1
|
Delvaux de Fenffe CM, Govers J, Mattiroli F. Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes. Biochemistry 2025; 64:2138-2153. [PMID: 40312022 PMCID: PMC12096440 DOI: 10.1021/acs.biochem.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Our genome is organized into chromatin, a dynamic and modular structure made of nucleosomes. Chromatin organization controls access to the DNA sequence, playing a fundamental role in cell identity and function. How nucleosomes enable these processes is an active area of study. In this review, we provide an overview of chromatin dynamics, its properties, mechanisms, and functions. We highlight the diverse ways by which chromatin dynamics is controlled during transcription, DNA replication, and repair. Recent technological developments have promoted discoveries in this area, to which we provide an outlook on future research directions.
Collapse
Affiliation(s)
| | - Jolijn Govers
- Hubrecht Institute-KNAW & University
Medical Center Utrecht, Uppsalalaan 8, 3584 CTUtrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University
Medical Center Utrecht, Uppsalalaan 8, 3584 CTUtrecht, The Netherlands
| |
Collapse
|
2
|
Ferrara JC, Delaney S. A Balancing Act: Thymine DNA Glycosylase Combines Sequence and Rotational Preferences To Define Lesion Excision in the Nucleosome Core Particle. Biochemistry 2025; 64:2068-2076. [PMID: 40223481 DOI: 10.1021/acs.biochem.5c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Thymine DNA glycosylase (TDG) is a DNA glycosylase involved in base excision repair (BER) with a specialized role in the regulation of transcription through the maintenance of 5'-CpG-3' sites via active demethylation. In this work, we investigate the ability of TDG to excise modified nucleobases from the simplest unit of compacted DNA, the nucleosome core particle (NCP). We measure TDG activity on a population of NCPs with uracil (U) at various geometric positions and report that kobs for U excision from the NCP depends on positioning and dinucleotide sequence context. Specifically, TDG prefers solution accessible 5'-UpG-3' and 5'-UpA-3' sites. By coupling our findings with previous studies, we suggest that TDG's stringent substrate preferences facilitate its epigenetic role through the extensive contacts made with its DNA substrate.
Collapse
Affiliation(s)
- Julia C Ferrara
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
3
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025; 19:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Kujirai T, Echigoya K, Kishi Y, Saeki M, Ito T, Kato J, Negishi L, Kimura H, Masumoto H, Takizawa Y, Gotoh Y, Kurumizaka H. Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin. Nat Struct Mol Biol 2025:10.1038/s41594-025-01493-w. [PMID: 39984731 DOI: 10.1038/s41594-025-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK-nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK-nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kenta Echigoya
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Saeki
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ito
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Chen RW, Stoeber SD, Nodelman IM, Chen H, Yang L, Bowman GD, Bai L, Poirier MG. Native nucleosome-positioning elements for the investigation of nucleosome repositioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633597. [PMID: 39868261 PMCID: PMC11760725 DOI: 10.1101/2025.01.17.633597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer. Due to the artificial nature of 601, native NPEs are needed to explore the role of DNA sequence in nucleosome repositioning. Here, we characterize the position distributions and nucleosome formation free energy for a set of yeast native nucleosomes (YNNs) from Saccharomyces cerevisiae. We show these native NPEs can be used in biochemical studies of nucleosome repositioning by transcription factors (TFs) and the chromatin remodeler Chd1. TFs could directly reposition a fraction of nucleosomes containing native NPEs, but not 601-containing nucleosomes. In contrast, partial unwrapping was similar for 601 and native NPE sequences, and the rate of ATP-dependent remodeling by Chd1 was within the range of the fast and slow directions of the 601 nucleosomes. This set of native NPEs provides an alternative to the 601 NPE that can be used for probing the repositioning of nucleosomes that contain native DNA sequences.
Collapse
Affiliation(s)
- Ruo-Wen Chen
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shane D. Stoeber
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ilana M. Nodelman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lloyd Yang
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory D. Bowman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael G. Poirier
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Chesnutt K, Yayli G, Toelzer C, Damilot M, Cox K, Gautam G, Berger I, Tora L, Poirier M. ATAC and SAGA histone acetyltransferase modules facilitate transcription factor binding to nucleosomes independent of their acetylation activity. Nucleic Acids Res 2025; 53:gkae1120. [PMID: 39656677 PMCID: PMC11724297 DOI: 10.1093/nar/gkae1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Transcription initiation involves the coordination of multiple events, starting with activators binding specific DNA target sequences, which recruit transcription coactivators to open chromatin and enable binding of general transcription factors and RNA polymerase II to promoters. Two key human transcriptional coactivator complexes, ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5 acetyltransferase), containing histone acetyltransferase (HAT) activity, target genomic loci to increase promoter accessibility. To better understand the function of ATAC and SAGA HAT complexes, we used in vitro biochemical and biophysical assays to characterize human ATAC and SAGA HAT module interactions with nucleosomes and how a transcription factor (TF) coordinates these interactions. We found that ATAC and SAGA HAT modules bind nucleosomes with high affinity, independent of their HAT activity and the tested TF. ATAC and SAGA HAT modules directly interact with the VP16 activator domain and this domain enhances acetylation activity of both HAT modules. Surprisingly, ATAC and SAGA HAT modules increase TF binding to its DNA target site within the nucleosome by an order of magnitude independent of histone acetylation. Altogether, our results reveal synergistic coordination between HAT modules and a TF, where ATAC and SAGA HAT modules (i) acetylate histones to open chromatin and (ii) facilitate TF targeting within nucleosomes independently of their acetylation activity.
Collapse
Affiliation(s)
- Kristin V Chesnutt
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
| | - Gizem Yayli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Khan Cox
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Michael G Poirier
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, Ohio State University, Columbus, OH43210, USA
| |
Collapse
|
7
|
Nagamura R, Kujirai T, Kato J, Shuto Y, Kusakizako T, Hirano H, Endo M, Toki S, Saika H, Kurumizaka H, Nureki O. Structural insights into how Cas9 targets nucleosomes. Nat Commun 2024; 15:10744. [PMID: 39737984 PMCID: PMC11685650 DOI: 10.1038/s41467-024-54768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE) analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin.
