1
|
Bhat AA, Singh I, Farid A, Wani AW, Khanday F, Wani AK, Shah N, Hassan A, Kabrah A, Qusty NF, Babalghith AO, Alghamdi S. Repositioning antivirals against COVID-19: Synthetic pathways, mechanisms, and therapeutic insights. Microb Pathog 2025; 206:107724. [PMID: 40419200 DOI: 10.1016/j.micpath.2025.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/12/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
The pandemic of COVID-19 has ignited a global race to locate effective therapies with drug repositioning emerging as a leading strategy due to its cost-effectiveness and established safety profiles. Remdesivir, Favipiravir, Hydroxychloroquine, and Chloroquine have been the focus of rigorous clinical trials to determine their therapeutic potential against SARS-CoV-2. This article delves into the innovative synthetic strategies behind these drugs, providing a blueprint for researchers navigating the complex landscape of antiviral development. Beyond synthesis, we explore the fascinating mechanisms of action: hydroxychloroquine and chloroquine elevate lysosomal pH to impede autophagy and viral replication; favipiravir, a nucleoside analogue, induces lethal mutagenesis or RNA chain termination and remdesivir disrupts viral RNA synthesis through delayed chain termination. By merging synthetic methodologies with mechanistic insights, this article offers a comprehensive resource aimed at accelerating the development of potent COVID-19 therapies and underscores the crucial part that chemistry in addressing global health emergencies. It also underscores the vital function of chemistry in addressing global health emergencies and highlights how innovative drug design and repurposing can provide rapid responses to emerging infectious diseases. This fusion of chemistry and virology not only advances our understanding of drug action but also paves the way for the discovery of new therapeutic agents crucial in future pandemics.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Ab Waheed Wani
- Department of Horticulture, School of Agricultural Sciences, Phagwara, 144411, India
| | - Firdous Khanday
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen Iraqi, University, An Nasiriyah, Iraq
| | - Naseer Shah
- Department of Chemistry, IIT Bombay, Powai, Maharashtra, 400076, India
| | - Arif Hassan
- Division Fruit Science, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, 190025, India
| | - Ahmed Kabrah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Chan XHS, Haeusler IL, Choy BJK, Hassan MZ, Takata J, Hurst TP, Jones LM, Loganathan S, Harriss E, Dunning J, Tarning J, Carroll MW, Horby PW, Olliaro PL. Therapeutics for Nipah virus disease: a systematic review to support prioritisation of drug candidates for clinical trials. THE LANCET. MICROBE 2025; 6:101002. [PMID: 39549708 PMCID: PMC12062192 DOI: 10.1016/j.lanmic.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024]
Abstract
Nipah virus disease is a bat-borne zoonosis with person-to-person transmission, a case-fatality rate of 38-75%, and well recognised potential to cause a pandemic. The first reported outbreak of Nipah virus disease occurred in Malaysia and Singapore in 1998, which has since been followed by multiple outbreaks in Bangladesh and India. To date, no therapeutics or vaccines have been approved to treat Nipah virus disease, and only few such candidates are in development. In this Review, we aim to assess the safety and efficacy of the therapeutic options (monoclonal antibodies and small molecules) for Nipah virus disease and other henipaviral diseases to support prioritisation of drug candidates for further evaluation in clinical trials. At present, sufficient evidence exists to suggest trialling 1F5, m102.4, and remdesivir (alone or in combination) for prophylaxis and early treatment of Nipah virus disease. In addition to well designed clinical efficacy trials, in-vivo pharmacokinetic-pharmacodynamic studies are needed to optimise the selection and dosing of therapeutic candidates in animal challenge and natural human infection.
Collapse
Affiliation(s)
- Xin Hui S Chan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Ilsa L Haeusler
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bennett J K Choy
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Md Zakiul Hassan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Junko Takata
- Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tara P Hurst
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luke M Jones
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Elinor Harriss
- Bodleian Health Care Libraries University of Oxford, Oxford, UK
| | - Jake Dunning
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Miles W Carroll
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter W Horby
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| | - Piero L Olliaro
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Gerresheim GK, Kraft F, Werner AD, Biedenkopf N. Semi-automated diagnostic RT-PCR as a screening assay for antiviral compounds in a 96-well format against highly pathogenic RNA viruses. Adv Virus Res 2025; 121:101-122. [PMID: 40379381 DOI: 10.1016/bs.aivir.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
In response to outbreaks of (re)emerging highly pathogenic RNA viruses, simple and scalable antiviral screening methods are urgently needed. Using established and validated diagnostic methods like RT-PCR for antiviral screening offers a rapid readout of viral replication. This becomes particular important when other traditional viral replication readouts, such as TCID50 or plaque assays cannot be used due to the absence of cytopathic effects, lack of reporter gene-containing recombinant viruses or unavailability of appropriate antibodies - the latter two common challenges when so far unknown viruses emerge. This study evaluated semi-automated diagnostic RT-PCR in a 96-well approach for antiviral compound screening using Marburg virus serving as a case study. Remdesivir, a prodrug that exhibits antiviral activities against multiple RNA viruses, was used as positive control inhibiting replication of filoviruses. Applicability of the protocol to other members of the filovirus family was feasible using the same settings, while for other viruses like Middle East respiratory syndrome coronavirus (MERS-CoV) or Crimean-Congo hemorrhagic fever virus (CCHFV) adaptations to optimal infection settings were necessary. Our results demonstrate a high reproducibility and highlight the rapid adaptability of semi-automated RT-PCR assays as an accelerated antiviral screening assay with high scalability against a wide range of newly or (re)emerging RNA viruses. This is critical especially during outbreak situations where timely antiviral assessments are urgently needed.
Collapse
Affiliation(s)
- Gesche K Gerresheim
- Institute of Virology, Philipps University Marburg, Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany
| | - Franziska Kraft
- Institute of Virology, Philipps University Marburg, Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany
| | | | - Nadine Biedenkopf
- Institute of Virology, Philipps University Marburg, Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
4
|
Feng Z, Xie Z, Xu L. Current antiviral therapies and promising drug candidates against respiratory syncytial virus infection. Virol Sin 2025; 40:147-156. [PMID: 39884359 DOI: 10.1016/j.virs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common viruses leading to lower respiratory tract infections (LRTIs) in children and elderly individuals worldwide. Although significant progress in the prevention and treatment of RSV infection was made in 2023, with two anti-RSV vaccines and one monoclonal antibody approved by the FDA, there is still a lack of postinfection therapeutic drugs in clinical practice, especially for the pediatric population. In recent years, with an increasing understanding of the pathogenic mechanisms of RSV, drugs and drug candidates, have shown great potential for clinical application. In this review, we categorize and discuss promising anti-RSV drug candidates that have been in preclinical or clinical development over the last five years.
Collapse
Affiliation(s)
- Ziheng Feng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Lili Xu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
5
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Nyström K, Trybala E, Said J, Roth A, Patzi Churqui M, Kärmander A, Cihlar T, Bilello JP, Bergström T, Lagging M. Remdesivir is active in vitro against tick-borne encephalitis virus and selects for resistance mutations in the viral RNA-dependent RNA polymerase. Infect Dis (Lond) 2025:1-8. [PMID: 39973341 DOI: 10.1080/23744235.2025.2468510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is a neurological disease caused by the tick-borne encephalitis virus (TBEV). Despite available vaccines, breakthrough infections occur, some fatal. OBJECTIVES As no antiviral therapy for TBE is currently approved, this study evaluated the in vitro activity of already licenced remdesivir (RDV) and sofosbuvir (SOF) for possible drug repurposing against TBEV. METHODS TBEV was cultured in A549 cells, and the inhibitory effects of RDV (GS-5734), its parent nucleotide GS-441524, and SOF (GS-7977) were assessed. RESULTS After 78 h, RDV demonstrated significantly lower EC50 values than SOF (0.14 vs. 11 µM) based on TBEV RNA levels measured by RT-qPCR. RDV also had a lower mean EC50 (0.55 µM) compared to GS-441524 and SOF (>8.9 and 13.1 µM, respectively) using crystal violet staining after 5 days. After 11 passages of TBEV in the presence of RDV, emergence of virus with a higher EC50 (1.32 vs. 0.55 µM) was detected with two mutations (L3122F and Y3278F) in NS5, the viral RNA-dependent RNA polymerase (RdRp), and one substitution in envelope (E) protein (E402G). Similarly, SOF resistance appeared after 20 passages, increasing EC50 values (35.5 vs. 10 µM). CONCLUSION RDV exhibits potent in vitro antiviral activity against TBEV via specific targeting of the viral RdRp as confirmed by the emergence of resistance-associated double NS5 substitutions in vitro in the presence of RDV. While the potential in vivo implications of the observed RDV resistance remain to be determined, these in vitro data support further assessment of RDV for the treatment of TBEV infection.
