1
|
Soto P, Ho N, Lockwood M, Stolte A, Reed JH, Morales R. Chronic wasting disease (CWD) prion detection in environmental and biological samples from a taxidermy site and nursing facility, and instruments used in surveillance activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179318. [PMID: 40209589 DOI: 10.1016/j.scitotenv.2025.179318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/27/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Chronic wasting disease (CWD) is a transmissible prionopathy affecting free-ranging and captive cervids. CWD is thought to spread through both direct and indirect transmission mechanisms. Along this line, human activities have not been thoroughly explored for their potential to spread this disease. One area of concern involves taxidermy procedures and surveillance activities as handled animals or carcasses are of unknown CWD statuses. Worrisomely, taxidermy facilities can act as foci of prion infectivity if appropriate biosecurity practices are not implemented. In this study, we evaluated the presence of infectious prions in a taxidermy facility that was possibly exposed to CWD prions. To determine this, we collected biological and environmental specimens from this site and screened them using the protein misfolding cyclic amplification (PMCA) technique. Additionally, we swabbed different surfaces possibly exposed to CWD-infected animals or carcasses. We report the presence of prions in i) waters used to digest tissues from deer carcasses, ii) soils that were in contact with the previously mentioned waters, iii) dermestid beetles used to clean skulls, iv) other insects found in the beetle shed, and iv) dumpsters where animal carcasses were disposed. Additionally, we report that surgical materials used in surveillance practices may also hold CWD prions, even after being washed with aqueous solutions. All these results suggest that CWD prions may be disseminated due to human practices and that protocols should be established to decontaminate potentially contaminated materials.
Collapse
Affiliation(s)
- Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States of America; Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Nancy Ho
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Mitch Lockwood
- Texas Parks and Wildlife Department (TPWD), Kerrville, TX, United States of America
| | - Austin Stolte
- Texas Parks and Wildlife Department (TPWD), Kerrville, TX, United States of America
| | - J Hunter Reed
- Texas Parks and Wildlife Department (TPWD), Kerrville, TX, United States of America
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States of America; Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
2
|
Salciccia C, Costanzo M, Ruocco G, Porreca F, Vivacqua G, Fabbrini G, Belvisi D, Ladogana A, Poleggi A. Proteopathic seed amplification assays in easily accessible specimens for human synucleinopathies, tauopathies, and prionopathies: A scoping review. Neurosci Biobehav Rev 2025; 169:105997. [PMID: 39746590 DOI: 10.1016/j.neubiorev.2024.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
A hallmark event in neurodegenerative diseases is represented by the misfolding, aggregation and accumulation of proteins, leading to cellular and network dysfunction preceding the development of clinical symptoms by years. Early diagnosis represents a crucial issue in the field of neuroscience as it offers the potential to utilize this therapeutic window in the future to manage disease-modifying therapy. Seed amplification assays, including Real-Time Quaking-Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA), have emerged in recent years as innovative techniques developed to detect minute amounts of amyloidogenic proteins. These techniques can utilize various biological fluids and tissues, with most evidence to date regarding their potential diagnostic use focusing on cerebrospinal fluid. In this scoping review, we aimed to investigate and discuss the available evidence regarding the diagnostic use of these assays on easily accessible biological fluids and tissues in patients affected by synucleinopathies, tauopathies or prion diseases. From a systematic search on two databases, Scopus and Pubmed, we identified 49 studies. Although most identified studies have used skin and olfactory mucosa as biological samples, there is preliminary evidence suggesting the potential implementation of these techniques using fluids as blood, saliva and tears. The results achieved so far, as well as methodological aspects and limitations to overcome, are discussed.
Collapse
Affiliation(s)
- Clara Salciccia
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Matteo Costanzo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Giulia Ruocco
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Flavia Porreca
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Giorgio Vivacqua
- Department of Experimental Morphology and Microscopy-Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome 00128, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
3
|
Pritzkow S, Schauer I, Tupaki-Sreepurna A, Morales R, Soto C. Screening of Anti-Prion Compounds Using the Protein Misfolding Cyclic Amplification Technology. Biomolecules 2024; 14:1113. [PMID: 39334879 PMCID: PMC11430292 DOI: 10.3390/biom14091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Prion diseases are 100% fatal infectious neurodegenerative diseases affecting the brains of humans and other mammals. The disease is caused by the formation and replication of prions, composed exclusively of the misfolded prion protein (PrPSc). We invented and developed the protein misfolding cyclic amplification (PMCA) technology for in vitro prion replication, which allow us to replicate the infectious agent and it is commonly used for ultra-sensitive prion detection in biological fluids, tissues and environmental samples. In this article, we studied whether PMCA can be used to screen for chemical compounds that block prion replication. A small set of compounds previously shown to have anti-prion activity in various systems, mostly using cells infected with murine prions, was evaluated for their ability to prevent the replication of prions. Studies were conducted simultaneously with prions derived from 4 species, including human, cattle, cervid and mouse. Our results show that only one of these compounds (methylene blue) was able to completely inhibit prion replication in all species. Estimation of the IC50 for methylene blue inhibition of human prions causing variant Creutzfeldt-Jakob disease (vCJD) was 7.7 μM. Finally, we showed that PMCA can be used for structure-activity relationship studies of anti-prion compounds. Interestingly, some of the less efficient prion inhibitors altered the replication of prions in some species and not others, suggesting that PMCA is useful for studying the differential selectivity of potential drugs.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Isaac Schauer
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Ananya Tupaki-Sreepurna
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Rodrigo Morales
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| |
Collapse
|
4
|
Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Mol Cells 2024; 47:100089. [PMID: 38971320 PMCID: PMC11286998 DOI: 10.1016/j.mocell.2024.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The accumulation of aggregation-prone proteins in a specific neuronal population is a common feature of neurodegenerative diseases, which is correlated with the development of pathological lesions in diseased brains. The formation and progression of pathological protein aggregates in susceptible neurons induce cellular dysfunction, resulting in progressive degeneration. Moreover, recent evidence supports the notion that the cell-to-cell transmission of pathological protein aggregates may be involved in the onset and progression of many neurodegenerative diseases. Indeed, several studies have identified different pathological aggregate strains. Although how these different aggregate strains form remains unclear, a variety of biomolecular compositions or cross-seeding events promoted by the presence of other protein aggregates in the cellular environment may affect the formation of different strains of pathological aggregates, which in turn can influence complex pathologies in diseased brains. In this review, we summarize the recent results regarding cell-to-cell transmission and the molecular heterogeneity of pathological aggregate strains, raising key questions for future research directions.
Collapse
Affiliation(s)
- Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
5
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
6
|
Burgener K, Lichtenberg SS, Walsh DP, Inzalaco HN, Lomax A, Pedersen JA. Prion Seeding Activity in Plant Tissues Detected by RT-QuIC. Pathogens 2024; 13:452. [PMID: 38921750 PMCID: PMC11206635 DOI: 10.3390/pathogens13060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Prion diseases such as scrapie, bovine spongiform encephalopathy (BSE), and chronic wasting disease (CWD) affect domesticated and wild herbivorous mammals. Animals afflicted with CWD, the transmissible spongiform encephalopathy of cervids (deer, elk, and moose), shed prions into the environment, where they may persist and remain infectious for years. These environmental prions may remain in soil, be transported in surface waters, or assimilated into plants. Environmental sampling is an emerging area of TSE research and can provide more information about prion fate and transport once shed by infected animals. In this study, we have developed the first published method for the extraction and detection of prions in plant tissue using the real-time quaking-induced conversion (RT-QuIC) assay. Incubation with a zwitterionic surfactant followed by precipitation with sodium phosphotungstate concentrates the prions within samples and allows for sensitive detection of prion seeding activity. Using this protocol, we demonstrate that prions can be detected within plant tissues and on plant surfaces using the RT-QuIC assay.
