1
|
Muthukumaran T, Philip J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles. Adv Colloid Interface Sci 2024; 334:103314. [PMID: 39504854 DOI: 10.1016/j.cis.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
Collapse
Affiliation(s)
- T Muthukumaran
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India
| | - John Philip
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India; Department of Physics, Cochin University of Science and Technology, Kochi -22, India.
| |
Collapse
|
2
|
Farahinia A, Khani M, Morhart TA, Wells G, Badea I, Wilson LD, Zhang W. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:6031. [PMID: 39338775 PMCID: PMC11436177 DOI: 10.3390/s24186031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Milad Khani
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler A Morhart
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Ildiko Badea
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
3
|
Oehlsen O, Cervantes-Ramírez SI, Cervantes-Avilés P, Medina-Velo IA. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS OMEGA 2022; 7:3134-3150. [PMID: 35128226 PMCID: PMC8811916 DOI: 10.1021/acsomega.1c05631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
Ferrofluids are colloidal suspensions of iron oxide nanoparticles (IONPs) within aqueous or nonaqueous liquids that exhibit strong magnetic properties. These magnetic properties allow ferrofluids to be manipulated and controlled when exposed to magnetic fields. This review aims to provide the current scope and research opportunities regarding the methods of synthesis of nanoparticles, surfactants, and carrier liquids for ferrofluid production, along with the rheology and applications of ferrofluids within the fields of medicine, water treatment, and mechanical engineering. A ferrofluid is composed of IONPs, a surfactant that coats the magnetic IONPs to prevent agglomeration, and a carrier liquid that suspends the IONPs. Coprecipitation and thermal decomposition are the main methods used for the synthesis of IONPs. Despite the fact that thermal decomposition provides precise control on the nanoparticle size, coprecipitation is the most used method, even when the oxidation of iron can occur. This oxidation alters the ratio of maghemite/magnetite, influencing the magnetic properties of ferrofluids. Strategies to overcome iron oxidation have been proposed, such as the use of an inert atmosphere, adjusting the Fe(II) and Fe(III) ratio to 1:2, and the exploration of other metals with the oxidation state +2. Surfactants and carrier liquids are chosen according to the ferrofluid application to ensure stability. Hence, a compatible carrier liquid (polar or nonpolar) is selected, and then, a surfactant, mainly a polymer, is embedded in the IONPs, providing a steric barrier. Due to the variety of surfactants and carrier liquids, the rheological properties of ferrofluids are an important response variable evaluated when synthesizing ferrofluids. There are many reported applications of ferrofluids, including biosensing, medical imaging, medicinal therapy, magnetic nanoemulsions, and magnetic impedance. Other applications include water treatment, energy harvesting and transfer, and vibration control. To progress from synthesis to applications, research is still ongoing to ensure control of the ferrofluids' properties.
Collapse
Affiliation(s)
- Oscar Oehlsen
- Department
of Natural Sciences, Western New Mexico
University, 1000 W College Avenue, Silver City, New Mexico 88062, United States
| | - Sussy I. Cervantes-Ramírez
- Escuela
de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Tecnologico de Monterrey, Puebla, Pue 72453, Mexico
| | - Pabel Cervantes-Avilés
- Escuela
de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Tecnologico de Monterrey, Puebla, Pue 72453, Mexico
| | - Illya A. Medina-Velo
- Department
of Natural Sciences, Western New Mexico
University, 1000 W College Avenue, Silver City, New Mexico 88062, United States
- Department
of Chemistry, Mathematics, and Physics, Houston Baptist University, 7502 Fondren Road, Houston, Texas 77074, United States
| |
Collapse
|
4
|
Patil PM, Bohara RA. Nanoparticles impact in biomedical waste management. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:1189-1203. [PMID: 32667845 DOI: 10.1177/0734242x20936761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effectual management of biomedical waste is obligatory for healthy human beings and for a safe environment. Mismanagement of biomedical waste is a community health problem. Safe and persistent methods for the management of biomedical waste are of vital importance. This article reviews the classification of biomedical waste, sources, colour-coding system of biomedical waste and salient features of biomedical waste rules in 2016, and the future prospective of nanoparticles. The untreated disposal of biomedical waste is associated with a huge amount of risk, so the efficient treatment for biomedical waste is most imperative. The review also highlights the current methods for disposal of biomedical waste, biological treatments given to biomedical waste water in the effluent treatment plant, and impacts due to the current method. Management of biomedical waste is a great challenge in developed and developing countries. To manage the biomedical waste there is a need for cost-effective, ecofriendly and less contaminating approaches for a greener and safe environment. The awareness regarding waste management is of great interest not only for the community but also for associated employees.