Collapse
Affiliation(s)
- Reina Nagamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Junko Kato
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yutaro Shuto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hisato Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Endo
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Laboratory of Plant Genome Engineering, Department of Life Science, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Saintilnord WN, Hegazy YA, Chesnutt K, Eckstein M, Cassidy RN, Dhahri H, Bennett RL, Melters DP, Lopes E, Fu Z, Lau K, Chandler DP, Poirier MG, Dalal Y, Licht JD, Fondufe-Mittendorf Y. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624207. [PMID: 39605447 PMCID: PMC11601509 DOI: 10.1101/2024.11.18.624207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin architecture governs DNA accessibility and gene expression. Thus, any perturbations to chromatin can significantly alter gene expression programs and promote disease. Prior studies demonstrate that every amino acid in a histone is functionally significant, and that even a single amino acid substitution can drive specific cancers. We previously observed that naturally occurring H2B variants are dysregulated during the epithelial to mesenchymal transition (EMT) in bronchial epithelial cells. Naturally occurring H2B variants differ from canonical H2B by only a few amino acids, yet single amino acid changes in other histone variants (e.g., H3.3) can drive cancer. We therefore hypothesized that H2B variants might function like oncohistones, and investigated how they modify chromatin architecture, dynamics, and function. We find that H2B variants are frequently dysregulated in many cancers, and correlate with patient prognosis. Despite high sequence similarity, mutations in each H2B variant tend to occur at specific "hotspots" in cancer. Some H2B variants cause tighter DNA wrapping around nucleosomes, leading to more compact chromatin structures and reduced transcription factor accessibility to nucleosomal DNA. They also altered genome-wide accessibility to oncogenic regulatory elements and genes, with concomitant changes in oncogenic gene expression programs. Although we did not observe changes in cell proliferation or migration in vitro , our Gene Ontology (GO) analyses of ATAC-seq peaks and RNA-seq data indicated significant changes in oncogenic pathways. These findings suggest that H2B variants may influence early-stage, cancer-associated regulatory mechanisms, potentially setting the stage for oncogenesis later on. Thus, H2B variant expression could serve as an early cancer biomarker, and H2B variants might be novel therapeutic targets.
Collapse
|
9
|
Sutton TB, Sawyer DL, Naila T, Sweasy JB, Tomkinson AE, Delaney S. Global screening of base excision repair in nucleosome core particles. DNA Repair (Amst) 2024; 144:103777. [PMID: 39476546 DOI: 10.1016/j.dnarep.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/13/2024]
Abstract
DNA damage is a fundamental molecular cause of genomic instability. Base excision repair (BER) is one line of defense to minimize the potential mutagenicity and/or toxicity derived from damaged nucleobase lesions. However, BER in the context of chromatin, in which eukaryotic genomic DNA is compacted through a hierarchy of DNA-histone protein interactions, is not fully understood. Here, we investigate the activity of BER enzymes at 27 unique geometric locations in a nucleosome core particle (NCP), which is the minimal unit of packaging in chromatin. The BER enzymes include uracil DNA glycosylase (UDG), AP endonuclease 1 (APE1), DNA polymerase β (Pol β), and DNA ligase IIIα complexed with X-ray repair cross complementing group 1 (LigIIIα/XRCC1). This global analysis of BER reveals that initiation of the repair event by UDG is dictated by the rotational position of the lesion. APE1 has robust activity at locations where repair is initiated whereas the repair event stalls at the Pol β nucleotide incorporation step within the central ∼45 bp of nucleosomal DNA. The final step of the repair, catalyzed by LigIIIα/XRCC1, is achieved only in the entry/exit regions of the NCP when nick sites are transiently exposed by unwrapping from the histones. Kinetic assays further elucidate that the location of the damaged lesion modulates enzymatic activity. Notably, these data indicate that some of the BER enzymes can act at a significant number of locations even in the absence of chromatin remodelers or other cellular factors. These results inform genome wide maps of DNA damage and mutations and contribute to our understanding of mutational hotspots and signatures.
Collapse
Affiliation(s)
- Treshaun B Sutton
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| | - Danielle L Sawyer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Tasmin Naila
- Departments of Internal Medicine, Molecular Genetics & Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Joann B Sweasy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics & Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
10
|
Carminati M, Vecchia L, Stoos L, Thomä NH. Pioneer factors: Emerging rules of engagement for transcription factors on chromatinized DNA. Curr Opin Struct Biol 2024; 88:102875. [PMID: 38991237 DOI: 10.1016/j.sbi.2024.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024]
Abstract
Pioneering transcription factors (TFs) can drive cell fate changes by binding their DNA motifs in a repressive chromatin environment. Recent structures illustrate emerging rules for nucleosome engagement: TFs distort the nucleosomal DNA to gain access or employ alternative DNA-binding modes with smaller footprints, they preferentially access solvent-exposed motifs near the entry/exit sites, and frequently interact with histones. The extent of TF-histone interactions, in turn, depends on the motif location on the nucleosome, the type of DNA-binding fold, and adjacent domains present. TF-histone interactions can phase TF motifs relative to nucleosomes, and we discuss how these complex and surprisingly diverse interactions between nucleosomes and TFs contribute to function.
Collapse
Affiliation(s)
- Manuel Carminati
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne 1015, Switzerland
| | - Luca Vecchia
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Lisa Stoos
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Nicolas H Thomä
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne 1015, Switzerland; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland.
| |
Collapse
|
11
|
Nozawa H, Nagae F, Ogihara S, Hirano R, Yamazaki H, Iizuka R, Akatsu M, Kujirai T, Takada S, Kurumizaka H, Uemura S. Nucleosomal DNA unwinding pathway through canonical and non-canonical histone disassembly. Commun Biol 2024; 7:1144. [PMID: 39277674 PMCID: PMC11401932 DOI: 10.1038/s42003-024-06856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The nucleosome including H2A.B, a mammalian-specific H2A variant, plays pivotal roles in spermatogenesis, embryogenesis, and oncogenesis, indicating unique involvement in transcriptional regulation distinct from canonical H2A nucleosomes. Despite its significance, the exact regulatory mechanism remains elusive. This study utilized solid-state nanopores to investigate DNA unwinding dynamics, applying local force between DNA and histones. Comparative analysis of canonical H2A and H2A.B nucleosomes demonstrated that the H2A.B variant required a lower voltage for complete DNA unwinding. Furthermore, synchronization analysis and molecular dynamics simulations indicate that the H2A.B variant rapidly unwinds DNA, causing the H2A-H2B dimer to dissociate from DNA immediately upon disassembly of the histone octamer. In contrast, canonical H2A nucleosomes unwind DNA at a slower rate, suggesting that the H2A-H2B dimer undergoes a state of stacking at the pore. These findings suggest that nucleosomal DNA in the H2A.B nucleosomes undergoes a DNA unwinding process involving histone octamer disassembly distinct from that of canonical H2A nucleosomes, enabling smoother unwinding. The integrated approach of MD simulations and nanopore measurements is expected to evolve into a versatile tool for studying molecular interactions, not only within nucleosomes but also through the forced dissociation of DNA-protein complexes.