Collapse
Affiliation(s)
- Kristina Nyström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Edward Trybala
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joanna Said
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anette Roth
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianela Patzi Churqui
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ambjörn Kärmander
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Tomas Bergström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Lagging
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Rodriguez L, Lee HW, Li J, Martin R, Han D, Xu S, Moshiri J, Peinovich N, Camus G, Perry JK, Hyland RH, Porter DP, Abdelghany M, Götte M, Hedskog C. SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. Antimicrob Agents Chemother 2025; 69:e0123824. [PMID: 39699245 PMCID: PMC11823660 DOI: 10.1128/aac.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL). The SARS-CoV-2 genome was sequenced for all remdesivir participants and 50% of placebo participants (baseline, Days 3, 7, and 14) and for participants who progressed to COVID-19-related hospitalization or all-cause death (all time points). Emergent substitutions in Nsp12 and other replication complex proteins were phenotyped using site-directed mutagenesis in a SARS-CoV-2 subgenomic replicon system. Overall, emergent Nsp12 substitutions were detected in 8/115 (7.0%) remdesivir participants and 7/129 (5.4%) placebo participants (1 substitution overlap between groups). Based on a structural analysis, none of the emergent Nsp12 substitutions were in direct contact with the incoming nucleoside triphosphate substrate, the RNA, or the RNA template 5' overhang. One substitution (A376V) showed reduced susceptibility to remdesivir (12.6-fold change in remdesivir half-maximal concentration [EC50]); it also showed reduced fitness when introduced in the SARS-CoV-2 replicon and virus in vitro. Other substitutions had <1.1-fold change in remdesivir EC50. None of the emergent substitutions in Nsp8, Nsp10, Nsp13, or Nsp14 (remdesivir, 10/115 [8.7%]; placebo, 10/129 [7.8%]) showed reduced remdesivir susceptibility. In conclusion, emergent substitutions in the SARS-CoV-2 RdRp complex with reduced remdesivir susceptibility were uncommon, indicating a high barrier to remdesivir resistance.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT04501952.
Collapse
Affiliation(s)
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, California, USA
| | - Dong Han
- Gilead Sciences, Inc., Foster City, California, USA
| | - Simin Xu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
8
|
Lu TL, Liutkevičienė R, Rovite V, Gao ZH, Wu SN. Evaluation of Small-Molecule Candidates as Modulators of M-Type K + Currents: Impacts on Current Amplitude, Gating, and Voltage-Dependent Hysteresis. Int J Mol Sci 2025; 26:1504. [PMID: 40003973 PMCID: PMC11855363 DOI: 10.3390/ijms26041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The core subunits of the KV7.2, KV7.3, and KV7.5 channels, encoded by the KCNQ2, KCNQ3, and KCNQ5 genes, are expressed across various cell types and play a key role in generating the M-type K+ current (IK(M)). This current is characterized by an activation threshold at low voltages and displays slow activation and deactivation kinetics. Variations in the amplitude and gating kinetics of IK(M) can significantly influence membrane excitability. Notably, IK(M) demonstrates distinct voltage-dependent hysteresis when subjected to prolonged isosceles-triangular ramp pulses. In this review, we explore various small-molecule modulators that can either inhibit or enhance the amplitude of IK(M), along with their perturbations on its gating kinetics and voltage-dependent hysteresis. The inhibitors of IK(M) highlighted here include bisoprolol, brivaracetam, cannabidiol, nalbuphine, phenobarbital, and remdesivir. Conversely, compounds such as flupirtine, kynurenic acid, naringenin, QO-58, and solifenacin have been shown to enhance IK(M). These modulators show potential as pharmacological or therapeutic strategies for treating certain disorders linked to gain-of-function or loss-of-function mutations in M-type K+ (KV7x or KCNQx) channels.
Collapse
Affiliation(s)
- Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 406040, Taiwan;
| | - Rasa Liutkevičienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Riga, Latvia;
| | - Zi-Han Gao
- Institute of Basic Medical Sciences, College of Medical, National Cheng Kung University, Tainan City 701401, Taiwan;
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, College of Medical, National Cheng Kung University, Tainan City 701401, Taiwan;
- Department of Research and Education, An Nan Hospital, China Medical University, Tainan City 709204, Taiwan
- School of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
9
|
Lin Y, Weynand B, Zhang X, Laporte M, Jochmans D, Neyts J. The Combination of GS-441524 (Remdesivir) and Ribavirin Results in a Potent Antiviral Effect Against Human Parainfluenza Virus 3 Infection in Human Airway Epithelial Cell Cultures and in a Mouse Infection Model. Viruses 2025; 17:172. [PMID: 40006927 PMCID: PMC11860817 DOI: 10.3390/v17020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory diseases, particularly in young children, the elderly and immunocompromised. There are no approved antiviral drugs against this virus. We report that the combination of ribavirin with either remdesivir or its parent nucleoside GS-441524 results in a pronounced antiviral effect against HPIV-3 in LLC-MK2 cells and in human airway epithelial cells grown at the air-liquid interface. In AG129 mice intranasally inoculated with HPIV-3, the combined treatment with ribavirin and GS-441524 decreased infectious viral lung titers by >2.5 log10 to undetectable levels in 4 out of 11 mice and by 1.6 log10 in the remaining 7 mice as compared with the vehicle. The lungs of all mice that received the combined treatment appeared histologically normal or virtually normal, whereas 8 of 11 vehicle-treated mice presented with bronchopneumonia. By contrast, ribavirin alone did not result in a reduction in infectious viral lung titers; GS-441524 alone reduced infectious viral lung titers by 1.2 log10. Moreover, several mice in the single-treatment groups exhibited severe lung pathology. These findings may warrant exploring this combination in patients with severe HPIV-3 infections and possibly also against infections with other viruses that are susceptible in vitro to these two drugs.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, B-3000 Leuven, Belgium;
| | - Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, B-3000 Leuven, Belgium; (Y.L.); (X.Z.); (M.L.)
- VirusBank Platform, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
10
|
Rodriguez L, Zamora JLR, Han D, Moshiri J, Peinovich N, Martinez C, Ho PY, Li J, Aeschbacher T, Martin R, Pekosz A, Bilello JP, Perry JK, Hedskog C. Remdesivir and Obeldesivir Retain Potent Antiviral Activity Against SARS-CoV-2 Omicron Variants. Viruses 2025; 17:168. [PMID: 40006923 PMCID: PMC11860839 DOI: 10.3390/v17020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
As new SARS-CoV-2 variants continue to emerge, it is important to evaluate the potency of antiviral drugs to support their continued use. Remdesivir (RDV; VEKLURY®) an approved antiviral treatment for COVID-19, and obeldesivir (ODV) are inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase Nsp12. Here we show these two compounds retain antiviral activity against the Omicron variants BA.2.86, BF.7, BQ.1, CH.1.1, EG.1.2, EG.5.1, EG.5.1.4, FL.22, HK.3, HV.1, JN.1, JN.1.7, JN.1.18, KP.2, KP.3, LB.1, XBB.1.5, XBB.1.5.72, XBB.1.16, XBB.2.3.2, XBC.1.6, and XBF when compared with reference strains. Genomic analysis identified 29 Nsp12 polymorphisms in these and previous Omicron variants. Phenotypic analysis of these polymorphisms confirmed no impact on the antiviral activity of RDV or ODV and suggests Omicron variants containing these Nsp12 polymorphisms remain susceptible to both compounds. These data support the continued use of RDV in the context of circulating SARS-CoV-2 variants and the development of ODV as an antiviral therapeutic.
Collapse
Affiliation(s)
| | | | - Dong Han
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | | | | | - Pui Yan Ho
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
11
|
Oliver-Guimera A, Murphy BG, Keel MK. The Nucleoside Analog GS-441524 Effectively Attenuates the In Vitro Replication of Multiple Lineages of Circulating Canine Distemper Viruses Isolated from Wild North American Carnivores. Viruses 2025; 17:150. [PMID: 40006905 PMCID: PMC11861726 DOI: 10.3390/v17020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Canine distemper is a severe and lethal viral disease of dogs and wild carnivores with an urgent need for the identification of effective antiviral agents against canine distemper virus (CDV). We assessed multiple agents for their ability to block the replication of three different lineages of CDV isolated from wild carnivores in the United States. Six antiviral compounds were selected after preliminary experiments that excluded ribavirin, hesperidin and rutin: a protease inhibitor (nirmatrelvir), a polymerase inhibitor (favipiravir) and four nucleoside analogs (remdesivir, GS-441524, EIDD2801 and EIDD1931). Antiviral efficacy was determined by the attenuation of the cytopathic effect in a CDV-susceptible cell line and the inhibition of viral RNA replication. The nucleoside analog GS-441524 effectively blocked the replication of CDV at pharmacologically relevant concentrations. Four other antiviral agents inhibited CDV replication to a lesser degree (remdesivir, nirmatrelvir, EIDD2801 and EIDD1931). The replication of different viral lineages was differentially inhibited by the antivirals. Several of the nucleoside analogs have been safely used previously in carnivore species for the treatment of other viral diseases, suggesting that they may be promising candidates for the treatment of canine distemper in dogs. Our results emphasize the need to consider different viral lineages in the screening of antiviral compounds.
