1
|
Wang W, Wang H, Liu X, Xu F, Tang Q, Zhang C, Lin J, Zhu L, Lin T. E2F2(E2F transcription factor 2) as a potential therapeutic target in meibomian gland carcinoma: evidence from functional and epigenetic studies. BMC Cancer 2025; 25:880. [PMID: 40380087 PMCID: PMC12082859 DOI: 10.1186/s12885-025-13833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/27/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Meibomian Gland Carcinoma (MGC) is a highly malignant eyelid tumor with a poor prognosis. This study investigates the molecular mechanisms underlying MGC, focusing on the abnormal expression of E2F transcription factor 2 (E2F2), often observed in tumors and potentially linked to DNA methylation. METHODS E2F2 expression was measured in MGC cells and tissues. Tissue samples from 3 normal meibomian glands (MG) and 36 MGC patients were used to construct a tissue microarray. Functional assays were performed by modifying E2F2 expression, including CCK8, wound healing, Transwell, and analysis of epithelial-mesenchymal transition (EMT)-related markers. Flow cytometry was used to assess cell apoptosis and cell cycle. RNA sequencing was conducted to identify differential genes after treating MGC cells with the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-2-dc), to explore the relationship between E2F2 downregulation in MGC and methylation. RESULTS E2F2 expression was significantly lower in MGC cells compared to normal MG cells. Immunohistochemical analysis showed low E2F2 expression in MGC. Specifically, immunohistochemical staining results have revealed a negative correlation trend between E2F2 and Ki-67 expression, as well as a positive correlation trend between E2F2 and P21, P27 expression. E2F2 knockdown increased MGC cell proliferation, migration, and invasion. Flow cytometry revealed that E2F2 knockdown reduced apoptosis, decreased the G0/G1 phase, and increased the S phase, while E2F2 overexpression produced opposite effects. RNA sequencing revealed that a total of 87 genes were differentially expressed in the 5-aza-2-dc experimental group compared to the control group, with 72 mRNAs showing upregulated expression and 15 mRNAs showing downregulated expression. Bioinformatics analysis results indicated that the functions of these differentially expressed genes were concentrated, and the biological processes mainly involved DNA replication, among others. The signaling pathways associated with these genes primarily included DNA replication and the cell cycle. RNA sequencing identified differential gene expression after methylation inhibition in MGC cells with 5-aza-2-dc, demonstrating that demethylation significantly upregulated E2F2. MSP assays confirmed reduced methylation levels. Additionally, inhibiting gene methylation in MGC cells suppressed proliferation, migration, and invasion. CONCLUSION E2F2 presents a promising therapeutic target for MGC. Overexpression of E2F2 and methylation inhibition in MGC cells may reverse E2F2 gene silencing, inhibiting malignant progression. These findings provide new perspectives for targeted therapies and precise, individualized treatment in MGC.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Hetong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Fei Xu
- Chengdu Women'S and Children'S Central Hospital, School of Medicine,, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanli Zhang
- Tianjin Eye Hospital Optometric Center, Tianjin, 300020, China
| | - Jiaqi Lin
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Limin Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Tingting Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
2
|
Zhang R, Liu H, Bai B, Wang H. Quantification of Epigenetic DNA and RNA Modifications by UHPLC-MS/MS Technologies: New Concepts and New Improvements for the Special Collections. J Sep Sci 2025; 48:e70159. [PMID: 40344478 DOI: 10.1002/jssc.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/21/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Dynamic and reversible DNA and RNA modifications are essential for cell differentiation and development. Aberrant epigenetic modifications are closely associated with the occurrence and progression of diseases, serving as potential markers for cancer diagnosis and prognosis. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) offers distinct advantages in the qualitative and quantitative analysis of various modifications due to its sensitivity, specificity, and accuracy. This review provides a comprehensive overview of the current knowledge regarding the liquid chromatography-mass spectrometry (LC-MS) analysis of DNA and RNA modifications, including analytical procedures, advancements, and biological applications, with a focus on tracing the source of (N6-2'-deoxy-adenosine) 6mdA in eukaryotes. Additionally, we examine the integration of UHPLC-MS/MS with other separation techniques to achieve accurate quantification of modifications in specific regions, certain fragments, and free nucleosides.
Collapse
Affiliation(s)
- Rui Zhang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Liu
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Biao Bai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Zhang F, Evans T. Stage-specific DNA methylation dynamics in mammalian heart development. Epigenomics 2025; 17:359-371. [PMID: 39980349 PMCID: PMC11970762 DOI: 10.1080/17501911.2025.2467024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiac development is a precisely regulated process governed by both genetic and epigenetic mechanisms. Among these, DNA methylation is one mode of epigenetic regulation that plays a crucial role in controlling gene expression at various stages of heart development and maturation. Understanding stage-specific DNA methylation dynamics is critical for unraveling the molecular processes underlying heart development from specification of early progenitors, formation of a primitive and growing heart tube from heart fields, heart morphogenesis, organ function, and response to developmental and physiological signals. This review highlights research that has explored profiles of DNA methylation that are highly dynamic during cardiac development and maturation, exploring stage-specific roles and the key molecular players involved. By exploring recent insights into the changing methylation landscape, we aim to highlight the complex interplay between DNA methylation and stage-specific cardiac gene expression, differentiation, and maturation.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Diane A, Mu-U-Min RBA, Al-Siddiqi HH. Epigenetic memory as crucial contributing factor in directing the differentiation of human iPSC into pancreatic β-cells in vitro. Cell Tissue Res 2025; 399:267-276. [PMID: 39883142 PMCID: PMC11870940 DOI: 10.1007/s00441-025-03952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage. Emerging β-cell replacement with human-induced pluripotent stem cell (iPSC) provides high remedial therapy hopes. Thus, tremendous progress has been made in developing β-cell differentiation protocols in vitro; however, most of the differentiated iPSC-derived β-cells showed immature phenotypes associated with low efficiency depending on the iPSC lines used, creating a crucial barrier for their clinical implementation. Multiple mechanisms including differences in genetic, cell cycle patterns, and mitochondrial dysfunction underlie the defective differentiation propensity of iPSC into insulin-producing β-cells. Accumulating evidence recently indicated that, following the reprogramming, epigenetic memory inherited from parental cells substantially affects the differentiation capacity of many iPSC lines. Therefore, differences in epigenetic signature are likely to be essential contributing factors influencing the propensity of iPSC differentiation. In this review, we will document the impact of the epigenome on the reprogramming efficacy and differentiation potential of iPSCs and how targeting the epigenetic residual memory could be an additional strategy to improve the differentiation efficiency of existing protocols to generate fully functional hPSC-derived pancreatic β-cells for diabetes therapy and drug screening.
Collapse
Affiliation(s)
- Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| | - Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Heba Hussain Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
5
|
Yusuf JA, Akanbi ST, Olorunlowu DR, Opoola EK, Ogunlade EE, Kayode EA, Adejobi EO, Sulaiman YO, Odemakinde DI, Aworeni EO, Abdulmalik NI, Oluyemi DP, Isaac AE, Aromose OI, Adewale OM, Ogunrinde V, Adeleke TA, Adeleye OO. Molecular mechanism underlying stress response and adaptation. PROGRESS IN BRAIN RESEARCH 2025; 291:81-108. [PMID: 40222793 DOI: 10.1016/bs.pbr.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress, a common life experience, impacts both mental and physical health, contributing to conditions such as anxiety and cardiovascular disease. It triggers physiological and psychological responses, primarily through the Hypothalamic-Pituitary-Adrenal (HPA) and Sympathetic-Adrenal-Medullary (SAM) axes, which are coordinated by the autonomic nervous system. Dysregulation of the glucocorticoid system, mediated by mineralocorticoid and glucocorticoid receptors, plays a critical role in neurodegenerative disorders like Alzheimer's disease. Cellular pathways like PI3K/Akt, NF-κB, and AP-1 transcription factors maintain homeostasis during stress and are targets for therapeutic research. Epigenetic influences and genomic modifications highlight the long-lasting effects of stress on gene expression. Adaptive responses, such as allostasis, allow the body to maintain stability amid stress. However, excessive stress leads to allostatic load, negatively impacting the immune, endocrine, and nervous systems. Current treatments include pharmacological and lifestyle interventions, with emerging approaches such as psychobiotics and precision medicine offering future potential.