Collapse
Affiliation(s)
- Hikaru Nozawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fritz Nagae
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rina Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Niigata, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Munetaka Akatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Mariani L, Liu X, Lee K, Gisselbrecht SS, Cole PA, Bulyk ML. DNA flexibility regulates transcription factor binding to nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610559. [PMID: 39463949 PMCID: PMC11507811 DOI: 10.1101/2024.09.02.610559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cell fate decisions are controlled by sequence-specific transcription factors (TFs), referred to as 'pioneer' factors, that bind their target sites within nucleosomes ('pioneer binding') and thus initiate chromatin opening. However, pioneers bind just a minority of their recognition sequences present in the genome, suggesting that local sequence context features may regulate pioneer binding. Here, we developed PIONEAR-seq, a highly parallel sequencing-based biochemical assay for high-throughput analysis of TF binding to nucleosomes on nucleosome positioning sequences. Using PIONEAR-seq, we characterized the pioneer binding of 7 human pioneer TFs. Comparison of TF binding to nucleosomes based on the synthetic Widom 601 (W601) model sequence versus three different genomic sequences revealed that the positional preferences of these TFs' binding to nucleosomes (i.e., dyad, periodic and end binding) is determined by the broader sequence context of the nucleosome, rather than being a property intrinsic to the TF. We propose a model where the flexibility and rigidity within nucleosomal DNA regulate where pioneers bind within nucleosomes. Our results suggest that the broader physical properties of nucleosomal DNA represent another layer of cis-regulatory information read out by TFs in eukaryotic genomes.
Collapse
Affiliation(s)
- Luca Mariani
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xiao Liu
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biomedical Informatics; Harvard Medical School, Boston, MA 02115
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School, Boston, MA 02115
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Philip A. Cole
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School, Boston, MA 02115
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pathology; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
13
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
14
|
Stoeber S, Godin H, Xu C, Bai L. Pioneer factors: nature or nurture? Crit Rev Biochem Mol Biol 2024; 59:139-153. [PMID: 38778580 PMCID: PMC11444900 DOI: 10.1080/10409238.2024.2355885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Chromatin is densely packed with nucleosomes, which limits the accessibility of many chromatin-associated proteins. Pioneer factors (PFs) are usually viewed as a special group of sequence-specific transcription factors (TFs) that can recognize nucleosome-embedded motifs, invade compact chromatin, and generate open chromatin regions. Through this process, PFs initiate a cascade of events that play key roles in gene regulation and cell differentiation. A current debate in the field is if PFs belong to a unique subset of TFs with intrinsic "pioneering activity", or if all TFs have the potential to function as PFs within certain cellular contexts. There are also different views regarding the key feature(s) that define pioneering activity. In this review, we present evidence from the literature related to these alternative views and discuss how to potentially reconcile them. It is possible that both intrinsic properties, like tight nucleosome binding and structural compatibility, and cellular conditions, like concentration and co-factor availability, are important for PF function.
Collapse
Affiliation(s)
- Shane Stoeber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Godin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Oyarzún-Cisterna A, Gidi C, Raiqueo F, Amigo R, Rivas C, Torrejón M, Gutiérrez JL. General regulatory factors exert differential effects on nucleosome sliding activity of the ISW1a complex. Biol Res 2024; 57:22. [PMID: 38704609 PMCID: PMC11069190 DOI: 10.1186/s40659-024-00500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.
Collapse
Affiliation(s)
- Andrea Oyarzún-Cisterna
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Cristián Gidi
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Fernanda Raiqueo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Camila Rivas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - José L Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile.
| |
Collapse
|
16
|
van Emmerik CL, Lobbia V, Neefjes J, Nelissen FHT, van Ingen H. Monitoring Anthracycline Cancer Drug-Nucleosome Interaction by NMR Using a Specific Isotope Labeling Approach for Nucleosomal DNA. Chembiochem 2024; 25:e202400111. [PMID: 38476018 DOI: 10.1002/cbic.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Chromatinized DNA is targeted by proteins and small molecules to regulate chromatin function. For example, anthracycline cancer drugs evict nucleosomes in a mechanism that is still poorly understood. We here developed a flexible method for specific isotope labeling of nucleosomal DNA enabling NMR studies of such nucleosome interactions. We describe the synthesis of segmental one-strand 13C-thymidine labeled 601-DNA, the assignment of the methyl signals, and demonstrate its use to observe site-specific binding to the nucleosome by aclarubicin, an anthracycline cancer drug that intercalates into the DNA minor grooves. Our results highlight intrinsic conformational heterogeneity in the 601 DNA sequence and show that aclarubicin binds an exposed AT-rich region near the DNA end. Overall, our data point to a model where the drug invades the nucleosome from the terminal ends inward, eventually resulting in histone eviction and nucleosome disruption.
Collapse
Affiliation(s)
- Clara L van Emmerik
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Vincenzo Lobbia
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jacques Neefjes
- Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Frank H T Nelissen
- Biophysical Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
17
|
Kobayashi W, Sappler AH, Bollschweiler D, Kümmecke M, Basquin J, Arslantas EN, Ruangroengkulrith S, Hornberger R, Duderstadt K, Tachibana K. Nucleosome-bound NR5A2 structure reveals pioneer factor mechanism by DNA minor groove anchor competition. Nat Struct Mol Biol 2024; 31:757-766. [PMID: 38409506 PMCID: PMC11102866 DOI: 10.1038/s41594-024-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Gene expression during natural and induced reprogramming is controlled by pioneer transcription factors that initiate transcription from closed chromatin. Nr5a2 is a key pioneer factor that regulates zygotic genome activation in totipotent embryos, pluripotency in embryonic stem cells and metabolism in adult tissues, but the mechanism of its pioneer activity remains poorly understood. Here, we present a cryo-electron microscopy structure of human NR5A2 bound to a nucleosome. The structure shows that the conserved carboxy-terminal extension (CTE) loop of the NR5A2 DNA-binding domain competes with a DNA minor groove anchor of the nucleosome and releases entry-exit site DNA. Mutational analysis showed that NR5A2 D159 of the CTE is dispensable for DNA binding but required for stable nucleosome association and persistent DNA 'unwrapping'. These findings suggest that NR5A2 belongs to an emerging class of pioneer factors that can use DNA minor groove anchor competition to destabilize nucleosomes and facilitate gene expression during reprogramming.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Anna H Sappler
- Structure and Dynamics of Molecular Machines, MPIB, Munich, Germany
| | | | - Maximilian Kümmecke
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Crystallization Facility, MPIB, Munich, Germany
| | - Eda Nur Arslantas
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | | | - Renate Hornberger
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Karl Duderstadt
- Structure and Dynamics of Molecular Machines, MPIB, Munich, Germany
- Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany.
| |
Collapse
|
18
|
Klein DC, Lardo SM, Hainer SJ. The ncBAF Complex Regulates Transcription in AML Through H3K27ac Sensing by BRD9. CANCER RESEARCH COMMUNICATIONS 2024; 4:237-252. [PMID: 38126767 PMCID: PMC10831031 DOI: 10.1158/2767-9764.crc-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.
