1
|
Li B, Luo S, Wang W, Xu J, Liu D, Shameem M, Mattila J, Franklin MC, Hawkins PG, Atwal GS. PROPERMAB: an integrative framework for in silico prediction of antibody developability using machine learning. MAbs 2025; 17:2474521. [PMID: 40042626 PMCID: PMC11901398 DOI: 10.1080/19420862.2025.2474521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. In silico predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient in silico prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.
Collapse
Affiliation(s)
- Bian Li
- Therapeutic Proteins, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Shukun Luo
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Wenhua Wang
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Jiahui Xu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - John Mattila
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | | | - Peter G. Hawkins
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Gurinder S. Atwal
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| |
Collapse
|
2
|
Menzies SK, Patel RN, Ainsworth S. Practical progress towards the development of recombinant antivenoms for snakebite envenoming. Expert Opin Drug Discov 2025; 20:799-819. [PMID: 40302313 DOI: 10.1080/17460441.2025.2495943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Snakebite envenoming is a neglected tropical disease that affects millions globally each year. In recent years, research into the potential production of recombinant antivenoms, formulated using mixtures of highly defined anti-toxin monoclonal antibodies, has rapidly moved from a theoretical concept to demonstrations of practical feasibility. AREAS COVERED This article examines the significant practical advancements in transitioning recombinant antivenoms from concept to potential clinical translation. The authors have based their review on literature obtained from Google Scholar and PubMed between September and November 2024. Coverage includes the development and validation of recombinant antivenom antibody discovery strategies, the characterization of the first broadly neutralizing toxin class antibodies, and recent translational proof-of-concept experiments. EXPERT OPINION The transition of recombinant antivenoms from a 'concept' to the current situation where high-throughput anti-venom mAb discovery is becoming routine, accompanied by increasing evidence of their broad neutralizing capacity in vivo, has been extraordinary. It is now important to build on this momentum by expanding the discovery of broadly neutralizing mAbs to encompass as many toxin classes as possible. It is anticipated that key demonstrations of whether recombinant antivenoms can match or surpass existing conventional polyvalent antivenoms in terms of neutralizing scope and capacity will be achieved in the next few years.
Collapse
Affiliation(s)
- Stefanie K Menzies
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Raavi, Koehler AN, Vegas AJ. At The Interface: Small-Molecule Inhibitors of Soluble Cytokines. Chem Rev 2025; 125:4528-4568. [PMID: 40233276 DOI: 10.1021/acs.chemrev.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cytokines are crucial regulators of the immune system that orchestrate interactions between cells and, when dysregulated, contribute to the progression of chronic inflammation, cancer, and autoimmunity. Numerous biologic-based clinical agents, mostly monoclonal antibodies, have validated cytokines as important clinical targets and are now part of the standard of care for a number of diseases. These agents, while impactful, still suffer from limitations including a lack of oral bioavailability, high cost of production, and immunogenicity. Small-molecule cytokine inhibitors are attractive alternatives that can address these limitations. Although targeting cytokine-cytokine receptor complexes with small molecules has been a challenging research endeavor, multiple small-molecule inhibitors have now been identified, with a number of them undergoing clinical evaluation. In this review, we highlight the recent advancements in the discovery and development of small-molecule inhibitors targeting soluble cytokines. The strategies for identifying these novel ligands as well as the structural and mechanistic insights into their activity represent important milestones in tackling these challenging and clinically important protein-protein interactions.
Collapse
Affiliation(s)
- Raavi
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arturo J Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Zalin M, Patel S, Coggins C, Rai V. The Role of Monoclonal Antibodies as Therapeutics in HPV-Related Head and Neck Cancers: An Updated Review. Antibodies (Basel) 2025; 14:37. [PMID: 40407689 PMCID: PMC12101214 DOI: 10.3390/antib14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES The increasing prevalence of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) has necessitated a revaluation of therapeutic strategies. HPV-driven OPSCC differs from HPV-negative OPSCC due to its distinct molecular signatures, increased radiosensitivity, and better prognoses. However, despite these differences, treatment strategies have remained largely uniform, resulting in minimal reductions in morbidity and exposing HPV-positive patients to unnecessary toxicity. Monoclonal antibodies (mAbs) have become a promising therapeutic option due to their ability to target treatment with fewer systemic side effects. Immune checkpoint inhibitors (ICIs) such as pembrolizumab have shown efficacy in enhancing the immune response against tumors, while EGFR inhibitors like cetuximab offer an alternative modality. Current clinical trials aim to refine dosing regimens and identify combination strategies that may enhance therapeutic outcomes. RESULTS Despite promising evidence, several challenges hinder the widespread adoption of mAbs as a standard treatment for HPV-positive OPSCC in clinical practice. This review examines the current role of mAbs in HPV-positive OPSCC treatment, highlighting their limitations and future research directions. CONCLUSIONS Further studies are needed to optimize patient selection, establish standardized treatment protocols, and investigate the long-term benefits of mAb-based therapies in this patient population.
Collapse
Affiliation(s)
- Michael Zalin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.Z.); (S.P.); (C.C.)
| | - Shaan Patel
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.Z.); (S.P.); (C.C.)
| | - Carter Coggins
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.Z.); (S.P.); (C.C.)
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Uliassi E, Bolognesi ML, Milelli A. Targeting Tau Protein with Proximity Inducing Modulators: A New Frontier to Combat Tauopathies. ACS Pharmacol Transl Sci 2025; 8:654-672. [PMID: 40109749 PMCID: PMC11915046 DOI: 10.1021/acsptsci.4c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
Dysregulation of correct protein tau homeostasis represents the seed for the development of several devastating central nervous system disorders, known as tauopathies, that affect millions of people worldwide. Despite massive public and private support to research funding, these diseases still represent unmet medical needs. In fact, the tau-targeting tools developed to date have failed to translate into the clinic. Recently, taking advantage of the modes that nature uses to mediate the flow of information in cells, researchers have developed a new class of molecules, called proximity-inducing modulators, which exploit spatial proximity to modulate protein function(s) and redirect cellular processes. In this perspective, after a brief discussion about tau protein and the classic tau-targeting approaches, we will discuss the different classes of proximity-inducing modulators developed so far and highlight the applications to modulate tau protein's function and tau-induced toxicity.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, Rimini 47921, Italy
| |
Collapse
|
6
|
Du S, Liu J, Zhang Y, Ge X, Gao S, Song J. PD-L1 peptides in cancer immunoimaging and immunotherapy. J Control Release 2025; 378:1061-1079. [PMID: 39742920 DOI: 10.1016/j.jconrel.2024.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
The interaction between programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) constitutes a critical immune checkpoint pathway that leads to immune tolerance in cancer cells and impacts antitumor treatment. Monoclonal antibody blockade of the PD-L1 immunoinhibitory pathway has demonstrated significant and lasting clinical antitumor responses. Furthermore, PD-L1 serves as an important biomarker for predicting the effectiveness of immune checkpoint inhibitors (ICIs). To date, numerous studies based on monoclonal antibodies have been carried out to detect the expression levels of PD-L1 and predict the antitumor effectiveness of PD-L1 ICIs. However, due to the deficiencies of monoclonal antibodies, researches of PD-L1 peptides have received increasing attention. PD-L1 peptides present promising candidates due to their advantages, including reduced manufacturing costs, enhanced stability, decreased immunogenicity, faster clearance and improved tumor or organ penetration, thereby offering broad application prospects in cancer immunoimaging and immunotherapy. In this review, we analyze the existing evidence on PD-L1 peptides in cancer immunoimaging and immunotherapy. First, the design techniques of different types of PD-L1 targeting peptides and their strengths and weaknesses are briefly introduced. Second, the recent advancements in immunoimaging and the development trends in immunotherapy are summarized. Finally, the existing challenges and future directions in this field are comprehensively deliberated.
Collapse
Affiliation(s)
- Shiye Du
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Junzhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Youjia Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Wu K, Jiang H, Hicks DR, Liu C, Muratspahić E, Ramelot TA, Liu Y, McNally K, Kenny S, Mihut A, Gaur A, Coventry B, Chen W, Bera AK, Kang A, Gerben S, Lamb MYL, Murray A, Li X, Kennedy MA, Yang W, Song Z, Schober G, Brierley SM, O'Neill J, Gelb MH, Montelione GT, Derivery E, Baker D. Design of intrinsically disordered region binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.15.603480. [PMID: 39071356 PMCID: PMC11275711 DOI: 10.1101/2024.07.15.603480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intrinsically disordered proteins and peptides play key roles in biology, but the lack of defined structures and the high variability in sequence and conformational preferences has made targeting such systems challenging. We describe a general approach for designing proteins that bind intrinsically disordered protein regions in diverse extended conformations with side chains fitting into complementary binding pockets. We used the approach to design binders for 39 highly diverse unstructured targets and obtain designs with pM to 100 nM affinities in 34 cases, testing ∼22 designs per target (including polar targets). The designs function in cells and as detection reagents, and are specific for their intended targets in all-by-all binding experiments. Our approach is a major step towards a general solution to the intrinsically disordered protein and peptide recognition problem.