Collapse
Affiliation(s)
- Joshua Ayodele Yusuf
- Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria; Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Stephen Tunmise Akanbi
- Central Research Laboratory, Ilorin, Kwara State, Nigeria; Gen'Omics Research Hub, Ogbomosho, Oyo State, Nigeria
| | - Darasimi Racheal Olorunlowu
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria
| | - Elizabeth Kehinde Opoola
- Department of Anatomy, Faculty of Basic Medical Science, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Eniola Elizabeth Ogunlade
- Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Emmanuel Adebayo Kayode
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria; LAUTECH Neuroscience Group (LNG), Oyo State, Nigeria
| | - Emmanuel Oluwagbenga Adejobi
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria; LAUTECH Neuroscience Group (LNG), Oyo State, Nigeria
| | - Yasar Olalekan Sulaiman
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria
| | - Dorcas Ifeoluwa Odemakinde
- Design and Development of Rapid Diagnostic Assay Division, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Esther Opeyemi Aworeni
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria; Drosophila Research and Training Centre, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Nurat Ize Abdulmalik
- LAUTECH Neuroscience Group (LNG), Oyo State, Nigeria; Faculty of Nursing Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria
| | - Dolapo Priscilla Oluyemi
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria
| | - Ayomide Esther Isaac
- Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwaferanmi Israel Aromose
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria; Genome Science Division, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Oyindamola Munirat Adewale
- Humboldt Research Hub-Center for Emerging and Re-emerging Infectious Diseases (HRH-CERID), LAUTECH, Ogbomoso, Oyo State, Nigeria
| | - Victor Ogunrinde
- Drosophila Research and Training Centre, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tijesunimi Ayomide Adeleke
- Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Olufunto Omodele Adeleye
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria; LAUTECH Neuroscience Group (LNG), Oyo State, Nigeria
| |
Collapse
|
6
|
Park MN, Choi J, Maharub Hossain Fahim M, Asevedo EA, Nurkolis F, Ribeiro RIMA, Kang HN, Kang S, Syahputra RA, Kim B. Phytochemical synergies in BK002: advanced molecular docking insights for targeted prostate cancer therapy. Front Pharmacol 2025; 16:1504618. [PMID: 40034825 PMCID: PMC11872924 DOI: 10.3389/fphar.2025.1504618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Achyranthes japonica (Miq.) Nakai (AJN) and Melandrium firmum (Siebold and Zucc.) Rohrb. (MFR) are medicinal plants recognized for their bioactive phytochemicals, including ecdysteroids, anthraquinones, and flavonoids. This study investigates the anticancer properties of key constituents of these plants, focusing on the BK002 formulation, a novel combination of AJN and MFR. Specifically, the research employs advanced molecular docking and in silico analyses to assess the interactions of bioactive compounds ecdysterone, inokosterone, and 20-hydroxyecdysone (20-HE) with key prostate cancer-related network proteins, including 5α-reductase, CYP17, DNMT1, Dicer, PD-1, and PD-L1. Molecular docking techniques were applied to evaluate the binding affinities contributions of the bioactive compounds in BK002 against prostate cancer-hub network targets. The primary focus was on enzymes like 5α-reductase and CYP17, which are central to androgen biosynthesis, as well as on cancer-related proteins such as DNA methyltransferase 1 (DNMT1), Dicer, programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1). Based on data from prostate cancer patients, key target networks were identified, followed by in silico analysis of the primary bioactive components of BK002.In silico assessments were conducted to evaluate the safety profiles of these compounds, providing insights into their therapeutic potential. The docking studies revealed that ecdysterone, inokosterone, and 20-hydroxyecdysonec demonstrated strong binding affinities to the critical prostate cancer-related enzymes 5α-reductase and CYP17, contributing to a potential reduction in androgenic activity. These compounds also exhibited significant inhibitory interactions with DNMT1, Dicer, PD-1, and PD-L1, suggesting a capacity to interfere with key oncogenic and immune evasion pathways. Ecdysterone, inokosterone, and 20-hydroxyecdysone have demonstrated the ability to target key oncogenic pathways, and their favorable binding affinity profiles further underscore their potential as novel therapeutic agents for prostate cancer. These findings provide a strong rationale for further preclinical and clinical investigations, supporting the integration of BK002 into therapeutic regimens aimed at modulating tumor progression and immune responses.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Estéfani Alves Asevedo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | | | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Selvaraji S, Mosberger J, Fann DY, Lai MK, Hsian Chen CL, Arumugam TV. Unveiling the Therapeutic Promise of Epigenetics in Vascular Cognitive Impairment and Vascular Dementia. Aging Dis 2025:AD.2025.0010. [PMID: 39965251 DOI: 10.14336/ad.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative disease characterized by cognitive decline and memory deficits. Despite its significant prevalence and impact, the pathophysiology of VaD remains poorly understood, and current treatments are limited to symptom management. Emerging evidence highlights the importance of lifestyle-associated risk factors in VaD, emphasizing the role of gene-environment interactions, particularly in the realm of epigenetics. While preclinical studies using animal models have provided valuable insights into epigenetic mechanisms, the translatability of these findings to human clinical settings remains limited, and research into VaD-specific epigenetics is still in its infancy. This review aims to elucidate the intricate interplay between epigenetics and VaD, shedding light on potential therapeutic interventions rooted in epigenetic mechanisms. By synthesizing insights from existing literature, we also discuss the challenges and opportunities in translating preclinical findings into clinically viable treatments, underscoring the need for further research to bridge the gap between animal models and human applications.
Collapse
Affiliation(s)
- Sharmelee Selvaraji
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Jasmine Mosberger
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Mitchell Kp Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
8
|
Larsson L, Giraldo-Osorno P, Garaicoa-Pazmino C, Giannobile W, Asa’ad F. DNA and RNA Methylation in Periodontal and Peri-implant Diseases. J Dent Res 2025; 104:131-139. [PMID: 39629934 PMCID: PMC11752639 DOI: 10.1177/00220345241291533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Periodontal and peri-implant diseases are primarily biofilm-induced pathologies in susceptible hosts affecting the periodontium and dental implants. Differences in disease susceptibility, severity, and patterns of progression have been attributed to immune regulatory mechanisms such as epigenetics. DNA methylation is an essential epigenetic mechanism governing gene expression that plays pivotal roles in genomic imprinting, chromosomal stability, apoptosis, and aging. Clinical studies have explored DNA methylation inhibitors for cancer treatment and predictive methylation profiles for disease progression. In periodontal health, DNA methylation has emerged as critical, evidenced by clinical studies unraveling its complex interplay with inflammatory genes and its regulatory role in periodontitis contributing to disease severity. Human studies have shown that methylation enzymes associated with gene reactivation (e.g., ten-eleven translocation-2) are elevated in periodontitis compared with gingivitis. Dysregulation of these genes can lead to the production of inflammatory cytokines and an altered initial response to bacteria via the toll-like receptor signaling pathway in periodontal diseases. In addition, in peri-implant diseases, this dysregulation can result in altered DNA methylation levels and enzymatic activity influenced by the properties of the titanium surface. Beyond traditional perspectives, recent evidence highlights the involvement of RNA methylation (e.g., N6-methyladenosine [m6A], N6,2'-0-dimethyladenosine [m6Am]) in periodontitis and peri-implantitis lesions, playing vital roles in the innate immune response, production of inflammatory cytokines, and activation of dendritic cells. Both DNA and RNA methylation can influence the gene expression, virulence, and bacterial behavior of well-known periodontal pathogens such as Porphyromonas gingivalis. Alterations in bacterial methylation patterns result in changes in the metabolism, drug resistance, and gene expression related to survival in the host, thereby promoting tissue degradation and chronic inflammatory responses. In summary, the present state-of-the-art review navigates the evolving landscape of DNA and RNA methylation in periodontal and peri-implant diseases, integrating recent developments and mechanisms to reshape the understanding of epigenetic dynamics in oral health.
