site is regulated by one or more additional upstream kinases. Despite increased S711 phosphorylation with AICAR, contraction, and insulin, mutation of S711 to alanine did not alter glucose uptake in response to these stimuli. S711 is a novel TBC1D4 phosphorylation site regulated by AMPK in skeletal muscle.
Collapse
Affiliation(s)
- Jonas T Treebak
- Joslin Diabetes Center, Section on Metabolism, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
High ambient glucose induces angiotensin-independent AT-1 receptor activation, leading to increases in proliferation and extracellular matrix accumulation in MES-13 mesangial cells. Biochem J 2009; 423:129-43. [DOI: 10.1042/bj20082277] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy is associated with mesangial ECM (extracellular matrix) accumulation. We have shown that AT-1R [Ang II (angiotensin II) type I receptor] signalling induces ECM proteins via transactivation of PI3K (phosphoinositide 3-kinase) in mesangial cells. In the present study, we examined the mechanisms underlying the effect of high ambient glucose on cell proliferation and ECM expansion in a mesangial context. High glucose induced increases in PI3K activity, proliferation and ECM accumulation in mesangial cells. These effects were abrogated by losartan, an AT-1R antagonist, but not by [Sar1,Thr8]-Ang II (Sar is sarcosine), an inactive analogue of Ang II, or by a neutralizing antibody against Ang I/II. Overexpression of a constitutively active PI3Kα or AT-1R alone was sufficient to induce similar changes by high glucose. In contrast, overexpression of an inactive AT-1R lowered the basal levels and rendered the cells non-responsive to high glucose. Moreover, cells overexpressing wild-type AT-1R had enhanced sensitivity to acute Ang II stimulation. These cells, however, did not respond to conditioned medium obtained from mesangial cells cultured in high glucose. We further demonstrated that iAng (intracellular Ang II) can be induced by high glucose but only under certain conditions. Efficient suppression of iAng by short hairpin RNA against angiotensinogen, however, did not affect high glucose-induced effects on MES-13 cells. These results suggest that high ambient glucose induces activation of AT-1R in an Ang II-independent manner to transactivate PI3K, resulting in proliferation and ECM accumulation in mesangial cells.
Collapse
|
13
|
Gao BB, Stuart L, Feener EP. Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol Cell Proteomics 2008; 7:2399-409. [PMID: 18676994 DOI: 10.1074/mcp.m800104-mcp200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A widely used method for protein identification couples prefractionation of protein samples by one-dimensional (1D) PAGE with LC/MS/MS. We developed a new label-free quantitative algorithm by combining measurements of spectral counting, ion intensity, and peak area on 1D PAGE-based proteomics. This algorithm has several improvements over other label-free quantitative algorithms: (i) Errors in peak detection are reduced because the retention time is based on each LC/MS/MS run and actual precursor m/z. (ii) Detection sensitivity is increased because protein quantification is based on the combination of peptide count, ion intensity, and peak area. (iii) Peak intensity and peak area are calculated in each LC/MS/MS run for all slices from 1D PAGE for every single identified protein and visualized as a Western blot image. The sensitivity and accuracy of this algorithm were demonstrated by using standard curves (17.4 fmol to 8.7 pmol), complex protein mixtures (30 fmol to 1.16 pmol) of known composition, and spiked protein (34.8 fmol to 17.4 pmol) in complex proteins. We studied the feasibility of this approach using the secretome of angiotensin II (Ang II)-stimulated vascular smooth muscle cells (VSMCs). From the VSMC-conditioned medium, 629 proteins were identified including 212 putative secreted proteins. 26 proteins were differently expressed in control and Ang II-stimulated VSMCs, including 18 proteins not previously reported. Proteins related to cell growth (CYR61, protein NOV, and clusterin) were increased, whereas growth arrest-specific 6 (GAS6) and growth/differentiation factor 6 were decreased by Ang II stimulation. Ang II-stimulated changes of plasminogen activator inhibitor-1, GAS6, cathepsin B, and periostin were validated by Western blot. In conclusion, a novel label-free quantitative analysis of 1D PAGE-LC/MS/MS-based proteomics has been successfully applied to the identification of new potential mediators of Ang II action and may provide an alternative to traditional protein staining methods.
