1
|
Kirkpatrick EC, Handler S, Liegl M, Pan AY, Konduri GG, Gudausky TM, Afolayan AJ. Pediatric Pulmonary Hypertension is Associated With Increased Circulating Levels of BMP 7 and CHIP. Pulm Circ 2025; 15:e70068. [PMID: 40182212 PMCID: PMC11964942 DOI: 10.1002/pul2.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Pulmonary arterial endothelial and smooth muscle cell homeostasis is regulated through the bone morphogenetic protein (BMP) and transforming growth factor beta (TGF-β) receptor pathways. Pathway imbalance results in pulmonary hypertension (PH). Each pathway has ligands and modulators influencing this balance. How these pathways differ in pediatric PH patients is unknown. Ten PH and 20 control subjects (ages 2-17 years) were prospectively enrolled. Pulmonary artery serum BMP 2, 4, 6, 7, 9, 10, activin A, TGF-β1, carboxyl terminus of Hsc70-interating protein (CHIP), NT Pro BNP, and CRP were measured by ELISA. Analyses were made using the Fisher's exact test, the Mann-Whitney test, ROC analysis, and Pearson and Spearman correlations as appropriate. PH subjects were group 1 (four with simple shunts) or group 3 PH. Control subjects had shunts scheduled for catheter closure but no PH. Only BMP 7 and CHIP levels were statistically elevated in PH patients versus controls; (BMP 7 0.081(0.076-0.084) vs. 0.074(0.069-0.08) OD, p = 0.044), (CHIP 0.17(0.14-0.24) vs. 0.13(0.12-0.15) OD, p = 0.007) respectively. BMP 7 levels correlated with RV systolic pressure (0.431, p = 0.02) and pulmonary resistance (0.446, p = 0.013). CHIP correlated with mean pulmonary artery pressure (0.449, p = 0.013) and resistance ratios (Rp/Rs) (0.419, p = 0.02). BMP 7 OD of 0.077 had sensitivity/specificity of 80% and 70% for PH. CHIP OD of 0.136 had sensitivity/specificity of 90% and 65% for PH. BMP 7 and CHIP levels are heightened in pediatric PH patients which correlate with catheterization values. BMP 7 and CHIP could provide sensitive markers for PH to aid in diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Edward C. Kirkpatrick
- Children's WisconsinMilwaukeeWisconsinUSA
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Stephanie Handler
- Children's WisconsinMilwaukeeWisconsinUSA
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | | | - Amy Y. Pan
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | - G. Ganesh Konduri
- Children's WisconsinMilwaukeeWisconsinUSA
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Todd M. Gudausky
- Children's WisconsinMilwaukeeWisconsinUSA
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Adeleye J. Afolayan
- Children's WisconsinMilwaukeeWisconsinUSA
- Medical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
2
|
Wu D, Sun X, Li X, Zuo Z, Yan D, Yin W. RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription. Genes (Basel) 2024; 15:1575. [PMID: 39766842 PMCID: PMC11675542 DOI: 10.3390/genes15121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a type of malignant tumor with high morbidity and mortality. Untimely treatment and high recurrence are currently the major challenges for HCC. The identification of potential targets of HCC progression is crucial for the development of new therapeutic strategies. METHODS Bioinformatics analyses have been employed to discover genes that are differentially expressed in clinical cases of HCC. A variety of pharmacological methods, such as MTT, colony formation, EdU, Western blotting, Q-PCR, wound healing, Transwell, cytoskeleton F-actin filaments, immunohistochemistry (IHC), hematoxylin-eosin (HE) staining, and dual-luciferase reporter assay analyses, were utilized to study the pharmacological effects and potential mechanisms of ribonucleotide reductase regulatory subunit M2 (RRM2) in HCC. RESULTS RRM2 expression is significantly elevated in HCC, which is well correlated with poor clinical outcomes. Both in vitro and in vivo experiments demonstrated that RRM2 promoted HCC cell growth and metastasis. Mechanistically, RRM2 modulates the EMT phenotype of HCC, and further studies have shown that RRM2 facilitates the activation of the TGF-β/Smad signaling pathway. SB431542, an inhibitor of TGF-β signaling, significantly inhibited RRM2-induced cell migration. Furthermore, RRM2 expression was correlated with diminished survival in HBV-associated HCC patients. RRM2 knockdown decreased the levels of HBV RNA, pgRNA, cccDNA, and HBV DNA in HepG2.2.15 cells exhibiting sustained HBV infection, while RRM2 knockdown inhibited the activity of the HBV Cp, Xp, and SpI promoters. CONCLUSION RRM2 is involved in the progression of HCC by activating the TGF-β/Smad signaling pathway. RRM2 increases HBV transcription in HBV-expressing HCC cells. Targeting RRM2 may be of potential value in the treatment of HCC.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| | - Xinning Sun
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| | - Xin Li
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| | - Zongchao Zuo
- The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China;
| | - Dong Yan
- Department of Cardiology, Affiliated Hospital of Nanjing University of TCM, Nanjing 210023, China;
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| |
Collapse
|
3
|
Chung SW, Cooper CR, Farach-Carson MC, Ogunnaike BA. Computational Modeling and Analysis of the TGF-β-induced ERK and SMAD Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622480. [PMID: 39574616 PMCID: PMC11581039 DOI: 10.1101/2024.11.07.622480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
TGF-β, an important cytokine that plays a key role in many diseases regulates a wide array of cellular and physiologic processes via several TGF-β-driven signaling cascades, including the SMAD and non-SMAD-driven pathways. However, the detailed mechanisms by which TGF-β induces such diverse responses remain poorly understood. In particular, compared to the SMAD-dependent pathway, SMAD-independent pathways such as the ERK/MAPK pathway, which is critical in cancer progression, are less characterized. Here, we develop an integrated mechanistic model of the TGF-β-triggered ERK activation pathway and its crosstalk with the SMAD pathway, an analysis of which demonstrates how SMAD dynamics can be significantly modulated and regulated by the ERK pathway. In particular, SMAD-mediated transcription can be altered and delayed due to expedited phosphorylation of the linker of SMAD by TGF-β-activated ERK; and enhanced ERK activity, but attenuated SMAD activity, can be achieved simultaneously by fast turnover of TGF-β receptors via lipid-rafts. Also, in silico mutations of the TGF-β pathways reveal that the dynamic characteristics of both SMAD and ERK signaling may change significantly during cancer development. Specifically, normal cells may exhibit enhanced and sustained SMAD signaling with transient ERK activation, whereas cancerous cells may produce elevated and prolonged ERK signaling with enervated SMAD activation. These distinctive differences between normal and cancerous signaling behavior provide clues concerning, and potential explanations for, the seemingly contradictory roles played by TGF-β during cancer progression. We demonstrate how crosstalk among various branch pathways of TGF-β can influence overall cellular behavior. Based on model analysis, we hypothesize that aberrant molecular alterations drive changes in the intensity and duration of SMAD and ERK signaling during cancer progression and ultimately lead to an imbalance between the SMAD and ERK pathways in favor of tumor promotion. Thus, to treat cancer patients with a genetic signature of oncogenic Ras effectively may require at least a combination therapy to restore both the expression of TGF-β receptors and the GTPase activity of Ras.
Collapse
|
4
|
Wang T, Kim SY, Peng Y, Zheng J, Layne MD, Murphy-Ullrich JE, Albro MB. Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage. Tissue Eng Part C Methods 2024; 30:522-532. [PMID: 39311474 DOI: 10.1089/ten.tec.2024.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Transforming growth factor beta (TGF-β) is a potent growth factor that regulates the homeostasis of native cartilage and is administered as an anabolic supplement for engineered cartilage growth. The quantification of TGF-β activity in live tissues in situ remains a significant challenge, as conventional activity assessments (e.g., Western blotting of intracellular signaling molecules or reporter cell assays) are unable to measure absolute levels of TGF-β activity in three-dimensional tissues. In this study, we develop a quantification platform established on TGF-β's autoinduction response, whereby active TGF-β (aTGF-β) signaling in cells induces their biosynthesis and secretion of new TGF-β in its latent form (LTGF-β). As such, cell-secreted LTGF-β can serve as a robust, non-destructive, label-free biomarker for quantifying in situ activity of TGF-β in live cartilage tissues. Here, we detect LTGF-β1 secretion levels for bovine native tissue explants and engineered tissue constructs treated with varying doses of media-supplemented aTGF-β3 using an isoform-specific ELISA. We demonstrate that: 1) LTGF-β secretion levels increase proportionally to aTGF-β exposure, reaching 7.4- and 6.6-fold increases in native and engineered cartilage, respectively; 2) synthesized LTGF-β exhibits low retention in both native and engineered cartilage tissue; and 3) secreted LTGF-β is stable in conditioned media for 2 weeks, thus enabling a reliable biological standard curve between LTGF-β secretion and exposed TGF-β activity. Accordingly, we perform quantifications of TGF-β activity in bovine native cartilage, demonstrating up to 0.59 ng/mL in response to physiological dynamic loading. We further quantify the in situ TGF-β activity in aTGF-β-conjugated scaffolds for engineered tissue, which exhibits 1.81 ng/mL of TGF-β activity as a result of a nominal 3 μg/mL loading dose. Overall, cell-secreted LTGF-β can serve as a robust biomarker to quantify in situ activity of TGF-β in live cartilage tissue and can be potentially applied for a wide range of applications, including multiple tissue types and tissue engineering platforms with different cell populations and scaffolds.