Collapse
Affiliation(s)
- L. Larsson
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - P.M. Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - C. Garaicoa-Pazmino
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, Iowa, USA
- Research Center, School of Dentistry, Universidad de Especialidades Espiritu Santo, Samborondón, Ecuador
| | - W.V. Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - F. Asa’ad
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
9
|
Pan J, Chen S, Chen X, Song Y, Cheng H. Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective. Clin Rev Allergy Immunol 2025; 68:6. [PMID: 39871086 DOI: 10.1007/s12016-024-09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis. A deeper understanding of these epigenetic mechanisms not only helps unveil the molecular mechanisms underlying the initiation and progression of psoriasis but may also provide new insights into diagnostic and therapeutic strategies. Given the unique roles and significant contributions of various cell types involved in the process of psoriasis, a thorough analysis of specific epigenetic patterns in different cell types becomes a key entry point for elucidating the mechanisms of disease development. Although epigenetic modifications encompass multiple complex layers, this review will focus on histone modifications and DNA methylation, describing how they function in different cell types and subsequently impact the pathophysiological processes of psoriasis. Finally, we will summarize the current problems in research concerning histone modifications and DNA methylation in psoriasis and discuss the clinical application prospects and challenges of targeting epigenetic modifications as therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Jing Pan
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Liu D, Xu D, Shi L, Zhang J, Bi K, Luo B, Liu C, Li Y, Fan G, Wang W, Ping Z. A practical DNA data storage using an expanded alphabet introducing 5-methylcytosine. GIGABYTE 2025; 2025:gigabyte147. [PMID: 39906332 PMCID: PMC11791762 DOI: 10.46471/gigabyte.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
The DNA molecule is a promising next-generation data storage medium. Recently, it has been theoretically proposed that non-natural or modified bases can serve as extra molecular letters to increase the information density. However, this strategy is challenging due to the difficulty in synthesizing non-natural DNA sequences and their complex structure. Here, we described a practical DNA data storage transcoding scheme named R+ based on an expanded molecular alphabet that introduces 5-methylcytosine (5mC). We demonstrated its experimental validation by encoding one representative file into several 1.3∼1.6 kbps in vitro DNA fragments for nanopore sequencing. Our results show an average data recovery rate of 98.97% and 86.91% with and without reference, respectively. Our work validates the practicability of 5mC in DNA storage systems, with a potentially wide range of applications. Availability and implementation R+ is implemented in Python and the code is available under a MIT license at https://github.com/Incpink-Liu/DNA-storage-R_plus.
Collapse
Affiliation(s)
- Deruilin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Demin Xu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Beijing, 100101, China
| | | | | | - Kewei Bi
- BGI Research, Changzhou, 213299, China
| | - Bei Luo
- Wuhan BGI Technology Service Co., Ltd., Wuhan, 430073, China
| | - Chen Liu
- Wuhan BGI Technology Service Co., Ltd., Wuhan, 430073, China
| | - Yuxiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310030, China
| | - Guangyi Fan
- BGI Research, Shenzhen, 518083, China
- BGI Research, Qingdao, 266426, China
| | - Wen Wang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Beijing, 100101, China
| | - Zhi Ping
- BGI Research, Shenzhen, 518083, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
11
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 PMCID: PMC12048181 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
13
|
Liu P, Jacques J, Hwang CI. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2024; 8:41. [PMID: 39584964 PMCID: PMC11587027 DOI: 10.3390/epigenomes8040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by its aggressive progression and dismal prognosis. Advances in epigenetic profiling, specifically DNA methylation analysis, have significantly deepened our understanding of PDAC pathogenesis. This review synthesizes findings from recent genome-wide DNA methylation studies, which have delineated a complex DNA methylation landscape differentiating between normal and cancerous pancreatic tissues, as well as across various stages and molecular subtypes of PDAC. These studies identified specific differentially methylated regions (DMRs) that not only enhance our grasp of the epigenetic drivers of PDAC but also offer potential biomarkers for early diagnosis and prognosis, enabling the customization of therapeutic approaches. The review further explores how DNA methylation profiling could facilitate the development of subtype-tailored therapies, potentially improving treatment outcomes based on precise molecular characterizations. Overall, leveraging DNA methylation alterations as functional biomarkers holds promise for advancing our understanding of disease progression and refining PDAC management strategies, which could lead to improved patient outcomes and a deeper comprehension of the disease's underlying biological mechanisms.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Juliette Jacques
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. Int J Mol Sci 2024; 25:11780. [PMID: 39519332 PMCID: PMC11546248 DOI: 10.3390/ijms252111780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics plays a pivotal role in regulating gene expression and cellular differentiation. DNA methylation, involving the addition of methyl groups to specific cytosine bases, is a well-known epigenetic modification. The recent discovery of 5-hydroxymethylcytosine (5hmC) has provided new insights into cytosine modifications. 5hmC, derived from the oxidation of 5-methylcytosine (5mC), serves as both an intermediate in demethylation and a stable chemical modification in the genome. In this comprehensive review, we summarize the recent research advancements regarding the functions of 5hmC in development and disease. We discuss its implications in gene expression regulation, cellular differentiation, and its potential role as a diagnostic and prognostic marker in various diseases. Additionally, we highlight the challenges associated with accurately detecting and quantifying 5hmC and present the latest methodologies employed for its detection. Understanding the functional role of 5hmC in epigenetic regulation and further advancing our understanding of gene expression dynamics and cellular processes hold immense promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
- School of Life Sciences, Central South University, Changsha 410031, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
15
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
16
|
Sharma S, Dasgupta M, Vadaga BS, Kodgire P. Unfolding the symbiosis of AID, chromatin remodelers, and epigenetics-The ACE phenomenon of antibody diversity. Immunol Lett 2024; 269:106909. [PMID: 39128629 DOI: 10.1016/j.imlet.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Activation-induced cytidine deaminase (AID) is responsible for the initiation of somatic hypermutation (SHM) and class-switch recombination (CSR), which result in antibody affinity maturation and isotype switching, thus producing pathogen-specific antibodies. Chromatin dynamics and accessibility play a significant role in determining AID expression and its targeting. Chromatin remodelers contribute to the accessibility of the chromatin structure, thereby influencing the targeting of AID to Ig genes. Epigenetic modifications, including DNA methylation, histone modifications, and miRNA expression, profoundly impact the regulation of AID and chromatin remodelers targeting Ig genes. Additionally, epigenetic modifications lead to chromatin rearrangement and thereby can change AID expression levels and its preferential targeting to Ig genes. This interplay is symbolized as the ACE phenomenon encapsulates three interconnected aspects: AID, Chromatin remodelers, and Epigenetic modifications. This review emphasizes the importance of understanding the intricate relationship between these aspects to unlock the therapeutic potential of these molecular processes and molecules.
Collapse
Affiliation(s)
- Saurav Sharma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mallar Dasgupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Bindu Sai Vadaga
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
17
|
Ren L, Chang YF, Jiang SH, Li XH, Cheng HP. DNA methylation modification in Idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1416325. [PMID: 38915445 PMCID: PMC11194555 DOI: 10.3389/fcell.2024.1416325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease with a prognosis worse than lung cancer. It is a fatal lung disease with largely unknown etiology and pathogenesis, and no effective therapeutic drugs render its treatment largely unsuccessful. With continuous in-depth research efforts, the epigenetic mechanisms in IPF pathogenesis have been further discovered and concerned. As a widely studied mechanism of epigenetic modification, DNA methylation is primarily facilitated by DNA methyltransferases (DNMTs), resulting in the addition of a methyl group to the fifth carbon position of the cytosine base, leading to the formation of 5-methylcytosine (5-mC). Dysregulation of DNA methylation is intricately associated with the advancement of respiratory disorders. Recently, the role of DNA methylation in IPF pathogenesis has also received considerable attention. DNA methylation patterns include methylation modification and demethylation modification and regulate a range of essential biological functions through gene expression regulation. The Ten-Eleven-Translocation (TET) family of DNA dioxygenases is crucial in facilitating active DNA demethylation through the enzymatic conversion of the modified genomic base 5-mC to 5-hydroxymethylcytosine (5-hmC). TET2, a member of TET proteins, is involved in lung inflammation, and its protein expression is downregulated in the lungs and alveolar epithelial type II cells of IPF patients. This review summarizes the current knowledge of pathologic features and DNA methylation mechanisms of pulmonary fibrosis, focusing on the critical roles of abnormal DNA methylation patterns, DNMTs, and TET proteins in impacting IPF pathogenesis. Researching DNA methylation will enchance comprehension of the fundamental mechanisms involved in IPF pathology and provide novel diagnostic biomarkers and therapeutic targets for pulmonary fibrosis based on the studies involving epigenetic mechanisms.