Collapse
Affiliation(s)
- Kate Burgener
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.)
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stuart Siegfried Lichtenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for Prion Research and Outreach, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | - Heather N. Inzalaco
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron Lomax
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Varizymes, Middleton, WI 53562, USA
| | - Joel A. Pedersen
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.)
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
7
|
Bartz JC, Benavente R, Caughey B, Christensen S, Herbst A, Hoover EA, Mathiason CK, McKenzie D, Morales R, Schwabenlander MD, Walsh DP. Chronic Wasting Disease: State of the Science. Pathogens 2024; 13:138. [PMID: 38392876 PMCID: PMC10892334 DOI: 10.3390/pathogens13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervid species, both free-ranging and captive populations. As the geographic range continues to expand and disease prevalence continues to increase, CWD will have an impact on cervid populations, local economies, and ecosystem health. Mitigation of this "wicked" disease will require input from many different stakeholders including hunters, landowners, research biologists, wildlife managers, and others, working together. The NC1209 (North American interdisciplinary chronic wasting disease research consortium) is composed of scientists from different disciplines involved with investigating and managing CWD. Leveraging this broad breadth of expertise, the Consortium has created a state-of-the-science review of five key aspects of CWD, including current diagnostic capabilities for detecting prions, requirements for validating these diagnostics, the role of environmental transmission in CWD dynamics, and potential zoonotic risks associated with CWD. The goal of this review is to increase stakeholders', managers', and decision-makers' understanding of this disease informed by current scientific knowledge.
Collapse
Affiliation(s)
- Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Sonja Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Candace K. Mathiason
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Debbie McKenzie
- Department of Biological Sciences, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M9, Canada;
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Marc D. Schwabenlander
- Minnesota Center for Prion Research and Outreach, Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
8
|
Catumbela CSG, Morales R. Transmission of amyloid-β pathology in humans: a perspective on clinical evidence. Neural Regen Res 2024; 19:390-392. [PMID: 37488896 PMCID: PMC10503612 DOI: 10.4103/1673-5374.377610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Celso S. G. Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile (Morales R)
| |
Collapse
|
9
|
Soto P, Bravo-Risi F, Kramm C, Gamez N, Benavente R, Bonilla DL, Reed JH, Lockwood M, Spraker TR, Nichols T, Morales R. Nasal bots carry relevant titers of CWD prions in naturally infected white-tailed deer. EMBO Rep 2024; 25:334-350. [PMID: 38191872 PMCID: PMC10883265 DOI: 10.1038/s44319-023-00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.
Collapse
Affiliation(s)
- Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Denise L Bonilla
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Terry R Spraker
- Colorado State University Diagnostic Medical Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
10
|
Pritzkow S, Ramirez F, Lyon A, Schulz PE, Appleby B, Moda F, Ramirez S, Notari S, Gambetti P, Soto C. Detection of prions in the urine of patients affected by sporadic Creutzfeldt-Jakob disease. Ann Clin Transl Neurol 2023; 10:2316-2323. [PMID: 37814583 PMCID: PMC10723238 DOI: 10.1002/acn3.51919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Currently, it is unknown whether infectious prions are present in peripheral tissues and biological fluids of patients affected by sporadic Creutzfeldt-Jakob disease (sCJD), the most common prion disorder in humans. This represents a potential risk for inter-individual prion infection. The main goal of this study was to evaluate the presence of prions in urine of patients suffering from the major subtypes of sCJD. METHODS Urine samples from sCJD patients spanning the six major subtypes were tested. As controls, we used urine samples from people affected by other neurological or neurodegenerative diseases as well as healthy controls. These samples were analyzed blinded. The presence of prions was detected by a modified version of the PMCA technology, specifically optimized for high sensitive detection of sCJD prions. RESULTS The PMCA assay was first optimized to detect low quantities of prions in diluted brain homogenates from patients affected by all subtypes of sCJD spiked into healthy urine. Twenty-nine of the 81 patients affected by sCJD analyzed in this study were positive by PMCA testing, whereas none of the 160 controls showed any signal. These results indicate a 36% sensitivity and 100% specificity. The subtypes with the highest positivity rate were VV1 and VV2, which combined account for about 15-20% of all sCJD cases, and no detection was observed in MV1 and MM2. INTERPRETATION Our findings indicate that potentially infectious prions are secreted in urine of some sCJD patients, suggesting a possible risk for inter-individual transmission. Prion detection in urine might be used as a noninvasive preliminary screening test to detect sCJD.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Frank Ramirez
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Adam Lyon
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Paul E. Schulz
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Brian Appleby
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Fabio Moda
- Division of Neurology 5 – NeuropathologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Santiago Ramirez
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Silvio Notari
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | | | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| |
Collapse
|
11
|
Benavente R, Reed JH, Lockwood M, Morales R. PMCA screening of retropharyngeal lymph nodes in white-tailed deer and comparisons with ELISA and IHC. Sci Rep 2023; 13:20171. [PMID: 37978312 PMCID: PMC10656533 DOI: 10.1038/s41598-023-47105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. CWD diagnosis is conducted through enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) in retropharyngeal lymph nodes. Unfortunately, these techniques have limited sensitivity against the biomarker (CWD-prions). Two in vitro prion amplification techniques, real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), have shown promise in detecting CWD-prions in tissues and bodily fluids. Recent studies have demonstrated that RT-QuIC yields similar results compared to ELISA and IHC. Here, we analyzed 1003 retropharyngeal lymph nodes (RPLNs) from Texas white-tailed deer. PMCA detected CWD at a higher rate compared to ELISA/IHC, identified different prion strains, and revealed the presence of CWD-prions in places with no previous history. These findings suggest that PMCA exhibits greater sensitivity than current standard techniques and could be valuable for rapid and strain-specific CWD detection.
Collapse
Affiliation(s)
- Rebeca Benavente
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
12
|
Soto P, Bravo-Risi F, Benavente R, Lichtenberg S, Lockwood M, Reed JH, Morales R. Identification of chronic wasting disease prions in decaying tongue tissues from exhumed white-tailed deer. mSphere 2023; 8:e0027223. [PMID: 37800903 PMCID: PMC10597447 DOI: 10.1128/msphere.00272-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Chronic wasting disease (CWD) prions cause fatal neuropathies in farmed and free-ranging cervids. The deposition of prions in natural and humanmade environmental components has been implicated as a major mechanism mediating CWD spread in wild and captive populations. Prions can be deposited in the environment through excreta, tissues, and carcasses from pre-clinical and clinical animals. Furthermore, burial of CWD-positive animals may reduce but not completely mitigate prion spread from carcasses into the surrounding environment. Here, we analyzed exhumed, decaying deer carcasses for the presence of CWD prions. By analyzing tongue tissues through the protein misfolding cyclic amplification (PMCA) technique, we were able to identify seven out of 95 exhumed white-tailed deer carcasses as CWD prions carriers. Confirmatory analyses were performed using the real-time quaking-induced conversion (RT-QuIC) technique. In addition, we evaluated the potential contamination of the pens that housed these animals by swabbing feeders and waterers. PMCA analyses of swabs confirmed CWD contamination on farming equipment. This work demonstrates the usefulness of PMCA to detect CWD prions in a variety of contexts, including exhumed/decaying tissues. In addition, this is the first report demonstrating swabbing coupled with PMCA as a method for the detection of prion seeding activity on naturally exposed surfaces. Considering that this study was focused on a single site, further studies should confirm whether prion amplification assays are useful to identify CWD prions not only in animals but also in the environment that contains them. IMPORTANCE Environmental contamination is thought to be a major player in the spread of chronic wasting disease (CWD), a fatal prion disease affecting a wide variety of cervid species. At present, there are no officially approved methods allowing for the detection of prion infectivity in environmental components. Importantly, animal as well as anthropogenic activities are thought to contribute to prion environmental contamination. Here, we detected CWD prions in exhumed white-tailed deer carcasses by using the protein misfolding cyclic amplification (PMCA) assay. In addition, we identified CWD prions in feeders used within the infected facility. These results highlight the potential role of PMCA in identifying prion infectivity in a variety of scenarios, ranging from decaying tissues to farming equipment.