Collapse
Affiliation(s)
- Tianbai Wang
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
| | - Sung Yeon Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Yifan Peng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Jane Zheng
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | | | - Michael B Albro
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Song M, Huang S, Wu X, Zhao Z, Liu X, Wu C, Wang M, Gao J, Ke Z, Ma X, He W. UBR5 mediates colorectal cancer chemoresistance by attenuating ferroptosis via Lys 11 ubiquitin-dependent stabilization of Smad3-SLC7A11 signaling. Redox Biol 2024; 76:103349. [PMID: 39260061 PMCID: PMC11415886 DOI: 10.1016/j.redox.2024.103349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024] Open
Abstract
Chemoresistance remains a principal culprit for the treatment failure in colorectal cancer (CRC), especially for patients with recurrent or metastatic disease. Deciphering the molecular basis of chemoresistance may lead to novel therapeutic strategies for this fatal disease. Here, UBR5, an E3 ubiquitin ligase frequently overexpressed in human CRC, is demonstrated to mediate chemoresistance principally by inhibiting ferroptosis. Paradoxically, UBR5 shields oxaliplatin-activated Smad3 from proteasome-dependent degradation via Lys 11-linked polyubiquitination. This novel chemical modification of Smad3 facilitates the transcriptional repression of ATF3, induction of SLC7A11 and inhibition of ferroptosis, contributing to chemoresistance. Consequently, targeting UBR5 in combination with a ferroptosis inducer synergistically sensitizes CRC to oxaliplatin-induced cell death and control of tumor growth. This study reveals, for the first time, a major clinically relevant chemoresistance mechanism in CRC mediated by UBR5 in sustaining TGFβ-Smad3 signaling and tuning ferroptosis, unveiling its potential as a viable therapeutic target for chemosensitization.
Collapse
Affiliation(s)
- Mei Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Ziyi Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaoting Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Chong Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Mengru Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jialing Gao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, NY, 10065, USA
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China; School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361000, China.
| |
Collapse
|
6
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
8
|
Castro K, Muradyan V, Flota P, Guanzon J, Poole N, Urrutia H, Eivers E. Drosophila Smad2 degradation occurs independently of linker phosphorylations. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001153. [PMID: 38601902 PMCID: PMC11004797 DOI: 10.17912/micropub.biology.001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
TGF-β signals are important for proliferation, differentiation, and cell fate determination during embryonic development and tissue homeostasis in adults. Drosophila Activin/TGF-β signals are transduced intracellularly when its transcription factor dSmad2 (also called Smad on X or Smox) is C-terminally phosphorylated by pathway receptors. Recently, it has been shown that receptor-activated dSmad2 undergoes bulk degradation, however, the mechanism of how this occurs is unknown. Here we investigated if two putative linker phosphorylation sites are involved in dSmad2 degradation. We demonstrate that degradation of activated-dSmad2 occurs independently of threonine phosphorylation at linker sites 252 and 277. We also show that dSmad2 degradation is not carried out by cellular proteasomes.
Collapse
Affiliation(s)
- Kenny Castro
- Biological Sciences, California State University Los Angeles, Los Angeles, California, United States
| | - Volodia Muradyan
- Biological Sciences, California State University Los Angeles, Los Angeles, California, United States
| | - Pablo Flota
- Biological Sciences, California State University Los Angeles, Los Angeles, California, United States
| | - John Guanzon
- Biological Sciences, California State University Los Angeles, Los Angeles, California, United States
| | - Neil Poole
- Biological Sciences, California State University Los Angeles, Los Angeles, California, United States
| | - Hugo Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Edward Eivers
- Biological Sciences, California State University Los Angeles, Los Angeles, California, United States
| |
Collapse
|
9
|
Saadh MJ, Allela OQB, Sattay ZJ, Al Zuhairi RAH, Ahmad H, Eldesoky GE, Adil M, Ali MS. Deciphering the functional landscape and therapeutic implications of noncoding RNAs in the TGF-β signaling pathway in colorectal cancer: A comprehensive review. Pathol Res Pract 2024; 255:155158. [PMID: 38320438 DOI: 10.1016/j.prp.2024.155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-β (TGF-β) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-β signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-β signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-β pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-β signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-β signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-β signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-β signaling cascade through the manipulation of ncRNAs.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Zahraa Jasim Sattay
- Department of Medical Laboratory Technology l, University of imam Jaafar Al-Sadiq, Iraq
| | | | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, Rome 00186, Italy; Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
10
|
Yang S, Yang G, Wang X, Xiang J, Kang L, Liang Z. SIRT2 alleviated renal fibrosis by deacetylating SMAD2 and SMAD3 in renal tubular epithelial cells. Cell Death Dis 2023; 14:646. [PMID: 37777567 PMCID: PMC10542381 DOI: 10.1038/s41419-023-06169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Transforming growth factor-β (TGF-β) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease. In kidneys that are obstructed, specific deletion of Sirt2 in renal tubule epithelial cells (TEC) has been shown to aggravate renal fibrosis, while renal tubule specific overexpression of Sirt2 has been shown to ameliorate renal fibrosis. Similarly, specific deletion of Sirt2 in hepatocyte aggravated CCl4-induced hepatic fibrosis. In addition, we have demonstrated that SIRT2 overexpression and knockdown restrain and enhance TGF-β-induced fibrotic gene expression, respectively, in TEC. Mechanistically, SIRT2 reduced the phosphorylation, acetylation, and nuclear localization levels of SMAD2 and SMAD3, leading to inhibition of the TGF-β signaling pathway. Further studies have revealed that that SIRT2 was able to directly interact with and deacetylate SMAD2 at lysine 451, promoting its ubiquitination and degradation. Notably, loss of SMAD specific E3 ubiquitin protein ligase 2 abolishes the ubiquitination and degradation of SMAD2 induced by SIRT2 in SMAD2. Regarding SMAD3, we have found that SIRT2 interact with and deacetylates SMAD3 at lysine 341 and 378 only in the presence of TGF-β, thereby reducing its activation. This study provides initial indication of the anti-fibrotic role of SIRT2 in renal tubules and hepatocytes, suggesting its therapeutic potential for fibrosis.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
11
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
12
|
Opposing USP19 splice variants in TGF-β signaling and TGF-β-induced epithelial-mesenchymal transition of breast cancer cells. Cell Mol Life Sci 2023; 80:43. [PMID: 36646950 PMCID: PMC9842591 DOI: 10.1007/s00018-022-04672-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023]
Abstract
Ubiquitin-specific protease (USP)19 is a deubiquitinating enzyme that regulates the stability and function of multiple proteins, thereby controlling various biological responses. The alternative splicing of USP19 results in the expression of two major encoded variants that are localized to the endoplasmic reticulum (ER) (USP19-ER) and cytoplasm (USP19-CY). The importance of alternative splicing for the function of USP19 remains unclear. Here, we demonstrated that USP19-CY promotes TGF-β signaling by directly interacting with TGF-β type I receptor (TβRI) and protecting it from degradation at the plasma membrane. In contrast, USP19-ER binds to and sequesters TβRI in the ER. By decreasing cell surface TβRI levels, USP19-ER inhibits TGF-β/SMAD signaling in a deubiquitination-independent manner. Moreover, USP19-ER inhibits TGF-β-induced epithelial-mesenchymal transition (EMT), whereas USP19-CY enhances EMT, as well as the migration and extravasation of breast cancer cells. Furthermore, USP19-CY expression is correlated with poor prognosis and is higher in breast cancer tissues than in adjacent normal tissues. Notably, the splicing modulator herboxidiene inhibits USP19-CY, increases USP19-ER expression and suppresses breast cancer cell migration. Targeting USP19 splicing or its deubiquitinating activity may have potential therapeutic effects on breast cancer.
Collapse
|
13
|
Yoon HJ, Kim GC, Oh S, Kim H, Kim YK, Lee Y, Kim MS, Kwon G, Ok YS, Kwon HK, Kim HS. WNK3 inhibition elicits antitumor immunity by suppressing PD-L1 expression on tumor cells and activating T-cell function. Exp Mol Med 2022; 54:1913-1926. [PMID: 36357569 PMCID: PMC9722663 DOI: 10.1038/s12276-022-00876-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
Immune checkpoint therapies, such as programmed cell death ligand 1 (PD-L1) blockade, have shown remarkable clinical benefit in many cancers by restoring the function of exhausted T cells. Hence, the identification of novel PD-L1 regulators and the development of their inhibition strategies have significant therapeutic advantages. Here, we conducted pooled shRNA screening to identify regulators of membrane PD-L1 levels in lung cancer cells targeting druggable genes and cancer drivers. We identified WNK lysine deficient protein kinase 3 (WNK3) as a novel positive regulator of PD-L1 expression. The kinase-dead WNK3 mutant failed to elevate PD-L1 levels, indicating the involvement of its kinase domain in this function. WNK3 perturbation increased cancer cell death in cancer cell-immune cell coculture conditions and boosted the secretion of cytokines and cytolytic enzymes, promoting antitumor activities in CD4+ and CD8+ T cells. WNK463, a pan-WNK inhibitor, enhanced CD8+ T-cell-mediated antitumor activity and suppressed tumor growth as a monotherapy as well as in combination with a low-dose anti-PD-1 antibody in the MC38 syngeneic mouse model. Furthermore, we demonstrated that the c-JUN N-terminal kinase (JNK)/c-JUN pathway underlies WNK3-mediated transcriptional regulation of PD-L1. Our findings highlight that WNK3 inhibition might serve as a potential therapeutic strategy for cancer immunotherapy through its concurrent impact on cancer cells and immune cells.