Collapse
Affiliation(s)
- Pooja M Patil
- Centre for Interdisciplinary Research, D. Y. Patil University, India
| | - Raghvendra A Bohara
- Centre for Interdisciplinary Research, D. Y. Patil University, India
- CÚRAM, SFI., Center for Research in Medical Devices, National University of Ireland Galway, Ireland
| |
Collapse
|
5
|
Al-Saad K, Issa AA, Idoudi S, Shomar B, Al-Ghouti MA, Al-Hashimi N, El-Azazy M. Smart Synthesis of Trimethyl Ethoxysilane (TMS) Functionalized Core-Shell Magnetic Nanosorbents Fe 3O 4@SiO 2: Process Optimization and Application for Extraction of Pesticides. Molecules 2020; 25:molecules25204827. [PMID: 33092200 PMCID: PMC7587953 DOI: 10.3390/molecules25204827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/14/2023] Open
Abstract
In the current study, a smart approach for synthesizing trimethyl ethoxysilane–decorated magnetic-core silica-nanoparticles (TMS-mcSNPs) and its effectiveness as nanosorbents have been exploited. While the magnetite core was synthesized using the modified Mössbauer method, Stöber method was employed to coat the magnetic particles. The objective of this work is to maximize the magnetic properties and to minimize both particle size (PS) and particle size distribution (PSD). Using a full factorial design (2k-FFD), the influences of four factors on the coating process was assessed by optimizing the three responses (magnetic properties, PS, and PSD). These four factors were: (1) concentration of tetraethyl-orthosilicate (TEOS); (2) concentration of ammonia; (3) dose of magnetite (Fe3O4); and (4) addition mode. Magnetic properties were calculated as the attraction weight. Scanning electron microscopy (SEM) was used to determine PS, and standard deviation (±SD) was calculated to determine the PSD. Composite desirability function (D) was used to consolidate the multiple responses into a single performance characteristic. Pareto chart of standardized effects together with analysis of variance (ANOVA) at 95.0 confidence interval (CI) were used to determine statistically significant variable(s). Trimethyl ethoxysilane–functionalized mcSNPs were further applied as nanosorbents for magnetic solid phase extraction (TMS-MSPE) of organophosphorus and carbamate pesticides.
Collapse
Affiliation(s)
- Khalid Al-Saad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Ahmed A. Issa
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Sourour Idoudi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Basem Shomar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha 2713, Qatar;
| | - Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | - Nessreen Al-Hashimi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
- Correspondence: ; Tel.: +974-44034675
| |
Collapse
|
6
|
Liang Y, Oettinger JD, Zhang P, Xu B. Ni or FeO nanocrystal-integrated hollow (solid) N-doped carbon nanospheres: preparation, characterization and electrochemical properties. NANOSCALE 2020; 12:15157-15168. [PMID: 32643729 DOI: 10.1039/d0nr03019h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, phase-pure monodisperse NiO nanocrystals were prepared in a temperature-dependent manner via a thermal decomposition approach, showing sphere-like shapes and snowflake-like NiO arrays. Such hydrophobic NiO nanocrystals were converted into hydrophilic nickel oxide-sodium oleate-Pluronic P123 (NiO-SO-P123) micelles in aqueous solution. Phenolic resin (PR) formed in situ was successfully deposited on the hydrophilic area of the NiO-SO-P123 micelles via a heterogeneous nucleation mechanism to form NiO-phenolic resin nanospheres (NiO-PRNSs) with uniform particle size. By adjusting the size and amount of NiO nanocrystals used, the diameter of the obtained NiO-PRNSs can be effectively controlled from 185 to 103 nm, and a narrow size distribution is seen, revealing the effects of the NiO nanocrystals on the reconstructed NiO-integrated micellar size. Meanwhile, the morphology (ring buoy, semi-bowl, sphere) depends upon the initial amount of NiO. The carbonization of NiO-PRNSs produced Ni(0)-integrated