Collapse
Affiliation(s)
- Lu Ren
- Clinical Nursing Teaching and Research Section, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Fen Chang
- Medicine School, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Deng T, Wang Z, Geng Q, Wang Z, Jiao Y, Diao W, Xu J, Deng T, Luo J, Tao Q, Xiao C. Methylation of T and B Lymphocytes in Autoimmune Rheumatic Diseases. Clin Rev Allergy Immunol 2024; 66:401-422. [PMID: 39207646 DOI: 10.1007/s12016-024-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The role of abnormal epigenetic modifications, particularly DNA methylation, in the pathogenesis of autoimmune rheumatic diseases (ARDs) has garnered increasing attention. Lymphocyte dysfunction is a significant contributor to the pathogenesis of ARDs. Methylation is crucial for maintaining normal immune system function, and aberrant methylation can hinder lymphocyte differentiation, resulting in functional abnormalities that disrupt immune tolerance, leading to the excessive expression of inflammatory cytokines, thereby exacerbating the onset and progression of ARDs. Recent studies suggest that methylation-related factors have the potential to serve as biomarkers for monitoring the activity of ARDs. This review summarizes the current state of research on the impact of DNA and RNA methylation on the development, differentiation, and function of T and B cells and examines the progress of these epigenetic modifications in studies of six specific ARDs: systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, juvenile idiopathic arthritis, and ankylosing spondylitis. Additionally, we propose that exploring the interplay between RNA methylation and DNA methylation may represent a novel direction for understanding the pathogenesis of ARDs and developing novel treatment strategies.
Collapse
Affiliation(s)
- Tiantian Deng
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zihan Wang
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhaoran Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Jiao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenya Diao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- China-Japan Friendship Hospital, Peking University, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
19
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
20
|
Zhang L, Mu Y, Li T, Hu J, Lin H, Zhang L. Molecular basis of an atypical dsDNA 5mC/6mA bifunctional dioxygenase CcTet from Coprinopsis cinerea in catalyzing dsDNA 5mC demethylation. Nucleic Acids Res 2024; 52:3886-3895. [PMID: 38324471 PMCID: PMC11040006 DOI: 10.1093/nar/gkae066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
The eukaryotic epigenetic modifications 5-methyldeoxycytosine (5mC) and N6-methyldeoxyadenine (6mA) have indispensable regulatory roles in gene expression and embryonic development. We recently identified an atypical bifunctional dioxygenase CcTet from Coprinopsis cinerea that works on both 5mC and 6mA demethylation. The nonconserved residues Gly331 and Asp337 of CcTet facilitate 6mA accommodation, while D337F unexpectedly abolishes 5mC oxidation activity without interfering 6mA demethylation, indicating a prominent distinct but unclear 5mC oxidation mechanism to the conventional Tet enzymes. Here, we assessed the molecular mechanism of CcTet in catalyzing 5mC oxidation by representing the crystal structure of CcTet-5mC-dsDNA complex. We identified the distinct mechanism by which CcTet recognizes 5mC-dsDNA compared to 6mA-dsDNA substrate. Moreover, Asp337 was found to have a central role in compensating for the loss of a critical 5mC-stablizing H-bond observed in conventional Tet enzymes, and stabilizes 5mC and subsequent intermediates through an H-bond with the N4 atom of the substrates. These findings improve our understanding of Tet enzyme functions in the dsDNA 5mC and 6mA demethylation pathways, and provide useful information for future discovery of small molecular probes targeting Tet enzymes in DNA active demethylation processes.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Li
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
21
|
Toriyama K, Au Yeung WK, Inoue A, Kurimoto K, Yabuta Y, Saitou M, Nakamura T, Nakano T, Sasaki H. DPPA3 facilitates genome-wide DNA demethylation in mouse primordial germ cells. BMC Genomics 2024; 25:344. [PMID: 38580899 PMCID: PMC10996186 DOI: 10.1186/s12864-024-10192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.
Collapse
Affiliation(s)
- Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, Riken Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
- Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Animal Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
| | - Toru Nakano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
22
|
Meng WY, Wang ZX, Zhang Y, Hou Y, Xue JH. Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes. J Biol Chem 2024; 300:106791. [PMID: 38403247 PMCID: PMC11065753 DOI: 10.1016/j.jbc.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.
Collapse
Affiliation(s)
- Wei-Ying Meng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zi-Xin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jian-Huang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
23
|
Koike Y, Yin C, Sato Y, Nagano Y, Yamamoto A, Kitajima T, Shimura T, Kawamura M, Matsushita K, Okugawa Y, Amano K, Okita Y, Ohi M, Inoue M, Uchida K, Hirayama M, Toiyama Y. Promoter methylation levels of microRNA-124 in non-neoplastic rectal mucosa as a potential biomarker for ulcerative colitis-associated colorectal cancer in pediatric-onset patients. Surg Today 2024; 54:347-355. [PMID: 37610628 DOI: 10.1007/s00595-023-02738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE To determine the methylation level of the miR-124 promoter in non-neoplastic rectal mucosa of patients with pediatric-onset ulcerative colitis (UC) to predict UC-associated colorectal cancer (UC-CRC). METHODS Between 2005 and 2017, non-neoplastic rectal tissue specimens were collected from 86 patients with UC, including 13 patients with UC-CRC; cancer tissues were obtained from the latter group. The methylation status of the miR-124 promoter was quantified using bisulfite pyrosequencing and compared between pediatric- and adult-onset UC patients. RESULTS Patients with pediatric-onset UC experienced a significantly shorter disease duration than those with adult-onset UC. The levels of miR-124 promoter methylation in non-neoplastic rectal mucosa were positively correlated with the age at the diagnosis and duration of UC. The rate of increase in miR-124 methylation was accelerated in patients with pediatric-onset UC compared to those with adult-onset UC. Furthermore, the miR-124 methylation levels in non-neoplastic rectal mucosa were significantly higher in patients with UC-CRC than in those with UC alone (P = 0.02). A receiver operating characteristic analysis revealed that miR-124 methylation in non-neoplastic tissue discriminated between patients with pediatric-onset UC with or without CRC. CONCLUSION miR-124 methylation in non-neoplastic rectal mucosa may be a useful biomarker for identifying patients with pediatric-onset UC who face the highest risk of developing UC-CRC.
Collapse
Affiliation(s)
- Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuki Sato
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuka Nagano
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akira Yamamoto
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kohei Matsushita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Keishiro Amano
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Keiichi Uchida
- Department of Surgery, Mie Prefectural General Medical Center, 5450-132, Hinaga, Yokkaichi, Mie, 510-0885, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
24
|
Raghubeer S. The influence of epigenetics and inflammation on cardiometabolic risks. Semin Cell Dev Biol 2024; 154:175-184. [PMID: 36804178 DOI: 10.1016/j.semcdb.2023.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Cardiometabolic diseases include metabolic syndrome, obesity, type 2 diabetes mellitus, and hypertension. Epigenetic modifications participate in cardiometabolic diseases through several pathways, including inflammation, vascular dysfunction, and insulin resistance. Epigenetic modifications, which encompass alterations to gene expression without mutating the DNA sequence, have gained much attention in recent years, since they have been correlated with cardiometabolic diseases and may be targeted for therapeutic interventions. Epigenetic modifications are greatly influenced by environmental factors, such as diet, physical activity, cigarette smoking, and pollution. Some modifications are heritable, indicating that the biological expression of epigenetic alterations may be observed across generations. Moreover, many patients with cardiometabolic diseases present with chronic inflammation, which can be influenced by environmental and genetic factors. The inflammatory environment worsens the prognosis of cardiometabolic diseases and further induces epigenetic modifications, predisposing patients to the development of other metabolism-associated diseases and complications. A deeper understanding of inflammatory processes and epigenetic modifications in cardiometabolic diseases is necessary to improve our diagnostic capabilities, personalized medicine approaches, and the development of targeted therapeutic interventions. Further understanding may also assist in predicting disease outcomes, especially in children and young adults. This review describes epigenetic modifications and inflammatory processes underlying cardiometabolic diseases, and further discusses advances in the research field with a focus on specific points for interventional therapy.