Collapse
Affiliation(s)
- Hyun Ju Yoon
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Gi-Cheon Kim
- grid.15444.300000 0004 0470 5454Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sejin Oh
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hakhyun Kim
- grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Keon Kim
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yunji Lee
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Min Seo Kim
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Gino Kwon
- grid.15444.300000 0004 0470 5454Graduate Program for Nanomedical Science, Yonsei University, Seoul, Korea
| | - Yeon-Su Ok
- grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Keun Kwon
- grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Seok Kim
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Li H, Lu Q, Li Y, Yan Y, Yin Z, Guo J, Xu W. Smurf participates in Helicoverpa armigera diapause by regulating the transforming growth factor-β signaling pathway. INSECT SCIENCE 2022; 29:1251-1261. [PMID: 35064956 DOI: 10.1111/1744-7917.13007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Diapause, an important strategy used by insects to avoid adverse environments, is regulated by various cell signaling pathways. The results of our previous studies demonstrated that the transforming growth factor-β (TGF-β) signaling pathway regulated pupal diapause in Helicoverpa armigera, which was accompanied by downregulation of proteins in TGF-β signaling. However, to date the mechanism underlying this phenomenon remains unknown. Here, we cloned the E3 ubiquitin ligases gene Smurf. In vitro experiments showed that Smurf directly bound to TGF-β receptor type I (TGFβRI) and Smad2. Overexpressing Smurf promoted ubiquitination of TGFβRI and Smad2, thereby downregulating their protein levels. Conversely, silencing of the Smurf gene suppressed ubiquitination of TGFβRI and Smad2 thereby increasing their protein levels. Results from in vivo co-immunoprecipitation assays revealed that the binding of Smurf to TGFβRI or Smad2 was stronger in diapause pupae than in nondiapause pupae. Injection of Smurf inhibitor A01 into diapause pupae markedly upregulated expression of TGFβRI and Smad2 proteins, leading to resumption of development in diapause pupae. Taken together, these findings suggested that ubiquitin ligase E3 Smurf participated in H. armigera diapause by regulating TGF-β signaling, and thus could be playing a crucial role in insect diapause.
Collapse
Affiliation(s)
- Haiyin Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Qin Lu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Yan Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Yufang Yan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Zhiyong Yin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Weihua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Prolonged proteasome inhibition antagonizes TGFβ1-dependent signalling by promoting the lysosomal-targeting of TGFβ receptors. Cell Signal 2022; 98:110414. [PMID: 35901932 DOI: 10.1016/j.cellsig.2022.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Impairing autophagy disrupts transforming growth factor beta 1 (TGFβ1) signalling and epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Since autophagy and proteasome-mediated degradation are interdependent, we investigated how prolonged downregulation of proteasomal catalytic activity affected TGFβ1-dependent signalling and EMT. Proteasome-dependent degradation was inhibited in A549 and H1299 NSCLC cells using MG132 and lactacystin, which are reversible and irreversible proteasome inhibitors, respectively. We observed that inhibiting proteasomal activity for 24 h decreased TGFβ-dependent nuclear accumulation of Smad2/3. Time course studies were then carried out to characterize the time frame of this observation. Short-term (< 8 h) proteasome inhibition resulted in increased receptor regulated Smad (R-Smad) phosphorylation and steady-state TGFβ receptor type II (TGFβRII) levels. However, prolonged (8-24 h) proteasome inhibition decreased TGFβ1-dependent R-Smad phosphorylation and steady-state TGFβRI and TGFβRII levels. Furthermore, proteasome inhibition blunted TGFβ-dependent E- to N-Cadherin shift, stress fiber formation, and increased cellular apoptosis via the TAK-1-TRAF6-p38 MAPK pathway. Interestingly, proteasome inhibition also increased autophagic flux, steady-state microtubule-associated protein light chain 3B-II and active uncoordinated 51-like autophagy activating kinase 1 levels, and co-localization of lysosomes with autophagy cargo proteins and autophagy-related proteins. Finally, we observed that proteasome inhibition increased TGFβRII endocytosis and trafficking to lysosomes and we conclude that prolonged proteasome inhibition disrupts TGFβ signalling outcomes through altered TGFβ receptor trafficking.
Collapse
|
16
|
Bramel EE, Creamer TJ, Saqib M, Camejo Nunez WA, Bagirzadeh R, Roker LA, Goff LA, MacFarlane EG. Postnatal Smad3 Inactivation in Murine Smooth Muscle Cells Elicits a Temporally and Regionally Distinct Transcriptional Response. Front Cardiovasc Med 2022; 9:826495. [PMID: 35463747 PMCID: PMC9033237 DOI: 10.3389/fcvm.2022.826495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Heterozygous, loss of function mutations in positive regulators of the Transforming Growth Factor-β (TGF-β) pathway cause hereditary forms of thoracic aortic aneurysm. It is unclear whether and how the initial signaling deficiency triggers secondary signaling upregulation in the remaining functional branches of the pathway, and if this contributes to maladaptive vascular remodeling. To examine this process in a mouse model in which time-controlled, partial interference with postnatal TGF-β signaling in vascular smooth muscle cells (VSMCs) could be assessed, we used a VSMC-specific tamoxifen-inducible system, and a conditional allele, to inactivate Smad3 at 6 weeks of age, after completion of perinatal aortic development. This intervention induced dilation and histological abnormalities in the aortic root, with minor involvement of the ascending aorta. To analyze early and late events associated with disease progression, we performed a comparative single cell transcriptomic analysis at 10- and 18-weeks post-deletion, when aortic dilation is undetectable and moderate, respectively. At the early time-point, Smad3-inactivation resulted in a broad reduction in the expression of extracellular matrix components and critical components of focal adhesions, including integrins and anchoring proteins, which was reflected histologically by loss of connections between VSMCs and elastic lamellae. At the later time point, however, expression of several transcripts belonging to the same functional categories was normalized or even upregulated; this occurred in association with upregulation of transcripts coding for TGF-β ligands, and persistent downregulation of negative regulators of the pathway. To interrogate how VSMC heterogeneity may influence this transition, we examined transcriptional changes in each of the four VSMC subclusters identified, regardless of genotype, as partly reflecting the proximal-to-distal anatomic location based on in situ RNA hybridization. The response to Smad3-deficiency varied depending on subset, and VSMC subsets over-represented in the aortic root, the site most vulnerable to dilation, most prominently upregulated TGF-β ligands and pro-pathogenic factors such as thrombospondin-1, angiotensin converting enzyme, and pro-inflammatory mediators. These data suggest that Smad3 is required for maintenance of focal adhesions, and that loss of contacts with the extracellular matrix has consequences specific to each VSMC subset, possibly contributing to the regional susceptibility to dilation in the aorta.
Collapse
Affiliation(s)
- Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Muzna Saqib
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy A. Camejo Nunez
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rustam Bagirzadeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - LaToya Ann Roker
- School of Medicine Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Loyal A. Goff
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Wang Y, Sima X, Ying Y, Huang Y. Exogenous BMP9 promotes lung fibroblast HFL-1 cell activation via ALK1/Smad1/5 signaling in vitro. Exp Ther Med 2021; 22:728. [PMID: 34007337 PMCID: PMC8120641 DOI: 10.3892/etm.2021.10160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has recently been described as a crucial regulator in modulating fibroblast-type cell activation. Activin receptor-like kinase 1 (ALK1) is a high affinity receptor for BMP9 that exerts its role via Smad1/5. However, the functional roles of BMP9 in activating lung fibroblasts and the underlying signaling pathway are not completely understood. The present study aimed to explore the effect of exogenous BMP9 on human lung fibroblast HFL-1 cell proliferation and differentiation, as well as the potential role of the ALK1/Smad1/5 signaling pathway. In the present study, fibroblast proliferation was assessed using Cell Counting Kit-8 and colony formation assays, and the mRNA and protein expression of target genes was examined using reverse transcription-quantitative PCR and western blot assays, respectively. Compared with the control group, BMP9 treatment increased HFL-1 cell proliferation, mRNA and protein expression of differentiated markers, including α-smooth muscle actin, type I collagen and type III collagen, and the expression of ALK1 and phosphorylated Smad1/5 expression. Furthermore, the effects of BMP9 were partially rescued by dorsomorphin-1, an inhibitor of ALK1. The results indicated that BMP9 may serve as a key inducer of lung fibroblast activation and ALK1/Smad1/5 signaling might be associated with BMP9-mediated effects in HFL-1 cells. Therefore, the present study highlighted that the potential role of the BMP9/ALK1/Smad1/5 signaling pathway in the development of pulmonary fibrosis requires further investigation.
Collapse
Affiliation(s)
- Yaqun Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Graduate College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaonan Sima
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ying Ying
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Zaragoza-Ojeda M, Apatiga-Vega E, Arenas-Huertero F. Role of aryl hydrocarbon receptor in central nervous system tumors: Biological and therapeutic implications. Oncol Lett 2021; 21:460. [PMID: 33907570 PMCID: PMC8063300 DOI: 10.3892/ol.2021.12721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, whose canonical pathway mainly regulates the genes involved in xenobiotic metabolism. However, it can also regulate several responses in a non-canonical manner, such as proliferation, differentiation, cell death and cell adhesion. AhR plays an important role in central nervous system tumors, as it can regulate several cellular responses via different pathways. The polymorphisms of the AHR gene have been associated with the development of gliomas. In addition, the metabolism of tumor cells promotes tumor growth, particularly in tryptophan synthesis, where some metabolites, such as kynurenine, can activate the AhR pathway, triggering cell proliferation in astrocytomas, medulloblastomas and glioblastomas. Furthermore, as part of the changes in neuroblastomas, AHR is able to downregulate the expression of proto-oncogene c-Myc, induce differentiation in tumor cells, and cause cell cycle arrest and apoptosis. Collectively, these data suggested that the modulation of the AhR pathway may downregulate tumor growth, providing a novel strategy for applications for the treatment of certain tumors through the control of the AhR pathway.