Collapse
Affiliation(s)
- Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stuart Lichtenberg
- Department of Veterinary and Biomedical Sciences, Minnesota Prion Research and Outreach Center, University of Minnesota, Saint Paul, Minnesota, USA
| | - Mitch Lockwood
- Texas Parks and Wildlife Department, Kerrville, Texas, USA
| | - J. Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
13
|
Concha-Marambio L, Wang F, Armijo E, Gorski D, Ramirez F, Scowcroft A, Pritzkow S, Soto C. Development of a methodology for large-scale production of prions for biological and structural studies. Front Mol Biosci 2023; 10:1184029. [PMID: 37635939 PMCID: PMC10449461 DOI: 10.3389/fmolb.2023.1184029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Prion diseases are a group of infectious neurodegenerative diseases produced by the conversion of the normal prion protein (PrPC) into the disease-associated form (PrPSc). Extensive evidence indicate that the main or sole component of the infectious agent is PrPSc, which can replicate in affected individuals in the absence of nucleic acids. However, the mechanism of PrPC-to-PrPSc conversion remains elusive, which has been attributed to the lack of sufficient structural information of infectious PrPSc and a reliable system to study prion replication in vitro. In this article we adapted the Protein Misfolding Cyclic Amplification (PMCA) technology for rapid and efficient generation of highly infectious prions in large-scale. Murine prions of the RML strain were efficiently propagated in volumes up to 1,000-fold larger than conventional PMCA. The large-scale PMCA (LS-PMCA) procedure enabled to produce highly infectious prions, which maintain the strain properties of the seed used to begin the reaction. LS-PMCA was shown to work with various species and strains of prions, including mouse RML and 301C strains, hamster Hyper prion, cervid CWD prions, including a rare Norwegian CWD prion, and human CJD prions. We further improved the LS-PMCA into a bioreactor format that can operate under industry-mimicking conditions for continuous and unlimited production of PrPSc without the need to keep adding brain-derived prions. In our estimation, this bioreactor can produce in 1d an amount of prions equivalent to that present in 25 infected animals at the terminal stage of the disease. Our LS-PMCA technology may provide a valuable tool to produce large quantities of well-defined and homogeneous infectious prions for biological and structural studies.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| | - Fei Wang
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Enrique Armijo
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Damian Gorski
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Frank Ramirez
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Andrew Scowcroft
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| |
Collapse
|
14
|
Gomez‐Gutierrez R, Ghosh U, Yau W, Gamez N, Do K, Kramm C, Shirani H, Vegas‐Gomez L, Schulz J, Moreno‐Gonzalez I, Gutierrez A, Nilsson KPR, Tycko R, Soto C, Morales R. Two structurally defined Aβ polymorphs promote different pathological changes in susceptible mice. EMBO Rep 2023; 24:e57003. [PMID: 37424505 PMCID: PMC10398671 DOI: 10.15252/embr.202357003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023] Open
Abstract
Misfolded Aβ is involved in the progression of Alzheimer's disease (AD). However, the role of its polymorphic variants or conformational strains in AD pathogenesis is not fully understood. Here, we study the seeding properties of two structurally defined synthetic misfolded Aβ strains (termed 2F and 3F) using in vitro and in vivo assays. We show that 2F and 3F strains differ in their biochemical properties, including resistance to proteolysis, binding to strain-specific dyes, and in vitro seeding. Injection of these strains into a transgenic mouse model produces different pathological features, namely different rates of aggregation, formation of different plaque types, tropism to specific brain regions, differential recruitment of Aβ40 /Aβ42 peptides, and induction of microglial and astroglial responses. Importantly, the aggregates induced by 2F and 3F are structurally different as determined by ssNMR. Our study analyzes the biological properties of purified Aβ polymorphs that have been characterized at the atomic resolution level and provides relevant information on the pathological significance of misfolded Aβ strains.
Collapse
Affiliation(s)
- Ruben Gomez‐Gutierrez
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
| | - Ujjayini Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Wai‐Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Nazaret Gamez
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
| | - Katherine Do
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Carlos Kramm
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Hamid Shirani
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Laura Vegas‐Gomez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
| | - Jonathan Schulz
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Ines Moreno‐Gonzalez
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
| | - Antonia Gutierrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - K Peter R Nilsson
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Claudio Soto
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Rodrigo Morales
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
| |
Collapse
|
15
|
Inzalaco HN, Bravo-Risi F, Morales R, Walsh DP, Storm DJ, Pedersen JA, Turner WC, Lichtenberg SS. Ticks harbor and excrete chronic wasting disease prions. Sci Rep 2023; 13:7838. [PMID: 37188858 DOI: 10.1038/s41598-023-34308-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting cervids. Circulating PrPCWD in blood may pose a risk for indirect transmission by way of hematophagous ectoparasites acting as mechanical vectors. Cervids can carry high tick infestations and exhibit allogrooming, a common tick defense strategy between conspecifics. Ingestion of ticks during allogrooming may expose naïve animals to CWD, if ticks harbor PrPCWD. This study investigates whether ticks can harbor transmission-relevant quantities of PrPCWD by combining experimental tick feeding trials and evaluation of ticks from free-ranging white-tailed deer (Odocoileus virginianus). Using the real-time quaking-induced conversion (RT-QuIC) assay, we show that black-legged ticks (Ixodes scapularis) fed PrPCWD-spiked blood using artificial membranes ingest and excrete PrPCWD. Combining results of RT-QuIC and protein misfolding cyclic amplification, we detected seeding activity from 6 of 15 (40%) pooled tick samples collected from wild CWD-infected white-tailed deer. Seeding activities in ticks were analogous to 10-1000 ng of CWD-positive retropharyngeal lymph node collected from deer upon which they were feeding. Estimates revealed a median infectious dose range of 0.3-42.4 per tick, suggesting that ticks can take up transmission-relevant amounts of PrPCWD and may pose a CWD risk to cervids.