Collapse
Affiliation(s)
- Arturo Oliver-Guimera
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
- Veterinary Pathology Service, School of Veterinary Medicine, Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
| | - M. Kevin Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
| |
Collapse
|
12
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
13
|
Wang Y, Fan L, Ye P, Wang Z, Liang C, Liu Q, Yang X, Long Z, Shi W, Zhou Y, Lin J, Yan H, Huang H, Liu L, Qian J. Novel transcription and replication-competent virus-like particles system modelling the Nipah virus life cycle. Emerg Microbes Infect 2024; 13:2368217. [PMID: 38865205 PMCID: PMC11229746 DOI: 10.1080/22221751.2024.2368217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Nipah virus (NiV), a highly pathogenic Henipavirus in humans, has been responsible for annual outbreaks in recent years. Experiments involving live NiV are highly restricted to biosafety level 4 (BSL-4) laboratories, which impedes NiV research. In this study, we developed transcription and replication-competent NiV-like particles (trVLP-NiV) lacking N, P, and L genes. This trVLP-NiV exhibited the ability to infect and continuously passage in cells ectopically expressing N, P, and L proteins while maintaining stable genetic characteristics. Moreover, the trVLP-NiV displayed a favourable safety profile in hamsters. Using the system, we found the NiV nucleoprotein residues interacting with viral RNA backbone affected viral replication in opposite patterns. This engineered system was sensitive to well-established antiviral drugs, innate host antiviral factors, and neutralizing antibodies. We then established a high-throughput screening platform utilizing the trVLP-NiV, leading to the identification of tunicamycin as a potential anti-NiV compound. Evidence showed that tunicamycin inhibited NiV replication by decreasing the infectivity of progeny virions. In conclusion, this trVLP-NiV system provided a convenient and versatile molecular tool for investigating NiV molecular biology and conducting antiviral drug screening under BSL-2 conditions. Its application will contribute to the development of medical countermeasures against NiV infections.
Collapse
Affiliation(s)
- Yulong Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Infectious Diseases, Guangzhou Eighth people’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Linjin Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Pengfei Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zequn Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Quan Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, People’s Republic of China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhenyu Long
- Institute of Infectious Diseases, Guangzhou Eighth people’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wendi Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuandong Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingyan Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongxin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Linna Liu
- Institute of Infectious Diseases, Guangzhou Eighth people’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen, People’s Republic of China
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Centre, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Moore KA, Mehr AJ, Ostrowsky JT, Ulrich AK, Moua NM, Fay PC, Hart PJ, Golding JP, Benassi V, Preziosi MP, Broder CC, de Wit E, Formenty PBH, Freiberg AN, Gurley ES, Halpin K, Luby SP, Mazzola LT, Montgomery JM, Spiropoulou CF, Mourya DT, Parveen S, Rahman M, Roth C, Wang LF, Osterholm MT. Measures to prevent and treat Nipah virus disease: research priorities for 2024-29. THE LANCET. INFECTIOUS DISEASES 2024; 24:e707-e717. [PMID: 38964362 DOI: 10.1016/s1473-3099(24)00262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 07/06/2024]
Abstract
Nipah virus causes highly lethal disease, with case-fatality rates ranging from 40% to 100% in recognised outbreaks. No treatments or licensed vaccines are currently available for the prevention and control of Nipah virus infection. In 2019, WHO published an advanced draft of a research and development roadmap for accelerating development of medical countermeasures, including diagnostics, therapeutics, and vaccines, to enable effective and timely emergency response to Nipah virus outbreaks. This Personal View provides an update to the WHO roadmap by defining current research priorities for development of Nipah virus medical countermeasures, based primarily on literature published in the last 5 years and consensus opinion of 15 subject matter experts with broad experience in development of medical countermeasures for Nipah virus or experience in the epidemiology, ecology, or public health control of outbreaks of Nipah virus. The research priorities are organised into four main sections: cross-cutting issues (for those that apply to more than one category of medical countermeasures), diagnostics, therapeutics, and vaccines. The strategic goals and milestones identified in each section focus on key achievements that are needed over the next 6 years to ensure that the necessary tools are available for rapid response to future outbreaks of Nipah virus or related henipaviruses.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | - Emmie de Wit
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | - Emily S Gurley
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kim Halpin
- Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | | | | | - Joel M Montgomery
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Mahmudur Rahman
- Eastern Mediterranean Public Health Network, Bangladesh Country Office, Dhaka, Bangladesh
| | - Cathy Roth
- UK Foreign, Commonwealth and Development Office, London, UK
| | | | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Cheemanapalli S, Golla R, Pagidi S, Pantangi S. In silico exploration of phytocompounds from AYUSH-64 medicinal plants against SARS CoV-2 RNA-dependent RNA polymerase. J Ayurveda Integr Med 2024; 15:101026. [PMID: 39488119 PMCID: PMC11565463 DOI: 10.1016/j.jaim.2024.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The AYUSH 64 formulation helps to treat mild to moderate cases of COVID-19. Although several drugs have been proposed to combat COVID-19, no medication is available for SARS-CoV-2 infection. The RNA-dependent RNA polymerase (RdRp) is the pivotal enzyme of SARS-CoV-2 replication, so it could be considered a better drug target for experimental studies. OBJECTIVE The AYUSH-64 formulation plants exhibited multiple therapeutic properties; thus, the present study aims to screen the phytocompounds of these plants against SARS CoV2 RdRp to identify specific compounds that could potentially affect COVID-19 infection. MATERIALS AND METHODS PatchDock and AutoDock tools were used for docking experiments. MD simulations and Density Functional Theory (DFT) calculations of protein-ligand Picroside-I and Remdesivir complexes were carried out in GROMACS v2019.4 and Gaussian 09 software, respectively. RESULTS Among the tested, five phytocompounds (Picroside I, Oleanolic acid, Arvenin I, II, and III) from AYUSH-64 medicinal plants showed possible binding with RdRp catalytic residues (Ser759, Asp760, and Asp761). Of these, Picroside I exhibited hydrogen bond interactions with NTP entry channel residues (Arg553 and Arg555). The MM-PBSA free energy, RMSD, Rg, PCA, and RMSF analysis suggested that the Picroside I complex showed stable binding interactions with RdRp in the 50 ns simulation. In addition to this, Picroside I revealed its robust and attractive nature toward the target protein, as confirmed by DFT. CONCLUSION The results of this study have proposed that Picroside I from AYUSH 64 medicinal plant compounds was the selective binder of catalytic and NTP entry channel residues of SARS-CoV2 RdRp thereby; it may considered as a potential inhibitor of SARS-CoV2 RdRp.
Collapse
Affiliation(s)
- Srinivasulu Cheemanapalli
- Survey of Medicinal Plants Unit, CCRAS - Regional Ayurveda Research Institute, Itanagar, Arunachal Pradesh, India
| | - Ramanjaneyulu Golla
- Department of Biochemistry, School of Allied Health Science, REVA University, Bangalore, India.
| | - Sudhakar Pagidi
- Department of Chemical Sciences, Indian Institute of Science, Bangalore, India
| | - Seshapani Pantangi
- Department of Microbiology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
16
|
Anitha A, Rajamohan R, Murugan M, Seo JH. Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance-Current State and Future Perspectives. Molecules 2024; 29:4782. [PMID: 39407710 PMCID: PMC11477750 DOI: 10.3390/molecules29194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Cyclodextrin (CD) derivatives have gained significant attention in biomedical applications due to their remarkable biocompatibility, unique inclusion capabilities, and potential for functionalization. This review focuses on recent advancements in CD-based assemblies, specifically their role in improving drug delivery, emphasizing remdesivir (RMD). The review introduces CD materials and their versatile applications in self-assembly and supramolecular assembly. CD materials offer immense potential for designing drug delivery systems with enhanced activity. Their inherent inclusion capabilities enable the encapsulation of diverse therapeutic agents, including RMD, resulting in improved solubility, stability, and bioavailability. The recent advances in CD-based assemblies, focusing on their integration with RMD have been concentrated here. Various strategies for constructing these assemblies are discussed, including physical encapsulation, covalent conjugation, and surface functionalization techniques. Furthermore, exploring future directions in these fields has also been provided. Ongoing research efforts are directed toward developing novel CD derivatives with enhanced properties, such as increased encapsulation efficiency and improved release kinetics. Moreover, the integration of CD-based assemblies with advanced technologies such as nanomedicine and gene therapy holds tremendous promise for personalized medicine and precision therapeutics.
Collapse
Affiliation(s)
- Arumugam Anitha
- PG and Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India;
| | - Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Moorthiraman Murugan
- Department of Chemistry, IFET College of Engineering, Villupuram 605 108, Tamil Nadu, India;
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Lin Y, Khan M, Weynand B, Laporte M, Coenjaerts F, Babusis D, Bilello JP, Mombaerts P, Jochmans D, Neyts J. A robust mouse model of HPIV-3 infection and efficacy of GS-441524 against virus-induced lung pathology. Nat Commun 2024; 15:7765. [PMID: 39237507 PMCID: PMC11377736 DOI: 10.1038/s41467-024-52071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory tract infections. There are no convenient small-animal infection models. Here, we show viral replication in the upper and lower airways of AG129 mice (double IFNα/β and IFNγ receptor knockout mice) upon intranasal inoculation. By multiplex fluorescence RNAscope and immunohistochemistry followed by confocal microscopy, we demonstrate viral tropism to ciliated cells and club cells of the bronchiolar epithelium. HPIV-3 causes a marked lung pathology. No virus transmission of the virus was observed by cohousing HPIV-3-infected AG129 mice with other mice. Oral treatment with GS-441524, the parent nucleoside of remdesivir, reduced infectious virus titers in the lung, with a relatively normal histology. Intranasal treatment also affords an antiviral effect. Thus, AG129 mice serve as a robust preclinical model for developing therapeutic and prophylactic strategies against HPIV-3. We suggest further investigation of GS-441524 and its prodrug forms to treat HPIV-3 infection in humans.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, Leuven, Belgium
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Frank Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium.