Collapse
Affiliation(s)
- Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México.,Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, México
| | - Elisa Apatiga-Vega
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| |
Collapse
|
19
|
Liu Y, Zhang S, Yu T, Zhang F, Yang F, Huang Y, Ma D, Liu G, Shao Z, Li D. Pregnancy-specific glycoprotein 9 acts as both a transcriptional target and a regulator of the canonical TGF-β/Smad signaling to drive breast cancer progression. Clin Transl Med 2020; 10:e245. [PMID: 33377651 PMCID: PMC7733318 DOI: 10.1002/ctm2.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Pregnancy-specific glycoprotein 9 (PSG9) is a placental glycoprotein essential for the maintenance of normal gestation in mammals. Bioinformatics analysis of multiple publicly available datasets revealed aberrant PSG9 expression in breast tumors, but its functional and mechanistic role in breast cancer remains unexplored. Here, we report that PSG9 expression levels were elevated in tumor tissues and plasma specimens from breast cancer patients, and were associated with poor prognosis. Gain- or loss-of-function studies demonstrated that PSG9 promoted breast cancer cell proliferation, migration, and invasionin vitro, and enhanced tumor growth and lung colonization in vivo. Mechanistically, transforming growth factor-β1 (TGF-β1) transcriptionally activated PSG9 expression through enhancing the enrichment of Smad3 and Smad4 onto PSG9 promoter regions containing two putative Smad-binding elements (SBEs). Mutation of both SBEs in the PSG9 promoter, or knockdown of TGF-β receptor 1 (TGFBR1), TGFBR2, Smad3, or Smad4 impaired the ability of TGF-β1 to induce PSG9 expression. Consequently, PSG9 contributed to TGF-β1-induced epithelial-mesenchymal transition (EMT) and breast cancer cell migration and invasion. Moreover, PSG9 enhanced the stability of Smad2, Smad3, and Smad4 proteins by blocking their proteasomal degradation, and regulated the expression of TGF-β1 target genes involved in EMT and breast cancer progression, thus further amplifying the canonical TGF-β/Smad signaling in breast cancer cells. Collectively, these findings establish PSG9 as a novel player in breast cancer progressionvia hijacking the canonical TGF-β/Smad signaling, and identify PSG9 as a potential plasma biomarker for the early detection of breast cancer.
Collapse
Affiliation(s)
- Ying‐Ying Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Sa Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tian‐Jian Yu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Fang‐Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Fan Yang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yan‐Ni Huang
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ding Ma
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Guang‐Yu Liu
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zhi‐Ming Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast CancerShanghai Medical College, Fudan UniversityShanghaiChina
| | - Da‐Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast CancerShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
20
|
Theilmann AL, Hawke LG, Hilton LR, Whitford MKM, Cole DV, Mackeil JL, Dunham-Snary KJ, Mewburn J, James PD, Maurice DH, Archer SL, Ormiston ML. Endothelial BMPR2 Loss Drives a Proliferative Response to BMP (Bone Morphogenetic Protein) 9 via Prolonged Canonical Signaling. Arterioscler Thromb Vasc Biol 2020; 40:2605-2618. [PMID: 32998516 PMCID: PMC7571847 DOI: 10.1161/atvbaha.119.313357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supplemental Digital Content is available in the text. Pulmonary arterial hypertension is a disease of proliferative vascular occlusion that is strongly linked to mutations in BMPR2—the gene encoding the BMPR-II (BMP [bone morphogenetic protein] type II receptor). The endothelial-selective BMPR-II ligand, BMP9, reverses disease in animal models of pulmonary arterial hypertension and suppresses the proliferation of healthy endothelial cells. However, the impact of BMPR2 loss on the antiproliferative actions of BMP9 has yet to be assessed.
Collapse
Affiliation(s)
- Anne L Theilmann
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Lindsey G Hawke
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - L Rhiannon Hilton
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Mara K M Whitford
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Devon V Cole
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Jodi L Mackeil
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Jeffrey Mewburn
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Paula D James
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Stephen L Archer
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Mark L Ormiston
- Department of Surgery (M.L.O.), Queen's University, Kingston, Canada
| |
Collapse
|
21
|
Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 2020; 129:110287. [PMID: 32540643 DOI: 10.1016/j.biopha.2020.110287] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant scar formation, which includes keloid and hypertrophic scars, is associated with a pathological disorganized wound healing process with chronic inflammation. The TGF-β/Smad signaling pathway is the most canonical pathway through which the formation of collagen in the fibroblasts and myofibroblasts is regulated. Sustained activation of the TGF-β/Smad signaling pathway results in the long-term overactivation of fibroblasts and myofibroblasts, which is necessary for the excessive collagen formation in aberrant scars. There are two categories of therapeutic strategies that aim to target the TGF-β/Smad signaling pathway in fibroblasts and myofibroblasts to interfere with their cellular functions and reduce cell proliferation. The first therapeutic strategy includes medications, and the second strategy is composed of genetic and cellular therapeutics. Therefore, the focus of this review is to critically evaluate these two main therapeutic strategies that target the TGF-β/Smad pathway to attenuate abnormal skin scar formation.
Collapse
|
22
|
Zagabathina S, Ramadoss R, Ah HP, Krishnan R. Comparative Evaluation of SMAD-2 Expression in Oral Submucous Fibrosis and Reactive Oral Lesions. Asian Pac J Cancer Prev 2020; 21:399-403. [PMID: 32102517 PMCID: PMC7332118 DOI: 10.31557/apjcp.2020.21.2.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The event of fibrosis encompasses involvement of definite immunological and molecular mechanisms. As quite a lot of pro-fibrotic pathways are concerned, a multipronged approach is obligatory to cognize the fibrotic events. SMAD signaling pathway hasn't been studied oral fibrotic events.In the progression of cramming the SMAD signaling pathway in OSMF, the first initiator protein of the pathway was considered for evaluation in the present study. MATERIALS AND METHODS A total of 100 subjects consisting of 20 controls, 40 patients with reactive lesions such as Traumatic Fibroma, Epulis Fissuratum and Gingival Hyperplasia and 40 patients with Oral Submucous Fibrosis were recruited for the study. Tissue homogenates were assayed by quantitative sandwich enzyme immunoassay technique using Human Mothers Against Decapentaplegic Homolog 2 (Smad2). RESULTS SMAD 2 expression values showed significant difference between control and OSMF group. However, the difference between reactive lesions with control and OSMF were not statistically significant. CONCLUSION Graded increase of SMAD 2 expression from control,reactive lesions and OSMF were observed accentuating the role of SMAD signalling pathway in fibro genesis. Further this can be validated to generate effective antifibrotic targets.
Collapse
Affiliation(s)
- Sravya Zagabathina
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| | - Ramya Ramadoss
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| | - Harini Priya Ah
- Department of Oral Pathology, Chettinad Dental College and Research Institute, Chennai, India
| | - Rajkumar Krishnan
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| |
Collapse
|
23
|
Dou H, Duan Y, Zhang X, Yu Q, Di Q, Song Y, Li P, Gong Y. Aryl hydrocarbon receptor (AhR) regulates adipocyte differentiation by assembling CRL4B ubiquitin ligase to target PPARγ for proteasomal degradation. J Biol Chem 2019; 294:18504-18515. [PMID: 31653699 DOI: 10.1074/jbc.ra119.009282] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the central regulator of adipogenesis, and its dysregulation is linked to obesity and metabolic diseases. Identification of the factors that regulate PPARγ expression and activity is therefore crucial for combating obesity. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with a known role in xenobiotic detoxification. Recent studies have suggested that AhR also plays essential roles in energy metabolism. However, the detailed mechanisms remain unclear. We previously reported that experiments with adipocyte-specific Cullin 4b (Cul4b)-knockout mice showed that CUL4B suppresses adipogenesis by targeting PPARγ. Here, using immunoprecipitation, ubiquitination, real-time PCR, and GST-pulldown assays, we report that AhR functions as the substrate receptor in CUL4B-RING E3 ubiquitin ligase (CRL4B) complex and is required for recruiting PPARγ. AhR overexpression reduced PPARγ stability and suppressed adipocyte differentiation, and AhR knockdown stimulated adipocyte differentiation in 3T3-L1 cells. Furthermore, we found that two lysine sites on residues 268 and 293 in PPARγ are targeted for CRL4B-mediated ubiquitination, indicating cross-talk between acetylation and ubiquitination. Our findings establish a critical role of AhR in regulating PPARγ stability and suggest that the AhR-PPARγ interaction may represent a potential therapeutic target for managing metabolic diseases arising from PPARγ dysfunction.
Collapse
Affiliation(s)
- Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuyao Duan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Di
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
24
|
Arenas-Huertero F, Zaragoza-Ojeda M, Sánchez-Alarcón J, Milić M, Šegvić Klarić M, Montiel-González JM, Valencia-Quintana R. Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins. Front Microbiol 2019; 10:2347. [PMID: 31681212 PMCID: PMC6798329 DOI: 10.3389/fmicb.2019.02347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to present information about the role of activation of aflatoxins and other mycotoxins, of the aryl hydrocarbon receptor (AhR) pathway. Aflatoxins and other mycotoxins are a diverse group of secondary metabolites that can be contaminants in a broad range of agricultural products and feeds. Some species of Aspergillus, Alternaria, Penicilium, and Fusarium are major producers of mycotoxins, some of which are toxic and carcinogenic. Several aflatoxins are planar molecules that can activate the AhR. AhR participates in the detoxification of several xenobiotic substances and activates phase I and phase II detoxification pathways. But it is important to recognize that AhR activation also affects differentiation, cell adhesion, proliferation, and immune response among others. Any examination of the effects of aflatoxins and other toxins that act as activators to AhR must consider the potential of the disruption of several cellular functions in order to extend the perception thus far about the toxic and carcinogenic effects of these toxins. There have been no Reviews of existing data between the relation of AhR and aflatoxins and this one attempts to give information precisely about this dichotomy.