Collapse
Affiliation(s)
- David C. Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Mondal A, Kolomeisky AB. Why Are Nucleosome Breathing Dynamics Asymmetric? J Phys Chem Lett 2024; 15:422-431. [PMID: 38180351 DOI: 10.1021/acs.jpclett.3c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In eukaryotic cells, DNA is bound to nucleosomes, but DNA segments occasionally unbind in the process known as nucleosome breathing. Although DNA can unwrap simultaneously from both ends of the nucleosome (symmetric breathing), experiments indicate that DNA prefers to dissociate from only one end (asymmetric breathing). However, the molecular origin of the asymmetry is not understood. We developed a new theoretical approach that gives microscopic explanations of asymmetric breathing. It is based on a stochastic description that leads to a comprehensive evaluation of dynamics by using effective free-energy landscapes. It is shown that asymmetric breathing follows the kinetically preferred pathways. In addition, it is also found that asymmetric breathing leads to a faster target search by transcription factors. Theoretical predictions, supported by computer simulations, agree with experiments. It is proposed that nature utilizes the symmetry of nucleosome breathing to achieve a better dynamic accessibility of chromatin for more efficient genetic regulation.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
20
|
Amigo R, Raiqueo F, Tarifeño E, Farkas C, Gutiérrez JL. Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 2023; 24:15245. [PMID: 37894925 PMCID: PMC10607297 DOI: 10.3390/ijms242015245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.
Collapse
Affiliation(s)
- Roberto Amigo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Fernanda Raiqueo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Estefanía Tarifeño
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Carlos Farkas
- Biomedical Sciences Research Laboratory, Department of Basic Sciences and Morphology, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - José L. Gutiérrez
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| |
Collapse
|
21
|
Ramalingam V, Yu X, Slaughter BD, Unruh JR, Brennan KJ, Onyshchenko A, Lange JJ, Natarajan M, Buck M, Zeitlinger J. Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development. Nat Commun 2023; 14:5862. [PMID: 37735176 PMCID: PMC10514308 DOI: 10.1038/s41467-023-41408-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene activation. Lola-I mediates this function by depleting promoter nucleosomes, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers and reveal a mechanism for the de novo establishment of paused Pol II at promoters.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Michael Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA.
| |
Collapse
|
22
|
Mondal A, Kolomeisky AB. Role of Nucleosome Sliding in the Protein Target Search for Covered DNA Sites. J Phys Chem Lett 2023; 14:7073-7082. [PMID: 37527481 DOI: 10.1021/acs.jpclett.3c01704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Associations of transcription factors (TFs) with specific sites on DNA initiate major cellular processes. But DNA in eukaryotic cells is covered by nucleosomes which prevent TFs from binding. However, nucleosome structures on DNA are not static and exhibit breathing and sliding. We develop a theoretical framework to investigate the effect of nucleosome sliding on a protein target search. By analysis of a discrete-state stochastic model of nucleosome sliding, search dynamics are explicitly evaluated. It is found that for long sliding lengths the target search dynamics are faster for normal TFs that cannot enter the nucleosomal DNA. But for more realistic short sliding lengths, the so-called pioneer TFs, which can invade nucleosomal DNA, locate specific sites faster. It is also suggested that nucleosome breathing, which is a faster process, has a stronger effect on protein search dynamics than that of nucleosome sliding. Theoretical arguments to explain these observations are presented.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
23
|
Das SK, Huynh MT, Lee TH. Spontaneous histone exchange between nucleosomes. J Biol Chem 2023; 299:105037. [PMID: 37442235 PMCID: PMC10406861 DOI: 10.1016/j.jbc.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
The nucleosome is the fundamental gene-packing unit in eukaryotes. Nucleosomes comprise ∼147 bp DNA wrapped around an octameric histone protein core composed of two H2A-H2B dimers and one (H3-H4)2 tetramer. The strong yet flexible DNA-histone interactions are the physical basis of the dynamic regulation of genes packaged in chromatin. The dynamic nature of DNA-histone interactions also implies that nucleosomes dissociate DNA-histone contacts both transiently and repeatedly. This kinetic instability may lead to spontaneous nucleosome disassembly or histone exchange between nucleosomes. At high nucleosome concentrations, nucleosome-nucleosome collisions and subsequent histone exchange would be a more likely event, where nucleosomes could act as their own histone chaperone. This spontaneous histone exchange could serve as a mechanism for maintaining overall chromatin stability, although it has never been reported. Here we employed three-color single-molecule FRET (smFRET) to demonstrate that histone H2A-H2B dimers are exchanged spontaneously between nucleosomes on a time scale of a few tens of seconds at a physiological nucleosome concentration. We show that the rate of histone exchange increases at a higher monovalent salt concentration, with histone-acetylated nucleosomes, and in the presence of histone chaperone Nap1, while it remains unchanged at a higher temperature, and decreases upon DNA methylation. These results support the notion of histone exchange via transient and repetitive partial disassembly of the nucleosome and corroborate spontaneous histone diffusion in a compact chromatin context, modulating the local concentrations of histone modifications and variants.