- VirusBank Platform, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
19
|
Faghihi I, Yan VC. Clinical pharmacodynamics of obeldesivir versus remdesivir. Antimicrob Agents Chemother 2024; 68:e0096924. [PMID: 39133123 PMCID: PMC11373207 DOI: 10.1128/aac.00969-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Affiliation(s)
- Isa Faghihi
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victoria C. Yan
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Faghihi I, Yan VC. Remdesivir treatment does not reduce viral titers in patients with COVID-19. Antimicrob Agents Chemother 2024; 68:e0085624. [PMID: 39023261 PMCID: PMC11304678 DOI: 10.1128/aac.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The relationship (or lack thereof) between the clinical activity of remdesivir and its ability to reduce viral titers in patients with COVID-19 has not been fully delineated. There is a misconception that remdesivir was FDA-approved for COVID-19 due to its ability to reduce viral titers. Here, we analyze all clinical studies of remedesivir in COVID-19 that quantifed SARS-CoV-2 titers. As of 28 June 2024, we show there is no significant decrease in SARS-CoV-2 viral titers in patients treted with remdesivir compared to placebo controls.
Collapse
Affiliation(s)
- Isa Faghihi
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victoria C. Yan
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Razia D, Sindu D, Cherrier L, Grief K, Walia R, Tokman S. Remdesivir and molnupiravir had comparable efficacy in lung transplant recipients with mild-to-moderate COVID-19: a single center experience. FRONTIERS IN TRANSPLANTATION 2024; 3:1408289. [PMID: 38993766 PMCID: PMC11235218 DOI: 10.3389/frtra.2024.1408289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Introduction Remdesivir (REM) and molnupiravir (MOL) are commonly used to treat lung transplant recipients (LTRs) with COVID-19; however, the clinical efficacy of these medications is yet to be compared. In this retrospective cohort study, we compared the clinical outcomes between LTRs with mild-to-moderate COVID-19 treated with REM and those treated with MOL. Methods and Results Between March 2020 and August 2022, 195 LTRs developed COVID-19 at our center. After excluding 82 who presented with severe disease requiring hospitalization, the remaining 113 were included in the analysis: 54 did not receive antiviral treatment, 30 were treated with REM, and 29 were treated with MOL. Adjusted multivariable logistic regression analysis showed similar rates of hospitalization (adjusted odds ratio (aOR) 1.169, [95% confidence interval (95% CI) 0.105-12.997, p = 0.899], ICU admission (aOR 0.822, 95% CI 0.042-16.220, p = 0.898), mechanical ventilation (aOR 0.903, 95% CI 0.015-55.124, p = 0.961), and COVID-19-related mortality (aOR 0.822, 95% CI 0.042-16.220, p = 0.898) between LTRs treated with REM and those treated with MOL for mild-to-moderate COVID-19, irrespective of SARS-CoV-2 strain. Conclusion MOL may be a suitable alternative to REM to treat LTRs with mild-to-moderate COVID-19, and the choice of antiviral therapy can be driven by practical considerations such as route of administration and drug availability.
Collapse
Affiliation(s)
- Deepika Razia
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pulmonary Disease and Transplantation, Creighton University Health Sciences Phoenix Campus, Phoenix, AZ, United States
| | - Devika Sindu
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Lauren Cherrier
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Katherine Grief
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pulmonary Disease and Transplantation, Creighton University Health Sciences Phoenix Campus, Phoenix, AZ, United States
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pulmonary Disease and Transplantation, Creighton University Health Sciences Phoenix Campus, Phoenix, AZ, United States
| |
Collapse
|
23
|
Bhimraj A, Morgan RL, Shumaker AH, Baden L, Cheng VCC, Edwards KM, Gallagher JC, Gandhi RT, Muller WJ, Nakamura MM, O’Horo JC, Shafer RW, Shoham S, Murad MH, Mustafa RA, Sultan S, Falck-Ytter Y. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With COVID-19 (September 2022). Clin Infect Dis 2024; 78:e250-e349. [PMID: 36063397 PMCID: PMC9494372 DOI: 10.1093/cid/ciac724] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
There are many pharmacologic therapies that are being used or considered for treatment of coronavirus disease 2019 (COVID-19), with rapidly changing efficacy and safety evidence from trials. The objective was to develop evidence-based, rapid, living guidelines intended to support patients, clinicians, and other healthcare professionals in their decisions about treatment and management of patients with COVID-19. In March 2020, the Infectious Diseases Society of America (IDSA) formed a multidisciplinary guideline panel of infectious disease clinicians, pharmacists, and methodologists with varied areas of expertise to regularly review the evidence and make recommendations about the treatment and management of persons with COVID-19. The process used a living guideline approach and followed a rapid recommendation development checklist. The panel prioritized questions and outcomes. A systematic review of the peer-reviewed and grey literature was conducted at regular intervals. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations. Based on the most recent search conducted on 31 May 2022, the IDSA guideline panel has made 32 recommendations for the treatment and management of the following groups/populations: pre- and postexposure prophylaxis, ambulatory with mild-to-moderate disease, and hospitalized with mild-to-moderate, severe but not critical, and critical disease. As these are living guidelines, the most recent recommendations can be found online at: https://idsociety.org/COVID19guidelines. At the inception of its work, the panel has expressed the overarching goal that patients be recruited into ongoing trials. Since then, many trials were conducted that provided much-needed evidence for COVID-19 therapies. There still remain many unanswered questions as the pandemic evolved, which we hope future trials can answer.
Collapse
Affiliation(s)
- Adarsh Bhimraj
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Amy Hirsch Shumaker
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | | | - Vincent Chi Chung Cheng
- Queen Mary Hospital, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kathryn M Edwards
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center,Nashville, Tennessee
| | - Jason C Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, Pennsylvania
| | - Rajesh T Gandhi
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - William J Muller
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University, Chicago, Illinois
| | - Mari M Nakamura
- Antimicrobial Stewardship Program and Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - John C O’Horo
- Division of Infectious Diseases, Joint Appointment Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Palo Alto, California
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Hassan Murad
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| |
Collapse
|
24
|
Xie SZ, Yao K, Li B, Peng C, Yang XL, Shi ZL. Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses. Virol Sin 2024; 39:459-468. [PMID: 38782261 PMCID: PMC11279764 DOI: 10.1016/j.virs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Měnglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.
Collapse
Affiliation(s)
- Shi-Zhe Xie
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yao
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng Peng
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Zheng-Li Shi
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
25
|
Pourhoseingholi MA, Looha MA, Ilkhani S, Hatamabadi H, Sadeghi A, Safavi-Naini SAA, Heidari K, Taraghikhah N, Fallah MM, Kalantar R, Naderi N, Esbati R, Ebrahimi N, Solhpour A, Jamialahmadi T, Sahebkar A. Assessing the effect of remdesivir alone and in combination with corticosteroids on time to death in COVID-19: A propensity score-matched analysis. JOURNAL OF CLINICAL VIROLOGY PLUS 2024; 4:100180. [DOI: 10.1016/j.jcvp.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
|
26
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
27
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
28
|
Xu S, Esmaeili S, Cardozo-Ojeda EF, Goyal A, White JM, Polyak SJ, Schiffer JT. Two-way pharmacodynamic modeling of drug combinations and its application to pairs of repurposed Ebola and SARS-CoV-2 agents. Antimicrob Agents Chemother 2024; 68:e0101523. [PMID: 38470112 PMCID: PMC10989026 DOI: 10.1128/aac.01015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Existing pharmacodynamic (PD) mathematical models for drug combinations discriminate antagonistic, additive, multiplicative, and synergistic effects, but fail to consider how concentration-dependent drug interaction effects may vary across an entire dose-response matrix. We developed a two-way pharmacodynamic (TWPD) model to capture the PD of two-drug combinations. TWPD captures interactions between upstream and downstream drugs that act on different stages of viral replication, by quantifying upstream drug efficacy and concentration-dependent effects on downstream drug pharmacodynamic parameters. We applied TWPD to previously published in vitro drug matrixes for repurposed potential anti-Ebola and anti-SARS-CoV-2 drug pairs. Depending on the drug pairing, the model recapitulated combined efficacies as or more accurately than existing models and can be used to infer efficacy at untested drug concentrations. TWPD fits the data slightly better in one direction for all drug pairs, meaning that we can tentatively infer the upstream drug. Based on its high accuracy, TWPD could be used in concert with PK models to estimate the therapeutic effects of drug pairs in vivo.