Collapse
Affiliation(s)
- Francisco Arenas-Huertero
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Montserrat Zaragoza-Ojeda
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Juana Sánchez-Alarcón
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - José M. Montiel-González
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Rafael Valencia-Quintana
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
25
|
Zeng Y, Gao T, Huang W, Yang Y, Qiu R, Hou Y, Yu W, Leng S, Feng D, Liu W, Teng X, Yu H, Wang Y. MicroRNA-455-3p mediates GATA3 tumor suppression in mammary epithelial cells by inhibiting TGF-β signaling. J Biol Chem 2019; 294:15808-15825. [PMID: 31492753 DOI: 10.1074/jbc.ra119.010800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
GATA3 is a basic and essential transcription factor that regulates many pathophysiological processes and is required for the development of mammary luminal epithelial cells. Loss-of-function GATA3 alterations in breast cancer are associated with poor prognosis. Here, we sought to understand the tumor-suppressive functions GATA3 normally performs. We discovered a role for GATA3 in suppressing epithelial-to-mesenchymal transition (EMT) in breast cancer by activating miR-455-3p expression. Enforced expression of miR-455-3p alone partially prevented EMT induced by transforming growth factor β (TGF-β) both in cells and tumor xenografts by directly inhibiting key components of TGF-β signaling. Pathway and biochemical analyses showed that one miRNA-455-3p target, the TGF-β-induced protein ZEB1, recruits the Mi-2/nucleosome remodeling and deacetylase (NuRD) complex to the promotor region of miR-455 to strictly repress the GATA3-induced transcription of this microRNA. Considering that ZEB1 enhances TGF-β signaling, we delineated a double-feedback interaction between ZEB1 and miR-455-3p, in addition to the repressive effect of miR-455-3p on TGF-β signaling. Our study revealed that a feedback loop between these two axes, specifically GATA3-induced miR-455-3p expression, could repress ZEB1 and its recruitment of NuRD (MTA1) to suppress miR-455, which ultimately regulates TGF-β signaling. In conclusion, we identified that miR-455-3p plays a pivotal role in inhibiting the EMT and TGF-β signaling pathway and maintaining cell differentiation. This forms the basis of that miR-455-3p might be a promising therapeutic intervention for breast cancer.
Collapse
Affiliation(s)
- Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyang Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xu Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
26
|
Chen H, Moreno-Moral A, Pesce F, Devapragash N, Mancini M, Heng EL, Rotival M, Srivastava PK, Harmston N, Shkura K, Rackham OJL, Yu WP, Sun XM, Tee NGZ, Tan ELS, Barton PJR, Felkin LE, Lara-Pezzi E, Angelini G, Beltrami C, Pravenec M, Schafer S, Bottolo L, Hubner N, Emanueli C, Cook SA, Petretto E. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nat Commun 2019; 10:3616. [PMID: 31399586 PMCID: PMC6689010 DOI: 10.1038/s41467-019-11551-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
Cardiac fibrosis is a final common pathology in inherited and acquired heart diseases that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a pro-fibrotic gene network in the diseased heart and show that this network is regulated by the E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy of Fallot. Transgenic mice lacking the N-terminal region of the WWP2 protein show improved cardiac function and reduced myocardial fibrosis in response to pressure overload or myocardial infarction. In primary cardiac fibroblasts, WWP2 positively regulates the expression of pro-fibrotic markers and extracellular matrix genes. TGFβ1 stimulation promotes nuclear translocation of the WWP2 isoforms containing the N-terminal region and their interaction with SMAD2. WWP2 mediates the TGFβ1-induced nucleocytoplasmic shuttling and transcriptional activity of SMAD2.
Collapse
Affiliation(s)
- Huimei Chen
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Aida Moreno-Moral
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation (DETO), University of Bari, 70124, Bari, Italy
| | - Nithya Devapragash
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Massimiliano Mancini
- SOC di Anatomia Patologica, Ospedale San Giovanni di Dio, 50123, Florence, Italy
| | - Ee Ling Heng
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, Institute Pasteur, 75015, Paris, France
| | - Prashant K Srivastava
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, W12 0NN, UK
| | - Nathan Harmston
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, W12 0NN, UK
| | - Owen J L Rackham
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, BRC, A*STAR20 Biopolis Way, Singapore, 138668, Republic of Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Xi-Ming Sun
- MRC London Institute of Medical Sciences (LMC), Imperial College, London, W12 0NN, UK
| | | | - Elisabeth Li Sa Tan
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Trust, London, SW3 6NP, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Trust, London, SW3 6NP, UK
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares - CNIC, 28029, Madrid, Spain
| | - Gianni Angelini
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, BS2 89HW, UK
| | - Cristina Beltrami
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, 142 00, Praha 4, Czech Republic
| | - Sebastian Schafer
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Alan Turing Institute, London, NW1 2DB, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Charité-Universitätsmedizin, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Trust, London, SW3 6NP, UK
| | - Stuart A Cook
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- MRC London Institute of Medical Sciences (LMC), Imperial College, London, W12 0NN, UK
- National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore.
- MRC London Institute of Medical Sciences (LMC), Imperial College, London, W12 0NN, UK.
| |
Collapse
|
27
|
Ma T, Cheng Y, Tan L. Mechanism of miR-15a regulating the growth and apoptosis of human knee joint chondrocytes by targeting SMAD2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3188-3193. [PMID: 31366242 DOI: 10.1080/21691401.2019.1613420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: To investigate the effects of miR-15a on proliferation and apoptosis of human knee articular chondrocytes and explore its underlying mechanism. Methods: qRT-PCR was used to detect the expression of miR-15a in normal chondrocytes and knee arthritic chondrocytes; miR-con (transfected miR-con), miR-15a (transfected miR-15a mimics), anti-miR-con group (transfected anti-miR-con), anti-miR-15a group (transfected anti-miR-15a mimics), pcDNA group (transfected pcDNA), pcDNA-SMAD2 group (transfected pcDNA-SMAD2), the miR-15a + pcDNA group (co-transfected miR-15a and pcDNA), miR-15a + pcDNA-SMAD2 group (co-transfected miR-15a mimics and pcDNA-SMAD2), were transfected into knee articular chondrocytes by liposome method, respectively. The cell proliferation and apoptosis of each group were detected by MTT assay and flow cytometry. The protein expression of SMAD2 was detected by Western blot. The fluorescence activity of each group was detected by dual luciferase reporter gene assay. Results: The expression of miR-15a in knee arthritis chondrocytes was significantly increased (p < .05) compared with that in normal chondrocytes. Moreover, overexpression of miR-15a and silencing of SMAD2 inhibited proliferation and promoted apoptosis in knee arthritis chondrocyte. MiR-15a targeted SMAD2. Overexpression of SMAD2 reversed the inhibitory effects on proliferation and promotion effects on apoptosis induced by miR-15a in knee arthritis chondrocytes. Conclusion: miR-15a can inhibit the proliferation and promote apoptosis of knee arthritis chondrocytes. The mechanism may be related to SMAD2, which will provide a new target for the treatment of knee arthritis.
Collapse
Affiliation(s)
- Tengjun Ma
- a Department of Orthopedics, Juye County People's Hospital , Heze City , Shandong Province , China
| | - Yan Cheng
- b Disinfection Supply Room, Yidu Central Hospital , Weifang City , Shandong Province , China
| | - Liang Tan
- c Department of Orthopedics, Xuzhou City Hospital of TCM , Jiangsu Province , China
| |
Collapse
|
28
|
Shapira KE, Ehrlich M, Henis YI. Cholesterol depletion enhances TGF-β Smad signaling by increasing c-Jun expression through a PKR-dependent mechanism. Mol Biol Cell 2018; 29:2494-2507. [PMID: 30091670 PMCID: PMC6233055 DOI: 10.1091/mbc.e18-03-0175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) plays critical roles in numerous physiological and pathological responses. Cholesterol, a major plasma membrane component, can have pronounced effects on signaling responses. Cells continually monitor cholesterol content and activate multilayered transcriptional and translational signaling programs, following perturbations to cholesterol homeostasis (e.g., statins, the commonly used cholesterol-reducing drugs). However, the cross-talk of such programs with ligand-induced signaling responses (e.g., TGF-β signaling) remained unknown. Here, we studied the effects of a mild reduction in free (membrane-associated) cholesterol on distinct components of TGF-β-signaling pathways. Our findings reveal a new regulatory mechanism that enhances TGF-β-signaling responses by acting downstream from receptor activation. Reduced cholesterol results in PKR-dependent eIF2α phosphorylation, which enhances c-Jun translation, leading in turn to higher levels of JNK-mediated c-Jun phosphorylation. Activated c-Jun enhances transcription and expression of Smad2/3. This leads to enhanced sensitivity to TGF-β stimulation, due to increased Smad2/3 expression and phosphorylation. The phospho/total Smad2/3 ratio remains unchanged, indicating that the effect is not due to altered receptor activity. We propose that cholesterol depletion induces overactivation of PKR, JNK, and TGF-β signaling, which together may contribute to the side effects of statins in diverse disease settings.