Collapse
Affiliation(s)
- H N Inzalaco
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA.
| | - F Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - R Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - D P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| | - D J Storm
- Wisconsin Department of Natural Resources, Eau Claire, WI, USA
| | - J A Pedersen
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - W C Turner
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, U.S. Geological Survey, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - S S Lichtenberg
- Department of Soil Science, University of Wisconsin, Madison, Madison, WI, USA
| |
Collapse
|
16
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
18
|
Staderini M, Vanni S, Baldeschi AC, Giachin G, Zattoni M, Celauro L, Ferracin C, Bistaffa E, Moda F, Pérez DI, Martínez A, Martín MA, Martín-Cámara O, Cores Á, Bianchini G, Kammerer R, Menéndez JC, Legname G, Bolognesi ML. Bifunctional carbazole derivatives for simultaneous therapy and fluorescence imaging in prion disease murine cell models. Eur J Med Chem 2022; 245:114923. [DOI: 10.1016/j.ejmech.2022.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/20/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
|
19
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
20
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
21
|
Srivastava A, Alam P, Caughey B. RT-QuIC and Related Assays for Detecting and Quantifying Prion-like Pathological Seeds of α-Synuclein. Biomolecules 2022; 12:biom12040576. [PMID: 35454165 PMCID: PMC9030929 DOI: 10.3390/biom12040576] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Various disease-associated forms or strains of α-synuclein (αSynD) can spread and accumulate in a prion-like fashion during synucleinopathies such as Parkinson’s disease (PD), Lewy body dementia (DLB), and multiple system atrophy (MSA). This capacity for self-propagation has enabled the development of seed amplification assays (SAAs) that can detect αSynD in clinical samples. Notably, α-synuclein real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays have evolved as ultrasensitive, specific, and relatively practical methods for detecting αSynD in a variety of biospecimens including brain tissue, CSF, skin, and olfactory mucosa from synucleinopathy patients. However, αSyn SAAs still lack concordance in detecting MSA and familial forms of PD/DLB, and the assay parameters show poor correlations with various clinical measures. End-point dilution analysis in αSyn RT-QuIC assays allows for the quantitation of relative amounts of αSynD seeding activity that may correlate moderately with clinical measures and levels of other biomarkers. Herein, we review recent advancements in α-synuclein SAAs for detecting αSynD and describe in detail the modified Spearman–Karber quantification algorithm used with end-point dilutions.
Collapse
|
22
|
Development of HANABI, an ultrasonication-forced amyloid fibril inducer. Neurochem Int 2021; 153:105270. [PMID: 34954259 DOI: 10.1016/j.neuint.2021.105270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Amyloid fibrils involved in amyloidoses are crystal-like aggregates, which are formed by breaking supersaturation of denatured proteins. Ultrasonication is an efficient method of agitation for breaking supersaturation and thus inducing amyloid fibrils. By combining an ultrasonicator and a microplate reader, we developed the HANABI (HANdai Amyloid Burst Inducer) system that enables high-throughput analysis of amyloid fibril formation. Among high-throughput approaches of amyloid fibril assays, the HANABI system has advantages in accelerating and detecting spontaneous amyloid fibril formation. HANABI is also powerful for amplifying a tiny amount of preformed amyloid fibrils by seeding. Thus, HANABI will contribute to creating therapeutic strategies against amyloidoses by identifying their biomarkers.
Collapse
|
23
|
Wu J, Chen D, Shi Q, Dong X. Protein amplification technology: New advances in human prion disease diagnosis. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Pritzkow S, Morales R, Camacho M, Soto C. Uptake, Retention, and Excretion of Infectious Prions by Experimentally Exposed Earthworms. Emerg Infect Dis 2021; 27:3151-3154. [PMID: 34808087 PMCID: PMC8632197 DOI: 10.3201/eid2712.204236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions are proteinaceous infectious agents that can be transmitted through various components of the environment, including soil particles. We found that earthworms exposed to prion-contaminated soil can bind, retain, and excrete prions, which remain highly infectious. Our results suggest that earthworms potentially contribute to prion disease spread in the environment.
Collapse
|
25
|
Pirooznia SK, Rosenthal LS, Dawson VL, Dawson TM. Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. Pharmacol Rev 2021; 73:33-97. [PMID: 34663684 DOI: 10.1124/pharmrev.120.000189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease (PD) used to be considered a nongenetic condition. However, the identification of several autosomal dominant and recessive mutations linked to monogenic PD has changed this view. Clinically manifest PD is then thought to occur through a complex interplay between genetic mutations, many of which have incomplete penetrance, and environmental factors, both neuroprotective and increasing susceptibility, which variably interact to reach a threshold over which PD becomes clinically manifested. Functional studies of PD gene products have identified many cellular and molecular pathways, providing crucial insights into the nature and causes of PD. PD originates from multiple causes and a range of pathogenic processes at play, ultimately culminating in nigral dopaminergic loss and motor dysfunction. An in-depth understanding of these complex and possibly convergent pathways will pave the way for therapeutic approaches to alleviate the disease symptoms and neuroprotective strategies to prevent disease manifestations. This review is aimed at providing a comprehensive understanding of advances made in PD research based on leveraging genetic insights into the pathogenesis of PD. It further discusses novel perspectives to facilitate identification of critical molecular pathways that are central to neurodegeneration that hold the potential to develop neuroprotective and/or neurorestorative therapeutic strategies for PD. SIGNIFICANCE STATEMENT: A comprehensive review of PD pathophysiology is provided on the complex interplay of genetic and environmental factors and biologic processes that contribute to PD pathogenesis. This knowledge identifies new targets that could be leveraged into disease-modifying therapies to prevent or slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Sheila K Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Liana S Rosenthal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| |
Collapse
|
26
|
Bravo-Risi F, Soto P, Eckland T, Dittmar R, Ramírez S, Catumbela CSG, Soto C, Lockwood M, Nichols T, Morales R. Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Sci Rep 2021; 11:18385. [PMID: 34526562 PMCID: PMC8443553 DOI: 10.1038/s41598-021-97737-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids. CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environmental fomites. Other mechanisms of propagation such as vertical and maternal transmissions have also been suggested using naturally and experimentally infected animals. Here, we describe the detection of CWD prions in naturally-infected, farmed white-tailed deer (WTD) fetal tissues using the Protein Misfolding Cyclic Amplification (PMCA) technique. Prion seeding activity was identified in a variety of gestational and fetal tissues. Future studies should demonstrate if prions present in fetuses are at sufficient quantities to cause CWD after birth. This data confirms previous findings in other animal species and furthers vertical transmission as a relevant mechanism of CWD dissemination.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Thomas Eckland
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Santiago Ramírez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Celso S G Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA. .,Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
27
|
Bian J, Kim S, Kane SJ, Crowell J, Sun JL, Christiansen J, Saijo E, Moreno JA, DiLisio J, Burnett E, Pritzkow S, Gorski D, Soto C, Kreeger TJ, Balachandran A, Mitchell G, Miller MW, Nonno R, Vikøren T, Våge J, Madslien K, Tran L, Vuong TT, Benestad SL, Telling GC. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog 2021; 17:e1009748. [PMID: 34310663 PMCID: PMC8341702 DOI: 10.1371/journal.ppat.1009748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission. Prions cause fatal, transmissible neurodegenerative diseases in animals and humans. They are composed of an infectious, neurotoxic protein (PrP) which replicates by imposing pathogenic conformations on its normal, host-encoded counterpart. Chronic wasting disease (CWD) is a contagious prion disorder threatening increasing numbers of free-ranging and captive North American deer, elk, and moose. While CWD detection in Norwegian reindeer and moose in 2016 marked the advent of disease in Europe, its origins and relationship to North American CWD were initially unclear. Here we show, using mice engineered to express deer or elk PrP, that Norwegian reindeer and moose CWD are caused by novel prion strains with properties distinct from those of North American CWD. We found that selection and propagation of North American and Norwegian CWD strains was controlled by a key amino acid residue in host PrP. We also found that particular Norwegian isolates adapted during their propagation in mice to produce prions with characteristics of the North American strain. Our findings defining the transmission profiles of novel Norwegian prions and their unstable potential to produce adapted strains with improved fitness for contagious transmission have implications for risk analyses and management of emergent European CWD.