Collapse
Affiliation(s)
- Shanel Raghubeer
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, South Africa.
| |
Collapse
|
25
|
Zhang L, Duan HC, Paduch M, Hu J, Zhang C, Mu Y, Lin H, He C, Kossiakoff AA, Jia G, Zhang L. The Molecular Basis of Human ALKBH3 Mediated RNA N 1 -methyladenosine (m 1 A) Demethylation. Angew Chem Int Ed Engl 2024; 63:e202313900. [PMID: 38158383 PMCID: PMC11846542 DOI: 10.1002/anie.202313900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
N1 -methyladenosine (m1 A) is a prevalent post-transcriptional RNA modification, and the distribution and dynamics of the modification play key epitranscriptomic roles in cell development. At present, the human AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family member ALKBH3 is the only known mRNA m1 A demethylase, but its catalytic mechanism remains unclear. Here, we present the structures of ALKBH3-oligo crosslinked complexes obtained with the assistance of a synthetic antibody crystallization chaperone. Structural and biochemical results showed that ALKBH3 utilized two β-hairpins (β4-loop-β5 and β'-loop-β'') and the α2 helix to facilitate single-stranded substrate binding. Moreover, a bubble-like region around Asp194 and a key residue inside the active pocket (Thr133) enabled specific recognition and demethylation of m1 A- and 3-methylcytidine (m3 C)-modified substrates. Mutation of Thr133 to the corresponding residue in the AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family members FTO or ALKBH5 converted ALKBH3 substrate selectivity from m1 A to N6 -methyladenosine (m6 A), as did Asp194 deletion. Our findings provide a molecular basis for understanding the mechanisms of substrate recognition and m1 A demethylation by ALKBH3. This study is expected to aid structure-guided design of chemical probes for further functional studies and therapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
| | - Marcin Paduch
- Institute for Biophysical Dynamics, University of Chicago Chicago, IL (USA)
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Chi Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 (China)
- Institute of Marine Biomedicine, Shenzhen Polytechnic Shenzhen 518055 (China)
| | - Chuan He
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL (USA)
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL (USA)
- Howard Hughes Medical Institute, University of Chicago Chicago, IL (USA)
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL (USA)
- Institute for Biophysical Dynamics, University of Chicago Chicago, IL (USA)
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
- Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China)
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| |
Collapse
|
26
|
Shi Y, Huang X, Zeng Y, Zhai M, Yao H, Liu C, Li B, Gong S, Yu Q, Zhuang J, Zhao Y, Lu L, Zhou B, Jian W, Peng W. Endothelial TET2 regulates the white adipose browning and metabolism via fatty acid oxidation in obesity. Redox Biol 2024; 69:103013. [PMID: 38168657 PMCID: PMC10797209 DOI: 10.1016/j.redox.2023.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is a complex metabolic disorder, manifesting as excessive accumulation of body fat. Ten-Eleven Translocation-2 (TET2) has garnered significant attention in the context of obesity due to its crucial role in epigenetic regulation and metabolic homeostasis. In this study, we aimed to investigate the effect of endothelial TET2 on obesity and explore the potential mechanism. We generated endothelial cell-specific TET2 deficiency mice and investigated endothelial TET2 using transcriptomic and epigenomic analyses. We determined the downregulation of endothelial TET2 in white adipose tissues. Furthermore, we identified that endothelial TET2 loss aggravated high-fat diet-induced obesity by inhibiting vascularization and thus suppressing white adipose tissue browning. Mechanistically, endothelial TET2 modulates obesity by engaging in endothelial fatty acid oxidation and angiocrine-mediated secretion of bone morphogenetic protein 4 (BMP4), in which nuclear factor-erythroid 2-related factor 2 (NRF2) serves as a key mediator. Our study reveals that endothelial TET2 regulates white adipose tissue browning by interacting with NRF2 to facilitate fatty acid oxidation and lipolysis in adipocytes.
Collapse
Affiliation(s)
- Yefei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinru Huang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanxi Zeng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Zhai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongyun Yao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Bo Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Gong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liesheng Lu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weixia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Wu X, Yang X, Dai X, Chen X, Shen M, Dai J, Yuan F, Wang L, Yuan Y, Feng Y. 5-Aza-2'-Deoxycytidine Ameliorates Choroidal Neovascularization by Inhibiting the Wnt/β-Catenin Signaling Pathway. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 38345554 PMCID: PMC10866157 DOI: 10.1167/iovs.65.2.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Choroidal neovascularization (CNV) can constitute the final pathology of many ocular diseases and result in severe vision loss. Studies have demonstrated that DNA methylation is critical in retinal development, aging, and disorders. The current work investigated the effects and underlying mechanism of 5-Aza-2'-deoxycytidine (5-aza-dC), a suppressor of DNA methylation, in the pathological progression of CNV. Methods The DNA methylation profiles of retinal pigment epithelial (RPE)/choroidal complexes in normal and laser-induced CNV mice were assessed by Arraystar Mouse RefSeq Promoter Arrays. The CNV area and blood flow density and intensity were observed by optical coherence tomography angiography, and fluorescence leakage was examined by fundus fluorescein angiography in CNV mice with systemic administration of 5-aza-dC. The effects of 5-aza-dC on the biological functions of bEnd.3 cells were estimated by related assays. Notum gene promoter methylation was measured using bisulfite sequencing PCR. Methyltransferases and Wnt signaling-related genes were detected in animal and cell culture experiments by real-time PCR and immunoblot. Results Methyltransferases were upregulated, but Notum (a secretion inhibitor of Wnt signaling) was downregulated in the RPE/choroidal complexes of mice with experimental CNV. Intraperitoneal injection of 5-aza-dC inactivated the Wnt pathway and ameliorated the lesion area and the intensity and density of blood flow, as well as the degree of leakage in CNV. In vitro, vascular endothelial growth factor A (VEGFA) stimulation promoted methyltransferases expression and suppressed Notum expression, consequently activating Wnt signaling, whereas exogenous 5-aza-dC reversed VEGFA-induced hyperpermeability, proliferation, migration, and tube formation in bEnd.3 cells via demethylation of Notum promoter. Conclusions We observed that 5-aza-dC attenuates the growth of CNV by inhibiting the Wnt signaling pathway via promoter demethylation of the Wnt antagonist Notum. These findings provide a theoretical basis for methylation-based treatment with the Notum gene as a potential target for CNV treatment.
Collapse
Affiliation(s)
- Xinyuan Wu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaochan Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiuping Chen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Derbala D, Garnier A, Bonnet E, Deleuze JF, Tost J. Whole-Genome Bisulfite Sequencing Protocol for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution. Methods Mol Biol 2024; 2842:353-382. [PMID: 39012605 DOI: 10.1007/978-1-0716-4051-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and clinical questions. DNA methylation analysis bears the particular promise to supplement or replace biochemical and imaging-based tests for the next generation of personalized medicine. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here, we provide a detailed protocol based on a commercial kit for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. The protocol is based on the construction of sequencing libraries from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For analyses requiring a quantitative distinction between 5-methylcytosine and 5-hydroxymethylcytosines levels, an oxidation step is included in the same workflow to perform oxidative bisulfite sequencing (OxBs-Seq). In this case, two sequencing libraries will be generated and sequenced: a classic methylome following bisulfite conversion and analyzing modified cytosines (not distinguishing between methylated and hydroxymethylated cytosines) and a methylome analyzing only methylated cytosines, respectively. Hydroxymethylation levels are deduced from the differences between the two reactions. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human and plant samples and yields robust and reproducible results.
Collapse
Affiliation(s)
- David Derbala
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Abel Garnier
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jörg Tost
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France.