Collapse
Affiliation(s)
- Subhra Kanti Das
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mai Thao Huynh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
24
|
Michael AK, Stoos L, Crosby P, Eggers N, Nie XY, Makasheva K, Minnich M, Healy KL, Weiss J, Kempf G, Cavadini S, Kater L, Seebacher J, Vecchia L, Chakraborty D, Isbel L, Grand RS, Andersch F, Fribourgh JL, Schübeler D, Zuber J, Liu AC, Becker PB, Fierz B, Partch CL, Menet JS, Thomä NH. Cooperation between bHLH transcription factors and histones for DNA access. Nature 2023; 619:385-393. [PMID: 37407816 PMCID: PMC10338342 DOI: 10.1038/s41586-023-06282-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lisa Stoos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolas Eggers
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Xinyu Y Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Kristina Makasheva
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Minnich
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kelly L Healy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luca Vecchia
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Deyasini Chakraborty
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Florian Andersch
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Andrew C Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
25
|
Abstract
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
26
|
Kujirai T, Ehara H, Sekine SI, Kurumizaka H. Structural Transition of the Nucleosome during Transcription Elongation. Cells 2023; 12:1388. [PMID: 37408222 DOI: 10.3390/cells12101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
In eukaryotes, genomic DNA is tightly wrapped in chromatin. The nucleosome is a basic unit of chromatin, but acts as a barrier to transcription. To overcome this impediment, the RNA polymerase II elongation complex disassembles the nucleosome during transcription elongation. After the RNA polymerase II passage, the nucleosome is rebuilt by transcription-coupled nucleosome reassembly. Nucleosome disassembly-reassembly processes play a central role in preserving epigenetic information, thus ensuring transcriptional fidelity. The histone chaperone FACT performs key functions in nucleosome disassembly, maintenance, and reassembly during transcription in chromatin. Recent structural studies of transcribing RNA polymerase II complexed with nucleosomes have provided structural insights into transcription elongation on chromatin. Here, we review the structural transitions of the nucleosome during transcription.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
27
|
Mondal A, Felipe C, Kolomeisky AB. Nucleosome Breathing Facilitates the Search for Hidden DNA Sites by Pioneer Transcription Factors. J Phys Chem Lett 2023; 14:4096-4103. [PMID: 37125729 DOI: 10.1021/acs.jpclett.3c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transfer of genetic information starts with transcription factors (TFs) binding to specific sites on DNA. But in living cells, DNA is mostly covered by nucleosomes. There are proteins, known as pioneer TFs, that can efficiently reach the DNA sites hidden by nucleosomes, although the underlying mechanisms are not understood. Using the recently proposed idea of interaction-compensation mechanism, we develop a stochastic model for the target search on DNA with nucleosome breathing. It is found that nucleosome breathing can significantly accelerate the search by pioneer TFs in comparison to situations without breathing. We argue that this is the result of the interaction-compensation mechanism that allows proteins to enter the inner nucleosome region through the outer DNA segment. It is suggested that nature optimized pioneer TFs to take advantage of nucleosome breathing. The presented theoretical picture provides a possible microscopic explanation for the successful invasion of nucleosome-buried genes.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Cayke Felipe
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
28
|
Liu Z, Wu Y, Mao X, Kwan KCJ, Cheng X, Li X, Jing Y, Li XD. Development of multifunctional synthetic nucleosomes to interrogate chromatin-mediated protein interactions. SCIENCE ADVANCES 2023; 9:eade5186. [PMID: 37134166 PMCID: PMC10156118 DOI: 10.1126/sciadv.ade5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Various proteins bind to chromatin to regulate DNA and its associated processes such as replication, transcription, and damage repair. The identification and characterization of these chromatin-associating proteins remain a challenge, as their interactions with chromatin often occur within the context of the local nucleosome or chromatin structure, which makes conventional peptide-based strategies unsuitable. Here, we developed a simple and robust protein labeling chemistry to prepare synthetic multifunctional nucleosomes that carry a photoreactive group, a biorthogonal handle, and a disulfide moiety to examine chromatin-protein interactions in a nucleosomal context. Using the prepared protein- and nucleosome-based photoaffinity probes, we examined a number of protein-protein and protein-nucleosome interactions. In particular, we (i) mapped the binding sites for the HMGN2-nucleosome interaction, (ii) provided the evidence for transition between the active and poised states of DOT1L in recognizing H3K79 within the nucleosome, and (iii) identified OARD1 and LAP2α as nucleosome acidic patch-associating proteins. This study provides powerful and versatile chemical tools for interrogating chromatin-associating proteins.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiping Wu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xin Mao
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Xinxin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xin Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen 518055, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
29
|
Donovan BT, Chen H, Eek P, Meng Z, Jipa C, Tan S, Bai L, Poirier MG. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol Cell 2023; 83:1251-1263.e6. [PMID: 36996811 PMCID: PMC10182836 DOI: 10.1016/j.molcel.2023.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Priit Eek
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiyuan Meng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caroline Jipa
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Qin F, Li B, Wang H, Ma S, Li J, Liu S, Kong L, Zheng H, Zhu R, Han Y, Yang M, Li K, Ji X, Chen PR. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell 2023; 186:1066-1085.e36. [PMID: 36868209 DOI: 10.1016/j.cell.2023.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/01/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and β-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.
Collapse
Affiliation(s)
- Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Boyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Sihui Ma
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shanglin Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linghao Kong
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Huangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongfeng Zhu
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Han
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingdong Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
31
|
Donovan BT, Luo Y, Meng Z, Poirier MG. The nucleosome unwrapping free energy landscape defines distinct regions of transcription factor accessibility and kinetics. Nucleic Acids Res 2023; 51:1139-1153. [PMID: 36688297 PMCID: PMC9943653 DOI: 10.1093/nar/gkac1267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/27/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Transcription factors (TF) require access to target sites within nucleosomes to initiate transcription. The target site position within the nucleosome significantly influences TF occupancy, but how is not quantitatively understood. Using ensemble and single-molecule fluorescence measurements, we investigated the targeting and occupancy of the transcription factor, Gal4, at different positions within the nucleosome. We observe a dramatic decrease in TF occupancy to sites extending past 30 base pairs (bp) into the nucleosome which cannot be explained by changes in the TF dissociation rate or binding site orientation. Instead, the nucleosome unwrapping free energy landscape is the primary determinant of Gal4 occupancy by reducing the Gal4 binding rate. The unwrapping free energy landscape defines two distinct regions of accessibility and kinetics with a boundary at 30 bp into the nucleosome where the inner region is over 100-fold less accessible. The Gal4 binding rate in the inner region no longer depends on its concentration because it is limited by the nucleosome unwrapping rate, while the frequency of nucleosome rewrapping decreases because Gal4 exchanges multiple times before the nucleosome rewraps. Our findings highlight the importance of the nucleosome unwrapping free energy landscape on TF occupancy and dynamics that ultimately influences transcription initiation.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yi Luo
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zhiyuan Meng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43214, USA
| |
Collapse
|
32
|
Becht DC, Klein BJ, Kanai A, Jang SM, Cox KL, Zhou BR, Phanor SK, Zhang Y, Chen RW, Ebmeier CC, Lachance C, Galloy M, Fradet-Turcotte A, Bulyk ML, Bai Y, Poirier MG, Côté J, Yokoyama A, Kutateladze TG. MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain. Nat Commun 2023; 14:697. [PMID: 36754959 PMCID: PMC9908889 DOI: 10.1038/s41467-023-36368-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Human acetyltransferases MOZ and MORF are implicated in chromosomal translocations associated with aggressive leukemias. Oncogenic translocations involve the far amino terminus of MOZ/MORF, the function of which remains unclear. Here, we identified and characterized two structured winged helix (WH) domains, WH1 and WH2, in MORF and MOZ. WHs bind DNA in a cooperative manner, with WH1 specifically recognizing unmethylated CpG sequences. Structural and genomic analyses show that the DNA binding function of WHs targets MORF/MOZ to gene promoters, stimulating transcription and H3K23 acetylation, and WH1 recruits oncogenic fusions to HOXA genes that trigger leukemogenesis. Cryo-EM, NMR, mass spectrometry and mutagenesis studies provide mechanistic insight into the DNA-binding mechanism, which includes the association of WH1 with the CpG-containing linker DNA and binding of WH2 to the dyad of the nucleosome. The discovery of WHs in MORF and MOZ and their DNA binding functions could open an avenue in developing therapeutics to treat diseases associated with aberrant MOZ/MORF acetyltransferase activities.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina K Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Ruo-Wen Chen
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | | | - Catherine Lachance
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Maxime Galloy
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Amelie Fradet-Turcotte
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada.