Collapse
Affiliation(s)
- Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Christiansen
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eri Saijo
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A. Moreno
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James DiLisio
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Burnett
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Terry J. Kreeger
- Wyoming Game and Fish Department, Wheatland, Wyoming, United States of America
| | - Aru Balachandran
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Michael W. Miller
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Veterinary Public Health, Nutrition and Food Safety, Rome, Italy
| | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Tram Thu Vuong
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
BSE can propagate in sheep co-infected or pre-infected with scrapie. Sci Rep 2021; 11:11931. [PMID: 34099797 PMCID: PMC8184847 DOI: 10.1038/s41598-021-91397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
To understand the possible role of mixed-prion infections in disease presentation, the current study reports the co-infection of sheep with bovine spongiform encephalopathy (BSE) and scrapie. The bovine BSE agent was inoculated subcutaneously into sheep with ARQ/ARQ or VRQ/ARQ PRNP genotypes either at the same time as subcutaneous challenge with scrapie, or three months later. In addition, VRQ/VRQ sheep naturally infected with scrapie after being born into a scrapie-affected flock were challenged subcutaneously with BSE at eight or twenty one months-of-age. Sheep were analysed by incubation period/attack rate, and western blot of brain tissue determined the presence of BSE or scrapie-like PrPSc. Serial protein misfolding cyclic amplification (sPMCA) that can detect very low levels of BSE in the presence of an excess of scrapie agent was also applied to brain and lymphoreticular tissue. For VRQ/ARQ sheep challenged with mixed infections, scrapie-like incubation periods were produced, and no BSE agent was detected. However, whilst ARQ/ARQ sheep developed disease with BSE-like incubation periods, some animals had a dominant scrapie western blot phenotype in brain, but BSE was detected in these sheep by sPMCA. In addition, VRQ/VRQ animals challenged with BSE after natural exposure to scrapie had scrapie-like incubation periods and dominant scrapie PrPSc in brain, but one sheep had BSE detectable by sPMCA in the brain. Overall, the study demonstrates for the first time that for scrapie/BSE mixed infections, VRQ/ARQ sheep with experimental scrapie did not propagate BSE but VRQ/VRQ sheep with natural scrapie could propagate low levels of BSE, and whilst BSE readily propagated in ARQ/ARQ sheep it was not always the dominant PrPSc strain in brain tissue. Indeed, for several animals, a dominant scrapie biochemical phenotype in brain did not preclude the presence of BSE prion.
Collapse
|
29
|
Balkema-Buschmann A, Ziegler U, Priemer G, Tauscher K, Köster F, Ackermann I, Fatola OI, Balkema D, Schinköthe J, Hammerschmidt B, Fast C, Ulrich R, Groschup MH. Absence of classical and atypical (H- and L-) BSE infectivity in the blood of bovines in the clinical end stage of disease as confirmed by intraspecies blood transfusion. J Gen Virol 2021; 102. [PMID: 32589123 PMCID: PMC8116782 DOI: 10.1099/jgv.0.001460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While the presence of bovine spongiform encephalopathy (BSE) infectivity in the blood of clinically affected sheep has been proven by intraspecies blood-transfusion experiments, this question has remained open in the case of BSE-affected cattle. Although the absence of infectivity can be anticipated from the restriction of the agent to neuronal tissues in this species, evidence for this was still lacking. This particularly concerns the production and use of medicinal products and other applications containing bovine blood or preparations thereof. We therefore performed a blood-transfusion experiment from cattle in the clinical end stage of disease after experimental challenge with either classical (C-BSE) or atypical (H- and l-) BSE into calves at 4–6 months of age. The animals were kept in a free-ranging group for 10 years. Starting from 24 months post-transfusion, a thorough clinical examination was performed every 6 weeks in order to detect early symptoms of a BSE infection. Throughout the experiment, the clinical picture of all animals gave no indication of a BSE infection. Upon necropsy, the brainstem samples were analysed by BSE rapid test as well as by the highly sensitive Protein Misfolding Cyclic Amplification (PMCA), all with negative results. These results add resilient data to confirm the absence of BSE infectivity in the donor blood collected from C-, H- and l-BSE-affected cattle even in the final clinical phase of the disease. This finding has important implications for the risk assessment of bovine blood and blood products in the production of medicinal products and other preparations.
Collapse
Affiliation(s)
- Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Grit Priemer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Kerstin Tauscher
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Frauke Köster
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Ivett Ackermann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Olanrewaju I Fatola
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Daniel Balkema
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Jan Schinköthe
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Christine Fast
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany.,Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| |
Collapse
|
30
|
Concha-Marambio L, Chacon MA, Soto C. Preclinical Detection of Prions in Blood of Nonhuman Primates Infected with Variant Creutzfeldt-Jakob Disease. Emerg Infect Dis 2021; 26:34-43. [PMID: 31855141 PMCID: PMC6924915 DOI: 10.3201/eid2601.181423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is caused by prion infection with bovine spongiform encephalopathy and can be transmitted by blood transfusion. Protein misfolding cyclic amplification (PMCA) can detect prions in blood from vCJD patients with 100% sensitivity and specificity. To determine whether PMCA enables prion detection in blood during the preclinical stage of infection, we performed a blind study using blood samples longitudinally collected from 28 control macaques and 3 macaques peripherally infected with vCJD. Our results demonstrate that PMCA consistently detected prions in blood during the entire preclinical stage in all infected macaques, without false positives from noninfected animals, when using the optimized conditions for amplification of macaque prions. Strikingly, prions were detected as early as 2 months postinoculation (>750 days before disease onset). These findings suggest that PMCA has the potential to detect vCJD prions in blood from asymptomatic carriers during the preclinical phase of the disease.
Collapse
|
31
|
Yakubu UM, Catumbela CSG, Morales R, Morano KA. Understanding and exploiting interactions between cellular proteostasis pathways and infectious prion proteins for therapeutic benefit. Open Biol 2020; 10:200282. [PMID: 33234071 PMCID: PMC7729027 DOI: 10.1098/rsob.200282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrPSc), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker's yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA.,MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA
| | - Celso S G Catumbela
- MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA.,Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA.,Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA
| |
Collapse
|
32
|
Kramm C, Soto P, Nichols TA, Morales R. Chronic wasting disease (CWD) prion detection in blood from pre-symptomatic white-tailed deer harboring PRNP polymorphic variants. Sci Rep 2020; 10:19763. [PMID: 33188252 PMCID: PMC7666123 DOI: 10.1038/s41598-020-75681-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic wasting disease (CWD) is a prionopathy affecting wild and farmed cervids. This disease is endemic in North America and has been recently identified in Europe. Ante-mortem CWD tests of pre-clinical cervids may be an important tool in helping control the spread of this disease. Unfortunately, current CWD diagnostic methods are not suitable for non-tissue type samples. We reported that CWD prions can be detected in blood of pre-clinical CWD-infected white-tailed deer (WTD) with high sensitivity and specificity using the Protein Misfolding Cyclic Amplification (PMCA) assay. However, that report only included animals homozygous for codon 96G, the most common polymorphic version of the prion protein within this animal species. Here, we report CWD prion detection using blood of naturally infected WTD coding one or two copies of the PrP-96S polymorphic variant. Our results, from a blinded screening, show 100% specificity and ~ 58% sensitivity for animals harboring one 96S codon, regardless of their stage within the pre-clinical phase. Detection efficiency for PrP-96S homozygous animals was substantially lower, suggesting that this allele affect peripheral prion replication/tropism. These results provide additional information on the influence of codon 96 polymorphisms and the ability of PMCA to detect CWD in the blood of pre-clinical WTD.