Collapse
Affiliation(s)
- Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shadisadat Esmaeili
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - E. Fabian Cardozo-Ojeda
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Ashish Goyal
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Judith M. White
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Ebrahimi M, Alijanianzadeh M. Evaluation of the interaction between potent small molecules against the Nipah virus Glycoprotein in Malaysia and Bangladesh strains, accompanied by the human Ephrin-B2 and Ephrin-B3 receptors; a simulation approach. Mol Divers 2024; 28:851-874. [PMID: 36808582 PMCID: PMC9939871 DOI: 10.1007/s11030-023-10624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Malaysia reported the first human case of Nipah virus (NiV) in late September 1998 with encephalitis and respiratory symptoms. As a result of viral genomic mutations, two main strains (NiV-Malaysia and NiV-Bangladesh) have spread around the world. There are no licensed molecular therapeutics available for this biosafety level 4 pathogen. NiV attachment glycoprotein plays a critical role in viral transmission through its human receptors (Ephrin-B2 and Ephrin-B3), so identifying small molecules that can be repurposed to inhibit them is crucial to developing anti-NiV drugs. Consequently, in this study annealing simulations, pharmacophore modeling, molecular docking, and molecular dynamics were used to evaluate seven potential drugs (Pemirolast, Nitrofurantoin, Isoniazid Pyruvate, Eriodictyol, Cepharanthine, Ergoloid, and Hypericin) against NiV-G, Ephrin-B2, and Ephrin-B3 receptors. Based on the annealing analysis, Pemirolast for efnb2 protein and Isoniazid Pyruvate for efnb3 receptor were repurposed as the most promising small molecule candidates. Furthermore, Hypericin and Cepharanthine, with notable interaction values, are the top Glycoprotein inhibitors in Malaysia and Bangladesh strains, respectively. In addition, docking calculations revealed that their binding affinity scores are related to efnb2-pem (- 7.1 kcal/mol), efnb3-iso (- 5.8 kcal/mol), gm-hyp (- 9.6 kcal/mol), gb-ceph (- 9.2 kcal/mol). Finally, our computational research minimizes the time-consuming aspects and provides options for dealing with any new variants of Nipah virus that might emerge in the future.
Collapse
Affiliation(s)
- Maryam Ebrahimi
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahdi Alijanianzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
30
|
Hedskog C, Spinner CD, Protzer U, Hoffmann D, Ko C, Gottlieb RL, Askar M, Roestenberg M, de Vries JJC, Carbo EC, Martin R, Li J, Han D, Rodriguez L, Parvangada A, Perry JK, Ferrer R, Antón A, Andrés C, Casares V, Günthard HF, Huber M, McComsey GA, Sadri N, Aberg JA, van Bakel H, Porter DP. No Remdesivir Resistance Observed in the Phase 3 Severe and Moderate COVID-19 SIMPLE Trials. Viruses 2024; 16:546. [PMID: 38675889 PMCID: PMC11053423 DOI: 10.3390/v16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients.
Collapse
Affiliation(s)
- Charlotte Hedskog
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Christoph D. Spinner
- TUM School of Medicine and Health, Department of Clinical Medicine—Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany; (U.P.); (D.H.)
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
- Institute of Virology, Helmholtz Munich, 85764 Munich, Germany
| | - Dieter Hoffmann
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany; (U.P.); (D.H.)
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
| | - Chunkyu Ko
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
- Institute of Virology, Helmholtz Munich, 85764 Munich, Germany
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Robert L. Gottlieb
- Center for Advanced Heart and Lung Disease, Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA; (R.L.G.); (M.A.)
- Baylor Scott & White Research Institute, Dallas, TX 75246, USA
- Department of Internal Medicine, Texas A&M Health Science Center, Dallas, TX 75246, USA
- Department of Internal Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76109, USA
| | - Medhat Askar
- Center for Advanced Heart and Lung Disease, Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA; (R.L.G.); (M.A.)
- QU Health and Department of Immunology, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Meta Roestenberg
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Jutte J. C. de Vries
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Ellen C. Carbo
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Dong Han
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Lauren Rodriguez
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Aiyappa Parvangada
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Jason K. Perry
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Ricard Ferrer
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Andrés Antón
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Cristina Andrés
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Vanessa Casares
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8057 Zurich, Switzerland;
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Grace A. McComsey
- Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA; (G.A.M.); (N.S.)
| | - Navid Sadri
- Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA; (G.A.M.); (N.S.)
| | - Judith A. Aberg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Danielle P. Porter
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| |
Collapse
|
31
|
Schmitz KS, Handrejk K, Liepina L, Bauer L, Haas GD, van Puijfelik F, Veldhuis Kroeze EJB, Riekstina M, Strautmanis J, Cao H, Verdijk RM, GeurtsvanKessel CH, van Boheemen S, van Riel D, Lee B, Porotto M, de Swart RL, de Vries RD. Functional properties of measles virus proteins derived from a subacute sclerosing panencephalitis patient who received repeated remdesivir treatments. J Virol 2024; 98:e0187423. [PMID: 38329336 PMCID: PMC10949486 DOI: 10.1128/jvi.01874-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.
Collapse
Affiliation(s)
| | - Kim Handrejk
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lelde Liepina
- Clinic for Pediatric Neurology and Neurosurgery, Children’s Clinical University Hospital, Riga, Latvia
| | - Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Marta Riekstina
- Department of Pathology, Children’s Clinical University Hospital, Riga, Latvia
| | - Jurgis Strautmanis
- Clinic for Pediatric Neurology and Neurosurgery, Children’s Clinical University Hospital, Riga, Latvia
| | - Huyen Cao
- Departments of Clinical Research, Biometrics, and Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Robert M. Verdijk
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Irving Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
33
|
Zenchenko AA, Drenichev MS, Khvatov EV, Uvarova VI, Goryashchenko AS, Frolenko VS, Karpova EV, Kozlovskaya LI, Osolodkin DI, Ishmukhametov AA, Mikhailov SN, Oslovsky VE. Elongation of N 6-benzyladenosine scaffold via Pd-catalyzed C-C bond formation leads to derivatives with antiflaviviral activity. Bioorg Med Chem 2024; 98:117552. [PMID: 38128296 DOI: 10.1016/j.bmc.2023.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Decoration of nucleoside analogues with lipophilic groups often leads to compounds with improved antiviral activity. For example, N6-benzyladenosine derivatives containing elongated lipophilic substituents in the benzyl core efficiently inhibit reproduction of tick-borne encephalitis virus (TBEV), while N6-benzyladenosine itself potently inhibits reproduction of human enterovirus A71 (EV-A71). We have extended a series of N6-benzyladenosine analogues using effective synthetic methods of CC bond formation based on Pd-catalyzed cross-coupling reactions (Sonogashira and Suzuki) in order to study the influence of bulky lipophilic substituents in the N6 position of adenosine on the antiviral activity against flaviviruses, such as TBEV, yellow fever virus (YFV) and West Nile virus (WNV), as well as a panel of enteroviruses including EV-A71, Echovirus 30 (E30), and poliovirus type 2 (PV2). Reproduction of tested flaviviruses appeared to be inhibited by the micromolar concentrations of the compounds, while cytotoxicity in most cases was beyond the detection limit. Time-of-addition studies demonstrated that the hit compounds inhibited the stage of viral RNA synthesis, but not the stages of the viral entry or protein translation. As a result, several new promising antiflaviviral leads have been identified. On the other hand, none of the synthesized compounds inhibited enterovirus reproduction, indicating a possibility of involvement of flavivirus-specific pathways in their mechanism of action.
Collapse
Affiliation(s)
| | | | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | | | - Vasilisa S Frolenko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Evgenia V Karpova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia; Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | | |
Collapse
|
34
|
Menéndez-Arias L, Gago F. Antiviral Agents: Structural Basis of Action and Rational Design. Subcell Biochem 2024; 105:745-784. [PMID: 39738962 DOI: 10.1007/978-3-031-65187-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g., oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e., the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs acting against hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy. The recent approval of the antiretroviral drug lenacapavir illustrates the successful application of this knowledge.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| | - Federico Gago
- Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
35
|
Ke X, Ye C, Liu R, Liu F, Chen Q. Establishment of a novel minigenome system for the identification of drugs targeting Nipah virus replication. J Gen Virol 2024; 105. [PMID: 38180473 DOI: 10.1099/jgv.0.001944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Nipah virus (NiV) is a deadly zoonotic pathogen with high potential to cause another pandemic. Owing to biosafety concerns, studies on living NiV must be performed in biosafety level 4 (BSL-4) laboratories, which greatly hinders the development of anti-NiV drugs. To overcome this issue, minigenome systems have been developed to study viral replication and screen for antiviral drugs. This study aimed to develop two minigenome systems (transient and stable expression) based on a helper cell line expressing the NiV P, N and L proteins required to initiate NiV RNA replication. Stable minigenome cells were resistant to ribavirin, remdesivir and favipiravir but sensitive to interferons. Cells of the transient replication system were sensitive to ribavirin and favipiravir and suitable for drug screening. Our study demonstrates a feasible and effective platform for studying NiV replication and shows great potential for high-throughput drug screening in a BSL-2 laboratory environment.