| |
Collapse
|
29
|
Fanfarillo F, Ferraguti G, Lucarelli M, Fuso A, Ceccanti M, Terracina S, Micangeli G, Tarani L, Fiore M. The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders. Curr Med Chem 2024; 31:5837-5855. [PMID: 37828672 DOI: 10.2174/0109298673256937231004093143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
30
|
Zhu YN, Pan F, Gan XW, Liu Y, Wang WS, Sun K. The Role of DNMT1 and C/EBPα in the Regulation of CYP11A1 Expression During Syncytialization of Human Placental Trophoblasts. Endocrinology 2023; 165:bqad195. [PMID: 38146648 DOI: 10.1210/endocr/bqad195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Progesterone synthesized in the placenta is essential for pregnancy maintenance. CYP11A1 is a key enzyme in progesterone synthesis, and its expression increases greatly during trophoblast syncytialization. However, the underlying mechanism remains elusive. Here, we demonstrated that passive demethylation of CYP11A1 promoter accounted for the upregulation of CYP11A1 expression during syncytialization with the participation of the transcription factor C/EBPα. We found that the methylation rate of a CpG locus in the CYP11A1 promoter was significantly reduced along with decreased DNA methyltransferase 1 (DNMT1) expression and its enrichment at the CYP11A1 promoter during syncytialization. DNMT1 overexpression not only increased the methylation of this CpG locus in the CYP11A1 promoter, but also decreased CYP11A1 expression and progesterone production. In silico analysis disclosed multiple C/EBPα binding sites in both CYP11A1 and DNMT1 promoters. C/EBPα expression and its enrichments at both the DNMT1 and CYP11A1 promoters were significantly increased during syncytialization. Knocking-down C/EBPα expression increased DNMT1 while it decreased CYP11A1 expression during syncytialization. Conclusively, C/EBPα plays a dual role in the regulation of CYP11A1 during syncytialization. C/EBPα not only drives CYP11A1 expression directly, but also indirectly through downregulation of DNMT1, which leads to decreased methylation in the CpG locus of the CYP11A1 promoter, resulting in increased progesterone production during syncytialization.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
- Center for Reproductive Medicine, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yun Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
31
|
Switzer CH. Non-canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. Br J Pharmacol 2023. [PMID: 38116806 DOI: 10.1111/bph.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023] Open
Abstract
DNA methylation controls DNA accessibility to transcription factors and other regulatory proteins, thereby affecting gene expression and hence cellular identity and function. As epigenetic modifications control the transcriptome, epigenetic dysfunction is strongly associated with pathological conditions and ageing. The development of pharmacological agents that modulate the activity of major epigenetic proteins are in pre-clinical development and clinical use. However, recent publications have identified novel redox-based signalling pathways, and therefore novel drug targets, that may exert epigenetic effects. This review will discuss the recent developments in nitric oxide (NO) signalling on DNA methylation as well as potential epigenetic drug targets that have emerged from the intersection of inflammation/redox biology and epigenetic regulation.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
32
|
Lee J, Roh JL. Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr) 2023; 46:1605-1623. [PMID: 37438601 DOI: 10.1007/s13402-023-00840-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Ferroptosis is a newly recognized form of oxidative-regulated cell death resulting from iron-mediated lipid peroxidation accumulation. Radical-trapping antioxidant systems can eliminate these oxidized lipids and prevent disrupting the integrity of cell membranes. Epigenetic modifications can regulate ferroptosis by altering gene expression or cell phenotype without permanent sequence changes. These mechanisms include DNA methylation, histone modifications, RNA modifications, and noncoding RNAs. Epigenetic alterations in cancer can control the expression of ferroptosis regulators or related pathways, leading to changes in cell sensitivity to ferroptosis inducers or cancer progression. Epigenetic alterations in cancer are influenced by a wide range of cancer hallmarks, contributing to therapeutic resistance. Targeting epigenetic alterations is a promising approach to overcoming cancer resilience. However, the exact mechanisms involved in different types of cancer remain unresolved. Discovering more ferroptosis-associated epigenetic targets and interventions can help overcome current barriers in anticancer therapy. Many papers on epigenetic modifications of ferroptosis have been continuously published, making it essential to summarize the current state-of-the-art in the epigenetic regulation of ferroptosis in human cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
33
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Hoolehan W, Kulpa AM, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 2023; 16:45. [PMID: 37953264 PMCID: PMC10642035 DOI: 10.1186/s13072-023-00522-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia. RESULTS After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. CONCLUSIONS Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.
Collapse
Affiliation(s)
- Kyla B Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Walker Hoolehan
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adam M Kulpa
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
34
|
Gusti Ngurah Putu EP, Cattiaux L, Lavergne T, Pommier Y, Bombard S, Granzhan A. Unprecedented reactivity of polyamines with aldehydic DNA modifications: structural determinants of reactivity, characterization and enzymatic stability of adducts. Nucleic Acids Res 2023; 51:10846-10866. [PMID: 37850658 PMCID: PMC10639052 DOI: 10.1093/nar/gkad837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.
Collapse
Affiliation(s)
- Eka Putra Gusti Ngurah Putu
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Laurent Cattiaux
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Thomas Lavergne
- DCM, CNRS UMR5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Yves Pommier
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, CCR-NCI, NIH, Bethesda, MD 20892, USA
| | - Sophie Bombard
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anton Granzhan
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
35
|
Yang C, Gao Z, Wang Y, Zhang Q, Bai M, Yang H, Guo J, Zhang Y. Genome-wide DNA methylation analysis reveals layer-specific methylation patterns in deer antler tissue. Gene 2023; 884:147744. [PMID: 37640118 DOI: 10.1016/j.gene.2023.147744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This paper explored using of deer antlers as a model for studying rapid growth and cartilage formation in mammals. The genes and regulatory mechanisms involved in antler chondrogenesis are poorly understood, however, previous research has suggested that DNA methylation played a key role in antler regeneration. By using fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP), this study measured DNA methylation levels in cartilage (CA) and reserve mesenchyme (RM) cells and tissues. Results showed that RM cells (RMCs) DNA methylation levels were significantly lower than those of CA, suggesting that DNA demethylation may be involved in antler fast cartilage differentiation. The study also identified 20 methylated fragments specific to RMCs or CA using the methylation-sensitive amplified polymorphism (MSAP) technique and confirmed these findings using southern blot analysis. The data provide the first experimental evidence of a link between epigenetic regulation and rapid cartilage differentiation in antlers.
Collapse
Affiliation(s)
- Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China.
| | - Zizheng Gao
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yukun Wang
- School of Stomatology, Beihua University, Jilin, PR China
| | - Qi Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Muran Bai
- School of Stomatology, Beihua University, Jilin, PR China
| | - Huiran Yang
- School of Public Health, Beihua University, Jilin, PR China
| | - Junqi Guo
- The Third Clinical Medicine Affiliated to Changchun University of Chinese Medicine, Changchun, PR China.
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China.
| |
Collapse
|
36
|
Zhang L, Li J. Unlocking the secrets: the power of methylation-based cfDNA detection of tissue damage in organ systems. Clin Epigenetics 2023; 15:168. [PMID: 37858233 PMCID: PMC10588141 DOI: 10.1186/s13148-023-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Detecting organ and tissue damage is essential for early diagnosis, treatment decisions, and monitoring disease progression. Methylation-based assays offer a promising approach, as DNA methylation patterns can change in response to tissue damage. These assays have potential applications in early detection, monitoring disease progression, evaluating treatment efficacy, and assessing organ viability for transplantation. cfDNA released into the bloodstream upon tissue or organ injury can serve as a biomarker for damage. The epigenetic state of cfDNA, including DNA methylation patterns, can provide insights into the extent of tissue and organ damage. CONTENT Firstly, this review highlights DNA methylation as an extensively studied epigenetic modification that plays a pivotal role in processes such as cell growth, differentiation, and disease development. It then presents a variety of highly precise 5-mC methylation detection techniques that serve as powerful tools for gaining profound insights into epigenetic alterations linked with tissue damage. Subsequently, the review delves into the mechanisms underlying DNA methylation changes in organ and tissue damage, encompassing inflammation, oxidative stress, and DNA damage repair mechanisms. Next, it addresses the current research status of cfDNA methylation in the detection of specific organ tissues and organ damage. Finally, it provides an overview of the multiple steps involved in identifying specific methylation markers associated with tissue and organ damage for clinical trials. This review will explore the mechanisms and current state of research on cfDNA methylation-based assay detecting organ and tissue damage, the underlying mechanisms, and potential applications in clinical practice.
Collapse
Affiliation(s)
- Lijing Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China.
| |
Collapse
|
37
|
Su J, Song S, Dou Y, Jia X, Song S, Ding X. Methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) for ultrasensitive DNA methylation analysis. Biosens Bioelectron 2023; 238:115587. [PMID: 37586263 DOI: 10.1016/j.bios.2023.115587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Methylation of the promoter region of cancer related genes plays a crucial role in the occurrence and development of cancer, and the degree of methylation has great potential for the early cancer diagnosis. At present, the technology used to quantify DNA methylation is mainly based on the DNA sequencing which are time-consuming and high-cost in the relating application. We have developed an ultrasensitive method of methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) to detect and quantify the level of DNA methylation. We could detect as little as 2 pg of methylated DNA in the 100000-fold excess of unmethylated genes, and discriminate prostate cancer from benign prostatic hyperplasia (BPH) and control with serum samples. We also demonstrate the reversibility of DNA methylation modification by treatment with demethylation drugs. With 16-channel electrochemical work station, our research reveals a simple and inexpensive method to quantify the methylation level of specially appointed genes, and have the potential to be applied in the clinical research.