Collapse
Affiliation(s)
- Carlos Kramm
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Facultad de Medicina, Universidad de Los Andes, Las Condes, Av. San Carlos de Apoquindo 2200, Santiago, Chile
| | - Paulina Soto
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tracy A Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- CIBQA, Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
33
|
Joseph J, Maji SK, Padinhateeri R. Computational Model for Studying Breakage-Dependent Amyloid Growth. ACS Chem Neurosci 2020; 11:3615-3622. [PMID: 33050701 DOI: 10.1021/acschemneuro.0c00481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyloid fibrils are typically associated with neurodegenerative diseases. Recent studies have suggested that, similar to prions, many amyloid proteins are infectious in nature and may cause spreading and dissemination of diseases. Typical amyloid infection propagates by recruiting functional proteins into amyloidogenic form and multiplying by breaking the existing fibril. In this study, we model the kinetics of fibril growth through breakage and the subsequent elongation process, similar to the prion infection process. Using kinetic Monte Carlo simulations as well as mathematical counting methods, we show how the measurable quantities like the 50% aggregation time (T50) and the maximum growth rate (Vmax) scale with various parameters in the problem. This study has a direct application where it can be used to understand experiments that amplify the minute amount of amyloid seeds present in biological fluid for early detection of human disease. Using the knowledge from our simulations, we can predict the initial seed concentration, known as the filament kinetics.
Collapse
Affiliation(s)
- Jennifer Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
34
|
Drew SC. Aldehyde Production as a Calibrant of Ultrasonic Power Delivery During Protein Misfolding Cyclic Amplification. Protein J 2020; 39:501-508. [PMID: 33011953 DOI: 10.1007/s10930-020-09920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
The protein misfolding cyclic amplification (PMCA) technique employs repeated cycles of incubation and sonication to amplify minute amounts of misfolded protein conformers. Spontaneous (de novo) prion formation and ultrasonic power level represent two potentially interrelated sources of variation that frustrate attempts to replicate results from different laboratories. We previously established that water splitting during PMCA provides a radical-rich environment leading to oxidative damage to substrate molecules as well as the polypropylene PCR tubes used for sample containment. Here it is shown that the cross-linking agent formaldehyde is generated from buffer ions that are attacked by hydroxyl radicals. In addition, free radical damage to protein, nucleic acid, lipid, and detergent molecules produces a substantial concentration of aldehydes (hundreds of micromolar). The measurement of aldehydes using the Hantzsch reaction provides a reliable and inexpensive method for measuring the power delivered to individual PMCA samples, and for calibrating the power output characteristics of an individual sonicator. The proposed method may also be used to better account for inter-assay and inter-laboratory variation in prion replication and de novo prion generation, the latter of which may correlate with aldehyde-induced cross-linking of substrate molecules.
Collapse
Affiliation(s)
- Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Victoria, 3010, Australia. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland.
| |
Collapse
|
35
|
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, Moda F. Cell-free amplification of prions: Where do we stand? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:325-358. [PMID: 32958239 DOI: 10.1016/bs.pmbts.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.
Collapse
Affiliation(s)
- Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | | | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Alessandra Consonni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy.
| |
Collapse
|
36
|
Lecrenier MC, Veys P, Fumière O, Berben G, Saegerman C, Baeten V. Official Feed Control Linked to the Detection of Animal Byproducts: Past, Present, and Future. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8093-8103. [PMID: 32614586 DOI: 10.1021/acs.jafc.0c02718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the context of the expansion of the human population, availability of food, and in extension of animal feed, is a big issue. Favoring a circular economy by the valorization of byproducts is a sustainable way to be more efficient. Animal byproducts are an interesting source of feed materials due to their richness in proteins of high nutritional value. Prevention and control efforts have allowed a gradual lifting of the feed ban regarding the use of animal byproducts. Nevertheless, the challenge remains the development of analytical methods enabling a distinction between authorized and unauthorized feed materials. This Review focuses on the historical and epidemiological context of the official control, the evaluation of current and foreseen legislation, and the available methods of analysis for the detection of constituents of animal origin in feedingstuffs. It also underlines the analytical limitations of the approach and discusses some prospects of novel methods to ensure food and feed safety.
Collapse
Affiliation(s)
- Marie-Caroline Lecrenier
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
- Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH) Center, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), University of Liège (ULiège), Boulevard de Colonster 20 B42, 4000 Liège, Belgium
| | - Pascal Veys
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - Olivier Fumière
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - Gilbert Berben
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH) Center, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), University of Liège (ULiège), Boulevard de Colonster 20 B42, 4000 Liège, Belgium
| | - Vincent Baeten
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| |
Collapse
|
37
|
Analysis of Protein Conformational Strains-A Key for New Diagnostic Methods of Human Diseases. Int J Mol Sci 2020; 21:ijms21082801. [PMID: 32316500 PMCID: PMC7215537 DOI: 10.3390/ijms21082801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
α-Synuclein is a naturally unfolded protein which easily aggregates and forms toxic inclusions and deposits. It is associated with several neurodegenerative diseases, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). These diseases, called synucleinopathies, have overlapping symptoms but require different methods of treatment. There are no reliable approaches for early diagnoses of these diseases, and as a result, the treatment begins late, and the disorders are often misdiagnosed. Recent studies revealed that α-synuclein forms distinctive spatial structures or strains at the early steps of these diseases, which may be used for early diagnosis. One of these early diagnostic methods called PMCA (protein misfolding cyclic amplification) allows identification of the distinct α-synuclein strains specific for different human diseases. The method is successfully used for differential diagnosis of patients with PD and MSA.
Collapse
|
38
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
39
|
Agarwal A, Das D, Banerjee T, Mukhopadhyay S. Energy migration captures membrane-induced oligomerization of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140324. [DOI: 10.1016/j.bbapap.2019.140324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
|
40
|
Candelise N, Schmitz M, Thüne K, Cramm M, Rabano A, Zafar S, Stoops E, Vanderstichele H, Villar-Pique A, Llorens F, Zerr I. Effect of the micro-environment on α-synuclein conversion and implication in seeded conversion assays. Transl Neurodegener 2020; 9:5. [PMID: 31988747 PMCID: PMC6966864 DOI: 10.1186/s40035-019-0181-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Background α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson’s disease (PD) or dementia with Lewy bodies (DLB). Main body Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies. Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed. In diagnostics, α-synuclein RT-QuIC exhibits a specificity between 82 and 100% while the sensitivity varies between 70 and 100% among different laboratories. In addition, the α-synuclein RT-QuIC can be used to study the α-synuclein-seeding-characteristics of different α-synucleinopathies and to differentiate between DLB and PD. Conclusion The variable diagnostic accuracy of current α-synuclein RT-QuIC occurs due to different protocols, cohorts and material etc.. An impact of micro-environmental factors on the α-synuclein aggregation and conversion process and the occurrence and detection of differential misfolded α-synuclein types or strains might underpin the clinical heterogeneity of α-synucleinopathies.
Collapse
Affiliation(s)
- Niccolo Candelise
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,3Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Matthias Schmitz
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Katrin Thüne
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Maria Cramm
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Alberto Rabano
- 4Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Valderrebollo n° 5, 28031 Madrid, Spain
| | - Saima Zafar
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,2Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 4, Ghent, Belgium
| | | | - Anna Villar-Pique
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,6CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Madrid, Spain
| | - Franc Llorens
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,6CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Madrid, Spain.,7Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
41
|
Espinosa JC, Marín-Moreno A, Aguilar-Calvo P, Benestad SL, Andreoletti O, Torres JM. Porcine Prion Protein as a Paradigm of Limited Susceptibility to Prion Strain Propagation. J Infect Dis 2020; 223:1103-1112. [PMID: 31919511 PMCID: PMC8006416 DOI: 10.1093/infdis/jiz646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/20/2019] [Indexed: 11/14/2022] Open
Abstract
Although experimental transmission of bovine spongiform encephalopathy (BSE) to pigs and transgenic mice expressing pig cellular prion protein (PrPC) (porcine PrP [PoPrP]-Tg001) has been described, no natural cases of prion diseases in pig were reported. This study analyzed pig-PrPC susceptibility to different prion strains using PoPrP-Tg001 mice either as animal bioassay or as substrate for protein misfolding cyclic amplification (PMCA). A panel of isolates representatives of different prion strains was selected, including classic and atypical/Nor98 scrapie, atypical-BSE, rodent scrapie, human Creutzfeldt-Jakob-disease and classic BSE from different species. Bioassay proved that PoPrP-Tg001-mice were susceptible only to the classic BSE agent, and PMCA results indicate that only classic BSE can convert pig-PrPC into scrapie-type PrP (PrPSc), independently of the species origin. Therefore, conformational flexibility constraints associated with pig-PrP would limit the number of permissible PrPSc conformations compatible with pig-PrPC, thus suggesting that pig-PrPC may constitute a paradigm of low conformational flexibility that could confer high resistance to the diversity of prion strains.