Collapse
Affiliation(s)
- Keren E. Shapira
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I. Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
30
|
Snipes SA, Rodriguez K, DeVries AE, Miyawaki KN, Perales M, Xie M, Reddy GV. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet 2018; 14:e1007351. [PMID: 29659567 PMCID: PMC5919686 DOI: 10.1371/journal.pgen.1007351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/26/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022] Open
Abstract
Concentration-dependent transcriptional regulation and the spatial regulation of transcription factor levels are poorly studied in plant development. WUSCHEL, a stem cell-promoting homeodomain transcription factor, accumulates at a higher level in the rib meristem than in the overlying central zone, which harbors stem cells in the shoot apical meristems of Arabidopsis thaliana. The differential accumulation of WUSCHEL in adjacent cells is critical for the spatial regulation and levels of CLAVATA3, a negative regulator of WUSCHEL transcription. Earlier studies have revealed that DNA-dependent dimerization, subcellular partitioning and protein destabilization control WUSCHEL protein levels and spatial accumulation. Moreover, the destabilization of WUSCHEL may also depend on the protein concentration. However, the roles of extrinsic spatial cues in maintaining differential accumulation of WUS are not understood. Through transient manipulation of hormone levels, hormone response patterns and analysis of the receptor mutants, we show that cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein. Furthermore, we show that the same WUSCHEL-box functions as a degron sequence in cytokinin deficient regions in the central zone, leading to the destabilization of WUSCHEL. The coupled functions of the WUSCHEL-box in nuclear retention as described earlier, together with cytokinin sensing, reinforce higher nuclear accumulation of WUSCHEL in the rib meristem. In contrast a sub-threshold level may expose the WUSCHEL-box to destabilizing signals in the central zone. Thus, the cytokinin signaling acts as an asymmetric spatial cue in stabilizing the WUSCHEL protein to lead to its differential accumulation in neighboring cells, which is critical for concentration-dependent spatial regulation of CLAVATA3 transcription and meristem maintenance. Furthermore, our work shows that cytokinin response is regulated independently of the WUSCHEL function which may provide robustness to the regulation of WUSCHEL concentration. Stem cell regulation is critical for the development of all organisms, and plants have particularly unique stem cell populations that are maintained throughout their lifespan at the tips of both the shoots and roots. Proper spatial and temporal regulation of gene expression by mobile proteins is essential for maintaining these stem cell populations. Here we show that in the shoot, the mobile stem cell promoting factor WUSCHEL is stabilized at the protein level by the plant hormone cytokinin. This stabilization occurs in a tightly restricted spatial context, and movement of WUSCHEL outside of this region results in WUSCHEL instability that leads to its degradation. The specific regions on the WUSCHEL protein that respond to the cytokinin signaling are the same regions that are essential for both proper WUSCHEL localization in the nucleus and regulation of its target genes. This spatially specific response to cytokinin results in differential accumulation of WUSCHEL in space, and reveals an intrinsic link between protein stability and the regulation of target genes to maintain a stable population of stem cells.
Collapse
Affiliation(s)
- Stephen A. Snipes
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Kevin Rodriguez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Aaron E. DeVries
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Kaori N. Miyawaki
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Mariano Perales
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Mingtang Xie
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - G. Venugopala Reddy
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lamprecht S, Sigal-Batikoff I, Shany S, Abu-Freha N, Ling E, Delinasios GJ, Moyal-Atias K, Delinasios JG, Fich A. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts. Cancers (Basel) 2018; 10:cancers10030061. [PMID: 29495500 PMCID: PMC5876636 DOI: 10.3390/cancers10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs—the most abundant cell population of the tumor microenvironment (TME)—as target cells.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Ina Sigal-Batikoff
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Shraga Shany
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
| | - Naim Abu-Freha
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Pediatrics Department B, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - George J Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Keren Moyal-Atias
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - John G Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Alexander Fich
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| |
Collapse
|
32
|
Abstract
The aim of this study was to explore the role of TGF-β1/Smad4 signalling in the DNA damage-induced ionization radiation (IR) resistance of glioma cells. T98G cells were assigned to the IR group (treated with IR) or the Blank group (with no treatment). The IR-treated cells were also treated/transfected with the TGF-β receptor inhibitor SB431542, SUMO1-overexpressing plasmids (SUMO1 group), SUMO1-interfering plasmids (si-SUMO1 group) or negative control plasmids group. The wound-healing capacity, cell proliferation and cell apoptosis were evaluated by the scratch assay, flow cytometry and the CCK-8 assay, respectively, and protein interactions were investigated by coimmunoprecipitation and colocalization assays. IR-treated T98G cells had DNA damage, but the wound-healing capacity and cell apoptosis were not significantly suppressed. DNA damage also induced TGF-β1, Smad4, SUMO1, SUMO2/3 and Ubc9 expression. In IR-treated cells cultured with SB431542, the wound-healing capacity and proliferation were promoted. SUMO1 and Smad4 colocalized in the nucleus of T98G cells, and the IR-treated cells had a significantly higher expression of the SUMO1-Smad4 protein complex. Smad4 expression in the nucleus was significantly reduced in the si-SUMO1 group, but was markedly increased in the SUMO1 group; the SUMO1 group had significantly elevated apoptotic activity, whereas the si-SUMO1 group showed significantly suppressed apoptotic activity and the si-SUMO1+SB41542 group had the lowest levels of cell apoptosis. DNA damage may activate Smad4 SUMOylation and the SUMOylation of Smad4 participates in the activation of TGF-β/Smad4 signalling; therefore, enhanced Smad4 SUMOylation is critical for the damage-induced activation of IR resistance.
Collapse
|
33
|
Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell 2017; 43:418-435.e13. [PMID: 29161592 DOI: 10.1016/j.devcel.2017.10.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/18/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous carcinoma in which various tumor-suppressor genes are lost by mutation, deletion, or silencing. Here we report a tumor-suppressive mode of action for growth-differentiation factor 11 (GDF11) and an unusual mechanism of its inactivation in TNBC. GDF11 promotes an epithelial, anti-invasive phenotype in 3D triple-negative cultures and intraductal xenografts by sustaining expression of E-cadherin and inhibitor of differentiation 2 (ID2). Surprisingly, clinical TNBCs retain the GDF11 locus and expression of the protein itself. GDF11 bioactivity is instead lost because of deficiencies in its convertase, proprotein convertase subtilisin/kexin type 5 (PCSK5), causing inactive GDF11 precursor to accumulate intracellularly. PCSK5 reconstitution mobilizes the latent TNBC reservoir of GDF11 in vitro and suppresses triple-negative mammary cancer metastasis to the lung of syngeneic hosts. Intracellular GDF11 retention adds to the concept of tumor-suppressor inactivation and reveals a cell-biological vulnerability for TNBCs lacking therapeutically actionable mutations.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Michael A Borten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
34
|
Seoane J, Gomis RR. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022277. [PMID: 28246180 DOI: 10.1101/cshperspect.a022277] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) induces a pleiotropic pathway that is modulated by the cellular context and its integration with other signaling pathways. In cancer, the pleiotropic reaction to TGF-β leads to a diverse and varied set of gene responses that range from cytostatic and apoptotic tumor-suppressive ones in early stage tumors, to proliferative, invasive, angiogenic, and oncogenic ones in advanced cancer. Here, we review the knowledge accumulated about the molecular mechanisms involved in the dual response to TGF-β in cancer, and how tumor cells evolve to evade the tumor-suppressive responses of this signaling pathway and then hijack the signal, converting it into an oncogenic factor. Only through the detailed study of this complexity can the suitability of the TGF-β pathway as a therapeutic target against cancer be evaluated.
Collapse
Affiliation(s)
- Joan Seoane
- Translational Research Program, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
35
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
36
|
Jung B, Staudacher JJ, Beauchamp D. Transforming Growth Factor β Superfamily Signaling in Development of Colorectal Cancer. Gastroenterology 2017; 152:36-52. [PMID: 27773809 PMCID: PMC5550896 DOI: 10.1053/j.gastro.2016.10.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β cytokines signal via a complex network of pathways to regulate proliferation, differentiation, adhesion, migration, and other functions in many cell types. A high percentage of colorectal tumors contain mutations that disrupt TGF-β family member signaling. We review how TGF-β family member signaling is altered during development of colorectal cancer, models of study, interaction of pathways, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Jung
- University of Illinois at Chicago, Chicago, Illinois.