hollow N-doped carbon nanospheres (Ni(0)-HNCNSs), which involved the conversion of NiO to Ni(0) and the contraction of particle size, and the size and distribution was affected by the starting amount of NiO. However, upon using monodisperse and polyhedral FeO nanocrystals, the obtained FeO-free/-incompletely-filled/-fully-filled core-shell structured Fe-PRNSs showed relatively uniform particle size, except for when multiple FeO cores formed large FeO-PR nanospheres after starting with the same initial FeO size. The carbonized FeO-HNCNSs still preserved a pomegranate-like core-shell structure with uniform size and there was no change in the size of the FeO nanocrystals. Moreover, high-loaded Ni(0)-integrated hollow or solid N-doped carbon microspheres or flakes can be synthesized via a one-pot method, but with a broad size range, showing highly uniform Ni distribution with a Ni size as small as 8.5 nm. Note that Ni(0)- and FeO-HNCNSs were prepared for the first time according to our knowledge. Finally, low-loaded Ni- and FeO-HNCNSs with uniform morphology and size were chosen as representatives to investigate their electrochemical properties for lithium-ion batteries (LIBs), showing excellent lithium storage properties and superior reversibility. This study provides a potential strategy for controlling the sizes and morphologies of metal-integrated carbon materials to obtain adjustable electrochemical properties.
Collapse
Affiliation(s)
- Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Jonathan David Oettinger
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
7
|
Jung HK, Lee SJ, Han D, Hong AR, Jang HS, Lee SH, Mun JH, Lee H, Han SH, Yang D, Kim DH. Au-incorporated NiO nanocomposite thin films as electrochromic electrodes for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Ahmad MZ, Ahmad J, Warsi MH, Abdel-Wahab BA, Akhter S. Metallic nanoparticulate delivery systems. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:279-328. [DOI: 10.1016/b978-0-08-102985-5.00013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt BVKJ, Wuttke S. Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chem Soc Rev 2020; 49:3348-3422. [DOI: 10.1039/c9cs00871c] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We give a comprehensive overview of how the morphology control is an effective and versatile way to control the physicochemical properties of metal oxides that can be transferred to metal–organic frameworks and porous carbon materials.
Collapse
Affiliation(s)
- Jongkook Hwang
- Inorganic Chemistry and Catalysis
- Utrecht University
- Utrecht
- The Netherlands
| | - Aleksander Ejsmont
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | - Ralph Freund
- Chair of Solid State and Materials Chemistry
- Institute of Physics
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Joanna Goscianska
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | | | - Stefan Wuttke
- BCMaterials
- Basque Center for Materials
- UPV/EHU Science Park
- 48940 Leioa
- Spain
| |
Collapse
|
10
|
Srinivasapriyan V. Minute/instant-MOFs: versatile, high quality, ultrafast, scalable production at room temperature. NANOSCALE ADVANCES 2019; 1:3379-3382. [PMID: 36133555 PMCID: PMC9417639 DOI: 10.1039/c9na00350a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/01/2019] [Indexed: 06/11/2023]
Abstract
The material demand for metal organic framework (MOF) production necessitates advance in their expedient and scalable synthesis that can operate at room temperature which would be pivotal for chemical industry. Toward that end, M-Hoba, where M = divalent metal acetate and Hoba = 4,4'-oxybis(benzoic acid), can now be prepared in minutes via a controlled dissolution-crystallization route with divalent metal acetate as a precursor. MOFs prepared by this strategy were highly crystalline. This synthetic method was also applied successfully to the synthesis of a MOF-5 series (Cu) and Cu-BTC to highlight its generality. This method can move traditional MOF synthesis from the laboratory scale to the industrial scale.