Collapse
Affiliation(s)
- Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
| | - Chang Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Renyi Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Feng Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, PR China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
36
|
Edwards KM. The Therapy of SARS-CoV-2 Infection in Children. J Clin Med 2023; 13:120. [PMID: 38202127 PMCID: PMC10779459 DOI: 10.3390/jcm13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The impact of SARS-CoV-2 infections in children has fortunately been lower than what has been seen in adults. However, even previously healthy children have developed severe disease, sometimes with subsequent mortality, and those who are infants or adolescents, are from racial and ethnic minority groups, or have certain chronic conditions are at higher risk of these outcomes. During the pandemic, extensive studies of therapeutic agents, including antivirals and immunomodulators, were conducted in adults. Few trials included children, and most were in older children and adolescents. Thus, the potential benefits of therapies in children must be extrapolated from adult evidence. Despite these limitations, advisory committees of the National Institute of Health (NIH), the Infectious Disease Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS) were constituted, and expert consensus guidelines were developed. This review provides a synthesis of those comprehensive recommendations for therapy in children. These address treatment during the early infectious period with antiviral agents, including remdesivir and nirmatrelvir/ritonavir, as well as treatment in the later period of immune dysregulation with corticosteroids and immunomodulators. In addition, the therapeutic approach for multisystem inflammatory syndrome in children (MIS-C), also referred to as Pediatric Inflammatory Multisystem Syndrome temporally associated with SARS-CoV-2 (PIMS-TS), is also provided.
Collapse
Affiliation(s)
- Kathryn M Edwards
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
37
|
Bacigalupo ML, Pignataro MF, Scopel CT, Kondratyuk S, Mellouk O, Chaves GC. Unveiling patenting strategies of therapeutics and vaccines: evergreening in the context of COVID-19 pandemic. Front Med (Lausanne) 2023; 10:1287542. [PMID: 38126073 PMCID: PMC10731306 DOI: 10.3389/fmed.2023.1287542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
In the pharmaceutical sector, evergreening is considered a range of practices applied to extend monopoly protection on existing products. Filing several patent applications related to the same active pharmaceutical ingredient (API) is one of the most common manifestations of evergreening. During the COVID-19 pandemic, several health technologies were developed. This study aimed to analyze the extension of evergreening for selected health technologies for SARS-CoV-2 through patent filing strategies. Starting with the selection of three antivirals, one biological and two vaccines, a patent landscape was built based on public and private databases. Regarding these selected technologies, we analyzed some of the evergreening strategies used by different applicants, academic institutions or pharmaceutical companies and found a total of 29 applications (10 after the pandemic) for antivirals, 3 applications for a biological drug (1 after the pandemic), and 41 applications for vaccines (23 after the pandemic). Despite differences among the technologies, a common aspect found in all analyzed cases is the intense patent filing after the pandemic, aligned to the fact that those technologies were moving through the R&D process up to regulatory approval. The evergreening approach pursued has already been found in other diseases, with the risk of monopoly extension and also bringing legal uncertainty due to the lack of transparency of newer patent applications covering specific medical indications. Therefore, efforts to address evergreening should be pursued by countries, including the adoption of a public health approach to the patent examination of those technologies to prevent the granting of undeserved patents.
Collapse
Affiliation(s)
| | | | | | - Sergiy Kondratyuk
- International Treatment Preparedness Coalition Global (ITPC-Global), Bryanston, South Africa
| | - Othoman Mellouk
- International Treatment Preparedness Coalition Global (ITPC-Global), Bryanston, South Africa
| | | |
Collapse
|
38
|
Morovati S, Larijani K, Helalizadeh M, Mohammadkhani LG, Faraji H. Determination of remdesivir in human plasma using (deep eutectic solvent-ionic liquid) ferrofluid microextraction combined with liquid chromatography. J Chromatogr A 2023; 1712:464468. [PMID: 37926006 DOI: 10.1016/j.chroma.2023.464468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
A microextraction technique based on ferrofluids was developed for the preconcentration and quantification of Remdesivir in human plasma samples. This method utilized a new type of magnetic colloids created by combining silica-coated magnetic particles with modified ionic liquid and natural hydrophobic deep eutectic solvent as the carrier liquid. The efficiency of the sorption and desorption steps was optimized using a chemometrics approach. Under the optimized conditions, the calibration curve exhibited linearity in the concentration range of 0.5 to 500.0 μg L-1, with a limit of detection and quantification of 0.2 and 0.5 μg L-1, respectively. The method precision was evaluated by assessing intra- and interday precision at three different analyte concentrations, yielding values of 8.9% and 16.8%, respectively. Moreover, the method accuracy fell within the range of 90.9% to 107.5%. This proposed method offers a green and environmentally friendly sample preparation technique for conducting pharmacodynamic, pharmacokinetic, and therapeutic drug monitoring studies of Remdesivir in biological fluids. Importantly, this technique eliminates the need for external energy sources or the use of dispersive solvents, providing a more efficient and sustainable approach.
Collapse
Affiliation(s)
- Sanaz Morovati
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Helalizadeh
- Department of Exercise Physiology, Sport Medicine Research Center, Sport Sciences Research Institute, Tehran, 1587958711, Iran
| | | | - Hakim Faraji
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206, Tenerife, Spain.
| |
Collapse
|
39
|
Mansouri R, Bouzina A, Sekiou O, Aouf Z, Zerrouki R, Ibrahim-Ouali M, Aouf NE. Novel pseudonucleosides and sulfamoyl-oxazolidinone β- D-glucosamine derivative as anti-COVID-19: design, synthesis, and in silico study. J Biomol Struct Dyn 2023; 41:10999-11016. [PMID: 37098814 DOI: 10.1080/07391102.2023.2203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/10/2022] [Indexed: 04/27/2023]
Abstract
New pseudonucleosides containing cyclic sulfamide moiety and sulfamoyl β-D-glucosamine derivative are described. These pseudonucleosides are synthesized in good yields starting from chlorosulfonyl isocyanate and β-D-glucosamine hydrochloride in five steps; (protection, acetylation, removal of the Boc group, sulfamoylation, and cyclization). Further, novel glycosylated sulfamoyloxazolidin-2-one is prepared in three steps; carbamoylation, sulfamoylation, and intramolecular cyclization. The structures of the synthesized compounds were confirmed by usual spectroscopic and spectrometric methods NMR, IR, MS, and EA. Interesting molecular docking of the prepared pseudonucleosides and (Beclabuvir, Remdesivir) drugs with SARS-CoV-2/Mpro (PDB:5R80) was conducted using the same parameters for a fair comparison. A low binding affinity of the synthesized compounds compared to the Beclabuvir and other analysis showed that pseudonucleosides have the ability to inhibit SARS-CoV-2. After the motivating results of molecular docking study, the complex between the SARS-CoV-2 Mpro and compound 7 was subjected to 100 ns molecular dynamics (MD) simulation using Desmond module of Schrodinger suite, during which the receptor-ligand complex showed substantial stability after 10 ns of MD simulation. Also, we studied the prediction of absorption, distribution, properties of metabolism, excretion, and toxicity (ADMET) of the synthesized compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rachida Mansouri
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
- Environment, modeling, and climate change department, Environmental Research Center (CRE), Box 12, 23000 Annaba, Algeria
| | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Omar Sekiou
- Environment, modeling, and climate change department, Environmental Research Center (CRE), Box 12, 23000 Annaba, Algeria
| | - Zineb Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Rachida Zerrouki
- Laboratoire PEIRENE, EA7500 Université de Limoges, 123 avenue Albert Thomas, 87000, Limoges cedex, France
| | | | - Nour Eddine Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
40
|
Hedskog C, Rodriguez L, Roychoudhury P, Huang ML, Jerome KR, Hao L, Ireton RC, Li J, Perry JK, Han D, Camus G, Greninger AL, Gale M, Porter DP. Viral Resistance Analyses From the Remdesivir Phase 3 Adaptive COVID-19 Treatment Trial-1 (ACTT-1). J Infect Dis 2023; 228:1263-1273. [PMID: 37466213 PMCID: PMC10629708 DOI: 10.1093/infdis/jiad270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Remdesivir is approved for treatment of coronavirus disease 2019 (COVID-19) in nonhospitalized and hospitalized adult and pediatric patients. Here we present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance analyses from the phase 3 ACTT-1 randomized placebo-controlled trial conducted in adult participants hospitalized with COVID-19. METHODS Swab samples were collected at baseline and longitudinally through day 29. SARS-CoV-2 genomes were sequenced using next-generation sequencing. Phenotypic analysis was conducted directly on participant virus isolates and/or using SARS-CoV-2 subgenomic replicons expressing mutations identified in the Nsp12 target gene. RESULTS Among participants with both baseline and postbaseline sequencing data, emergent Nsp12 substitutions were observed in 12 of 31 (38.7%) and 12 of 30 (40.0%) participants in the remdesivir and placebo arms, respectively. No emergent Nsp12 substitutions in the remdesivir arm were observed in more than 1 participant. Phenotyping showed low to no change in susceptibility to remdesivir relative to wild-type Nsp12 reference for the substitutions tested: A16V (0.8-fold change in EC50), P323L + V792I (2.2-fold), C799F (2.5-fold), K59N (1.0-fold), and K59N + V792I (3.4-fold). CONCLUSIONS The similar rate of emerging Nsp12 substitutions in the remdesivir and placebo arms and the minimal change in remdesivir susceptibility among tested substitutions support a high barrier to remdesivir resistance development in COVID-19 patients. Clinical Trials Registration. NCT04280705.