Collapse
Affiliation(s)
- Jing Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shasha Song
- Pathology Department, Yantai Fushan People's Hospital, Yantai, China
| | - Yanzhi Dou
- Shanghai Institute of Microsystem and Information Technology, Chinse Academy of Sciences, Shanghai 200050, China
| | - Xiaolong Jia
- Department of Urology, The First Affiliated Hospital of Ningbo University, Liuting Street, Ningbo 315010, China
| | - Shiping Song
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
39
|
Zhang H, Wu T, Ren C, Dong N, Wu Y, Yao Y. p53 promotes the expansion of regulatory T cells via DNMT3a- and TET2- mediated Foxp3 expression in sepsis. BURNS & TRAUMA 2023; 11:tkad021. [PMID: 37564681 PMCID: PMC10410290 DOI: 10.1093/burnst/tkad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 08/12/2023]
Abstract
Background Immunosuppression is an important characteristic of sepsis and is closely related to poor outcomes. Regulatory T cells (Tregs) contribute to immune suppression by inhibiting effector T cell (Teff) proliferation and differentiation. We aimed to investigate the role of p53 in Treg expansion after sepsis. Methods We constructed a sepsis model in wild-type (WT) and p53f/f/CD4-Cre+ mice by cecal ligation and puncture (CLP) and evaluated the proportions of CD4+CD25+ Foxp3+ Tregs by flow cytometry. The expression levels of forkhead/winged helix transcription factor p3 (Foxp3), DNA methyltransferase enzyme (DMNT)3a and ten-eleven translocation (TET)2 were examined using quantitative real-time PCR and Western blot analysis. Treg-specific demethylation region (TSDR) methylation sites in cells were analyzed by bisulfite-sequencing PCR. Furthermore, the direct binding of p53 to the Dnmt3a and TET2 promoters was illustrated using a luciferase assay. The suppressive ability of Tregs was indicated by enzyme-linked immunosorbent assay analysis of cytokine levels and the proliferation of cocultured Teffs. Finally, mortality rates after CLP were compared among WT and p53f/f/CD4-Cre+ mice. Results The proportion of CD4+CD25+ Foxp3+ Tregs was significantly reduced in p53f/f/CD4-Cre+ mice compared to WT mice after CLP. The enhanced expression of Foxp3 in WT mice was downregulated in the p53f/f/CD4-Cre+ group. We found decreased DMNT3a and increased TET2 levels after CLP. However, the dysregulation of DNMT3a and TET2 was significantly reversed in p53f/f/CD4-Cre+ mice. TSDR underwent increased demethylation in p53f/f/CD4-Cre+ mice. Luciferase activity indicated direct binding of p53 to the promoter regions of DNMT3a and TET2 to regulate their transcription. Consequently, Tregs from p53f/f/CD4-Cre+ CLP mice exhibited limited suppressive ability, as indicated by the reduced production of transforming growth factor-β and interleukin 10 (IL-10). In the coculture system, Teffs showed preserved production of IL-2, differentiation into Th1 cells and proliferation in the presence of Tregs isolated from p53f/f/CD4-Cre+ CLP mice. Finally, the mortality rate of the p53f/f/CD4-Cre+ group after CLP was significantly reduced in comparison to that of the WT group. Conclusion p53 appears to be critical for Foxp3 expression and consequent Treg expansion by regulating the induction of DNMT3a and TET2, thereby resulting in Foxp3-TSDR demethylation in the context of sepsis.
Collapse
Affiliation(s)
- Hui Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tiantian Wu
- Department of Hepatobiliary Surgery, Peking University International Hospital, No. 1 Science Park Road, Life Science Park, Changping District, Beijing 100034, People’s Republic of China
| | - Chao Ren
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Chao-yang District, Beijing, China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yongming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
40
|
Flores JC, Ito K, Huang CY, Tang Q, Yanase C, Ito K, Dawlaty MM. Comparative analysis of Tet2 catalytic-deficient and knockout bone marrow over time. Exp Hematol 2023; 124:45-55.e2. [PMID: 37225048 PMCID: PMC10524687 DOI: 10.1016/j.exphem.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
TET2 is a member of the Ten-eleven translocation (Tet) family of DNA dioxygenases that regulate gene expression by promoting DNA demethylation (enzymatic activity) and partnering with chromatin regulatory complexes (nonenzymatic functions). TET2 is highly expressed in the hematopoietic lineage, where its molecular functions are the subject of continuous investigations because of the prevalence of TET2 mutations in hematologic malignancies. Previously, we have implicated Tet2 catalytic and noncatalytic functions in the regulation of myeloid and lymphoid lineages, respectively. However, the impact of these functions of Tet2 on hematopoiesis as the bone marrow ages remains unclear. Here, we conducted comparative transplantations and transcriptomic analyses of 3-, 6-, 9-, and 12-month-old Tet2 catalytic mutant (Mut) and knockout (KO) bone marrow. Tet2 Mut bone marrow of all ages exclusively caused hematopoietic disorders of the myeloid lineage. In contrast, young Tet2 KO bone marrow developed both lymphoid and myeloid diseases, whereas older Tet2 KO bone marrow predominantly elicited myeloid disorders with shorter latency than age-matched Tet2 Mut bone marrow. We identified robust gene dysregulation in Tet2 KO Lin- cells at 6 months that involved lymphoma and myelodysplastic syndrome and/or leukemia-causing genes, many of which were hypermethylated early in life. There was a shift from lymphoid to myeloid gene deregulation in Tet2 KO Lin- cells with age, underpinning the higher incidence of myeloid diseases. These findings expand on the dynamic regulation of bone marrow by Tet2 and show that its catalytic-dependent and -independent roles have distinct impacts on myeloid and lymphoid lineages with age.
Collapse
Affiliation(s)
- Julio C Flores
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY; Montefiore Einstein Cancer Center, Bronx, NY
| | - Cheng-Yen Huang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Chie Yanase
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY; Montefiore Einstein Cancer Center, Bronx, NY.
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY; Montefiore Einstein Cancer Center, Bronx, NY.
| |
Collapse
|
41
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
42
|
Flores JC, Sidoli S, Dawlaty MM. Tet2 regulates Sin3a recruitment at active enhancers in embryonic stem cells. iScience 2023; 26:107170. [PMID: 37456851 PMCID: PMC10338317 DOI: 10.1016/j.isci.2023.107170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Tet2 is a member of the Ten-eleven translocation (Tet1/2/3) family of enzymes and is expressed in embryonic stem cells (ESCs). It demethylates DNA (catalytic functions) and partners with chromatin modifiers (noncatalytic functions) to regulate genes. However, the significance of these functions in ESCs is less defined. Using Tet2 catalytic mutant (Tet2m/m) and knockout (Tet2-/-) ESCs, we identified Tet2 target genes regulated by its catalytic dependent versus independent roles. Tet2 was enriched at their active enhancers and promoters to demethylate them. We also identified the histone deacetylase component Sin3a as a Tet2 partner, co-localizing at promoters and active enhancers. Tet2 deficiency diminished Sin3a at these regions. Tet2 and Sin3a co-occupancy overlapped with Tet1. Combined loss of Tet1/2, but not of their catalytic activities, reduced Sin3a at active enhancers. These findings establish Tet2 catalytic and noncatalytic functions as regulators of DNA demethylation and Sin3a recruitment at active enhancers in ESCs.