Collapse
Affiliation(s)
- Vijayan Srinivasapriyan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
LI SY, LÜ S, ZHANG YH, LI JL, LIU ZN, WANG L. Syngas-derived olefins over iron-based catalysts: Effects of basic properties of MgO nanocrystals. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/s1872-5813(18)30054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Tao L, Li M, Wu S, Wang Q, Xiao X, Li Q, Wang M, Fu Y, Shen Y. Sea coral-like NiCo2O4@(Ni, Co)OOH heterojunctions for enhancing overall water-splitting. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00624e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficient and low-cost sea coral-like NiCo2O4@(Ni, Co)OOH heterojunction catalysts meet the high current density requirements for industrial water electrolysis applications.
Collapse
Affiliation(s)
- Leiming Tao
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Man Li
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Shaohang Wu
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Qinglong Wang
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Xin Xiao
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Qingwei Li
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - YongQing Fu
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
14
|
Sodhi RK, Paul S. An Overview of Metal Acetylacetonates: Developing Areas/Routes to New Materials and Applications in Organic Syntheses. CATALYSIS SURVEYS FROM ASIA 2017. [DOI: 10.1007/s10563-017-9239-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
16
|
Qiao L, Swihart MT. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Adv Colloid Interface Sci 2017; 244:199-266. [PMID: 27246718 DOI: 10.1016/j.cis.2016.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/26/2022]
Abstract
In this review, we provide a broad overview of solution-phase synthesis of transition metal oxide nanocrystals (NCs), including a substantial catalog of published methods, and a unifying classification and discussion. Prevalent subcategories of solution-phase synthesis are delineated and general features are summarized. The diverse morphologies achievable by solution-phase synthesis are defined and exemplified. This is followed by sequential consideration of the solution-phase synthesis of first-row transition metal oxides. The common oxides of Ti, V, Mn, Fe, Co, Ni, Cu, and Zn are introduced; major crystal lattices are presented and illustrated; representative examples are explained; and numerous synthesis formulae are tabulated. Following this presentation of experimental studies, we present an introduction to theories of NC nucleation and growth. Various models of NC nucleation and growth are addressed, and important concepts determining the growth and structure of colloidal NCs are explained. Overall, this review provides an entry into systematic understanding of solution-phase synthesis of nanocrystals, with a reasonably comprehensive survey of results for the important category of transition metal oxide NCs.
Collapse
Affiliation(s)
- Liang Qiao
- Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, NY 14260-4200, USA
| | - Mark T Swihart
- Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
17
|
Hernández-Hernández AA, Álvarez-Romero GA, Contreras-López E, Aguilar-Arteaga K, Castañeda-Ovando A. Food Analysis by Microextraction Methods Based on the Use of Magnetic Nanoparticles as Supports: Recent Advances. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0863-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Monodisperse and size-tunable CoO nanocrystals synthesized by thermal decomposition and as an active precursor for Fischer-Tropsch synthesis. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Um-e-Habiba, Badshah A, Hussain RA. Synthesis of iron chalcogenides from single source precursors. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Um-e-Habiba
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | - Amin Badshah
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | | |
Collapse
|
20
|
Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications. Biochem Res Int 2016; 2016:7840161. [PMID: 27293893 PMCID: PMC4884576 DOI: 10.1155/2016/7840161] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022] Open
Abstract
In recent years, although many review articles have been presented about bioapplications of magnetic nanoparticles by some research groups with different expertise such as chemistry, biology, medicine, pharmacology, and materials science and engineering, the majority of these reviews are insufficiently comprehensive in all related topics like magnetic aspects of process. In the current review, it is attempted to carry out the inclusive surveys on importance of magnetic nanoparticles and especially magnetite ones and their required conditions for appropriate performance in bioapplications. The main attentions of this paper are focused on magnetic features which are less considered. Accordingly, the review contains essential magnetic properties and their measurement methods, synthesis techniques, surface modification processes, and applications of magnetic nanoparticles.