| | | | | |
Collapse
|
37
|
Xu P, Lin X, Feng XH. Posttranslational Regulation of Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022087. [PMID: 27908935 DOI: 10.1101/cshperspect.a022087] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor β (TGF-β) family signaling dictates highly complex programs of gene expression responses, which are extensively regulated at multiple levels and vary depending on the physiological context. The formation, activation, and destruction of two major functional complexes in the TGF-β signaling pathway (i.e., the TGF-β receptor complexes and the Smad complexes that act as central mediators of TGF-β signaling) are direct targets for posttranslational regulation. Dysfunction of these complexes often leads or contributes to pathogenesis in cancer and fibrosis and in cardiovascular, and autoimmune diseases. Here we discuss recent insights into the roles of posttranslational modifications in the functions of the receptor-activated Smads in the common Smad4 and inhibitory Smads, and in the control of the physiological responses to TGF-β. It is now evident that these modifications act as decisive factors in defining the intensity and versatility of TGF-β responsiveness. Thus, the characterization of posttranslational modifications of Smads not only sheds light on how TGF-β controls physiological and pathological processes but may also guide us to manipulate the TGF-β responses for therapeutic benefits.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
38
|
Wu B, Guo B, Kang J, Deng X, Fan Y, Zhang X, Ai K. Downregulation of Smurf2 ubiquitin ligase in pancreatic cancer cells reversed TGF-β-induced tumor formation. Tumour Biol 2016; 37:16077–16091. [PMID: 27730540 DOI: 10.1007/s13277-016-5432-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/17/2023] Open
Abstract
Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide range of cellular responses. However, the exact mechanism whereby Smurf2 controls TGF-β-induced signaling pathways remains unknown. Here, we identified the relationship between the alternate TGF-β signaling pathways: TGF-β/PI3K/Akt/β-catenin and TGF-β/Smad2/3/FoxO1/PUMA and Smurf2. The results showed that TGF-β promoted proliferation, invasion, and migration of human pancreatic carcinoma (PANC-1) cells through the PI3K/Akt/β-catenin pathway. Inhibiting the PI3K/Akt signal transformed the TGF-β-induced cell response from promoting proliferation to Smad2/3/FoxO1/PUMA-mediated apoptosis. The activation of Akt inhibited the phosphorylation/activation of Smad3 and promoted the phosphorylation/inactivation of FoxO1, inhibiting the nuclear translocation of both Smad3 and FoxO1 and inhibiting the expression of PUMA, a key apoptotic mediator. However, downregulation of Smurf2 in PANC-1 cells removed Akt-mediated suppression of Smad3 and FoxO1, allowing TGF-β-induced phosphorylation/activation of Smad2/3, dephosphorylation/activation of FoxO1, nuclear translocation of both factors, and activation of PUMA-mediated apoptosis. Downregulation of Smurf2 also decreased invasion and migration in TGF-β-induced PANC-1 cells. The in vivo experiments also revealed that downregulation of Smurf2 delayed the growth of xenograft tumors originating from PANC-1 cells especially when treated with TGF-β. Taken together, these results indicate that expression of Smurf2 plays a central role in the determination and activation/inhibition of particular cellular pathways and the ultimate fate of cells induced by TGF-β. An increased understanding of the intricacies of the TGF-β signaling pathway may provide a new anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Bomin Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Jie Kang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xianzhao Deng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Youben Fan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xiaoping Zhang
- Institution of Interventional and Vascular Surgery, Tongji Univerity, No. 301 Middle Yan Chang Rd, Shanghai, 200072, China.
| | - Kaixing Ai
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
39
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
40
|
Ji XY, Wang JX, Liu B, Zheng ZQ, Fu SY, Tarekegn GM, Bai X, Bai YS, Li H, Zhang WG. Comparative Transcriptome Analysis Reveals that a Ubiquitin-Mediated Proteolysis Pathway Is Important for Primary and Secondary Hair Follicle Development in Cashmere Goats. PLoS One 2016; 11:e0156124. [PMID: 27695037 PMCID: PMC5047472 DOI: 10.1371/journal.pone.0156124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background The fleece of cashmere goats contains two distinct populations of fibers, a short and fine non-medullated insulating cashmere fiber and a long and coarse medullated guard hair. The former is produced by secondary follicles (SFs) and the later by primary follicles (PFs). Evidence suggests that the induction of PFs and SFs may require different signaling pathways. The regulation of BMP2/4 signaling by noggin and Edar signaling via Downless genes are essential for the induction of SFs and PFs, respectively. However, these differently expressed genes of the signaling pathway cannot directly distinguish between the PFs and SFs. Results In this study, we selected RNA samples from 11 PFs and 7 SFs that included 145,525 exons. The pathway analysis of 4512 differentially expressed exons revealed that the most statistically significant metabolic pathway was related to the ubiquitin–mediated proteolysis pathway (UMPP) (P<3.32x 10−7). In addition, the 51 exons of the UMPP that were differentially expressed between the different types of hair follicle (HFs) were compared by cluster analysis. This resulted in the PFs and SFs being divided into two classes. The expression level of two selected exons was analyzed by qRT-PCR, and the results indicated that the expression patterns were consistent with the deep sequencing results obtained by RNA-Seq. Conclusions Based on the comparative transcriptome analysis of 18 HFs from cashmere goats, a large number of differentially expressed exons were identified using a high-throughput sequencing approach. This study suggests that UMPP activation is a prominent signaling pathway for distinguishing the PFs and SFs of cashmere goats. It is also a meaningful contribution to the theoretical basis of the biological study of the HFs of cashmere goats and other mammals.
Collapse
Affiliation(s)
- Xiao-yang Ji
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Institute of ATCG, Nei Mongol Bio-Information, Hohhot, 010020, China
| | - Jian-xun Wang
- Animal Research institution of Animal Science Academy of XinJiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Bin Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Institute of ATCG, Nei Mongol Bio-Information, Hohhot, 010020, China
| | - Zhu-qing Zheng
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Institute of ATCG, Nei Mongol Bio-Information, Hohhot, 010020, China
| | - Shao-yin Fu
- Institute of ATCG, Nei Mongol Bio-Information, Hohhot, 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot, 010031, China
| | - Getinet Mekuriaw Tarekegn
- Department of Microbial, Cellular and molecular biology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Animal production and Technology, Biotechnology Research Institute, Bahir Dar University, Addis Ababa, Ethiopia
| | - Xue Bai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Institute of ATCG, Nei Mongol Bio-Information, Hohhot, 010020, China
| | - Yong-sheng Bai
- Department of Biology, The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, 47809, United States of America
- * E-mail: (WZ); (YB); (HL)
| | - Heng Li
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, 010018, China
- * E-mail: (WZ); (YB); (HL)
| | - Wen-guang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Institute of ATCG, Nei Mongol Bio-Information, Hohhot, 010020, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- * E-mail: (WZ); (YB); (HL)
| |
Collapse
|
41
|
Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, Cataldo I, Rusev BC, Lawlor RT, Diodoro MG, Milella M, Grazi GL, Bissell MJ, Scarpa A, Nisticò P. The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome. Oncoimmunology 2016; 5:e1221556. [PMID: 28123868 PMCID: PMC5213039 DOI: 10.1080/2162402x.2016.1221556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease in need of prognostic markers to address therapeutic choices. We have previously shown that alternative splicing of the actin regulator, hMENA, generates hMENA11a, and hMENAΔv6 isoforms with opposite roles in cell invasion. We examined the expression pattern of hMENA isoforms by immunohistochemistry, using anti-pan hMENA and specific anti-hMENA11a antibodies, in 285 PDACs, 15 PanINs, 10 pancreatitis, and normal pancreas. Pan hMENA immunostaining, absent in normal pancreas and low-grade PanINs, was weak in PanIN-3 and had higher levels in virtually all PDACs with 64% of cases showing strong staining. Conversely, the anti-invasive hMENA11a isoform only showed strong staining in 26% of PDAC. The absence of hMENA11a in a subset (34%) of pan-hMENA-positive tumors significantly correlated with poor outcome. The functional effects of hMENA isoforms were analyzed by loss and gain of function experiments in TGF-β1-treated PDAC cell lines. hMENA11a knock-down in PDAC cell lines affected cell-cell adhesion but not invasion. TGF-β1 cooperated with β-catenin signaling to upregulate hMENA and hMENAΔv6 expression but not hMENA11a In the absence of hMENA11a, the hMENA/hMENAΔv6 up-regulation is crucial for SMAD2-mediated TGF-β1 signaling and TGF-β1-induced EMT. Since the hMENA isoform expression pattern correlates with patient outcome, the data suggest that hMENA splicing and related pathways are novel key players in pancreatic tumor microenvironment and may represent promising targets for the development of new prognostic and therapeutic tools in PDAC.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Pierluigi Iapicca
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Trono
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Fassan
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Ivana Cataldo
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Borislav C. Rusev
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | | | - Michele Milella
- Medical Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Gian Luca Grazi
- Hepato-pancreato-biliary Surgery Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Mina J. Bissell
- Lawrence Berkeley National Laboratory, University of California, CA, USA
| | - Aldo Scarpa
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Paola Nisticò
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
42
|
Mistriotis P, Bajpai VK, Wang X, Rong N, Shahini A, Asmani M, Liang MS, Wang J, Lei P, Liu S, Zhao R, Andreadis ST. NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression. Stem Cells 2016; 35:207-221. [PMID: 27350449 DOI: 10.1002/stem.2452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/28/2016] [Indexed: 12/12/2022]
Abstract
Cellular senescence as a result of organismal aging or progeroid diseases leads to stem cell pool exhaustion hindering tissue regeneration and contributing to the progression of age related disorders. Here we discovered that ectopic expression of the pluripotent factor NANOG in senescent or progeroid myogenic progenitors reversed cellular aging and restored completely the ability to generate contractile force. To elicit its effects, NANOG enabled reactivation of the ROCK and Transforming Growth Factor (TGF)-β pathways-both of which were impaired in senescent cells-leading to ACTIN polymerization, MRTF-A translocation into the nucleus and serum response factor (SRF)-dependent myogenic gene expression. Collectively our data reveal that cellular senescence can be reversed and provide a novel strategy to regain the lost function of aged stem cells without reprogramming to the pluripotent state. Stem Cells 2017;35:207-221.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Vivek K Bajpai
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Xiaoyan Wang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Na Rong
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Mao-Shih Liang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| |
Collapse
|
43
|
Hongo S, Yamamoto T, Yamashiro K, Shimoe M, Tomikawa K, Ugawa Y, Kochi S, Ideguchi H, Maeda H, Takashiba S. Smad2 overexpression enhances adhesion of gingival epithelial cells. Arch Oral Biol 2016; 71:46-53. [PMID: 27421099 DOI: 10.1016/j.archoralbio.2016.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Gingival epithelial cells play an important role in preventing the initiation of periodontitis, by their hemidesmosomal adhesion to the tooth root surface. Adhesion requires integrin-extracellular matrix (ECM) interactions that are intricately regulated by transforming growth factor-β (TGF-β) signaling. However, the mechanisms underlying the interplay between adhesion molecules and TGF-β, especially the respective roles of Smad2 and Smad3, remain elusive. In this study, we examined the effects of Smad overexpression on gingival epithelial cell adhesion and expression profiles of integrin and ECM-related genes. METHODS Human gingival epithelial cells immortalized by the SV40 T-antigen were transfected with Smad2- and Smad3-overexpression vectors. A cell adhesion assay involving fluorescence detection of attached cells was performed using the ArrayScan imaging system. Real-time PCR was performed to examine the kinetics of integrin and ECM gene expression. In vitro and in vivo localization of adhesion molecules was examined by immunofluorescence analysis. RESULTS By using SB431542, a specific inhibitor of the TGF-β type I receptor, Smad2/3 signaling was confirmed to be dominant in TGF-β1-induced cell adhesion. The Smad2-transfectant demonstrated higher potency for cell adhesion and integrin expression (α2, α5, β4, and β6) than the Smad3-transfectant, whereas little or no change in ECM expression was observed in either transfectant. Moreover, the gingival epithelium of transgenic mice that overexpressed Smad2 driven by the keratin 14 promoter showed increased integrin α2 expression. CONCLUSION These findings indicate the crucial role of Smad2 in increased adhesion of gingival epithelial cells via upregulation of integrin α2.