Collapse
|
8
|
Zhong J, Huang M, Qiu H, Seol H, Yan Y, Wang S, Li N. Simple endoglycosidase-assisted peptide mapping workflow for characterizing non-consensus n-glycosylation in therapeutic monoclonal antibodies. J Pharm Sci 2025; 114:1125-1132. [PMID: 39617056 DOI: 10.1016/j.xphs.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
N-linked glycosylation, an extensively studied protein post-translational modification, was conventionally understood to occur at asparagine (Asn or N) sites with the consensus motif NXS/T, where X can be any amino acid residue except for proline, followed by serine or threonine. However, with advancements in characterization techniques and bioinformatic tools, increasing evidence indicates that Asn residues that are not located in the NXS/T consensus motif can also undergo N-glycosylation, which is also known as non-consensus or noncanonical N-glycosylation. Characterizing non-consensus N-glycosylation remains challenging because of the unpredictable sequon and its relatively low abundance. Here, we report an endoglycosidase-assisted peptide mapping workflow for mass spectrometry (MS) characterization of non-consensus N-glycosylation in monoclonal antibodies (mAbs). The feasibility of the workflow was demonstrated by a challenging case study, in which an atypical glycosite located within an NPNNXN sequence in a 25-residue tryptic peptide was identified in the fragment antigen-binding (Fab) region of a mAb. With the aids of endoglycosidase treatment, the resulting truncated glycan structures improved peptide ionization efficiency in MS and hence facilitated reliable quantitation of glycosite occupancy. Meanwhile, the remaining mono-/di-saccharides served as a large mass tag enabling differentiation between the glycopeptide and deamidated peptide, thus allowing for database searching for glycosite localization and semi-automation of the data processing workflow. This workflow offers a simple solution for characterizing non-consensus N-glycosylation for the development of therapeutic mAbs.
Collapse
Affiliation(s)
- Jieqiang Zhong
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ming Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haeri Seol
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Yuetian Yan
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Shunhai Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
9
|
Kalofonou F, Kalofonou M, Dimitrakopoulos FI, Kalofonos H. Monoclonal Antibodies in Metastatic Gastro-Esophageal Cancers: An Overview of the Latest Therapeutic Advances. Int J Mol Sci 2025; 26:1090. [PMID: 39940858 PMCID: PMC11816984 DOI: 10.3390/ijms26031090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Monoclonal antibodies (mAbs) have completely changed the face of oncology over the last 50 years, and they have contributed to a major breakthrough in terms of cancer therapy. Esophageal and gastric cancers, the eighth and fifth most commonly diagnosed types of cancer worldwide, respectively, have lately, been managed more effectively, with the introduction of new therapeutic treatment strategies, especially mAbs. Combination treatments and new molecules have changed the face of the disease, while more therapies are getting approved on a daily basis. This review aims to analyse the major up-to-date clinical trials using mAbs and immunotherapy for the treatment of advanced gastro-esophageal cancers.
Collapse
Affiliation(s)
- Foteini Kalofonou
- Department of Medical Oncology, The Royal Marsden NHS Trust, London SW3 6JJ, UK
| | - Melpomeni Kalofonou
- Centre of Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504 Rion, Greece
- Division of Oncology, Olympion General Clinic, 26443 Patras, Greece
| |
Collapse
|
10
|
Wei B, Dai L, Zhang K. Applications of hydrophilic interaction and mixed-mode liquid chromatography in pharmaceutical analysis. J Chromatogr A 2025; 1739:465524. [PMID: 39613506 DOI: 10.1016/j.chroma.2024.465524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Hydrophilic Interaction Liquid Chromatography (HILIC) and Mixed-Mode Chromatography (MMC) excel in separating polar, hydrophilic, and charged analytes due to unique hydrophilic or mixed-mode retention mechanisms. They represent a complementary approach to the widely used Reversed Phase Liquid Chromatography (RPLC). Often, where RPLC struggles, HILIC and MMC thrive. The applications of HILIC and MMC in pharmaceutical analysis are expanding rapidly across a variety of drug modalities. This article reviews advances in the applications of HILIC and MMC in seven major areas of pharmaceutical analysis: synthetic small molecules, counterions and salts, lipids and surfactants, carbohydrates, amino acids and peptides, proteins, and nucleic acids in the past two decades. We aim to provide comprehensive information and strategic guidance to facilitate future research, development and applications in these areas.
Collapse
Affiliation(s)
- Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lulu Dai
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
11
|
Gencsoy Eker S, Inetas Yengin G, Tatar C, Oktem G. A Comprehensive Review of the Mechanisms and Clinical Development of Monoclonal Antibodies in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:181-203. [PMID: 39666264 DOI: 10.1007/5584_2024_838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cancer is still the disease that ranks first in human mortality in the twenty-first century. In the last 20 years, the concept of molecular targeted therapy has come to the fore with the use of small molecule agents or signal transduction inhibitors that show anticancer effects for certain types of cancer. Monoclonal antibodies, which have a therapeutic effect, especially by providing signal transduction inhibition, are used clinically as first-line treatment in various types of cancer. Molecular targeted therapies are critical for eliminating the adverse effects and drug resistance problems that occur in traditional cancer treatments. This review summarizes current information on various targeted therapeutic agents, including the structure and classification of monoclonal antibodies, their production methods and mechanisms of action, the monoclonal antibodies used in clinical trials, the complement system mechanism and cancer relationship, and the relationship between complement-dependent cytotoxicity and monoclonal antibodies.
Collapse
Affiliation(s)
- Selen Gencsoy Eker
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey
| | - Gizem Inetas Yengin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Cansu Tatar
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Gulperi Oktem
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
12
|
Yang W, Lee S. From Lab to Clinic: Effect of Academia-Industry Collaboration Characteristics on Oncology Phase 1 Trial Entry. Clin Transl Sci 2025; 18:e70135. [PMID: 39807955 PMCID: PMC11730079 DOI: 10.1111/cts.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigated the success rate of Phase 1 clinical trial entry and the factors influencing it in oncology projects involving academia-industry collaboration during the discovery and preclinical stages. A total of 344 oncology projects in the discovery stage and 360 in the preclinical stage, initiated through collaborations with universities or hospitals between 2015 and 2019, were analyzed. The Phase 1 clinical trial entry success rates for oncology collaborative projects were 9.9% from the discovery stage and 24.2% from the preclinical stage. For discovery stage contracts, strong statistical significance was observed for contract type (co-development OR 16.45, p = 0.008; licensing OR 42.43, p = 0.000) and technology (cell or gene therapy OR 3.82, p = 0.008). In contrast, for preclinical stage contracts, significant changes were noted for cancer type (blood cancer OR 2.24, p = 0.004), while the year of contract signing showed a relatively weak statistical significance (OR 1.24, p = 0.021). No significant changes were observed concerning partner firm size and the partnership territory. This study sheds light on how the characteristics of partnerships influence the success rates of early-phase research, providing valuable insights for future strategic planning in oncology drug development.
Collapse
Affiliation(s)
- Wonseok Yang
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doRepublic of Korea
| | - Sang‐Won Lee
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doRepublic of Korea
| |
Collapse
|
13
|
Jagota M, Hsu C, Mazumder T, Sung K, DeWitt WS, Listgarten J, Matsen FA, Ye CJ, Song YS. Learning antibody sequence constraints from allelic inclusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619760. [PMID: 39484623 PMCID: PMC11526943 DOI: 10.1101/2024.10.22.619760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Antibodies and B-cell receptors (BCRs) are produced by B cells, and are built of a heavy chain and a light chain. Although each B cell could express two different heavy chains and four different light chains, usually only a unique pair of heavy chain and light chain is expressed-a phenomenon known as allelic exclusion. However, a small fraction of naive-B cells violate allelic exclusion by expressing two productive light chains, one of which has impaired function; this has been called allelic inclusion. We demonstrate that these B cells can be used to learn constraints on antibody sequence. Using large-scale single-cell sequencing data from humans, we find examples of light chain allelic inclusion in thousands of naive-B cells, which is an order of magnitude larger than existing datasets. We train machine learning models to identify the abnormal sequences in these cells. The resulting models correlate with antibody properties that they were not trained on, including polyreactivity, surface expression, and mutation usage in affinity maturation. These correlations are larger than what is achieved by existing antibody modeling approaches, indicating that allelic inclusion data contains useful new information. We also investigate the impact of similar selection forces on the heavy chain in mouse, and observe that pairing with the surrogate light chain significantly restricts heavy chain diversity.
Collapse
Affiliation(s)
- Milind Jagota
- Computer Science Division, UC Berkeley, Berkeley, CA USA
| | - Chloe Hsu
- Computer Science Division, UC Berkeley, Berkeley, CA USA
| | - Thomas Mazumder
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, CA, USA
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Yun S. Song
- Computer Science Division, UC Berkeley, Berkeley, CA USA
- Department of Statistics, UC Berkeley, Berkeley, CA, USA October 23, 2024
| |
Collapse
|
14
|
de Souza CC, Glória JC, da Silva ERD, de Lima Guerra Corado A, de Alcântara KÁG, Cordeiro IB, de Andrade EV, Mariúba LAM. Single-Stranded Variable Fragment Gene Libraries Built for Phage Display: An Updated Review of Design, Selection and Application. J Microbiol Biotechnol 2024; 35:e2407049. [PMID: 39631781 PMCID: PMC11813352 DOI: 10.4014/jmb.2407.07049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024]
Abstract
The development of the phage display technique has brought practicality and speed when selecting high-affinity molecules. It is used to obtain single-chain variable fragments (scFvs) and has revolutionized several branches of research and industry. These are developed from gene libraries that differ in their construction strategies, which causes a diversity of sequences, specificity and binding strength of the projected molecule to its antigen. In this review, we present the recent studies that demonstrate methods and approaches using immune, naïve, synthetic and semi-synthetic libraries to construct and select scFvs. Subsequently, the characteristics of these libraries, the functionality of the scFvs and the cost-benefits of production will be discussed. In addition, we highlight the methodological trends and challenges to be overcome in order to optimize the production and application of these antibody fragments.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Juliane Corrêa Glória
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Eliza Raquel Duarte da Silva
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - André de Lima Guerra Corado
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Universidade Nilton Lins, Manaus, AM, Brazil
| | - Kelson Ávila Graça de Alcântara
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Faculdade Estácio do Amazonas, Manaus, AM, Brazil
| | - Isabelle Bezerra Cordeiro
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Edmar Vaz de Andrade
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
15
|
Azargoonjahromi A. Immunotherapy in Alzheimer's disease: focusing on the efficacy of gantenerumab on amyloid-β clearance and cognitive decline. J Pharm Pharmacol 2024; 76:1115-1131. [PMID: 38767981 DOI: 10.1093/jpp/rgae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Gantenerumab, a human monoclonal antibody (mAb), has been thought of as a potential agent to treat Alzheimer's disease (AD) by specifically targeting regions of the amyloid-β (Aβ) peptide sequence. Aβ protein accumulation in the brain leads to amyloid plaques, causing neuroinflammation, oxidative stress, neuronal damage, and neurotransmitter dysfunction, thereby causing cognitive decline in AD. Gantenerumab involves disrupting Aβ aggregation and promoting the breakdown of larger Aβ aggregates into smaller fragments, which facilitates the action of Aβ-degrading enzymes in the brain, thus slowing down the progression of AD. Moreover, Gantenerumab acts as an opsonin, coating Aβ plaques and enhancing their recognition by immune cells, which, combined with its ability to improve the activity of microglia, makes it an intriguing candidate for promoting Aβ plaque clearance. Indeed, the multifaceted effects of Gantenerumab, including Aβ disaggregation, enhanced immune recognition, and improved microglia activity, may position it as a promising therapeutic approach for AD. Of note, reports suggest that Gantenerumab, albeit its capacity to reduce or eliminate Aβ, has not demonstrated effectiveness in reducing cognitive decline. This review, after providing an overview of immunotherapy approaches that target Aβ in AD, explores the efficacy of Gantenerumab in reducing Aβ levels and cognitive decline.