Collapse
Affiliation(s)
- Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | | | | | - Olivier Andreoletti
- UMR Institut National de la Recherche Agronomique (INRA)/École Nationale Vétérinaire de Toulouse (ENVT) 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
42
|
Kramm C, Gomez-Gutierrez R, Soto C, Telling G, Nichols T, Morales R. In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus). PLoS One 2019; 14:e0226560. [PMID: 31887141 PMCID: PMC6936793 DOI: 10.1371/journal.pone.0226560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
Chronic Wasting Disease (CWD) is a prion disease affecting several cervid species. Among them, white-tailed deer (WTD) are of relevance due to their value in farming and game hunting. The exact events involved in CWD transmission in captive and wild animals are still unclear. An unexplored mechanism of CWD spread involves transmissions through germplasm, such as semen. Surprisingly, the presence and load of CWD prions in semen and male sexual tissues from WTD has not been explored. Here, we described the detection of CWD prions in semen and sexual tissues of WTD bucks utilizing the Protein Misfolding Cyclic Amplification (PMCA) technology. Samples were obtained post-mortem from farmed pre-clinical, CWD positive WTD bucks possessing polymorphisms at position 96 of the PRNP gene. Our results show that overall CWD detection in these samples had a sensitivity of 59.3%, with a specificity of 97.2%. The data indicate that the presence of CWD prions in male sexual organs and fluids is prevalent in late stage, pre-clinical, CWD-infected WTD (80%-100% of the animals depending on the sample type analyzed). Our findings reveal the presence of CWD prions in semen and sexual tissues of prion infected WTD bucks. Future studies will be necessary to determine whether sexual contact and/or artificial inseminations are plausible means of CWD transmission in susceptible animal species.
Collapse
Affiliation(s)
- Carlos Kramm
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Universidad de Los Andes, Facultad de Medicina, Las Condes, Santiago, Chile
| | - Ruben Gomez-Gutierrez
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Department of Cell Biology, University of Malaga, Malaga, Spain
| | - Claudio Soto
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, CO, United States of America
| | - Tracy Nichols
- Veterinary Services, APHIS, United States Department of Agriculture, Fort Collins, CO, United States of America
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- CIBQA, Universidad Bernardo OHiggins. Santiago, Chile
- * E-mail:
| |
Collapse
|
43
|
Peña-Díaz S, Pujols J, Conde-Giménez M, Čarija A, Dalfo E, García J, Navarro S, Pinheiro F, Santos J, Salvatella X, Sancho J, Ventura S. ZPD-2, a Small Compound That Inhibits α-Synuclein Amyloid Aggregation and Its Seeded Polymerization. Front Mol Neurosci 2019; 12:306. [PMID: 31920537 PMCID: PMC6928008 DOI: 10.3389/fnmol.2019.00306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein (α-Syn) forms toxic intracellular protein inclusions and transmissible amyloid structures in Parkinson’s disease (PD). Preventing α-Syn self-assembly has become one of the most promising approaches in the search for disease-modifying treatments for this neurodegenerative disorder. Here, we describe the capacity of a small molecule (ZPD-2), identified after a high-throughput screening, to inhibit α-Syn aggregation. ZPD-2 inhibits the aggregation of wild-type α-Syn and the A30P and H50Q familial variants in vitro at substoichiometric compound:protein ratios. In addition, the molecule prevents the spreading of α-Syn seeds in protein misfolding cyclic amplification assays. ZPD-2 is active against different α-Syn strains and blocks their seeded polymerization. Treating with ZPD-2 two different PD Caenorhabditis elegans models that express α-Syn either in muscle or in dopaminergic (DA) neurons substantially reduces the number of α-Syn inclusions and decreases synuclein-induced DA neurons degeneration. Overall, ZPD-2 is a hit compound worth to be explored in order to develop lead molecules for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - María Conde-Giménez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Anita Čarija
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Esther Dalfo
- Faculty of Medicine, M2, Universitat Autonoma de Barcelona, Barcelona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia, Vic, Spain
| | - Jesús García
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| |
Collapse
|
44
|
Kaelber N, Bett C, Asher DM, Gregori L. Quaking-induced conversion of prion protein on a thermal mixer accelerates detection in brains infected with transmissible spongiform encephalopathy agents. PLoS One 2019; 14:e0225904. [PMID: 31830760 PMCID: PMC6908438 DOI: 10.1371/journal.pone.0225904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022] Open
Abstract
Detection of misfolded prion protein, PrPTSE, in biological samples is important to develop antemortem tests for transmissible spongiform encephalopathies (TSEs). The real-time quaking-induced conversion (RT-QuIC) assay detects PrPTSE but requires dedicated equipment and relatively long incubation times when applied to samples containing extremely low levels of PrPTSE. It was shown that a microplate shaker with heated top (Thermomixer-C) accelerated amplification of PrPTSE in brain suspensions of 263K scrapie and sporadic Creutzfeldt-Jakob disease (sCJD). We expanded the investigation to include TSE agents previously untested, including chronic wasting disease (CWD), macaque-adapted variant CJD (vCJD) and human vCJD, and we further characterized the assays conducted at 42°C and 55°C. PrPTSE from all brains containing the TSE agents were successfully amplified using a truncated hamster recombinant protein except for human vCJD which required truncated bank vole recombinant protein. We compared assays conducted at 42°C on Thermomixer-C, Thermomixer-R (without heated top) and on a fluorimeter used for RT-QuIC. QuIC on Thermomixer-R achieved in only 18 hours assay sensitivity similar to that of RT-QuIC read at 60 hours (or 48 hours with sCJD). QuIC on Thermomixer-C required 24 hours to complete and the endpoint titers of some TSEs were 10-fold lower than those obtained with RT-QuIC and Thermomixer-R. Conversely, at 55°C, the reactions with sCJD and CWD on Thermomixer-C achieved the same sensitivity as with RT-QuIC but in shorter times. Human vCJD samples tested at higher temperatures gave rise to high reactivity in wells containing normal control samples. Similarly, reactions on Thermomixer-R were unsuitable at 55°C. The main disadvantage of Thermomixers is that they cannot track formation of PrP fibrils in real time, a feature useful in some applications. The main advantages of Thermomixers are that they need shorter reaction times to detect PrPTSE, are easier to use, involve more robust equipment, and are relatively affordable. Improvements to QuIC using thermal mixers may help develop accessible antemortem TSE tests.