Collapse
|
21
|
Liu D, Li D, Yang D. Synthesis of colloidal NiO nanocrystals by a hot-injection approach with a protecting ligand. CRYSTAL RESEARCH AND TECHNOLOGY 2016. [DOI: 10.1002/crat.201600039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Liu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Dongsheng Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| |
Collapse
|
22
|
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.
Collapse
Affiliation(s)
- Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Louise Rocks
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany; Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Luca Boselli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karina Pombo Garcia
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Kenneth A Dawson
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Mandal S, Chaudhuri K. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics. World J Biol Chem 2016; 7:158-167. [PMID: 26981204 PMCID: PMC4768120 DOI: 10.4331/wjbc.v7.i1.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/23/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.
Collapse
|
24
|
Jana S. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis. Dalton Trans 2016; 44:18692-717. [PMID: 26477400 DOI: 10.1039/c5dt03699b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity.
Collapse
Affiliation(s)
- Subhra Jana
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700098, India.
| |
Collapse
|
25
|
Controlled Synthesis and Surface Modification of Magnetic Nanoparticles with High Performance for Cancer Theranostics Combining Targeted MR Imaging and Hyperthermia. ADVANCES IN NANOTHERANOSTICS II 2016. [DOI: 10.1007/978-981-10-0063-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Nguyen MT, Shirai H, Tiankanon C, Tsukamoto H, Ishida Y, Yonezawa T. Reproducible shape control of single-crystal SnO micro particles. RSC Adv 2016. [DOI: 10.1039/c5ra25676c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A straightforward method for synthesizing well-defined four-petal starfish-like single-crystalline SnO micro particles in an organic medium with various oleylamine concentrations was examined.
Collapse
Affiliation(s)
- Mai Thanh Nguyen
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Hiroaki Shirai
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Chondanai Tiankanon
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Hiroki Tsukamoto
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Yohei Ishida
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
27
|
Bulut A, Yurderi M, Karatas Y, Say Z, Kivrak H, Kaya M, Gulcan M, Ozensoy E, Zahmakiran M. MnOx-Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01121] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmet Bulut
- Nanomaterials
and Catalysis (NanoMatCat) Research Laboratory, Department of Chemistry, Yüzüncü Yıl University, 65080, Van, Turkey
| | - Mehmet Yurderi
- Nanomaterials
and Catalysis (NanoMatCat) Research Laboratory, Department of Chemistry, Yüzüncü Yıl University, 65080, Van, Turkey
| | - Yasar Karatas
- Nanomaterials
and Catalysis (NanoMatCat) Research Laboratory, Department of Chemistry, Yüzüncü Yıl University, 65080, Van, Turkey
| | - Zafer Say
- Department
of Chemistry, Bilkent University, 06800, Ankara, Turkey
| | - Hilal Kivrak
- Department
of Chemical Engineering, Yüzüncü Yıl University, 65080, Van, Turkey
| | - Murat Kaya
- Department
of Chemical Engineering and Applied Chemistry, Atılım University, 06836, Ankara, Turkey
| | - Mehmet Gulcan
- Nanomaterials
and Catalysis (NanoMatCat) Research Laboratory, Department of Chemistry, Yüzüncü Yıl University, 65080, Van, Turkey
| | - Emrah Ozensoy
- Department
of Chemistry, Bilkent University, 06800, Ankara, Turkey
| | - Mehmet Zahmakiran
- Nanomaterials
and Catalysis (NanoMatCat) Research Laboratory, Department of Chemistry, Yüzüncü Yıl University, 65080, Van, Turkey
| |
Collapse
|
28
|
Liang X, Yi Q, Bai S, Dai X, Wang X, Ye Z, Gao F, Zhang F, Sun B, Jin Y. Synthesis of unstable colloidal inorganic nanocrystals through the introduction of a protecting ligand. NANO LETTERS 2014; 14:3117-3123. [PMID: 24821526 DOI: 10.1021/nl501763z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate a facile and general strategy based on ligand protection for the synthesis of unstable colloidal nanocrystals by using the synthesis of pure p-type NiO nanocrystals as an example. We find that the introduction of lithium stearate, which is stable in the reaction system and capable of binding to the surface of NiO oxide nanocrystals, can effectively suppress the reactivity of NiO nanocrystals and thus prevent their in situ reduction into Ni. The resulting p-type NiO nanocrystals, a highly demanded hole-transporting and electron-blocking material, are applied to the fabrication of organic solar cells and polymer light-emitting diodes, demonstrating their great potential as an interfacial layer for low-cost and large-area, solution-processed optoelectronic devices.