Collapse
Affiliation(s)
| | | | - Pavitra Roychoudhury
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Linhui Hao
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Renee C Ireton
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jiani Li
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Dong Han
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Alexander L Greninger
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
41
|
Hsu CJ, Chen CH, Chen WT, Liu PC, Chang TY, Lin MH, Chen CC, Chen HY, Huang CH, Cheng YH, Sun JR. Development of an EBOV MiniG plus system as an advanced tool for anti-Ebola virus drug screening. Heliyon 2023; 9:e22138. [PMID: 38045158 PMCID: PMC10692823 DOI: 10.1016/j.heliyon.2023.e22138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
The incidence of zoonotic diseases, such as coronavirus disease 2019 and Ebola virus disease, is increasing worldwide. However, drug and vaccine development for zoonotic diseases has been hampered because the experiments involving live viruses are limited to high-containment laboratories. The Ebola virus minigenome system enables researchers to study the Ebola virus under BSL-2 conditions. Here, we found that the addition of the nucleocapsid protein of human coronaviruses, such as severe acute respiratory syndrome coronavirus 2, can increase the ratio of green fluorescent protein-positive cells by 1.5-2 folds in the Ebola virus minigenome system. Further analysis showed that the nucleocapsid protein acts as an activator of the Ebola virus minigenome system. Here, we developed an EBOV MiniG Plus system based on the Ebola virus minigenome system by adding the SARS-CoV-2 nucleocapsid protein. By evaluating the antiviral effect of remdesivir and rupintrivir, we demonstrated that compared to that of the traditional Ebola virus minigenome system, significant concentration-dependent activity was observed in the EBOV MiniG Plus system. Taken together, these results demonstrate the utility of adding nucleocapsid protein to the Ebola virus minigenome system to create a powerful platform for screening antiviral drugs against the Ebola virus.
Collapse
Affiliation(s)
- Chi-Ju Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsiu Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Ting Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Meng-He Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taiwan
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taiwan
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| |
Collapse
|
42
|
Uemura K, Nobori H, Sato A, Toba S, Kusakabe S, Sasaki M, Tabata K, Matsuno K, Maeda N, Ito S, Tanaka M, Anraku Y, Kita S, Ishii M, Kanamitsu K, Orba Y, Matsuura Y, Hall WW, Sawa H, Kida H, Matsuda A, Maenaka K. 2-thiouridine is a broad-spectrum antiviral nucleoside analogue against positive-strand RNA viruses. Proc Natl Acad Sci U S A 2023; 120:e2304139120. [PMID: 37831739 PMCID: PMC10589713 DOI: 10.1073/pnas.2304139120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.
Collapse
Affiliation(s)
- Kentaro Uemura
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - Haruaki Nobori
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
| | - Shinsuke Toba
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Shinji Kusakabe
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Keita Matsuno
- Unit of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Naoyoshi Maeda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayu Tanaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayumi Ishii
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Kayoko Kanamitsu
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - William W. Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, DublinD04, Ireland
- Global Virus Network, Baltimore, MD21201
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Global Virus Network, Baltimore, MD21201
| | - Hiroshi Kida
- Laboratory for Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo060-0812, Japan
| |
Collapse
|
43
|
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are available online to subscribers. Monographs can be customized to meet the needs of a facility. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433.
Collapse
|
44
|
Tommasini F, Benoist T, Shibuya S, Woodall MNJ, Naldi E, Palor M, Orr JC, Giobbe GG, Maughan EF, Saleh T, Gjinovci A, Hutchinson JC, Arthurs OJ, Janes SM, Elvassore N, Hynds RE, Smith CM, Michielin F, Pellegata AF, De Coppi P. Lung viral infection modelling in a bioengineered whole-organ. Biomaterials 2023; 301:122203. [PMID: 37515903 PMCID: PMC10281738 DOI: 10.1016/j.biomaterials.2023.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/31/2023]
Abstract
Lung infections are one of the leading causes of death worldwide, and this situation has been exacerbated by the emergence of COVID-19. Pre-clinical modelling of viral infections has relied on cell cultures that lack 3D structure and the context of lung extracellular matrices. Here, we propose a bioreactor-based, whole-organ lung model of viral infection. The bioreactor takes advantage of an automated system to achieve efficient decellularization of a whole rat lung, and recellularization of the scaffold using primary human bronchial cells. Automatization allowed for the dynamic culture of airway epithelial cells in a breathing-mimicking setup that led to an even distribution of lung epithelial cells throughout the distal regions. In the sealed bioreactor system, we demonstrate proof-of-concept for viral infection within the epithelialized lung by infecting primary human airway epithelial cells and subsequently injecting neutrophils. Moreover, to assess the possibility of drug screening in this model, we demonstrate the efficacy of the broad-spectrum antiviral remdesivir. This whole-organ scale lung infection model represents a step towards modelling viral infection of human cells in a 3D context, providing a powerful tool to investigate the mechanisms of the early stages of pathogenic infections and the development of effective treatment strategies for respiratory diseases.
Collapse
Affiliation(s)
- Fabio Tommasini
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Thomas Benoist
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK
| | - Soichi Shibuya
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maximillian N J Woodall
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Eleonora Naldi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Machaela Palor
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Giovanni Giuseppe Giobbe
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK
| | - Elizabeth F Maughan
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tarek Saleh
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Asllan Gjinovci
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Ciaran Hutchinson
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Owen J Arthurs
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital (GOSH), London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Nicola Elvassore
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Claire M Smith
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federica Michielin
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Alessandro Filippo Pellegata
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital (GOSH), London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK.
| |
Collapse
|
45
|
Orosco FL. Advancing the frontiers: Revolutionary control and prevention paradigms against Nipah virus. Open Vet J 2023; 13:1056-1070. [PMID: 37842102 PMCID: PMC10576574 DOI: 10.5455/ovj.2023.v13.i9.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Nipah Virus (NiV) is a highly virulent pathogen that poses a significant threat to human and animal populations. This review provides a comprehensive overview of the latest control and prevention strategies against NiV, focusing on vaccine development, antiviral drug discovery, early diagnosis, surveillance, and high-level biosecurity measures. Advancements in vaccine research, including live-attenuated vaccines, virus-like particles, and mRNA-based vaccines, hold promise for preventing NiV infections. In addition, antiviral drugs, such as remdesivir, ribavirin, and favipiravir, have the potential to inhibit NiV replication. Early diagnosis through molecular and serological assays, immunohistochemistry, and real-time reverse transcription polymerase chain reaction plays a crucial role in timely detection. Surveillance efforts encompassing cluster-based and case-based systems enhance outbreak identification and provide valuable insights into transmission dynamics. Furthermore, the implementation of high-level biosecurity measures in agriculture, livestock practices, and healthcare settings is essential to minimize transmission risks. Collaboration among researchers, public health agencies, and policymakers is pivotal in refining and implementing these strategies to effectively control and prevent NiV outbreaks and safeguard public health on a global scale.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig City, Philippines
| |
Collapse
|
46
|
von Creytz I, Gerresheim GK, Lier C, Schneider J, Schauflinger M, Benz M, Kämper L, Rohde C, Eickmann M, Biedenkopf N. Rescue and characterization of the first West African Marburg virus 2021 from Guinea. Heliyon 2023; 9:e19613. [PMID: 37810116 PMCID: PMC10558868 DOI: 10.1016/j.heliyon.2023.e19613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Marburg virus (MARV) is a causative agent of a severe hemorrhagic fever with high fatality rates endemic in central Africa. Current outbreaks of MARV in Equatorial Guinea and Tanzania underline the relevance of MARV as a public health emergency pathogen. In 2021, the first known human MARV case was confirmed in Guinea, West Africa. Since no infectious virus could be isolated from that fatal case in 2021, we generated recombinant (rec) MARV Guinea by reverse genetics in order to study and characterize this new MARV, which occurred in West Africa for the first time, in terms of its growth properties, detection by antibodies, and therapeutic potential compared to known MARV strains. Our results showed a solid viral replication of recMARV Guinea in human, bat, and monkey cell lines in comparison to other known MARV strains. We further demonstrated that replication of recMARV Guinea in cells can be inhibited by the nucleoside analogue remdesivir. Taken together, we could successfully reconstitute de novo the first West African MARV from Guinea showing similar replication kinetics in cells compared to other central African MARV strains. Our reverse genetics approach has proven successful in characterizing emerging viruses, especially when virus isolates are missing and viral genome sequences are incomplete.