Collapse
|
16
|
Yang P, Wu X, Shang H, Sun Z, Wang Z, Song Z, Yuan H, Deng F, Shen S, Guo Y, Zhang N. Molecular mechanism and structure-guided humanization of a broadly neutralizing antibody against SFTSV. PLoS Pathog 2024; 20:e1012550. [PMID: 39321193 PMCID: PMC11423973 DOI: 10.1371/journal.ppat.1012550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS), with a high mortality rate of up to 30%. The envelope glycoproteins of SFTSV, glycoprotein N (Gn) and glycoprotein C (Gc), facilitate the recognition of host receptors and the process of membrane fusion, allowing the virus to enter host cells. We previously reported a monoclonal antibody, mAb 40C10, capable of neutralizing different genotypes of SFTSV and SFTSV-related viruses. However, the specific neutralization mechanism is poorly understood. In this study, we elucidated the high-resolution structure of the SFTSV Gn head domain in complex with mAb 40C10, confirming that the binding epitope in the domain I region of SFTSV Gn, and it represented that a novel binding epitope of SFTSV Gn was identified. Through in-depth structural and sequence analyses, we found that the binding sites of mAb 40C10 are relatively conserved among different genotypes of SFTSV and SFTSV-related Heartland virus and Guertu virus, elucidating the molecular mechanism underlying the broad-spectrum neutralizing activity of mAb 40C10. Furthermore, we humanized of mAb 40C10, which is originally of murine origin, to reduce its immunogenicity. The resulting nine humanized antibodies maintained potent affinity and neutralizing activity. One of the humanized antibodies exhibited neutralizing activity at picomolar IC50 values and demonstrated effective therapeutic and protective effects in a mouse infection model. These findings provide a novel target for the future development of SFTSV vaccines or drugs and establish a foundation for the research and development of antibody therapeutics for clinical applications.
Collapse
Affiliation(s)
- Pinyi Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoli Wu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Zixian Sun
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhiying Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zidan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Yuan
- Hangzhou Medimscience Biomedical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Galli M, Occhipinti G, Ortega-Paz L, Franchi F, Rollini F, Brugaletta S, Capodanno D, Sciarretta S, Angiolillo DJ. Therapeutic Potential of FXI Inhibitors: Hype or Hope? Drugs 2024; 84:1055-1070. [PMID: 39073551 DOI: 10.1007/s40265-024-02049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 07/30/2024]
Abstract
Significant advancements have shaped the landscape of anticoagulant therapy in the past two decades, including the introduction of direct oral anticoagulants (DOACs), characterized by favorable safety and efficacy profiles and reduced drug-to-drug or food interaction resulting in excellent patient compliance. However, residual concerns still exist with standard-of-care anticoagulant therapy, including the inability to use DOACs in several clinical settings and the need to further reduce the risk of bleeding. Recent improvements in the understanding of the mechanisms behind thrombus formation have led to the awareness that the intrinsic pathway of the coagulation cascade may play an important role in pathological thrombosis, but not in hemostasis. This has represented the rationale for targeting this pathway with factor XI (FXI) inhibitors, with the aim of uncoupling hemostasis and thrombosis. Clinical evidence from patients with FXI deficiency further supports this concept. A number of compounds with different mechanisms of action have been developed to target FXI (i.e., asundexian, abelacimab, Ionis-FXIRx, milvexian, osocimab, and Xisomab 3G). To date, the majority of available trials have not gone beyond completion of phase 2 and results are conflictive making it difficult to appraise the clinical benefit of these compounds in the different clinical settings where they have been tested (i.e., atrial fibrillation, acute ischemic stroke, acute myocardial infarction, end-stage renal disease, total knee arthroplasty). Moreover, the largest phase 3 randomized trial designed to test the efficacy of asundexian over apixaban in patients with atrial fibrillation, the OCEANIC-AF, has been prematurely stopped as a result of the inferior efficacy of asundexian. In this review we discuss the pharmacological properties and available evidence generated thus far for factor XI inhibitors, providing a perspective on the current state of these drugs.
Collapse
Affiliation(s)
- Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Giovanni Occhipinti
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis Ortega-Paz
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, 655 West 8th Street, Jacksonville, FL, 32209, USA
| | - Francesco Franchi
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, 655 West 8th Street, Jacksonville, FL, 32209, USA
| | - Fabiana Rollini
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, 655 West 8th Street, Jacksonville, FL, 32209, USA
| | - Salvatore Brugaletta
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco," University of Catania, Catania, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS NeuroMed, Pozzilli, Italy
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, 655 West 8th Street, Jacksonville, FL, 32209, USA.
| |
Collapse
|
18
|
Armstrong A, Hernandez JA, Roth F, Bracewell DG, Farid SS, P C Marques M, Goldrick S. Development of temperature-controlled batch and 3-column counter-current protein A system for improved therapeutic purification. J Chromatogr A 2024; 1730:465110. [PMID: 38941794 DOI: 10.1016/j.chroma.2024.465110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Maximizing product quality attributes by optimizing process parameters and performance attributes is a crucial aspect of bioprocess chromatography process design. Process parameters include but are not limited to bed height, eluate cut points, and elution pH. An under-characterized chromatography process parameter for protein A chromatography is process temperature. Here, we present a mechanistic understanding of the effects of temperature on the protein A purification of a monoclonal antibody (mAb) using a commercial chromatography resin for batch and continuous counter-current systems. A self-designed 3D-printed heating jacket controlled the 1 mL chromatography process temperature during the loading, wash, elution, and cleaning-in-place (CIP) steps. Batch loading experiments at 10, 20, and 30 °C demonstrated increased dynamic binding capacity (DBC) with temperature. The experimental data were fit to mechanistic and correlation-based models that predicted the optimal operating conditions over a range of temperatures. These model-based predictions optimized the development of a 3-column temperature-controlled periodic counter-current chromatography (TCPCC) and were validated experimentally. Operating a 3-column TCPCC at 30 °C led to a 47% increase in DBC relative to 20 °C batch chromatography. The DBC increase resulted in a two-fold increase in productivity relative to 20 °C batch. Increasing the number of columns to the TCPCC to optimize for increasing feed concentration resulted in further improvements to productivity. The feed-optimized TCPCC showed a respective two, three, and four-fold increase in productivity at feed concentrations of 1, 5, and 15 mg/mL mAb, respectively. The derived and experimentally validated temperature-dependent models offer a valuable tool for optimizing both batch and continuous chromatography systems under various operating conditions.
Collapse
Affiliation(s)
- Alexander Armstrong
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | | | - Felix Roth
- Cell Culture and Fermentation Science, Biopharmaceuticals Development, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniel G Bracewell
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | - Suzanne S Farid
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | - Marco P C Marques
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | - Stephen Goldrick
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom.
| |
Collapse
|
19
|
Fan Y, Feng R, Zhang X, Wang ZL, Xiong F, Zhang S, Zhong ZF, Yu H, Zhang QW, Zhang Z, Wang Y, Li G. Encoding and display technologies for combinatorial libraries in drug discovery: The coming of age from biology to therapy. Acta Pharm Sin B 2024; 14:3362-3384. [PMID: 39220863 PMCID: PMC11365444 DOI: 10.1016/j.apsb.2024.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 09/04/2024] Open
Abstract
Drug discovery is a sophisticated process that incorporates scientific innovations and cutting-edge technologies. Compared to traditional bioactivity-based screening methods, encoding and display technologies for combinatorial libraries have recently advanced from proof-of-principle experiments to promising tools for pharmaceutical hit discovery due to their high screening efficiency, throughput, and resource minimization. This review systematically summarizes the development history, typology, and prospective applications of encoding and displayed technologies, including phage display, ribosomal display, mRNA display, yeast cell display, one-bead one-compound, DNA-encoded, peptide nucleic acid-encoded, and new peptide-encoded technologies, and examples of preclinical and clinical translation. We discuss the progress of novel targeted therapeutic agents, covering a spectrum from small-molecule inhibitors and nonpeptidic macrocycles to linear, monocyclic, and bicyclic peptides, in addition to antibodies. We also address the pending challenges and future prospects of drug discovery, including the size of screening libraries, advantages and disadvantages of the technology, clinical translational potential, and market space. This review is intended to establish a comprehensive high-throughput drug discovery strategy for scientific researchers and clinical drug developers.