Collapse
Affiliation(s)
- Xiaoyong Liang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering and ‡Center for Chemistry of High-Performance and Novel Materials, Zhejiang University , Hangzhou 310027, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu H, Hou C, Li Y, Zhao G, Liu X, Hou K, Li Y. One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization. Chem Asian J 2013; 8:1447-54. [PMID: 23616374 DOI: 10.1002/asia.201300026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/24/2013] [Indexed: 01/16/2023]
Abstract
A facile one-pot synthesis of highly water-dispersible size-tunable magnetite (Fe3O4) nanocrystal clusters (MNCs) end-functionalized with amino or carboxyl groups by a modified solvothermal reduction reaction has been developed. Dopamine and 3,4-dihydroxyhydroxycinnamic acid were used for the first time as both a surfactant and interparticle linker in a polylol process for economical and environment-friendly purposes. Morphology, chemical composition, and magnetic properties of the prepared particles were investigated by several methods, including FESEM, TEM, XRD, XPS, Raman, FTIR, TGA, zeta potential, and VSM. The sizes of the particles could be easily tuned over a wide range from 175 to 500 nm by varying the surfactant concentration. Moreover, ethylene glycol/diethylene glycol (EG/DEG) solvent mixtures with different ratios could be used as reductants to obtain the particles with smaller sizes. The XRD data demonstrated that the surfactants restrained the crystal growth of the grains. The nanoparticles showed superior magnetic properties and high colloidal stability in water. The cytotoxicity results indicated the feasibility of using the synthesized nanocrystals in biology-related fields. To estimate the applicability of the obtained MNCs in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. This novel strategy would simplify the reaction protocol and improve the efficiency of materials functionalization, thus offering new potential applications in biotechnology and organocatalysis.
Collapse
Affiliation(s)
- Hao Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Mondini S, Drago C, Ferretti AM, Puglisi A, Ponti A. Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant. NANOTECHNOLOGY 2013; 24:105702. [PMID: 23416923 DOI: 10.1088/0957-4484/24/10/105702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Long-term colloidal stability of magnetic iron oxide nanoparticles (NPs) is an important goal that has not yet been fully achieved. To make an advance in our understanding of the colloidal stability of iron oxide NPs in aqueous media, we prepared NPs comprising a monodisperse (13 nm) iron oxide core coated with a PEG-based (PEG: polyethyleneglycol) surfactant. This consists of a methoxy-terminated PEG chain (MW = 5000 Da) bearing four catechol groups via a diethylenetriamine linker. The surfactant was grafted onto the nanocrystals by ligand exchange monitored by infrared spectroscopy. The colloidal stability of these nanoparticles was probed by monitoring the time evolution of the Z-average intensity-weighted radius R(h) and volume-weighted size distribution P(v) obtained from analysis of dynamic light scattering data. The nanoparticles showed no sign of aggregation for four months in deionized water at room temperature and also when subjected to thermal cycling between 25 and 75 °C. In 0.01 M PBS (phosphate buffered saline), aggregation (if any) is slow and partial; after 66 h, about 50% of NPs have not aggregated. Aggregation is more effective in 0.15 M NH(4)AcO buffer, where isolated particles are not observed after 66 h, and especially in acidic NH(4)AcO/AcOH buffer, where aggregation is complete within 1 h and precipitation is observed. The differing stability of the NPs in the above aqueous media is closely related to their ζ potential.