Collapse
Affiliation(s)
- Ben-Bo Gao
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
14
|
Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KSC, Bowles N, Hirshman MF, Xie J, Feener EP, Goodyear LJ. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem 2008; 283:9787-96. [PMID: 18276596 PMCID: PMC2442306 DOI: 10.1074/jbc.m708839200] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/06/2008] [Indexed: 11/06/2022] Open
Abstract
The Akt substrate of 160 kDa (AS160) is phosphorylated on Akt substrate (PAS) motifs in response to insulin and contraction in skeletal muscle, regulating glucose uptake. Here we discovered a dissociation between AS160 protein expression and apparent AS160 PAS phosphorylation among soleus, tibialis anterior, and extensor digitorum longus muscles. Immunodepletion of AS160 in tibialis anterior muscle lysates resulted in minimal depletion of the PAS band at 160 kDa, suggesting the presence of an additional PAS immunoreactive protein. By immunoprecipitation and mass spectrometry, we identified this protein as the AS160 paralog TBC1D1, an obesity candidate gene regulating GLUT4 translocation in adipocytes. TBC1D1 expression was severalfold higher in skeletal muscles compared with all other tissues and was the dominant protein detected by the anti-PAS antibody at 160 kDa in tibialis anterior and extensor digitorum longus but not soleus muscles. In vivo stimulation by insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR increased TBC1D1 PAS phosphorylation. Using mass spectrometry on TBC1D1 from mouse skeletal muscle, we identified several novel phosphorylation sites on TBC1D1 and found the majority were consensus or near consensus sites for AMPK. Semiquantitative analysis of spectra suggested that AICAR caused greater overall phosphorylation of TBC1D1 sites compared with insulin. Purified Akt and AMPK phosphorylated TBC1D1 in vitro, and AMPK, but not Akt, reduced TBC1D1 electrophoretic mobility. TBC1D1 is a major PAS immunoreactive protein in skeletal muscle that is phosphorylated in vivo by insulin, AICAR, and contraction. Both Akt and AMPK phosphorylate TBC1D1, but AMPK may be the more robust regulator.
Collapse
Affiliation(s)
- Eric B Taylor
- The Joslin Diabetes Center Section on Metabolism and Proteomics Core and Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boucher P, Li WP, Matz RL, Takayama Y, Auwerx J, Anderson RG, Herz J. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS One 2007; 2:e448. [PMID: 17505534 PMCID: PMC1864997 DOI: 10.1371/journal.pone.0000448] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 04/23/2007] [Indexed: 01/09/2023] Open
Abstract
Background The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-β in vascular smooth muscle cells (VSMC). LRP1 is also a receptor for TGFβ1 and is required for TGFβ mediated inhibition of cell proliferation. Methods and Principal Findings We show that loss of LRP1 in VSMC (smLRP−) in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFβ target genes thrombospondin-1 (TSP1) and PDGFRβ in the vascular wall. Treatment of smLRP1− animals with the PPARγ agonist rosiglitazone abolished nuclear pSmad accumulation, reversed the Marfan-like phenotype, and markedly reduced smooth muscle proliferation, fibrosis and atherosclerosis independent of plasma cholesterol levels. Conclusions and Significance Our findings are consistent with an activation of TGFβ signals in the LRP1-deficient vascular wall. LRP1 may function as an integrator of proliferative and anti-proliferative signals that control physiological mechanisms common to the pathogenesis of Marfan syndrome and atherosclerosis, and this is essential for maintaining vascular wall integrity.