Collapse
Affiliation(s)
- Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Xinya Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Zhen-Liang Wang
- Geriatric Medicine, First People's Hospital of XinXiang and the Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Shuihua Zhang
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
20
|
Qutub SS, Bhat IA, Maatouk BI, Moosa B, Fakim A, Nawaz K, Diaz-Galicia E, Lin W, Grünberg R, Arold ST, Khashab NM. An Amphiphilic Cell-Penetrating Macrocycle for Efficient Cytosolic Delivery of Proteins, DNA, and CRISPR Cas9. Angew Chem Int Ed Engl 2024; 63:e202403647. [PMID: 38752721 DOI: 10.1002/anie.202403647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/02/2024]
Abstract
The discovery of safe platforms that can circumvent the endocytic pathway is of great significance for biological therapeutics that are usually degraded during endocytosis. Here we show that a self-assembled and dynamic macrocycle can passively diffuse through the cell membrane and deliver a broad range of biologics, including proteins, CRISPR Cas9, and ssDNA, directly to the cytosol while retaining their bioactivity. Cell-penetrating macrocycle CPM can be easily prepared from the room temperature condensation of diketopyrrolopyrrole lactams with diamines. We attribute the high cellular permeability of CPM to its amphiphilic nature and chameleonic properties. It adopts conformations that partially bury polar groups and expose hydrophobic side chains, thus self-assembling into micellar-like structures. Its superior fluorescence makes CPM trackable inside cells where it follows the endomembrane system. CPM outperformed commercial reagents for biologics delivery and showed high RNA knockdown efficiency of CRISPR Cas9. We envisage that this macrocycle will be an ideal starting point to design and synthesize biomimetic macrocyclic tags that can readily facilitate the interaction and uptake of biomolecules and overcome endosomal digestion.
Collapse
Affiliation(s)
- Somayah S Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Imtiyaz Ahmad Bhat
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Current Address: Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Batoul I Maatouk
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aliyah Fakim
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kashif Nawaz
- The Coral Symbiomics Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Escarlet Diaz-Galicia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Krishnan SR, Sharma D, Nazeer Y, Bose M, Rajkumar T, Jayaraman G, Madaboosi N, Gromiha MM. rAbDesFlow: a novel workflow for computational recombinant antibody design for healthcare engineering. Antib Ther 2024; 7:256-265. [PMID: 39262441 PMCID: PMC11384895 DOI: 10.1093/abt/tbae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Indexed: 09/13/2024] Open
Abstract
Recombinant antibodies (rAbs) have emerged as a promising solution to tackle antigen specificity, enhancement of immunogenic potential and versatile functionalization to treat human diseases. The development of single chain variable fragments has helped accelerate treatment in cancers and viral infections, due to their favorable pharmacokinetics and human compatibility. However, designing rAbs is traditionally viewed as a genetic engineering problem, with phage display and cell free systems playing a major role in sequence selection for gene synthesis. The process of antibody engineering involves complex and time-consuming laboratory techniques, which demand substantial resources and expertise. The success rate of obtaining desired antibody candidates through experimental approaches can be modest, necessitating iterative cycles of selection and optimization. With ongoing advancements in technology, in silico design of diverse antibody libraries, screening and identification of potential candidates for in vitro validation can be accelerated. To meet this need, we have developed rAbDesFlow, a unified computational workflow for recombinant antibody engineering with open-source programs and tools for ease of implementation. The workflow encompasses five computational modules to perform antigen selection, antibody library generation, antigen and antibody structure modeling, antigen-antibody interaction modeling, structure analysis, and consensus ranking of potential antibody sequences for synthesis and experimental validation. The proposed workflow has been demonstrated through design of rAbs for the ovarian cancer antigen Mucin-16 (CA-125). This approach can serve as a blueprint for designing similar engineered molecules targeting other biomarkers, allowing for a simplified adaptation to different cancer types or disease-specific antigens.
Collapse
Affiliation(s)
- Sowmya Ramaswamy Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Divya Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Yasin Nazeer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mayilvahanan Bose
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600020, India
| | - Thangarajan Rajkumar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- MedGenome, Bengaluru 560099, Karnataka, India
- Department of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Kochi 682041, Kerala, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Madaboosi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- School of Computing, National University of Singapore (NUS), Singapore 119077, Singapore
| |
Collapse
|
22
|
Wu ZL, Wang Y, Jia XY, Wang YG, Wang H. Receptor tyrosine kinase-like orphan receptor 1: A novel antitumor target in gastrointestinal cancers. World J Clin Oncol 2024; 15:603-613. [PMID: 38835843 PMCID: PMC11145958 DOI: 10.5306/wjco.v15.i5.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.
Collapse
Affiliation(s)
- Zheng-Long Wu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| | - Ying Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Xiao-Yuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| |
Collapse
|
23
|
Occhipinti G, Laudani C, Spagnolo M, Finocchiaro S, Mazzone PM, Faro DC, Mauro MS, Rochira C, Agnello F, Giacoppo D, Ammirabile N, Landolina D, Imbesi A, Sangiorgio G, Greco A, Capodanno D. Pharmacological and clinical appraisal of factor XI inhibitor drugs. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:245-258. [PMID: 38196141 DOI: 10.1093/ehjcvp/pvae002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
The evolution of anticoagulation therapy, from vitamin K antagonists to the advent of direct oral anticoagulants (DOACs) almost two decades ago, marks significant progress. Despite improved safety demonstrated in pivotal trials and post-marketing observations, persistent concerns exist, particularly regarding bleeding risk and the absence of therapeutic indications in specific subgroups or clinical contexts. Factor XI (FXI) has recently emerged as a pivotal contributor to intraluminal thrombus formation and growth, playing a limited role in sealing vessel wall injuries. Inhibiting FXI presents an opportunity to decouple thrombosis from haemostasis, addressing concerns related to bleeding events while safeguarding against thromboembolic events. Notably, FXI inhibition holds promise for patients with end-stage renal disease or cancer, where clear indications for DOACs are currently lacking. Various compounds have undergone design, testing, and progression to phase 2 clinical trials, demonstrating a generally favourable safety and tolerability profile. However, validation through large-scale phase 3 trials with sufficient power to assess both safety and efficacy outcomes is needed. This review comprehensively examines FXI inhibitors, delving into individual classes, exploring their pharmacological properties, evaluating the latest evidence from randomized trials, and offering insights into future perspectives.
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Claudio Laudani
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Marco Spagnolo
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Simone Finocchiaro
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Placido Maria Mazzone
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Denise Cristiana Faro
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Maria Sara Mauro
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Carla Rochira
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Federica Agnello
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Daniele Giacoppo
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Nicola Ammirabile
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Davide Landolina
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Antonino Imbesi
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Antonio Greco
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| |
Collapse
|
24
|
Darwin D, Babu SG, Ajila V, Asan MF. The Multifaceted Role of Monoclonal Antibodies in Oral Cancer Therapy – A Narrative Overview. JOURNAL OF DATTA MEGHE INSTITUTE OF MEDICAL SCIENCES UNIVERSITY 2024; 19:203-208. [DOI: 10.4103/jdmimsu.jdmimsu_536_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/07/2023] [Indexed: 01/04/2025]
Abstract
Abstract
Oral cancer, a part of head-and-neck cancer, is associated with a high risk of mortality which necessitates specificity in the cancer therapy. Known as the fourth pillar among various cancer treatment modalities, immunotherapy requires the stimulation of particular immune system components by modulating the counteraction of signals that cause suppression of the immune system. Monoclonal antibodies (mAbs) provide numerous benefits over conventional chemotherapeutic drugs due to their increased target specificity and extended half-life. When delivered, mAbs act as cytotoxic agents with varied pharmacological effects that prove as a potential therapeutic approach for cancer therapy. In the current review, a bibliographic search was done in PubMed and other databases for English articles that were published over the last decade. The aim of this paper is to furnish a substantial review that highlights the immunotherapeutic role of selected mAbs and their mechanisms and clinical applications in the treatment of oral cancers. It also emphasizes the versatile role of antibodies with diverse features which have led to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Deepthi Darwin
- Department of Oral Medicine and Radiology, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Subhas Gogineni Babu
- Department of Oral Medicine and Radiology, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Vidya Ajila
- Department of Oral Medicine and Radiology, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Mohamed Faizal Asan
- Consultant Maxillofacial Radiologist, Viscan Diagnostics, Madurai, Tamil Nadu, India
| |
Collapse
|
25
|
Williams JH, Liao KH, Yin D, Meng X. Implications of Immunogenicity Testing for Therapeutic Monoclonal Antibodies: A Quantitative Pharmacology Framework. AAPS J 2024; 26:31. [PMID: 38453809 DOI: 10.1208/s12248-024-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
The interpretation of immunogenicity results for a mAb product and prediction of its clinical consequences remain difficult, despite enormous advances in methodologies and efforts toward the best practice for consistent data generation and reporting. To this end, the contribution from the clinical pharmacology discipline has been largely limited to comparing descriptively the pharmacokinetic (PK) profiles by antidrug antibodies (ADA) status or testing the significance of ADA as a covariate in a population PK setting, similar to the practice for small-molecule drugs in investigating the effect of an intrinsic/extrinsic factor on the drug disposition. There is a need for a mAb disposition framework that captures the dynamics of ADA formation and drug's interactions with the ADA and target as parts of the drug distribution and elimination. Here we describe such a framework and examine it against the PK, ADA, and clinical response data from a phase 3 trial in patients treated with adalimumab. The proposed framework offered a generalized understanding of how the dose, target affinity, and drug/ADA analyte forms affects the manifestation of ADA response with regard to its detections and alterations of drug disposition and effectiveness. Furthermore, as an example, its utility for dose considerations was demonstrated through predicting for late-stage trials of a PCSK9 inhibitor in terms of development in ADA incidence and titers, and consequences on the drug disposition, interaction with target, and downstream lowering effect on LDL-C.