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
33
|
Louro JA, Boopathi R, Beinsteiner B, Mohideen Patel AK, Cheng TC, Angelov D, Hamiche A, Bendar J, Kale S, Klaholz BP, Dimitrov S. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms. Structure 2023; 31:201-212.e5. [PMID: 36610392 DOI: 10.1016/j.str.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Nucleosomes are symmetric structures. However, binding of linker histones generates an inherently asymmetric H1-nucleosome complex, and whether this asymmetry is transmitted to the overall nucleosome structure, and therefore also to chromatin, is unclear. Efforts to investigate potential asymmetry due to H1s have been hampered by the DNA sequence, which naturally differs in each gyre. To overcome this issue, we designed and analyzed by cryo-EM a nucleosome reconstituted with a palindromic (601L) 197-bp DNA. As in the non-palindromic 601 sequence, H1 restricts linker DNA flexibility but reveals partial asymmetrical unwrapping. However, in contrast to the non-palindromic nucleosome, in the palindromic nucleosome H1 CTD collapses to the proximal linker. Molecular dynamics simulations show that this could be dictated by a slightly tilted orientation of the globular domain (GD) of H1, which could be linked to the DNA sequence of the nucleosome dyad.
Collapse
Affiliation(s)
- Jaime Alegrio Louro
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Abdul Kareem Mohideen Patel
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tat Cheung Cheng
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Ali Hamiche
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France; Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch, France
| | - Jan Bendar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France.
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| |
Collapse
|
34
|
Kumar Mishra S, Bhattacherjee A. Understanding the Target Search by Multiple Transcription Factors on Nucleosomal DNA. Chemphyschem 2023; 24:e202200644. [PMID: 36602094 DOI: 10.1002/cphc.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
The association of multiple Transcription Factors (TFs) in the cis-regulatory region is imperative for developmental changes in eukaryotes. The underlying process is exceedingly complex, and it is not at all clear what orchestrates the overall search process by multiple TFs. In this study, by developing a theoretical model based on a discrete-state stochastic approach, we investigated the target search mechanism of multiple TFs on nucleosomal DNA. Experimental kinetic rate constants of different TFs are taken as input to estimate the Mean-First-Passage time to recognize the binding motifs by two TFs on a dynamic nucleosome model. The theory systematically analyzes when the TFs search their binding motifs hierarchically and when simultaneously by proceeding via the formation of a protein-protein complex. Our results, validated by extensive Monte Carlo simulations, elucidate the molecular basis of the complex target search phenomenon of multiple TFs on nucleosomal DNA.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Mondal A, Mishra SK, Bhattacherjee A. Nucleosome breathing facilitates cooperative binding of pluripotency factors Sox2 and Oct4 to DNA. Biophys J 2022; 121:4526-4542. [PMID: 36321206 PMCID: PMC9748375 DOI: 10.1016/j.bpj.2022.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Critical lineage commitment events are staged by multiple transcription factors (TFs) binding to their cognate motifs, often positioned at nucleosome-enriched regions of chromatin. The underlying mechanism remains elusive due to difficulty in disentangling the heterogeneity in chromatin states. Using a novel coarse-grained model and molecular dynamics simulations, here we probe the association of Sox2 and Oct4 proteins that show clustered binding at the entry-exit region of a nucleosome. The model captures the conformational heterogeneity of nucleosome breathing dynamics that features repeated wrap-unwrap transitions of a DNA segment from one end of the nucleosome. During the dynamics, DNA forms bulges that diffuse stochastically and may regulate the target search dynamics of a protein by nonspecifically interacting with it. The overall search kinetics of the TF pair follows a "dissociation-compensated-association" mechanism, where Oct4 binding is facilitated by the association of Sox2. The cooperativity stems from a change in entropy caused by an alteration in the nucleosome dynamics upon TF binding. The binding pattern is consistent with a live-cell single-particle tracking experiment, suggesting the mechanism observed for clustered binding of a TF pair, which is a hallmark of cis-regulatory elements, has broader implications in understanding gene regulation in a complex chromatin environment.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
36
|
Brandani GB, Gopi S, Yamauchi M, Takada S. Molecular dynamics simulations for the study of chromatin biology. Curr Opin Struct Biol 2022; 77:102485. [PMID: 36274422 DOI: 10.1016/j.sbi.2022.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
The organization of Eukaryotic DNA into chromatin has profound implications for the processing of genetic information. In the past years, molecular dynamics (MD) simulations proved to be a powerful tool to investigate the mechanistic basis of chromatin biology. We review recent all-atom and coarse-grained MD studies revealing how the structure and dynamics of chromatin underlie its biological functions. We describe the latest method developments; the structural fluctuations of nucleosomes and the various factors affecting them; the organization of chromatin fibers, with particular emphasis on its liquid-like character; the interactions and dynamics of transcription factors on chromatin; and how chromatin organization is modulated by molecular motors acting on DNA.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| |
Collapse
|
37
|
Weaver TM, Hoitsma NM, Spencer JJ, Gakhar L, Schnicker NJ, Freudenthal BD. Structural basis for APE1 processing DNA damage in the nucleosome. Nat Commun 2022; 13:5390. [PMID: 36104361 PMCID: PMC9474862 DOI: 10.1038/s41467-022-33057-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Genomic DNA is continually exposed to endogenous and exogenous factors that promote DNA damage. Eukaryotic genomic DNA is packaged into nucleosomes, which present a barrier to accessing and effectively repairing DNA damage. The mechanisms by which DNA repair proteins overcome this barrier to repair DNA damage in the nucleosome and protect genomic stability is unknown. Here, we determine how the base excision repair (BER) endonuclease AP-endonuclease 1 (APE1) recognizes and cleaves DNA damage in the nucleosome. Kinetic assays determine that APE1 cleaves solvent-exposed AP sites in the nucleosome with 3 - 6 orders of magnitude higher efficiency than occluded AP sites. A cryo-electron microscopy structure of APE1 bound to a nucleosome containing a solvent-exposed AP site reveal that APE1 uses a DNA sculpting mechanism for AP site recognition, where APE1 bends the nucleosomal DNA to access the AP site. Notably, additional biochemical and structural characterization of occluded AP sites identify contacts between the nucleosomal DNA and histone octamer that prevent efficient processing of the AP site by APE1. These findings provide a rationale for the position-dependent activity of BER proteins in the nucleosome and suggests the ability of BER proteins to sculpt nucleosomal DNA drives efficient BER in chromatin.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jonah J Spencer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
38
|
Yang C, Dong X, Ma Z, Li B, Bi C, Zhang X. Pioneer Factor Improves CRISPR-Based C-To-G and C-To-T Base Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202957. [PMID: 35861371 PMCID: PMC9475549 DOI: 10.1002/advs.202202957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 05/13/2023]
Abstract
Base editing events in eukaryote require a compatible chromatin environment, but there is little research on how chromatin factors contribute to the editing efficiency or window. By engineering BEs (base editors) fused with various pioneer factors, the authors found that SOX2 substantially increased the editing efficiency for GBE and CBE. While SoxN-GBE (SOX2-NH3-GBE) improved the editing efficiency at overall cytosines of the protospacer, SoxM-GBE/CBE (SOX2-Middle-GBE/CBE) enabled the higher base editing at PAM-proximal cytosines. By separating functional domains of SOX2, the SadN-GBE (SOX2 activation domain-NH3-GBE) is constructed for higher editing efficiency and SadM-CBE for broader editing window to date. With the DNase I assay, it is also proved the increased editing efficiency is most likely associated with the induction of chromatin accessibility by SAD. Finally, SadM-CBE is employed to introduce a stop codon in the proto-oncogene MYC, at a locus rarely edited by previous editors with high efficiency. In this work, a new class of pioneer-BEs is constructed by fusion of pioneer factor or its functional domains, which exhibits higher editing efficiency or broader editing window in eukaryote.