Collapse
Affiliation(s)
- Isabel von Creytz
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | | | - Clemens Lier
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Jana Schneider
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | | | - Marcel Benz
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lennart Kämper
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Markus Eickmann
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| |
Collapse
|
47
|
Yan D, Yan B. Viral target and metabolism-based rationale for combined use of recently authorized small molecule COVID-19 medicines: Molnupiravir, nirmatrelvir, and remdesivir. Fundam Clin Pharmacol 2023; 37:726-738. [PMID: 36931725 PMCID: PMC10505250 DOI: 10.1111/fcp.12889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
The COVID-19 pandemic remains a major health concern worldwide, and SARS-CoV-2 is continuously evolving. There is an urgent need to identify new antiviral drugs and develop novel therapeutic strategies. Combined use of newly authorized COVID-19 medicines including molnupiravir, nirmatrelvir, and remdesivir has been actively pursued. Mechanistically, nirmatrelvir inhibits SARS-CoV-2 replication by targeting the viral main protease (Mpro ), a critical enzyme in the processing of the immediately translated coronavirus polyproteins for viral replication. Molnupiravir and remdesivir, on the other hand, inhibit SARS-CoV-2 replication by targeting RNA-dependent RNA-polymerase (RdRp), which is directly responsible for genome replication and production of subgenomic RNAs. Molnupiravir targets RdRp and induces severe viral RNA mutations (genome), commonly referred to as error catastrophe. Remdesivir, in contrast, targets RdRp and causes chain termination and arrests RNA synthesis of the viral genome. In addition, all three medicines undergo extensive metabolism with strong therapeutic significance. Molnupiravir is hydrolytically activated by carboxylesterase-2 (CES2), nirmatrelvir is inactivated by cytochrome P450-based oxidation (e.g., CYP3A4), and remdesivir is hydrolytically activated by CES1 but covalently inhibits CES2. Additionally, remdesivir and nirmatrelvir are oxidized by the same CYP enzymes. The distinct mechanisms of action provide strong rationale for their combined use. On the other hand, these drugs undergo extensive metabolism that determines their therapeutic potential. This review discusses how metabolism pathways and enzymes involved should be carefully considered during their combined use for therapeutic synergy.
Collapse
Affiliation(s)
- Daisy Yan
- Department of Dermatology, Boston University School of Medicine 609 Albany Street Boston, MA 02118
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229
| |
Collapse
|
48
|
Binderup A, Galli A, Fossat N, Fernandez-Antunez C, Mikkelsen LS, Rivera-Rangel LR, Scheel TKH, Fahnøe U, Bukh J, Ramirez S. Differential activity of nucleotide analogs against tick-borne encephalitis and yellow fever viruses in human cell lines. Virology 2023; 585:179-185. [PMID: 37356253 DOI: 10.1016/j.virol.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
With no approved antiviral therapies, the continuous emergence and re-emergence of tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) is a rising concern. We performed head-to-head comparisons of the antiviral activity of available nucleos(t)ide analogs (nucs) using relevant human cell lines. Eight existing nucs inhibited TBEV and/or YFV with differential activity between cell lines and viruses. Remdesivir, uprifosbuvir and sofosbuvir were the most potent drugs against TBEV and YFV in liver cells, but they had reduced activity in neural cells, whereas galidesivir retained uniform activity across cell lines and viruses. Ribavirin, valopicitabine, molnupiravir and GS-6620 exhibited only moderate antiviral activity. We found antiviral activity for drugs previously reported as inactive, demonstrating the importance of using human cell lines and comparative experimental assays when screening the activity of nucs. The relatively high antiviral activity of remdesivir, sofosbuvir and uprifosbuvir against TBEV and YFV merits further investigation in clinical studies.
Collapse
Affiliation(s)
- Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lizandro René Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
de Wit E, Williamson BN, Feldmann F, Goldin K, Lo MK, Okumura A, Lovaglio J, Bunyan E, Porter DP, Cihlar T, Saturday G, Spiropoulou CF, Feldmann H. Late remdesivir treatment initiation partially protects African green monkeys from lethal Nipah virus infection. Antiviral Res 2023; 216:105658. [PMID: 37356729 PMCID: PMC10529221 DOI: 10.1016/j.antiviral.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Remdesivir is a nucleotide prodrug with preclinical efficacy against lethal Nipah virus infection in African green monkeys when administered 1 day post inoculation (dpi) (Lo et al., 2019). Here, we determined whether remdesivir treatment was still effective when treatment administration initiation was delayed until 3 dpi. Three groups of six African green monkeys were inoculated with a lethal dose of Nipah virus, genotype Bangladesh. On 3 dpi, one group received a loading dose of 10 mg/kg remdesivir followed by daily dosing with 5 mg/kg for 11 days, one group received 10 mg/kg on 12 consecutive days, and the remaining group received an equivalent volume of vehicle solution. Remdesivir treatment initiation on 3 dpi provided partial protection from severe Nipah virus disease that was dose dependent, with 67% of animals in the high dose group surviving the challenge. However, remdesivir treatment did not prevent clinical disease, and surviving animals showed histologic lesions in the brain. Thus, early administration seems critical for effective remdesivir treatment during Nipah virus infection.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Brandi N Williamson
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael K Lo
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
50
|
Pagliarin LG, de Oliveira LM, dos Anjos VNF, de Souza CDBT, Peiter GC, Façanha Wendel C, Dillmann Groto A, Freire de Melo F, Teixeira KN. In silico evidence of Remdesivir action in blood coagulation cascade modulation in COVID-19 treatment. World J Biol Chem 2023; 14:72-83. [PMID: 37547340 PMCID: PMC10401403 DOI: 10.4331/wjbc.v14.i4.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has demonstrated several clinical manifestations which include not only respiratory system issues but also liver, kidney, and other organ injuries. One of these abnormalities is coagulopathies, including thrombosis and disseminated intravascular coagulation. Because of this, the administration of low molecular weight heparin is required for patients that need to be hospitalized. In addition, Remdesivir is an antiviral that was used against Middle East Acute Respiratory Syndrome, Ebola, Acute Respiratory Syndrome, and other diseases, showing satisfactory results on recovery. Besides, there is evidence suggesting that this medication can provide a better prognosis for patients with COVID-19. AIM To investigate in silico the interaction between Remdesivir and clotting factors, pursuing a possibility of using it as medicine. METHODS In this in silico study, the 3D structures of angiotensin-converting enzyme 2 (ACE2), Factor I (fibrinogen), Factor II (prothrombin), Factor III (thromboplastin), Factor V (proaccelerin), Factor VII (proconvertin), Factor VIII (antihemophilic factor A), Factor IX (antihemophilic factor B), Factor X (Stuart-Prower factor), and Factor XI (precursor of thromboplastin (these structures are technically called receptors) were selected from the Protein Data Bank. The structures of the antivirals Remdesivir and Osetalmivir (these structures are called ligands) were selected from the PubChem database, while the structure of Atazanavir was selected from the ZINC database. The software AutoDock Tools (ADT) was used to prepare the receptors for molecular docking. Ions, peptides, water molecules, and other ones were removed from each ligand, and then, hydrogen atoms were added to the structures. The grid box was delimited and calculated using the same software ADT. A physiological environment with pH 7.4 is needed to make the ligands interact with the receptors, and still the software Marvin sketch® (ChemAxon®) was used to forecast the protonation state. To perform molecular docking, ADT and Vina software was connected. Using PyMol® software and Discovery studio® software from BIOVIA, it was possible to analyze the amino acid residues from receptors that were involved in the interactions with the ligands. Ligand tortions, atoms that participated in the interactions, and the type, strength, and duration of the interactions were also analyzed using those software. RESULTS Molecular docking analysis showed that Remdesivir and ACE2 had an affinity energy of -8.8 kcal/moL, forming a complex with eight hydrogen bonds involving seven atoms of Remdesivir and five amino acid residues of ACE2. Remdesivir and prothrombin had an interaction with six hydrogen bonds involving atoms of the drug and five amino acid residues of the clotting factor. Similar to that, Remdesivir and thromboplastin presented interactions via seven hydrogen bonds involving five atoms of the drug and four residues of the clotting factor. While Remdesivir and Factor V established a complex with seven hydrogen bonds between six antiviral atoms and six amino acid residues from the factor, and Factor VII connected with the drug by four hydrogen bonds, which involved three atoms of the drug and three residues of amino acids of the factor. The complex between Remdesivir and Factor IX formed an interaction via 11 hydrophilic bonds with seven atoms of the drug and seven residues of the clotting factor, plus one electrostatic bond and three hydrophobic interactions. Factor X and Remdesivir had an affinity energy of -9.6 kcal/moL, and the complex presented 10 hydrogen bonds and 14 different hydrophobic interactions which involved nine atoms of the drug and 16 amino acid residues of the clotting factor. The interaction between Remdesivir and Factor XI formed five hydrogen bonds involving five amino acid residues of the clotting factor and five of the antiviral atoms. CONCLUSION Because of the in silico significant affinity, Remdesivir possibly could act in the severe acute respiratory syndrome coronavirus 2 infection blockade by interacting with ACE2 and concomitantly act in the modulation of the coagulation cascade preventing the hypercoagulable state.
Collapse
Affiliation(s)
| | | | | | | | - Gabrielle Caroline Peiter
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde - Campus Anísio Teixeira, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|