Collapse
Affiliation(s)
- Nadine Kaelber
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Cyrus Bett
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - David M. Asher
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Luisa Gregori
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Role of prion protein glycosylation in replication of human prions by protein misfolding cyclic amplification. J Transl Med 2019; 99:1741-1748. [PMID: 31249376 DOI: 10.1038/s41374-019-0282-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
Prion diseases are transmissible neurological disorders associated with the presence of abnormal, disease-related prion protein (PrPD). The detection of PrPD in the brain is the only definitive diagnostic evidence of prion disease and its identification in body fluids and peripheral tissues are valuable for pre-mortem diagnosis. Protein misfolding cyclic amplification (PMCA) is a technique able to detect minute amount of PrPD and is based on the conversion of normal or cellular PrP (PrPC) to newly formed PrPD, sustained by a self-templating mechanism. Several animal prions have been efficiently amplified by PMCA, but limited results have been obtained with human prions with the exception of variant-Creutzfeldt-Jakob-disease (vCJD). Since the total or partial absence of glycans on PrPC has been shown to affect PMCA efficiency in animal prion studies, we attempted to enhance the amplification of four major sporadic-CJD (sCJD) subtypes (MM1, MM2, VV1, and VV2) and vCJD by single round PMCA using partially or totally unglycosylated PrPC as substrates. The amplification efficiency of all tested sCJD subtypes underwent a strong increase, inversely correlated to the degree of PrPC glycosylation and directly related to the matching of the PrP polymorphic 129 M/V genotype between seed and substrate. This effect was particularly significant in sCJDMM2 and sCJDVV2 allowing the detection of PK-resistant PrPD (resPrPD) in sCJDMM2 and sCJDVV2 brains at dilutions of 6 × 107 and 3 × 106. vCJD, at variance with the tested sCJD subtypes, showed the best amplification with partially deglycosylated PrPC substrate reaching a resPrPD detectability at up to 3 × 1016 brain dilution. The differential effect of substrate PrPC glycosylations suggests subtype-dependent PrPC-PrPD interactions, strongly affected by the PrPC glycans. The enhanced PMCA prion amplification efficiency achieved with unglycosylated PrPC substrates may allow for the developing of a sensitive, non-invasive, diagnostic test for the different CJD subtypes based on body fluids or easily-accessible-peripheral tissues.
Collapse
|
46
|
Tarutani A, Hasegawa M. Prion-like propagation of α-synuclein in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:323-348. [PMID: 31699325 DOI: 10.1016/bs.pmbts.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are defined as proteinaceous infectious particles that do not contain nucleic acids. Neuropathological investigations of post-mortem brains and recent studies of experimental transmission have suggested that amyloid-like abnormal protein aggregates, which are the defining feature of many neurodegenerative diseases, behave like prions and propagate throughout the brain. This prion-like propagation may be the underlying mechanism of onset and progression of neurodegenerative diseases, although the precise molecular mechanisms involved remain unclear. However, in vitro and in vivo experimental models of prion-like propagation using pathogenic protein seeds are well established and are extremely valuable for the exploration and evaluation of novel drugs and therapies for neurodegenerative diseases for which there is no effective treatment. In this chapter, we introduce the experimental models of prion-like propagation of α-synuclein, which is accumulated in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, and we describe their applications for the development of new diagnostic and therapeutic modalities. We also introduce the concept of "α-syn strains," which may underlie the pathological and clinical diversity of α-synucleinopathies.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
47
|
Amplification and Detection of Minuscule Amounts of Misfolded Prion Protein by Using the Real-Time Quaking-Induced Conversion. Methods Mol Biol 2019. [PMID: 29886538 DOI: 10.1007/978-1-4939-7816-8_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A characteristic feature of transmissible spongiform encephalopathies (TSE) is the progressive accumulation of protein aggregates in the brain in a self-propagation manner. Based on this mechanism, in vitro protein amplification systems (such as real-time quaking-induced conversion (RT-QuIC)) for the detection of misfolded prion protein scrapie (PrPres) in CSF were a major step in pre-mortem diagnosis of human prion diseases. Here, we describe a protocol of the RT-QuIC assay to detect PrPres in CSF of prion disease patients. This methodology depends on prion seeds that induce misfolding and aggregation of a substrate by cycles of incubation and quaking. Besides diagnostics, further applications of the RT-QuIC appear to be promising for discrimination between different PrP subtypes or strains, understanding the mechanism of protein misfolding and pre-screening of anti-prion drugs. The technique can be further developed to be used to study characteristics of misfolded proteins in other "prion like" diseases, such as tauopathies, synucleinopathies, or amyloidopathies.
Collapse
|
48
|
Mays CE, Armijo E, Morales R, Kramm C, Flores A, Tiwari A, Bian J, Telling GC, Pandita TK, Hunt CR, Soto C. Prion disease is accelerated in mice lacking stress-induced heat shock protein 70 (HSP70). J Biol Chem 2019; 294:13619-13628. [PMID: 31320473 DOI: 10.1074/jbc.ra118.006186] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are a group of incurable neurodegenerative disorders that affect humans and animals via infection with proteinaceous particles called prions. Prions are composed of PrPSc, a misfolded version of the cellular prion protein (PrPC). During disease progression, PrPSc replicates by interacting with PrPC and inducing its conversion to PrPSc As PrPSc accumulates, cellular stress mechanisms are activated to maintain cellular proteostasis, including increased protein chaperone levels. However, the exact roles of several of these chaperones remain unclear. Here, using various methodologies to monitor prion replication (i.e. protein misfolding cyclic amplification and cellular and animal infectivity bioassays), we studied the potential role of the molecular chaperone heat shock protein 70 (HSP70) in prion replication in vitro and in vivo Our results indicated that pharmacological induction of the heat shock response in cells chronically infected with prions significantly decreased PrPSc accumulation. We also found that HSP70 alters prion replication in vitro More importantly, prion infection of mice lacking the genes encoding stress-induced HSP70 exhibited accelerated prion disease progression compared with WT mice. In parallel with HSP70 being known to respond to endogenous and exogenous stressors such as heat, infection, toxicants, and ischemia, our results indicate that HSP70 may also play an important role in suppressing or delaying prion disease progression, opening opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Charles E Mays
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Enrique Armijo
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, Texas 77030.,Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo, 2200 Las Condes, Santiago, Chile
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Carlos Kramm
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, Texas 77030.,Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo, 2200 Las Condes, Santiago, Chile
| | - Andrea Flores
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Anjana Tiwari
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Jifeng Bian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Glenn C Telling
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Clayton R Hunt
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, Texas 77030 .,Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo, 2200 Las Condes, Santiago, Chile
| |
Collapse
|
49
|
Moda F, Bolognesi ML, Legname G. Novel screening approaches for human prion diseases drug discovery. Expert Opin Drug Discov 2019; 14:983-993. [PMID: 31271065 DOI: 10.1080/17460441.2019.1637851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Human prion diseases are rare fatal neurodegenerative diseases caused by the misfolding and aggregation of the prion protein in the form of infectious prions. So far, these diseases are incurable. One of the major difficulties in identifying suitable drugs is the availability of robust preclinical screening methods. All molecules identified have been screened using cell-based assays and in vivo murine models. The existence of a continuum of prion strains has hampered the identification of efficacious molecules modulating the progression of different forms of the disease. Areas covered: The advent of new in vitro screening methodologies is allowing for novel strategies to develop new compounds that could interfere with a broad range of diseases. In particular, two innovative techniques named Real Time Quaking Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) have opened new venues for testing compounds in a rapid a reproducible way. These are discussed within. Expert opinion: For human prion diseases, one major hurdle has been a well-defined screening methodology. In other animal species, cell-based assays have been employed that could replicate animal prions indefinitely. Such a tool for human prion diseases is still missing. Therefore, the advent of RT-QuIC and PMCA has proven instrumental to overcome this limitation.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milano , Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna , Bologna , Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste , Italy
| |
Collapse
|
50
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|