Collapse
Affiliation(s)
- Sara Mondini
- Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via G. Fantoli 16/15, Milano I-20138, Italy
| | | | | | | | | |
Collapse
|
31
|
Mody VV, Singh A, Wesley B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. EUROPEAN JOURNAL OF NANOMEDICINE 2013. [DOI: 10.1515/ejnm-2012-0008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Abdulwahab K, Malik MA, O'Brien P, Govender K, Muryn CA, Timco GA, Tuna F, Winpenny REP. Synthesis of monodispersed magnetite nanoparticles from iron pivalate clusters. Dalton Trans 2013; 42:196-206. [DOI: 10.1039/c2dt32478d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Grote C, Cheema TA, Garnweitner G. Comparative study of ligand binding during the postsynthetic stabilization of metal oxide nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14395-404. [PMID: 22954621 DOI: 10.1021/la301822r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the absence of stabilizers in the reaction medium, the nonaqueous synthesis of metal oxide nanoparticles usually results in agglomerated products. Stabilization is however often possible in a postsynthetic treatment, involving the addition of organic ligands that coordinate to the nanoparticle surface. The ligands are commonly expected to chemisorb via functional groups; however, we have recently shown that also weakly and unspecifically interacting ligands can lead to stabilization. Here, we present detailed investigations on the stabilization, comparing the binding of weakly coordinating ligands to a system with strongly and selectively binding stabilizers and additionally exploring the effect of ligand chain length. Although in all cases stabilization and disintegration of agglomerates to the primary particle level are achieved, strong differences are observed with respect to the processes at the particle surface. Moreover, these processes are shown to be more complex than simple ligand adsorption and need to be understood for proper design and choice of stabilizers.
Collapse
Affiliation(s)
- C Grote
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Strasse 5, D-38104 Braunschweig, Germany
| | | | | |
Collapse
|
34
|
Salas G, Costo R, Morales MDP. Synthesis of Inorganic Nanoparticles. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
35
|
Yu BY, Kwak SY. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach. Dalton Trans 2011; 40:9989-98. [DOI: 10.1039/c1dt10650c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Ramasamy K, Maneerprakorn W, Malik MA, O'Brien P. Single-molecule precursor-based approaches to cobalt sulphide nanostructures. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:4249-4260. [PMID: 20732885 DOI: 10.1098/rsta.2010.0125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cobalt complexes of 1,1,5,5-tetramethyl-2,4-dithiobiuret, [Co{N(SCNMe(2))(2)}(3)] (1), and 1,1,5,5-tetraisopropyl-2-thiobiuret, [Co{N(SOCN(i)Pr(2))(2)}(2)] (2), have been synthesized and characterized. Both complexes were used as single-molecule precursors for the preparation of cobalt sulphide nanoparticles by thermolysis in hexadecylamine, octadecylamine or oleylamine. The powder X-ray diffraction pattern of as-prepared nanoparticles showed the hexagonal phase of Co(1-x)S from complex 1 and mixtures of cubic and hexagonal Co(4)S(3) from complex 2. Transmission electron microscopy images of material prepared from complex 1 showed spherical and trigonally shaped particles in the size range of 10-15 nm; whereas spheres, rods, trigonal prisms and pentagonally and hexagonally faceted crystallites were observed from complex 2. This observation is the first of the Co(4)S(3) phase in a nanodispersed form.
Collapse
Affiliation(s)
- Karthik Ramasamy
- School of Chemistry and Manchester Material Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | | |
Collapse
|
37
|
Khagram P, Tomson F, Brydson RMD, Crook R. Synthesis of high quality monodisperse Nickel Oxide Nanocrystals. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/245/1/012063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Wang Z, Zhu H, Wang X, Yang F, Yang X. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. NANOTECHNOLOGY 2009; 20:465606. [PMID: 19847022 DOI: 10.1088/0957-4484/20/46/465606] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques. The results show that the prepared nanoparticles are spherically shaped with a nearly uniform size distribution and pure magnetite phase. The presence of arginine on the magnetic nanoparticle surface has been confirmed and the amount of surface arginine varies with the Fe2+/arginine molar ratio. The surface amine densities are calculated to be 5.60 and 7.84 micromol mg(-1) for magnetic nanoparticles prepared at 1:1 and 1:2 Fe2+/arginine molar ratio, respectively. The as-synthesized nanoparticles show superparamagnetic behavior at room temperature and good solubility in water. In addition, using a similar synthesis procedure, we have been able to synthesize superparamagnetic manganese and cobalt ferrite nanoparticles.