Collapse
Affiliation(s)
| | - Kai H Liao
- Pfizer Inc, San Diego, CA, USA
- Arcus Biosciences, Hayward, CA, USA
| | | | - Xu Meng
- Pfizer Inc, San Diego, CA, USA
| |
Collapse
|
26
|
Mouawad N, Ruggeri E, Capasso G, Martinello L, Visentin A, Frezzato F, Trentin L. How receptor tyrosine kinase-like orphan receptor 1 meets its partners in chronic lymphocytic leukemia. Hematol Oncol 2024; 42:e3250. [PMID: 38949887 DOI: 10.1002/hon.3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 07/03/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in western societies, recognized by clinical and molecular heterogeneity. Despite the success of targeted therapies, acquired resistance remains a challenge for relapsed and refractory CLL, as a consequence of mutations in the target or the upregulation of other survival pathways leading to the progression of the disease. Research on proteins that can trigger such pathways may define novel therapies for a successful outcome in CLL such as the receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 is a signaling receptor for Wnt5a, with an important role during embryogenesis. The aberrant expression on CLL cells and several types of tumors, is involved in cell proliferation, survival, migration as well as drug resistance. Antibody-based immunotherapies and small-molecule compounds emerged to target ROR1 in preclinical and clinical studies. Efforts have been made to identify new prognostic markers having predictive value to refine and increase the detection and management of CLL. ROR1 can be considered as an attractive target for CLL diagnosis, prognosis, and treatment. It can be clinically effective alone and/or in combination with current approved agents. In this review, we summarize the scientific achievements in targeting ROR1 for CLL diagnosis, prognosis, and treatment.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Humans
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Prognosis
- Molecular Targeted Therapy
- Animals
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Nayla Mouawad
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Guido Capasso
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Leonardo Martinello
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Pinetre J, Delcourt V, Becher F, Garcia P, Barnabé A, Loup B, Popot MA, Fenaille F, Bailly-Chouriberry L. High-throughput untargeted screening of biotherapeutic macromolecules in equine plasma by UHPLC-HRMS/MS: Application to monoclonal antibodies and Fc-fusion proteins for doping control. Drug Test Anal 2024; 16:199-209. [PMID: 37337992 DOI: 10.1002/dta.3525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Many innovative biotherapeutics have been marketed in the last decade. Monoclonal antibodies (mAbs) and Fc-fusion proteins (Fc-proteins) have been developed for the treatment of diverse diseases (cancer, autoimmune diseases, and inflammatory disorders) and now represent an important part of targeted therapies. However, the ready availability of such biomolecules, sometimes characterized by their anabolic, anti-inflammatory, or erythropoiesis-stimulating properties, raises concerns about their potential misuse as performance enhancers for human and animal athletes. In equine doping control laboratories, a method has been reported to detect the administration of a specific human biotherapeutic in equine plasma; but no high-throughput method has been described for the screening without any a priori knowledge of human or murine biotherapeutic. In this context, a new broad-spectrum screening method involving UHPLC-HRMS/MS has been developed for the untargeted analysis of murine or human mAbs and related macromolecules in equine plasma. This approach, consisting of a "pellet digestion" strategy performed in a 96-well plate, demonstrates reliable performances at low concentrations (pmol/mL range) with high-throughput capability (≈100 samples/day). Targeting species-specific proteotypic peptides located within the constant parts of mAbs enables the "universal" detection of human biotherapeutics only by monitoring 10 peptides. As proof of principle, this strategy successfully detected different biotherapeutics in spiked plasma samples, and allowed, for the first time, the detection of a human mAb up to 10 days after a 0.12 mg/kg administration to a horse. This development will expand the analytical capabilities of horse doping control laboratories towards protein-based biotherapeutics with adequate sensitivity, throughput, and cost-effectiveness.
Collapse
Affiliation(s)
- Justine Pinetre
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, Essonne, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, Ile de France, France
| | - Vivian Delcourt
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, Essonne, France
| | - François Becher
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, Ile de France, France
| | - Patrice Garcia
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, Essonne, France
| | - Agnès Barnabé
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, Essonne, France
| | - Benoit Loup
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, Essonne, France
| | - Marie-Agnès Popot
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, Essonne, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, Ile de France, France
| | | |
Collapse
|
28
|
Thomas R, Song D, Pourmohamad T, Kurita K, Chin S, Dai L, Goyon A, Medley CD, Gruenhagen JA, Chen T. Automated online deconjugation of antibody-drug conjugate for small molecule drug profiling. J Chromatogr A 2024; 1715:464575. [PMID: 38150875 DOI: 10.1016/j.chroma.2023.464575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Antibody-drug conjugates (ADCs) are designed by chemically linking highly potent cytotoxic small molecule drugs to monoclonal antibodies of unique specificity for targeted destruction of cancer cells. This innovative class of molecules incurs unique developmental challenges due to its structural complexity of having both small molecule and protein components. The stability of the small molecule payload on the ADC is a critical attribute as it directly relates to product efficacy and patient safety. This study describes the use of an end-to-end automated workflow for effective and robust characterization of the small molecule drug while it is conjugated to the antibody. In this approach, online deconjugation was accomplished by an autosampler user defined program and 1D size exclusion chromatography was utilized to provide separation between small molecule and protein species. The small molecule portion was then trapped and sent to the 2D for separation and quantification by reversed-phase liquid chromatography with identification of impurities and degradants by mass spectrometry. The feasibility of this system was demonstrated on an ADC with a disulfide-based linker. This fully automated approach avoids tedious sample preparation that may lead to sample loss and large assay variability. Under optimized conditions, the method was shown to have excellent specificity, sensitivity (LOD of 0.036 µg/mL and LOQ of 0.144 µg/mL), linearity (0.04-72.1 µg/mL), precision (system precision %RSD of 1.7 and method precision %RSD of 3.4), accuracy (97.4 % recovery), stability-indicating nature, and was successfully exploited to analyze the small molecule drug on a panel of stressed ADC samples. Overall, the workflow established here offers a powerful analytical tool for profiling the in-situ properties of small molecule drugs conjugated to antibodies and the obtained information could be of great significance for guiding process/formulation development and understanding pharmacokinetic/pharmacodynamic behavior of ADCs.
Collapse
Affiliation(s)
- Rekha Thomas
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dong Song
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tony Pourmohamad
- Nonclinical Biostatistics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kenji Kurita
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Chin
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Colin D Medley
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Gruenhagen
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
29
|
Liu V, McGrath K, Albert J, Mayer AP, Busz M, Birchler M, Tang H, Jiang Y. Screening Non-neutralizing Anti-idiotype Antibodies Against a Drug Candidate for Total Pharmacokinetic and Target Engagement Assay. AAPS J 2024; 26:18. [PMID: 38267774 DOI: 10.1208/s12248-024-00892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Non-neutralizing anti-idiotype antibodies against a therapeutic monoclonal antibody (mAb) play a crucial role in the creation of total pharmacokinetic (PK) assays and total target engagement (TE) assays during both pre-clinical and clinical development. The development of these anti-idiotype antibodies is challenging. In this study, we utilized a hybridoma platform to produce a variety of anti-idiotype antibodies against GSK2857914, a humanized IgG1 anti-BCMA monoclonal antibody. The candidate clones were evaluated using surface plasmon resonance (SPR) and bio-layer interferometry (BLI) for binding affinity, binding profiling, matrix interference, and antibody pairing determination. We discovered that three anti-idiotype antibodies did not prevent BCMA from binding to GSK2857914. All three candidates demonstrated high binding affinities. One of the three exhibited minimal matrix inference and could pair with the other two candidates. Additionally, one of the three clones was biotinylated as a capture reagent for the total PK assay, and another was labeled with ruthenium as a detection reagent for both the total PK assay and total TE assay. The assay results clearly show that these reagents are genuine non-neutralizing anti-idiotypic antibodies and are suitable for total PK and TE assay development. Based on this and similar studies, we conclude that the hybridoma platform has a high success rate for generating non-neutralizing anti-idiotype antibodies. Our methodology for developing and characterizing non-neutralizing anti-idiotype antibodies to therapeutic antibodies can be generally applied to any antibody-based drug candidate's total PK and total TE assay development.
Collapse
Affiliation(s)
- Veronica Liu
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Kelly McGrath
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Josh Albert
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Andrew P Mayer
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Maria Busz
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Mary Birchler
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Huaping Tang
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Yong Jiang
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA.
| |
Collapse
|
30
|
Sakemura RL, Manriquez Roman C, Horvei P, Siegler EL, Girsch JH, Sirpilla OL, Stewart CM, Yun K, Can I, Ogbodo EJ, Adada MM, Bezerra ED, Kankeu Fonkoua LA, Hefazi M, Ruff MW, Kimball BL, Mai LK, Huynh TN, Nevala WK, Ilieva K, Augsberger C, Patra-Kneuer M, Schanzer J, Endell J, Heitmüller C, Steidl S, Parikh SA, Ding W, Kay NE, Nowakowski GS, Kenderian SS. CD19 occupancy with tafasitamab increases therapeutic index of CART19 cell therapy and diminishes severity of CRS. Blood 2024; 143:258-271. [PMID: 37879074 PMCID: PMC10808250 DOI: 10.1182/blood.2022018905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
ABSTRACT In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.