Collapse
Affiliation(s)
- Julio C. Flores
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Singh A, Rappolee DA, Ruden DM. Epigenetic Reprogramming in Mice and Humans: From Fertilization to Primordial Germ Cell Development. Cells 2023; 12:1874. [PMID: 37508536 PMCID: PMC10377882 DOI: 10.3390/cells12141874] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, advances in the understanding of epigenetic reprogramming from fertilization to the development of primordial germline cells in a mouse and human embryo are discussed. To gain insights into the molecular underpinnings of various diseases, it is essential to comprehend the intricate interplay between genetic, epigenetic, and environmental factors during cellular reprogramming and embryonic differentiation. An increasing range of diseases, including cancer and developmental disorders, have been linked to alterations in DNA methylation and histone modifications. Global epigenetic reprogramming occurs in mammals at two stages: post-fertilization and during the development of primordial germ cells (PGC). Epigenetic reprogramming after fertilization involves rapid demethylation of the paternal genome mediated through active and passive DNA demethylation, and gradual demethylation in the maternal genome through passive DNA demethylation. The de novo DNA methyltransferase enzymes, Dnmt3a and Dnmt3b, restore DNA methylation beginning from the blastocyst stage until the formation of the gastrula, and DNA maintenance methyltransferase, Dnmt1, maintains methylation in the somatic cells. The PGC undergo a second round of global demethylation after allocation during the formative pluripotent stage before gastrulation, where the imprints and the methylation marks on the transposable elements known as retrotransposons, including long interspersed nuclear elements (LINE-1) and intracisternal A-particle (IAP) elements are demethylated as well. Finally, DNA methylation is restored in the PGC at the implantation stage including sex-specific imprints corresponding to the sex of the embryo. This review introduces a novel perspective by uncovering how toxicants and stress stimuli impact the critical period of allocation during formative pluripotency, potentially influencing both the quantity and quality of PGCs. Furthermore, the comprehensive comparison of epigenetic events between mice and humans breaks new ground, empowering researchers to make informed decisions regarding the suitability of mouse models for their experiments.
Collapse
Affiliation(s)
- Aditi Singh
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Daniel A. Rappolee
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Reproductive Stress Measurement, Mechanisms and Management, Corp., 135 Lake Shore Rd., Grosse Pointe Farms, MI 48236, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Douglas M. Ruden
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
44
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543497. [PMID: 37333391 PMCID: PMC10274634 DOI: 10.1101/2023.06.05.543497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. This is especially true as for DNA modifications where most data are derived from bisulfite sequencing that cannot differentiate between DNA methylation and hydroxymethylation. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation of gene expression between neurons and glia. Results After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT whole genome oxidative bisulfite sequencing to assess the neuronal translatome and epigenome in the hippocampus of young mice (3 months old). These data were then compared to microglial and astrocytic data from NuTRAP models. When comparing the different cell types, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, with limited differences occurring within proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of mCG with gene expression within the gene body while a positive relationship between distal promoter and gene body hmCG and gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. Conclusions In this study, we identified differential usage of DNA modifications across CNS cell types, and assessed the relationship between DNA modifications and gene expression in neurons and glia. Despite having different global levels, the general modification-gene expression relationship was conserved across cell types. The enrichment of differential modifications in gene bodies and distal regulatory elements, but not proximal promoters, across cell types highlights epigenomic patterning in these regions as potentially greater determinants of cell identity.
Collapse
Affiliation(s)
- Kyla B. Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Sarah R. Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kevin D. Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - David R. Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Willard M. Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| |
Collapse
|
45
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
46
|
Abstract
While epigenetic modifications of DNA and histones play main roles in gene transcription regulation, recently discovered post-transcriptional RNA modifications, known as epitranscriptomic modifications, have been found to have a profound impact on gene expression by regulating RNA stability, localization and decoding efficiency. Importantly, genetic variations or environmental perturbations of epitranscriptome modifiers (that is, writers, erasers and readers) are associated with obesity and metabolic diseases, such as type 2 diabetes. The epitranscriptome is closely coupled to epigenetic signalling, adding complexity to our understanding of gene expression in both health and disease. Moreover, the epitranscriptome in the parental generation can affect organismal phenotypes in the next generation. In this Review, we discuss the relationship between epitranscriptomic modifications and metabolic diseases, their relationship with the epigenome and possible therapeutic strategies.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
47
|
Reprogramming of fibroblast cells to totipotent state by DNA demethylation. Sci Rep 2023; 13:1154. [PMID: 36670207 PMCID: PMC9859804 DOI: 10.1038/s41598-023-28457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many attempts have been made to induce high-quality embryonic stem cells such as pluripotent stem cells and totipotent stem cells, but challenges remain to be overcome such as appropriate methods and sources. Demethylation of the genome after fertilization is an important step to initiate zygote gene activation, which can lead to the development of new embryos. Here, we tried to induce totipotent stem cells by mimicking DNA demethylation patterns of the embryo. Our data showed, after induction of DNA demethylation via chemicals or knockdown of Dnmts, cells positive for Nanog, and Cdx2 emerged. These cells could differentiate into the pluripotent and trophoblast lineage cells in-vitro. After transferring these cells to the uterus, they can implant and form embryo-like structures. Our study showed the importance of DNA demethylation roles in totipotent stem cell induction and a new and easy way to induce this cell type.
Collapse
|
48
|
Xie J, Xie L, Wei H, Li XJ, Lin L. Dynamic Regulation of DNA Methylation and Brain Functions. BIOLOGY 2023; 12:152. [PMID: 36829430 PMCID: PMC9952911 DOI: 10.3390/biology12020152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
DNA cytosine methylation is a principal epigenetic mechanism underlying transcription during development and aging. Growing evidence suggests that DNA methylation plays a critical role in brain function, including neurogenesis, neuronal differentiation, synaptogenesis, learning, and memory. However, the mechanisms underlying aberrant DNA methylation in neurodegenerative diseases remain unclear. In this review, we provide an overview of the contribution of 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) to brain development and aging, with a focus on the roles of dynamic 5mC and 5hmC changes in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Identification of aberrant DNA methylation sites could provide potential candidates for epigenetic-based diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Hernaiz A, Sentre S, Betancor M, López-Pérez Ó, Salinas-Pena M, Zaragoza P, Badiola JJ, Toivonen JM, Bolea R, Martín-Burriel I. 5-Methylcytosine and 5-Hydroxymethylcytosine in Scrapie-Infected Sheep and Mouse Brain Tissues. Int J Mol Sci 2023; 24:ijms24021621. [PMID: 36675131 PMCID: PMC9864596 DOI: 10.3390/ijms24021621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathies or prion diseases, which are caused by an infectious isoform of the innocuous cellular prion protein (PrPC) known as PrPSc. DNA methylation, one of the most studied epigenetic mechanisms, is essential for the proper functioning of the central nervous system. Recent findings point to possible involvement of DNA methylation in the pathogenesis of prion diseases, but there is still a lack of knowledge about the behavior of this epigenetic mechanism in such neurodegenerative disorders. Here, we evaluated by immunohistochemistry the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels in sheep and mouse brain tissues infected with scrapie. Expression analysis of different gene coding for epigenetic regulatory enzymes (DNMT1, DNMT3A, DNMT3B, HDAC1, HDAC2, TET1, and TET2) was also carried out. A decrease in 5mC levels was observed in scrapie-affected sheep and mice compared to healthy animals, whereas 5hmC displayed opposite patterns between the two models, demonstrating a decrease in 5hmC in scrapie-infected sheep and an increase in preclinical mice. 5mC correlated with prion-related lesions in mice and sheep, but 5hmC was associated with prion lesions only in sheep. Differences in the expression changes of epigenetic regulatory genes were found between both disease models, being differentially expressed Dnmt3b, Hdac1, and Tet1 in mice and HDAC2 in sheep. Our results support the evidence that DNA methylation in both forms, 5mC and 5hmC, and its associated epigenetic enzymes, take part in the neurodegenerative course of prion diseases.
Collapse
Affiliation(s)
- Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Sara Sentre
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Mónica Salinas-Pena
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029 Madrid, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Janne Markus Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029 Madrid, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-976-761662
| |
Collapse
|
50
|
Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development. Nat Genet 2023; 55:130-143. [PMID: 36539615 DOI: 10.1038/s41588-022-01258-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
In mammals, DNA 5-hydroxymethylcytosine (5hmC) is involved in methylation reprogramming during early embryonic development. Yet, to what extent 5hmC participates in genome-wide methylation reprogramming remains largely unknown. Here, we characterize the 5hmC landscapes in mouse early embryos and germ cells with parental allele specificity. DNA hydroxymethylation was most strongly correlated with DNA demethylation as compared with de novo or maintenance methylation in zygotes, while 5hmC was targeted to particular de novo methylated sites in postimplantation epiblasts. Surprisingly, DNA replication was also required for 5hmC generation, especially in the female pronucleus. More strikingly, aberrant nuclear localization of Dnmt1/Uhrf1 in mouse zygotes due to maternal deficiency of Nlrp14 led to defects in DNA-replication-coupled passive demethylation and impaired 5hmC deposition, revealing the divergency between genome-wide 5-methylcytosine (5mC) maintenance and Tet-mediated oxidation. In summary, our work provides insights and a valuable resource for the study of epigenetic regulation in early embryo development.
Collapse
|