Collapse
Affiliation(s)
- Philippe Boucher
- Institut Gilbert-Laustriat, UMR 7175 LC-1, Department of Pharmacology; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wei-Ping Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rachel L. Matz
- Institut Gilbert-Laustriat, UMR 7175 LC-1, Department of Pharmacology; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
| | - Yoshiharu Takayama
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Johan Auwerx
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
| | - Richard G.W. Anderson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Wang Y, Culty M. Identification and distribution of a novel platelet-derived growth factor receptor beta variant: effect of retinoic acid and involvement in cell differentiation. Endocrinology 2007; 148:2233-50. [PMID: 17303670 DOI: 10.1210/en.2006-1206] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have shown previously that neonatal testicular gonocytes express platelet-derived growth factor receptors (PDGFR) alpha and beta. We report the expression of a novel PDGFRbeta (V1-PDGFRbeta) transcript in gonocytes of 3-d-old rat testes. V1-PDGFRbeta nucleotide sequence spans from intron 6 to exon 23 of the PDGFRbeta gene, and is predicted to encode a protein lacking part of the extracellular domain. V1-PDGFRbeta transcripts are expressed preferentially in developing gonads. The embryonic teratocarcinoma F9 cells, in which differentiation is driven by retinoic acid (RA), express V1-PDGFRbeta, but not wild-type PDGFRbeta. Green fluorescent protein-tagged V1-PDGFRbeta localized mainly in cytosol of F9, MA-10, and COS-1 cells. FLAG and green fluorescent protein-tagged V1-PDGFRbeta displayed tyrosine kinase activities and contain phosphotyrosine residues, suggesting that V1-PDGFRbeta is a cytosolic tyrosine kinase. Treatment of F9 cells with RA induced V1-PDGFRbeta gene expression, concomitant with changes in morphology and increased mRNA expression of collagen IV and laminin B1, suggesting that V1-PFGRbeta is involved in cell differentiation. Similarly, treatment of postnatal d 3 rat gonocytes with RA induced a dose-dependent increase in V1-PDGFRbeta expression together with an increase in c-kit and Stra8, markers of more differentiated germ cells and a concomitant decrease in GFRalpha1, a marker of spermatogonial stem cells. However, an excess of V1-PDGFRbeta inhibited RA-mediated collagen IV and laminin B1 expression and altered both RA-dependent and RA-independent morphological changes in F9 cells, while increasing cell survival. These results suggest that the expression of V1-PDGFRbeta is tightly regulated during differentiation and that it may play an active role in germ cell differentiation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | | |
Collapse
|
17
|
Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007; 112:417-28. [PMID: 17346243 DOI: 10.1042/cs20060342] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intracellular signal transduction of AngII (angiotensin II) has been implicated in cardiovascular diseases, such as hypertension, atherosclerosis and restenosis after injury. AT(1) receptor (AngII type-1 receptor), a G-protein-coupled receptor, mediates most of the physiological and pathophysiological actions of AngII, and this receptor is predominantly expressed in cardiovascular cells, such as VSMCs (vascular smooth muscle cells). AngII activates various signalling molecules, including G-protein-derived second messengers, protein kinases and small G-proteins (Ras, Rho, Rac etc), through the AT(1) receptor leading to vascular remodelling. Growth factor receptors, such as EGFR (epidermal growth factor receptor), have been demonstrated to be 'trans'-activated by the AT(1) receptor in VSMCs to mediate growth and migration. Rho and its effector Rho-kinase/ROCK are also implicated in the pathological cellular actions of AngII in VSMCs. Less is known about the endothelial AngII signalling; however, recent studies suggest the endothelial AngII signalling positively, as well as negatively, regulates the NO (nitric oxide) signalling pathway and, thereby, modulates endothelial dysfunction. Moreover, selective AT(1)-receptor-interacting proteins have recently been identified that potentially regulate AngII signal transduction and their pathogenic functions in the target organs. In this review, we focus our discussion on the recent findings and concepts that suggest the existence of the above-mentioned novel signalling mechanisms whereby AngII mediates the formation of cardiovascular diseases.
Collapse
Affiliation(s)
- Sadaharu Higuchi
- Cardiovascular Research Center, Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|