Collapse
Affiliation(s)
- R. Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Claudia Manriquez Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Paulina Horvei
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Pediatric Bone Marrow Transplant and Cellular Therapy, UPMC Children’s Hospital of Pittsburgh, PA
| | - Elizabeth L. Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - James H. Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Olivia L. Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Carli M. Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Ekene J. Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mohamad M. Adada
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Michael W. Ruff
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Department of Neurology, Mayo Clinic, Rochester, MN
| | - Brooke L. Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Long K. Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Truc N. Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Saad S. Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| |
Collapse
|
31
|
Li L, Lu J, Liu J, Wu J, Zhang X, Meng Y, Wu X, Tai Z, Zhu Q, Chen Z. Immune cells in the epithelial immune microenvironment of psoriasis: emerging therapeutic targets. Front Immunol 2024; 14:1340677. [PMID: 38239345 PMCID: PMC10794746 DOI: 10.3389/fimmu.2023.1340677] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory disease characterized by erroneous metabolism of keratinocytes. The development of psoriasis is closely related to abnormal activation and disorders of the immune system. Dysregulated skin protective mechanisms can activate inflammatory pathways within the epithelial immune microenvironment (EIME), leading to the development of autoimmune-related and inflammatory skin diseases. In this review, we initially emphasized the pathogenesis of psoriasis, paying particular attention to the interactions between the abnormal activation of immune cells and the production of cytokines in psoriasis. Subsequently, we delved into the significance of the interactions between EIME and immune cells in the emergence of psoriasis. A thorough understanding of these immune processes is crucial to the development of targeted therapies for psoriasis. Finally, we discussed the potential novel targeted therapies aimed at modulating the EIME in psoriasis. This comprehensive examination sheds light on the intricate underlying immune mechanisms and provides insights into potential therapeutic avenues of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Yu Meng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Sreekumar S, Ray SD. Monoclonal antibodies. ENCYCLOPEDIA OF TOXICOLOGY 2024:503-508. [DOI: 10.1016/b978-0-12-824315-2.00683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Yin R, Pierce BG. Evaluation of AlphaFold antibody-antigen modeling with implications for improving predictive accuracy. Protein Sci 2024; 33:e4865. [PMID: 38073135 PMCID: PMC10751731 DOI: 10.1002/pro.4865] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
High resolution antibody-antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody-antigen complexes. Initial benchmarking showed that despite overall success in modeling protein-protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody-antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody-antigen modeling performance on 427 nonredundant antibody-antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. Notably, we found that the latest version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version, while increased AlphaFold sampling gives approximately 50% success. With this improved success, AlphaFold can generate accurate antibody-antigen models in many cases, while additional training or other optimization may further improve performance.
Collapse
Affiliation(s)
- Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
34
|
Reusch J, Andersen JT, Rant U, Schlothauer T. Insight into the avidity-affinity relationship of the bivalent, pH-dependent interaction between IgG and FcRn. MAbs 2024; 16:2361585. [PMID: 38849969 PMCID: PMC11164218 DOI: 10.1080/19420862.2024.2361585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.
Collapse
Affiliation(s)
- Johannes Reusch
- Dynamic Biosensors GmbH, Munich, Germany
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | | | - Tilman Schlothauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
35
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
36
|
Wang EQ, Kaila N, Plowchalk D, Gibiansky L, Yunis C, Sweeney K. Population PK/PD modeling of low-density lipoprotein cholesterol response in hypercholesterolemic participants following administration of bococizumab, a potent anti-PCSK9 monoclonal antibody. CPT Pharmacometrics Syst Pharmacol 2023; 12:2013-2026. [PMID: 37994400 PMCID: PMC10725275 DOI: 10.1002/psp4.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 11/24/2023] Open
Abstract
We sought to characterize the population pharmacokinetic/pharmacodynamic (PK/PD) relationship of bococizumab (RN316/PF-04950615), a humanized IgG2Δa monoclonal antibody that binds to secreted human proprotein convertase subtilisin kexin type 9 (PCSK9), using data derived from 16 phase I, II, and III clinical studies (36,066 bococizumab observations, 46,790 low-density lipoprotein cholesterol [LDL-C] measurements, 3499 participants). A two-compartment disposition model with parallel linear and Michaelis-Menten elimination and an indirect response model was used to characterize the population PK and LDL-C response of bococizumab. Potential model parameters and covariate relationships were explored, and visual predictive checks were used for model assessment and validation. Key covariates included the effect of anti-drug antibodies (ADAs) on exposure through impact on clearance and bioavailability; impact of statins on bococizumab elimination (maximal rate of metabolism); and impact of statins, Asian race, and male sex on LDL-C efficacy (maximum effect). ADAs and neutralizing ADAs did not have additional effects on LDL-C beyond the influence on bococizumab exposure. In conclusion, the population PK/PD model adequately describes bococizumab concentration and LDL-C efficacy. The covariate effects are consistent with the presumed mechanism of action of PCSK9 inhibitors. With increasing availability of antibody-based therapeutics, improved understanding of the effect of ADAs and statins on bococizumab PK/PD adds to the literature and enhances our pharmacological understanding of how immunogenicity and concomitant medications may impact the PK/PD of biotherapeutics.
Collapse
Affiliation(s)
- Ellen Q. Wang
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.New YorkNew YorkUSA
| | - Nitin Kaila
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.GrotonConnecticutUSA
| | - David Plowchalk
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.GrotonConnecticutUSA
| | | | - Carla Yunis
- Global Product Development, Pfizer Inc.FloridaUSA
| | - Kevin Sweeney
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.GrotonConnecticutUSA
| |
Collapse
|
37
|
Lee MV, Saad OM, Wong S, LaMar J, Kamen L, Ordonia B, Melendez R, Hassanzadeh A, Chung S, Kaur S. Development of a semi-automated MHC-associated peptide proteomics (MAPPs) method using streptavidin bead-based immunoaffinity capture and nano LC-MS/MS to support immunogenicity risk assessment in drug development. Front Immunol 2023; 14:1295285. [PMID: 38022649 PMCID: PMC10667718 DOI: 10.3389/fimmu.2023.1295285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Major histocompatibility complex (MHC)-Associated Peptide Proteomics (MAPPs) is an ex vivo method used to assess the immunogenicity risk of biotherapeutics. MAPPs can identify potential T-cell epitopes within the biotherapeutic molecule. Using adalimumab treated human monocyte derived dendritic cells (DCs) and a pan anti-HLA-DR antibody (Ab), we systematically automated and optimized biotin/streptavidin (SA)-capture antibody coupling, lysate incubation with capture antibody, as well as the washing and elution steps of a MAPPs method using functionalized magnetic beads and a KingFisher Magnetic Particle processor. Automation of these steps, combined with capturing using biotinylated-Ab/SA magnetic beads rather than covalently bound antibody, improved reproducibility as measured by minimal inter-and intra-day variability, as well as minimal analyst-to-analyst variability. The semi-automated MAPPs workflow improved sensitivity, allowing for a lower number of cells per analysis. The method was assessed using five different biotherapeutics with varying immunogenicity rates ranging from 0.1 to 48% ADA incidence in the clinic. Biotherapeutics with ≥10%immunogenicity incidence consistently presented more peptides (1.8-28 fold) and clusters (10-21 fold) compared to those with <10% immunogenicity incidence. Our semi-automated MAPPs method provided two main advantages over a manual workflow- the robustness and reproducibility affords confidence in the epitopes identified from as few as 5 to 10 donors and the method workflow can be readily adapted to incorporate different capture Abs in addition to anti-HLA-DR. The incorporation of semi-automated MAPPs with biotinylated-Ab/SA bead-based capture in immunogenicity screening strategies allows the generation of more consistent and reliable data, helping to improve immunogenicity prediction capabilities in drug development. MHC associated peptide proteomics (MAPPs), Immunogenicity risk assessment, in vitro/ex vivo, biotherapeutics, Major Histocompatibility Complex Class II (MHC II), LC-MS, Immunoaffinity Capture, streptavidin magnetic beads.