Collapse
Affiliation(s)
- Shoichi Hongo
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Masayuki Shimoe
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Kazuya Tomikawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Hiroshi Maeda
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| |
Collapse
|
44
|
Pauklin S, Madrigal P, Bertero A, Vallier L. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev 2016; 30:421-33. [PMID: 26883361 PMCID: PMC4762427 DOI: 10.1101/gad.271452.115] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coordination of differentiation and cell cycle progression represents an essential process for embryonic development and adult tissue homeostasis. These mechanisms ultimately determine the quantities of specific cell types that are generated. Despite their importance, the precise molecular interplays between cell cycle machinery and master regulators of cell fate choice remain to be fully uncovered. Here, we demonstrate that cell cycle regulators Cyclin D1-3 control cell fate decisions in human pluripotent stem cells by recruiting transcriptional corepressors and coactivator complexes onto neuroectoderm, mesoderm, and endoderm genes. This activity results in blocking the core transcriptional network necessary for endoderm specification while promoting neuroectoderm factors. The genomic location of Cyclin Ds is determined by their interactions with the transcription factors SP1 and E2Fs, which result in the assembly of cell cycle-controlled transcriptional complexes. These results reveal how the cell cycle orchestrates transcriptional networks and epigenetic modifiers to instruct cell fate decisions.
Collapse
Affiliation(s)
- Siim Pauklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alessandro Bertero
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
45
|
Gerhardt C, Leu T, Lier JM, Rüther U. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 2016; 5:14. [PMID: 27293550 PMCID: PMC4901515 DOI: 10.1186/s13630-016-0035-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
The primary cilium is an essential structure for the mediation of numerous signaling pathways involved in the coordination and regulation of cellular processes essential for the development and maintenance of health. Consequently, ciliary dysfunction results in severe human diseases called ciliopathies. Since many of the cilia-mediated signaling pathways are oncogenic pathways, cilia are linked to cancer. Recent studies demonstrate the existence of a cilia-regulated proteasome and that this proteasome is involved in cancer development via the progression of oncogenic, cilia-mediated signaling. This review article investigates the association between primary cilia and cancer with particular emphasis on the role of the cilia-regulated proteasome.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
46
|
Zhang L, Zhou F, van Dinther M, Ten Dijke P. Determining TGF-β Receptor Levels in the Cell Membrane. Methods Mol Biol 2016; 1344:35-47. [PMID: 26520116 DOI: 10.1007/978-1-4939-2966-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that signals via transmembrane TGF-β type I and type II serine/threonine kinases receptors, i.e., TβRI and TβRII. Upon TGF-β-induced receptor complex formation, the TβRII kinase phosphorylates TβRI. Subsequently, the activated TβRI induces the phosphorylation of receptor regulated SMAD2 and SMAD3, which can form heteromeric complexes with Smad4. These heteromeric SMAD complexes accumulate in the nucleus, where they regulate target gene expression. The stability and membrane localization of TβRI is an important determinant to control the intensity and duration of TGF-β signaling. TβRI is targeted for poly-ubiquitylation-mediated proteasomal degradation by the SMAD7-SMURF E3 ligase complex. We recently identified another important regulatory factor that controls TβRI levels in the cell membrane. As a strong inducer of TGF-β signaling, ubiquitin-specific protease (USP) 4 was found to directly interact with TβRI and act as a deubiquitylating enzyme, thereby stabilizing TβRI levels at the plasma membrane. This chapter introduces methods for examining cell membrane receptor (TβRI) levels.
Collapse
Affiliation(s)
- Long Zhang
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC, Leiden, The Netherlands.,Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fangfang Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Institutes of Biology and Medical Sciences, Soochow University, Suzhou Industrial Park, Suzhou, Jiangsu, China
| | - Maarten van Dinther
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC, Leiden, The Netherlands. .,Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Ludwig Institute for Cancer Research, Uppsala University, Box 595, Uppsala, 75124, Sweden.
| |
Collapse
|
47
|
Casa AJ, Hochbaum D, Sreekumar S, Oesterreich S, Lee AV. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor. Mol Cell Endocrinol 2015; 415:76-86. [PMID: 26272024 DOI: 10.1016/j.mce.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
Abstract
Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor.
Collapse
Affiliation(s)
- Angelo J Casa
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Hochbaum
- Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Sreeja Sreekumar
- Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Cui W, Zhou J, Dehne N, Brüne B. Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFβ signaling in macrophages. Cell Biosci 2015; 5:36. [PMID: 26146544 PMCID: PMC4491253 DOI: 10.1186/s13578-015-0026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022] Open
Abstract
Background Under inflammatory conditions or during tumor progression macrophages acquire distinct phenotypes, with factors of the microenvironment such as hypoxia and transforming growth factor β (TGFβ) shaping their functional plasticity. TGFβ is among the factors causing alternative macrophage activation, which contributes to tissue regeneration and thus, resolution of inflammation but may also provoke tumor progression. However, the signal crosstalk between TGFβ and hypoxia is ill defined. Results Exposing human primary macrophages to TGFβ elicited a rapid SMAD2/SMAD3 phosphorylation. This early TGFβ-signaling remained unaffected by hypoxia. However, with prolonged exposure periods to TGFβ/hypoxia the expression of SMAD2 declined because of decreased protein stability. In parallel, hypoxia increased mRNA and protein amount of the calpain regulatory subunit, with the further notion that TGFβ/hypoxia elicited calpain activation. The dual specific proteasome/calpain inhibitor MG132 and the specific calpain inhibitor 1 rescued SMAD2 degradation, substantiating the ability of calpain to degrade SMAD2. Decreased SMAD2 expression reduced TGFβ transcriptional activity of its target genes thrombospondin 1, dystonin, and matrix metalloproteinase 2. Conclusions Hypoxia interferes with TGFβ signaling in macrophages by calpain-mediated proteolysis of the central signaling component SMAD2. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0026-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Cui
- College of Life Sciences, Beijing Normal University, 100875 Beijing, China ; Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Jie Zhou
- College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Nathalie Dehne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
49
|
Yu JSL, Ramasamy TS, Murphy N, Holt MK, Czapiewski R, Wei SK, Cui W. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun 2015; 6:7212. [PMID: 25998442 PMCID: PMC4455068 DOI: 10.1038/ncomms8212] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/20/2015] [Indexed: 11/27/2022] Open
Abstract
Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-β signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator. Although crosstalk between the phosphatidylinositol 3-kinase (PI3K) and transforming growth factor-β pathways is important, the mechanism is obscure. Here, Yu et al. show that activation of mTORC2 downstream of PI3K leads to the linker phosphorylation of Smad2/3 and their ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Jason S L Yu
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Thamil Selvee Ramasamy
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Nick Murphy
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Marie K Holt
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rafal Czapiewski
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Shi-Khai Wei
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Wei Cui
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
50
|
Qiao N, Xu C, Zhu YX, Cao Y, Liu DC, Han X. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Cell Death Dis 2015; 6:e1650. [PMID: 25695603 PMCID: PMC4669796 DOI: 10.1038/cddis.2015.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/21/2014] [Accepted: 01/02/2015] [Indexed: 12/17/2022]
Abstract
Hypoxia complicates islet isolation for transplantation and may contribute to pancreatic β-cell failure in type 2 diabetes. Pancreatic β-cells are susceptible to hypoxia-induced apoptosis. Severe hypoxic conditions during the immediate post-transplantation period are a main non-immune factor leading to β-cell death and islet graft failure. In this study, we identified the transcription factor Ets-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Hypoxia regulates Ets-1 at multiple levels according to the degree of β-cell oxygen deprivation. Moderate hypoxia promotes Ets-1 gene transcription, whereas severe hypoxia promotes its transactivation activity, as well as its ubiquitin-proteasome mediated degradation. This degradation causes a relative insufficiency of Ets-1 activity, and limits the transactivation effect of Ets-1 on downstream hypoxic-inducible genes and its anti-apoptotic function. Overexpression of ectopic Ets-1 in MIN6 and INS-1 cells protects them from severe hypoxia-induced apoptosis in a mitochondria-dependent manner, confirming that a sufficient amount of Ets-1 activity is critical for protection of pancreatic β-cells against hypoxic injury. Targeting Ets-1 expression may be a useful strategy for islet graft protection during the immediate post-transplantation period.
Collapse
Affiliation(s)
- N Qiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - C Xu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y-X Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Cao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - D-C Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|