Collapse
Affiliation(s)
- Zhongjun Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Vo DQ, Kim EJ, Kim S. Surface modification of hydrophobic nanocrystals using short-chain carboxylic acids. J Colloid Interface Sci 2009; 337:75-80. [DOI: 10.1016/j.jcis.2009.04.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|
40
|
Jia X, Chen D, Jiao X, Zhai S. Environmentally-friendly preparation of water-dispersible magnetite nanoparticles. Chem Commun (Camb) 2009:968-70. [DOI: 10.1039/b813524j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Pereira AS, Rauwel P, Reis MS, Oliveira Silva NJ, Barros-Timmons A, Trindade T. Polymer encapsulation effects on the magnetism of EuS nanocrystals. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b806499g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Multifunctional Magnetic Nanosystems for Tumor Imaging, Targeted Delivery, and Thermal Medicine. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
43
|
Kim J, Park HY, Kim J, Ryu J, Kwon DY, Grailhe R, Song R. Ni–nitrilotriacetic acid-modified quantum dots as a site-specific labeling agent of histidine-tagged proteins in live cells. Chem Commun (Camb) 2008:1910-2. [DOI: 10.1039/b719434j] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Zhong Z, Ng V, Luo J, Teh SP, Teo J, Gedanken A. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5971-7. [PMID: 17469856 DOI: 10.1021/la063344x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Copper oxide with various morphologies was synthesized by the hydrolysis of Cu(ac)2 with urea under mild hydrothermal conditions. In the synthesis, a series of organic amines with one or two amine groups (monoamine and diamine), including isobutylamine, octylamine (OLA), dodecylamine, octadecylamine (monoamines), ethylenediamine dihydrochloride, and hexamethylenediamine (diamines), was used as the "structure-directing agent". The monoamines led to the formation of one-dimensional (1D) aggregates of the copper oxide precursor particles (Pre-CuO), while the diamines led to the formation of two-dimensional (2D) aggregates. In both cases, the shorter carbon-chain amine molecules showed a stronger structure-directing function than that of the longer carbon-chain amine molecules. Next, in a series of syntheses, OLA was selected for further study, and the experimental parameters were systematically manipulated. When the hydrolysis was adjusted to a very slow rate by coupling the hydrolysis reaction with an esterification reaction, 1D aggregates of Pre-CuO were formed; when the hydrolysis rate was in the middle range, spherical Pre-CuO architectures composed of smaller linear aggregates were formed. However, under the high hydrolysis rates achieved by increasing the precipitation agent (urea) or by conducting the reaction at high temperatures (>/=120 degrees C), only Pre-CuO nanoparticles with a featureless morphology were formed. The formed spherical Pre-CuO architectures can be converted to a porous structure (CuOx) after removing the OLA molecules via calcination. Compared to the 1D and 2D aggregates, this porous architecture is highly thermally stable and did not collapse even after calcination at 500 degrees C. Preliminary results showed that the porous structure can be used both as a catalyst support and as a catalyst for the oxidation of CO at low temperatures.
Collapse
Affiliation(s)
- Ziyi Zhong
- Institute of Chemical and Engineering and Sciences, 1 Pesek Road, Jurong Island, Singapore.
| | | | | | | | | | | |
Collapse
|
45
|
Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007; 46:1222-44. [PMID: 17278160 DOI: 10.1002/anie.200602866] [Citation(s) in RCA: 3335] [Impact Index Per Article: 185.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.
Collapse
Affiliation(s)
- An-Hui Lu
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
46
|
Lu AH, Salabas E, Schüth F. Magnetische Nanopartikel: Synthese, Stabilisierung, Funktionalisierung und Anwendung. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200602866] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Lu AH, Salabas E, Schüth F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/anie.200602866 pmid: 17278160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Yang J, Lee CH, Park J, Seo S, Lim EK, Song YJ, Suh JS, Yoon HG, Huh YM, Haam S. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b702538f] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|