Collapse
Affiliation(s)
| | - Ola M. Saad
- *Correspondence: M. Violet Lee, ; Ola M. Saad,
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fernández-Quintero ML, Pomarici ND, Fischer ALM, Hoerschinger VJ, Kroell KB, Riccabona JR, Kamenik AS, Loeffler JR, Ferguson JA, Perrett HR, Liedl KR, Han J, Ward AB. Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines. Antibodies (Basel) 2023; 12:67. [PMID: 37873864 PMCID: PMC10594513 DOI: 10.3390/antib12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Antibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats. We emphasize the importance of considering antibodies as conformational ensembles in solution instead of focusing on single-static structures because their functions and properties are strongly governed by their dynamic nature. Thus, in this review, we provide an overview of the unique structural and dynamic characteristics of antibodies with respect to their antigen recognition, biophysical properties, and effector functions. We highlight the numerous technical advances in antibody structure prediction and design, enabled by the vast number of experimentally determined high-quality structures recorded with cryo-EM, NMR, and X-ray crystallography. Lastly, we assess antibody and vaccine design strategies in the context of structure and dynamics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy D. Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katharina B. Kroell
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Yamaguchi T, Fukuda M, Matsumoto Y, Mori T, Kikuchi S, Nagano R, Yamamoto K, Wakamatsu K. New high-throughput screening method for Chinese hamster ovary cell lines expressing low reduced monoclonal antibody levels: application of a system controlling the gas phase over cell lysates in miniature bioreactors and facilitating multiple sample setup. Cytotechnology 2023; 75:421-433. [PMID: 37655271 PMCID: PMC10465464 DOI: 10.1007/s10616-023-00587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
Interchain disulfide bonds in monoclonal antibodies may be reduced during large-scale mAb production using Chinese hamster ovary (CHO) cells. This reaction lowers the mAb product yield and purity; however, it may be prevented by screening cell lines that are unsusceptible to reduction and using them in mAb production. Antibody reduction susceptibility may be cell line-dependent. To the best of our knowledge, however, an efficient method of screening reduction-unsusceptible CHO cell lines has not been previously reported. Here, we report a novel screening method that can simultaneously detect and identify mAb reduction susceptibility in lysates containing ≤ 48 CHO cell lines. This evaluation system was equally effective and generated similar results at all culture scales, including 250 mL, 3 L, and 1000 L. Furthermore, we discovered that reduction-susceptible cell lines contained higher total intracellular nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+ concentrations than reduction-unsusceptible cell lines, regardless of whether they expressed immunoglobulin (Ig)G4 or IgG1. NADPH or NADP+ supplementation in the lysate of reduction-unsusceptible cells resulted in mAb reduction. Application of the innovative CHO cell line screening approach could mitigate or prevent reductions in large-scale mAb generation from CHO cells.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 Japan
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., 100-1, Hagiwara, Takasaki, Gunma 370-0013 Japan
| | - Mie Fukuda
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., 100-1, Hagiwara, Takasaki, Gunma 370-0013 Japan
| | - Yuichi Matsumoto
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., 100-1, Hagiwara, Takasaki, Gunma 370-0013 Japan
| | - Takaaki Mori
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., 100-1, Hagiwara, Takasaki, Gunma 370-0013 Japan
| | - Shinsuke Kikuchi
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., 100-1, Hagiwara, Takasaki, Gunma 370-0013 Japan
| | - Ryuma Nagano
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., 100-1, Hagiwara, Takasaki, Gunma 370-0013 Japan
| | - Koichi Yamamoto
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., 100-1, Hagiwara, Takasaki, Gunma 370-0013 Japan
| | - Kaori Wakamatsu
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| |
Collapse
|
40
|
Kida K, Hatanaka D, Minami M, Suzuki T, Iwakami M, Kobayashi M, Hayashi H, Kawahara H, Horikawa M, Kanaki T. Simple chitin-based cell culture platform for production of biopharmaceuticals. Biotechnol Lett 2023; 45:1265-1277. [PMID: 37606752 DOI: 10.1007/s10529-023-03422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVES Gene therapy using viral vectors and antibody-based therapies continue to expand within the pharmaceutical market. We evaluated whether Cellhesion® VP, a chitin-based material, can be used as 3D culture platform for cell lines used for the production of antibodies and viral vectors. RESULTS The results of Cell Counting Kit-8 assay and LDH assay revealed that Cellhesion® VP had no adverse effect to Human Embryonic Kidney (HEK) 293, A549 and Chinese hamster ovary (CHO) DG44-Interferon-β (IFN) cells. Cell growth analyses showed that Cellhesion® VP supported the 3D culture of HEK293, A549 and CHO DG44- IFN-β cells with a spherical morphology. Importantly, subculture of these cell lines on Cellhesion® VP was easily performed without trypsinization because cells readily transferred to newly added scaffold. Our data also suggest that CHO DG44-IFNβ, cultured on Cellhesion® VP secreted IFNβ stably and continuously during the culture period. CONCLUSIONS Cellhesion® VP provides a simple and streamlined expansion culture system for the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Katsuhiko Kida
- Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan.
| | - Daisuke Hatanaka
- Materials Research Laboratories, Nissan Chemical Corporation, Chiba, Japan
| | - Masataka Minami
- Materials Research Laboratories, Nissan Chemical Corporation, Chiba, Japan
| | - Taiyo Suzuki
- Materials Research Laboratories, Nissan Chemical Corporation, Chiba, Japan
| | - Masashi Iwakami
- Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Masaki Kobayashi
- Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | | | - Hiroharu Kawahara
- Department of Creative Engineering, Material Chemistry Course, National Institute of Technology Kitakyushu College, Fukuoka, Japan
| | | | | |
Collapse
|
41
|
Perez R, Li X, Giannakoulias S, Petersson EJ. AggBERT: Best in Class Prediction of Hexapeptide Amyloidogenesis with a Semi-Supervised ProtBERT Model. J Chem Inf Model 2023; 63:5727-5733. [PMID: 37552230 PMCID: PMC10777593 DOI: 10.1021/acs.jcim.3c00817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The prediction of peptide amyloidogenesis is a challenging problem in the field of protein folding. Large language models, such as the ProtBERT model, have recently emerged as powerful tools in analyzing protein sequences for applications, such as predicting protein structure and function. In this article, we describe the use of a semisupervised and fine-tuned ProtBERT model to predict peptide amyloidogenesis from sequences alone. Our approach, which we call AggBERT, achieved state-of-the-art performance, demonstrating the potential for large language models to improve the accuracy and speed of amyloid fibril prediction over simple heuristics or structure-based approaches. This work highlights the transformative potential of machine learning and large language models in the fields of chemical biology and biomedicine.
Collapse
Affiliation(s)
- Ryann Perez
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinning Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
42
|
Michels GM, Honsberger NA, Walters RR, Kira S Tena J, Cleaver DM. A prospective, randomized, double-blind, placebo-controlled multisite, parallel-group field study in dogs with osteoarthritis conducted in the United States of America evaluating bedinvetmab, a canine anti-nerve growth factor monoclonal antibody. Vet Anaesth Analg 2023; 50:446-458. [PMID: 37541934 DOI: 10.1016/j.vaa.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE Bedinvetmab, a fully canine anti-nerve growth factor monoclonal antibody, was evaluated in dogs for control of osteoarthritis-related pain in a study conducted to support registration in the USA. STUDY DESIGN Randomized, double-blind, placebo-controlled, multicenter, parallel-group study. ANIMALS General practice client-owned dogs with osteoarthritis (n = 272). METHODS Dogs were block randomized 1:1 to placebo (saline, n = 137) or bedinvetmab (n = 135; 0.5-1.0 mg kg-1) administered subcutaneously, once monthly. The primary end point, day 28 Canine Brief Pain Inventory (CBPI) treatment success (TS), required pain severity score (PSS; 0-10) decrease ≥1 and pain interference score (PIS; 0-10) decrease ≥ 2. CBPI TS rates [and number needed to treat (NNT)], change in scores [and standardized effect size (ES)], change in quality of life (QoL) and bedinvetmab half-life were calculated. RESULTS Significant (p < 0.05) improvement with bedinvetmab over placebo occurred (days 28, 42, 56, 84) for CBPI TS. Of cases evaluable for day 28 CBPI TS (placebo, n = 131; bedinvetmab, n = 128), success rates were 36.6% and 47.4%, respectively (p = 0.0410) (NNT, 9.3; PSS and PIS ES, 0.3). CBPI TS increased after the second dose in both groups, plateaued for bedinvetmab at day 42 and decreased for placebo beginning day 84. Day 84 NNT (4.3), PSS (0.4) and PIS (0.5) showed continued improvement with monthly dosing. After the first dose, mean (± standard deviation) bedinvetmab half-life was 19.1 (8.3) days. Adverse events were similar between groups and not considered treatment-related. There was a significant effect of bedinvetmab versus placebo on all CBPI components (PIS, PSS, QoL). CONCLUSIONS AND CLINICAL RELEVANCE These results corroborated those previously reported and provide further support of safety and effectiveness of bedinvetmab (0.5-1.0 mg kg-1) administered subcutaneously at monthly intervals to dogs for control of osteoarthritis-related pain.
Collapse
Affiliation(s)
- Gina M Michels
- Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, USA.
| | - Nicole A Honsberger
- Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, USA
| | - Rodney R Walters
- Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, USA
| | | | - Dawn M Cleaver
- Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, USA
| |
Collapse
|
43
|
Plikusiene I, Maciulis V, Vertelis V, Juciute S, Balevicius S, Ramanavicius A, Talbot J, Ramanaviciene A. Revealing the SARS-CoV-2 Spike Protein and Specific Antibody Immune Complex Formation Mechanism for Precise Evaluation of Antibody Affinity. Int J Mol Sci 2023; 24:13220. [PMID: 37686023 PMCID: PMC10487573 DOI: 10.3390/ijms241713220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
The profound understanding and detailed evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (SCoV2-S) protein and specific antibody interaction mechanism is of high importance in the development of immunosensors for COVID-19. In the present work, we studied a model system of immobilized SCoV2-S protein and specific monoclonal antibodies by molecular dynamics of immune complex formation in real time. We simultaneously applied spectroscopic ellipsometry and quartz crystal microbalance with dissipation to reveal the features and steps of the immune complex formation. We showed direct experimental evidence based on acoustic and optical measurements that the immune complex between covalently immobilized SCoV2-S and specific monoclonal antibodies is formed in two stages. Based on these findings it was demonstrated that applying a two-step binding mathematical model for kinetics analysis leads to a more precise determination of interaction rate constants than that determined by the 1:1 Langmuir binding model. Our investigation showed that the equilibrium dissociation constants (KD) determined by a two-step binding model and the 1:1 Langmuir model could differ significantly. The reported findings can facilitate a deeper understanding of antigen-antibody immune complex formation steps and can open a new way for the evaluation of antibody affinity towards corresponding antigens.