Collapse
Affiliation(s)
- Chao Yang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Xingxiao Dong
- School of Biological EngineeringDalian Polytechnic UniversityDalian116034China
| | - Zhenzhen Ma
- College of Life SciencesNankai UniversityTianjin300071China
| | - Bo Li
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Changhao Bi
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Xueli Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
| |
Collapse
|
39
|
Biechele-Speziale DJ, Sutton TB, Delaney S. Obstacles and opportunities for base excision repair in chromatin. DNA Repair (Amst) 2022; 116:103345. [PMID: 35689883 PMCID: PMC9253077 DOI: 10.1016/j.dnarep.2022.103345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Abstract
Most eukaryotic DNA is packaged into chromatin, which is made up of tandemly repeating nucleosomes. This packaging of DNA poses a significant barrier to the various enzymes that must act on DNA, including DNA damage response enzymes that interact intimately with DNA to prevent mutations and cell death. To regulate access to certain DNA regions, chromatin remodeling, variant histone exchange, and histone post-translational modifications have been shown to assist several DNA repair pathways including nucleotide excision repair, single strand break repair, and double strand break repair. While these chromatin-level responses have been directly linked to various DNA repair pathways, how they modulate the base excision repair (BER) pathway remains elusive. This review highlights recent findings that demonstrate how BER is regulated by the packaging of DNA into nucleosome core particles (NCPs) and higher orders of chromatin structures. We also summarize the available data that indicate BER may be enabled by chromatin modifications and remodeling.
Collapse
Affiliation(s)
| | | | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
40
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
41
|
Abstract
Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics and RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
42
|
Blassberg R, Patel H, Watson T, Gouti M, Metzis V, Delás MJ, Briscoe J. Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nat Cell Biol 2022; 24:633-644. [PMID: 35550614 PMCID: PMC9106585 DOI: 10.1038/s41556-022-00910-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
WNT signalling has multiple roles. It maintains pluripotency of embryonic stem cells, assigns posterior identity in the epiblast and induces mesodermal tissue. Here we provide evidence that these distinct functions are conducted by the transcription factor SOX2, which adopts different modes of chromatin interaction and regulatory element selection depending on its level of expression. At high levels, SOX2 displaces nucleosomes from regulatory elements with high-affinity SOX2 binding sites, recruiting the WNT effector TCF/β-catenin and maintaining pluripotent gene expression. Reducing SOX2 levels destabilizes pluripotency and reconfigures SOX2/TCF/β-catenin occupancy to caudal epiblast expressed genes. These contain low-affinity SOX2 sites and are co-occupied by T/Bra and CDX. The loss of SOX2 allows WNT-induced mesodermal differentiation. These findings define a role for Sox2 levels in dictating the chromatin occupancy of TCF/β-catenin and reveal how context-specific responses to a signal are configured by the level of a transcription factor.
Collapse
Affiliation(s)
| | | | | | - Mina Gouti
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Vicki Metzis
- The Francis Crick Institute, London, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
43
|
Sheu KM, Hoffmann A. Functional Hallmarks of Healthy Macrophage Responses: Their Regulatory Basis and Disease Relevance. Annu Rev Immunol 2022; 40:295-321. [PMID: 35471841 PMCID: PMC10074967 DOI: 10.1146/annurev-immunol-101320-031555] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages are first responders for the immune system. In this role, they have both effector functions for neutralizing pathogens and sentinel functions for alerting other immune cells of diverse pathologic threats, thereby initiating and coordinating a multipronged immune response. Macrophages are distributed throughout the body-they circulate in the blood, line the mucosal membranes, reside within organs, and survey the connective tissue. Several reviews have summarized their diverse roles in different physiological scenarios and in the initiation or amplification of different pathologies. In this review, we propose that both the effector and the sentinel functions of healthy macrophages rely on three hallmark properties: response specificity, context dependence, and stimulus memory. When these hallmark properties are diminished, the macrophage's biological functions are impaired, which in turn results in increased risk for immune dysregulation, manifested by immune deficiency or autoimmunity. We review the evidence and the molecular mechanisms supporting these functional hallmarks.
Collapse
Affiliation(s)
- Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| |
Collapse
|
44
|
Huertas J, Woods EJ, Collepardo-Guevara R. Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes. Curr Opin Cell Biol 2022; 75:102067. [DOI: 10.1016/j.ceb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
45
|
Poyton MF, Feng XA, Ranjan A, Lei Q, Wang F, Zarb JS, Louder RK, Park G, Jo MH, Ye J, Liu S, Ha T, Wu C. Coordinated DNA and histone dynamics drive accurate histone H2A.Z exchange. SCIENCE ADVANCES 2022; 8:eabj5509. [PMID: 35263135 PMCID: PMC8906749 DOI: 10.1126/sciadv.abj5509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Nucleosomal histone H2A is exchanged for its variant H2A.Z by the SWR1 chromatin remodeler, but the mechanism and timing of histone exchange remain unclear. Here, we quantify DNA and histone dynamics during histone exchange in real time using a three-color single-molecule FRET assay. We show that SWR1 operates with timed precision to unwrap DNA with large displacement from one face of the nucleosome, remove H2A-H2B from the same face, and rewrap DNA, all within 2.3 s. This productive DNA unwrapping requires full SWR1 activation and differs from unproductive, smaller-scale DNA unwrapping caused by SWR1 binding alone. On an asymmetrically positioned nucleosome, SWR1 intrinsically senses long-linker DNA to preferentially exchange H2A.Z on the distal face as observed in vivo. The displaced H2A-H2B dimer remains briefly associated with the SWR1-nucleosome complex and is dissociated by histone chaperones. These findings reveal how SWR1 coordinates DNA unwrapping with histone dynamics to rapidly and accurately place H2A.Z at physiological sites on chromatin.
Collapse
Affiliation(s)
- Matthew F. Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xinyu A. Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Qin Lei
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Feng Wang
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jasmin S. Zarb
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert K. Louder
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Giho Park
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Myung Hyun Jo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joseph Ye
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sheng Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Gutierrez JI, Brittingham GP, Karadeniz YB, Tran KD, Dutta A, Holehouse AS, Peterson CL, Holt LJ. SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence. eLife 2022; 11:70344. [PMID: 35129437 PMCID: PMC8890752 DOI: 10.7554/elife.70344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low-complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, was required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC leads to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that pH changes are a second messenger for transcriptional reprogramming during carbon starvation and that the SNF5 QLC acts as a pH sensor.
Collapse
Affiliation(s)
| | - Gregory P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, United States
| | - Yonca B Karadeniz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Kathleen D Tran
- Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
| | - Arnob Dutta
- Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, United States
| |
Collapse
|
47
|
Amigo R, Farkas C, Gidi C, Hepp MI, Cartes N, Tarifeño E, Workman JL, Gutiérrez JL. The linker histone Hho1 modulates the activity of ATP-dependent chromatin remodeling complexes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194781. [PMID: 34963628 DOI: 10.1016/j.bbagrm.2021.194781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
Diverse factors play roles in chromatin dynamics, including linker proteins. Among them are high mobility group (HMG) box family proteins and linker histones. In the yeast Saccharomyces cerevisiae, Hmo1 has been identified as an HMG-box protein. This protein displays properties that are in agreement with this allocation. However, a number of studies have postulated that Hmo1 functions as a linker histone in yeast. On the other hand, when discovered, the Hho1 protein was identified as a linker histone. While multiple studies support this classification, some findings point to characteristics of Hho1 that are dissimilar to those commonly assigned to linker histones. In order to better understand the roles played by Hmo1 and Hho1 in chromatin dynamics and transcriptional regulation, we performed several analyses directly comparing these two proteins. Our analyses of genome-wide binding profiles support the belonging of Hmo1 to the HMGB family and Hho1 to the linker histones family. Interestingly, by performing protein-protein interaction analyses we found that both Hmo1 and Hho1 display physical interaction with the ATP-dependent chromatin remodeling complexes RSC, ISW1a and SWI/SNF. Moreover, by carrying out nucleosome remodeling assays, we found that both proteins stimulate the activity of the ISW1a complex. However, in the case of RSC, Hmo1 and Hho1 displayed differential properties, with Hho1 mainly showing an inhibitory effect. Our results are in agreement with the opposite roles played by RSC and ISW1a in chromatin dynamics and transcriptional regulation, and expand the view for the roles played by Hho1 and linker histones.
Collapse
Affiliation(s)
- Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Cristian Gidi
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Matias I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Natalia Cartes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Estefanía Tarifeño
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E 50(th) Street, Kansas City, MO 64110, USA
| | - José L Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile.
| |
Collapse
|
48
|
Mondal A, Mishra SK, Bhattacherjee A. Kinetic origin of nucleosome invasion by pioneer transcription factors. Biophys J 2021; 120:5219-5230. [PMID: 34757077 DOI: 10.1016/j.bpj.2021.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/14/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Recently, a cryo-electron microscopy study has captured different stages of nucleosome breathing dynamics that show partial unwrapping of DNA from histone core to permit transient access to the DNA sites by transcription factors. In practice, however, only a subset of transcription factors named pioneer factors can invade nucleosomes and bind to specific DNA sites to trigger essential DNA metabolic processes. We propose a discrete-state stochastic model that considers the interplay of nucleosome breathing and protein dynamics explicitly and estimate the mean time to search the target DNA sites. It is found that the molecular principle governing the search process on nucleosome is very different compared to that on naked DNA. The pioneer factors minimize their search times on nucleosomal DNA by compensating their nucleosome association rates by dissociation rates. A fine balance between the two presents a tradeoff between their nuclear mobility and error associated with the search process.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
49
|
Abstract
Transcription factors (TFs) are essential mediators of epigenetic regulation and modifiers of penetrance. Studies from the past decades have revealed a sub-class of TF that is capable of remodeling closed chromatin states through targeting nucleosomal motifs. This pioneer factor (PF) class of chromatin remodeler is ATP independent in its roles in epigenetic initiation, with nucleosome-motif recognition and association with repressive chromatin regions. Increasing evidence suggests that the fundamental properties of PFs can be coopted in human cancers. We explore the role of PFs in the larger context of tissue-specific epigenetic regulation. Moreover, we highlight an emerging class of chimeric PF derived from translocation partners in human disease and PFs associated with rare tumors. In the age of site-directed genome editing and targeted protein degradation, increasing our understanding of PFs will provide access to next-generation therapy for human disease driven from altered transcriptional circuitry.
Collapse
|
50
|
Makasheva K, Bryan LC, Anders C, Panikulam S, Jinek M, Fierz B. Multiplexed Single-Molecule Experiments Reveal Nucleosome Invasion Dynamics of the Cas9 Genome Editor. J Am Chem Soc 2021; 143:16313-16319. [PMID: 34597515 PMCID: PMC8517959 DOI: 10.1021/jacs.1c06195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Single-molecule measurements provide detailed mechanistic insights into molecular processes, for example in genome regulation where DNA access is controlled by nucleosomes and the chromatin machinery. However, real-time single-molecule observations of nuclear factors acting on defined chromatin substrates are challenging to perform quantitatively and reproducibly. Here we present XSCAN (multiplexed single-molecule detection of chromatin association), a method to parallelize single-molecule experiments by simultaneous imaging of a nucleosome library, where each nucleosome type carries an identifiable DNA sequence within its nucleosomal DNA. Parallel experiments are subsequently spatially decoded, via the detection of specific binding of dye-labeled DNA probes. We use this method to reveal how the Cas9 nuclease overcomes the nucleosome barrier when invading chromatinized DNA as a function of PAM position.
Collapse
Affiliation(s)
- Kristina Makasheva
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Louise C. Bryan
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Carolin Anders
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Sherin Panikulam
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Beat Fierz
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|