Collapse
Affiliation(s)
- Ieva Plikusiene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Vincentas Maciulis
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Vilius Vertelis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Silvija Juciute
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
| | - Saulius Balevicius
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Julian Talbot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, UMR 7600, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
| |
Collapse
|
44
|
Makowski EK, Chen HT, Tessier PM. Simplifying complex antibody engineering using machine learning. Cell Syst 2023; 14:667-675. [PMID: 37591204 PMCID: PMC10733906 DOI: 10.1016/j.cels.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 08/19/2023]
Abstract
Machine learning is transforming antibody engineering by enabling the generation of drug-like monoclonal antibodies with unprecedented efficiency. Unsupervised algorithms trained on massive and diverse protein sequence datasets facilitate the prediction of panels of antibody variants with native-like intrinsic properties (e.g., high stability), greatly reducing the amount of subsequent experimentation needed to identify specific candidates that also possess desired extrinsic properties (e.g., high affinity). Additionally, supervised algorithms, which are trained on deep sequencing datasets obtained after enrichment of in vitro antibody libraries for one or more specific extrinsic properties, enable the prediction of antibody variants with desired combinations of extrinsic properties without the need for additional screening. Here we review recent advances using both machine learning approaches and how they are impacting the field of antibody engineering as well as key outstanding challenges and opportunities for these paradigm-changing methods.
Collapse
Affiliation(s)
- Emily K Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hsin-Ting Chen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Yi Y, Gong J, Shi K, Mei J, Ying G, Wu S. Isolation of antibody by polymer microspheres embedded with E. coli displaying IgG-binding domain. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123825. [PMID: 37639993 DOI: 10.1016/j.jchromb.2023.123825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023]
Abstract
Antibody purification is an important aspect of quality and cost control in the production process of antibody drugs. In this study, modified E. coli was embedded into polymer microspheres (polyvinyl alcohol/alginate) for antibody separation and the IgG binding domain was displayed on the surface of E. coli. The results showed that ZZ protein (Fc binding domain of the antibody) was successfully displayed on the surface of E. coli and was embedded in polyvinyl alcohol/alginate microspheres. In addition, it has excellent specific adsorption capacity for antibodies, with a maximum adsorption capacity of 35.74 mg/g (wet microspheres). Through the adsorption isotherm and adsorption kinetics simulation, the adsorption of IgG on the microsphere matrix conforms to the Langmuir model and follows the pseudo-first-order kinetic equation. The microsphere matrix can undergo saturation adsorption at pH 7.2 and desorption at around pH 3.0. Desorption characteristics are consistent with those of rProtein A Sepharose FF®. After five cycles of the adsorption-desorption processes, the IgG adsorption capacity remains above 80%. Using polymer microspheres to separate antibodies from mouse ascites, the antibody purity reached 86.7% and the yield was 83.5%. These results provide an alternative to protein A matrix with low-cost, fast preparation and moderate efficiency.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Junpeng Gong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Kefan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shujiang Wu
- Biotest Biotech Co., Ltd, Hangzhou 310014, China.
| |
Collapse
|
46
|
Yamana K, Kawasaki R, Kondo K, Hirano H, Kawamura S, Sanada Y, Bando K, Tabata A, Azuma H, Takata T, Sakurai Y, Tanaka H, Kodama T, Kawamoto S, Nagasaki T, Ikeda A. HER-2-targeted boron neutron capture therapy using an antibody-conjugated boron nitride nanotube/β-1,3-glucan complex. NANOSCALE ADVANCES 2023; 5:3857-3861. [PMID: 37496630 PMCID: PMC10367957 DOI: 10.1039/d3na00028a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023]
Abstract
The development of boron agents with integrated functionality, including biocompatibility, high boron content, and cancer cell targeting, is desired to exploit the therapeutic efficacy of boron neutron capture therapy (BNCT). Here, we report the therapeutic efficacy of BNCT using a HER-2-targeted antibody-conjugated boron nitride nanotube/β-1,3-glucan complex. The anticancer effect of BNCT using our system was 30-fold that of the clinically available boron agent l-BPA/fructose complex.
Collapse
Affiliation(s)
- Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering 1-4-1 Kagamiyama Higashi-Hiroshima City 739-8527 Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering 1-4-1 Kagamiyama Higashi-Hiroshima City 739-8527 Japan
| | - Kousuke Kondo
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering 1-4-1 Kagamiyama Higashi-Hiroshima City 739-8527 Japan
| | - Hidetoshi Hirano
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering 1-4-1 Kagamiyama Higashi-Hiroshima City 739-8527 Japan
| | - Shogo Kawamura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering 1-4-1 Kagamiyama Higashi-Hiroshima City 739-8527 Japan
| | - Yu Sanada
- Institute for Integrated Radiation and Nuclear Science, Kyoto University 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Kaori Bando
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka City 558-8585 Japan
| | - Anri Tabata
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka City 558-8585 Japan
| | - Hideki Azuma
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka City 558-8585 Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Tomoki Kodama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8530 Japan
| | - Seiji Kawamoto
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8530 Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka City 558-8585 Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering 1-4-1 Kagamiyama Higashi-Hiroshima City 739-8527 Japan
| |
Collapse
|
47
|
Yin R, Pierce BG. Evaluation of AlphaFold Antibody-Antigen Modeling with Implications for Improving Predictive Accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547832. [PMID: 37461571 PMCID: PMC10349958 DOI: 10.1101/2023.07.05.547832] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
High resolution antibody-antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody-antigen complexes. Initial benchmarking showed that despite overall success in modeling protein-protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody-antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody-antigen modeling performance on 429 nonredundant antibody-antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. We show the importance of bound-like component modeling in complex assembly accuracy, and that the current version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version. With this improved success, AlphaFold can generate accurate antibody-antigen models in many cases, while additional training may further improve its performance.
Collapse
Affiliation(s)
- Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
48
|
Ranallo S, Bracaglia S, Sorrentino D, Ricci F. Synthetic Antigen-Conjugated DNA Systems for Antibody Detection and Characterization. ACS Sens 2023. [PMID: 37463359 PMCID: PMC10391708 DOI: 10.1021/acssensors.3c00564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Antibodies are among the most relevant biomolecular targets for diagnostic and clinical applications. In this Perspective, we provide a critical overview of recent research efforts focused on the development and characterization of devices, switches, and reactions based on the use of synthetic antigen-conjugated DNA strands designed to be responsive to specific antibodies. These systems can find applications in sensing, drug-delivery, and antibody-antigen binding characterization. The examples described here demonstrate how the programmability and chemical versatility of synthetic nucleic acids can be used to create innovative analytical tools and target-responsive systems with promising potentials.
Collapse
Affiliation(s)
- Simona Ranallo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Sara Bracaglia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Daniela Sorrentino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
49
|
Matsuyama K, Kurihara C, Crawley FP, Kerpel-Fronius S. Utilization of genetic information for medicines development and equitable benefit sharing. Front Genet 2023; 14:1085864. [PMID: 37388927 PMCID: PMC10300349 DOI: 10.3389/fgene.2023.1085864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/03/2023] [Indexed: 07/01/2023] Open
Abstract
Advances in genomic research have significantly enhanced modern drug development. However, equitable benefit sharing of the results of scientific advancement has not always been achieved. This paper shows how molecular biology has modified medicines development while also leaving open significant challenges for benefit sharing. Presented here is a conceptual modeling describing the processes in genetic-related medicines development and how these are related to specific ethical considerations. The focus is on three important areas: 1) population genetics and the need for discrimination prevention; 2) pharmacogenomics and the need for inclusive governance; and 3) global health to be achieved in open science frameworks. Benefit sharing is taken as the ethical value that underlies all these aspects. The implementation of benefit sharing requires a value shift in which the outcomes of health science are not viewed simply as trade commodities but also as a "global public good". This approach should lead to genetic science to contribute to promoting the fundamental human right to health to all members of the global community.
Collapse
|
50
|
Yang J, Ostafe R, Welch CJ, Verhalen B, Budyak IL, Bruening ML. Rapid Quantitation of Various Therapeutic Monoclonal Antibodies Using Membranes with Fc-Specific Ligands. Anal Chem 2023. [PMID: 37216615 DOI: 10.1021/acs.analchem.3c00531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) provide effective treatments for many diseases, including cancer, autoimmune disorders, and, lately, COVID-19. Monitoring the concentrations of mAbs is important during their production and subsequent processing. This work demonstrates a 5 min quantitation of most human immunoglobulin G (IgG) antibodies through capture of mAbs in membranes modified with ligands that bind to the fragment crystallizable (Fc) region. This enables binding and quantitation of most IgG mAbs. Layer-by-layer (LBL) adsorption of carboxylic acid-rich polyelectrolytes in glass-fiber membranes in 96-well plates allows functionalization of the membranes with Protein A or a peptide, oxidized Fc20 (oFc20), with high affinity for the Fc region of human IgG. mAb capture occurs in <1 min during the flow of solutions through modified membranes, and subsequent binding of a fluorophore-labeled secondary antibody enables quantitation of the captured mAbs using fluorescence. The intra- and inter-plate coefficients of variations (CV) are <10 and 15%, respectively, satisfying the acceptance criteria for many assays. The limit of detection (LOD) of 15 ng/mL is on the high end of commercial enzyme-linked immunosorbent assays (ELISAs) but certainly low enough for monitoring of manufacturing solutions. Importantly, the membrane-based method requires <5 minutes, whereas ELISAs typically take at least 90 min. Membranes functionalized with oFc20 show greater mAb binding and lower LODs than membranes with Protein A. Thus, the membrane-based 96-well-plate assay, which is effective in diluted fermentation broths and in mixtures with cell lysates, is suitable for near-real-time monitoring of the general class of human IgG mAbs during their production.
Collapse
Affiliation(s)
- Junyan Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility, Purdue Institute for Inflammation, Immunology and Infection Diseases, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J Welch
- Indiana Consortium for Analytical Science & Engineering (ICASE), 410 W. 10th St., # 1020H, Indianapolis, Indiana 46202, United States
| | - Brandy Verhalen
- Corteva Agriscience, 8325 NW 62nd Ave, Johnston, Iowa 50131, United States
| | - Ivan L Budyak
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|