1
|
Retout M, Cornelio B, Bruylants G, Jabin I. Bifunctional Calix[4]arene-Coated Gold Nanoparticles for Orthogonal Conjugation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9301-9309. [PMID: 35866876 DOI: 10.1021/acs.langmuir.2c01122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold nanoparticles (AuNPs) are currently intensively exploited in the biomedical field as they possess interesting chemical and optical properties. Although their synthesis is well-known, their controlled surface modification with defined densities of ligands such as peptides, DNA, or antibodies remains challenging and has generally to be optimized case by case. This is particularly true for applications like in vivo drug delivery that require AuNPs with multiple ligands, for example a targeting ligand and a drug in well-defined proportions. In this context, we aimed to develop a calixarene-modification strategy that would allow the controlled orthogonal conjugation of AuNPs, respectively, via amide bond formation and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). To do this, we synthesized a calix[4]arene-tetradiazonium salt bearing four PEG chains ended by an alkyne group (C1) and, after optimization of its grafting on 20 nm AuNPs, we demonstrated that CuAAC can be used to conjugate an azide containing dye (N3-cya7.5). It was observed that AuNPs coated with C1 (AuNPs-C1) can be conjugated to approximately 600 N3-cya7.5 that is much higher than the value obtained for AuNPs decorated with traditional thiolated PEG ligands terminated by an alkyne group. The control over the number of molecules conjugated via CuAAC was even possible by incorporating a non-functional calixarene (C2) into the coating layer. We then combined C1 with a calix[4]arene-tetradiazonium salt bearing four carboxyl groups (C3) that allows conjugation of an amine (NH2-cya7.5) containing dye. The conjugation potential of these bifunctional AuNPs-C1/C3 was quantified by UV-vis spectroscopy: AuNPs decorated with equal amount of C1 and C3 could be conjugated to approximately 350 NH2-dyes and 300 N3-dyes using successively amide bond formation and CuAAC, demonstrating the control over the orthogonal conjugation. Such nanoconstructs could benefit to anyone in the need of a controlled modification of AuNPs with two different molecules via two different chemistries.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular Nanosystems, Université Libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | - Benedetta Cornelio
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), CP 160/06, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | - Gilles Bruylants
- Engineering of Molecular Nanosystems, Université Libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), CP 160/06, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| |
Collapse
|
2
|
Egorova EA, Lamers GEM, Monikh FA, Boyle AL, Slütter B, Kros A. Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses. RSC Adv 2022; 12:19703-19716. [PMID: 35865201 PMCID: PMC9260517 DOI: 10.1039/d2ra03027f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles (GNPs) can be manufactured in various shapes, and their size is programmable, which permits the study of the effects imposed by these parameters on biological processes. However, there is currently no clear evidence that a certain shape or size is beneficial. To address this issue, we have utilised GNPs and gold nanorods (GNRs) functionalised with model epitopes derived from chicken ovalbumin (OVA257-264 and OVA323-339). By using two distinct epitopes, it was possible to draw conclusions regarding the impact of nanoparticle shape and size on different aspects of the immune response. Our findings indicate that the peptide amphiphile-coated GNPs and GNRs are a safe and versatile epitope-presenting system. Smaller GNPs (∼15 nm in diameter) induce significantly less intense T-cell responses. Furthermore, effective antigen presentation via MHC-I was observed for larger spherical particles (∼40 nm in diameter), and to a lesser extent for rod-like particles (40 by 15 nm). At the same time, antigen presentation via MHC-II strongly correlated with the cellular uptake, with smaller GNPs being the least efficient. We believe these findings will have implications for vaccine development, and lead to a better understanding of cellular uptake and antigen egress from lysosomes into the cytosol.
Collapse
Affiliation(s)
- Elena A Egorova
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Gerda E M Lamers
- Core Facility Microscopy, Institute of Biology, Leiden University The Netherlands
| | - Fazel Abdolahpur Monikh
- Environmental Biology, Institute of Environmental Sciences, Leiden University The Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Biotherapeutics, Leiden University The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| |
Collapse
|
3
|
Abbas M, Ovais M, Atiq A, Ansari TM, Xing R, Spruijt E, Yan X. Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coord Chem Rev 2022; 460:214481. [DOI: 10.1016/j.ccr.2022.214481] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Fatrekar AP, Morajkar R, Krishnan S, Dusane A, Madhyastha H, Vernekar AA. Delineating the Role of Tailored Gold Nanostructures at the Biointerface. ACS APPLIED BIO MATERIALS 2021; 4:8172-8191. [PMID: 35005942 DOI: 10.1021/acsabm.1c00998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold (Au) has emerged as a superior element, because of its widespread applications in electronic and medical fields. The desirable physical, chemical, optical, and inherent enzyme-like properties of Au are efficiently exploited for detection, diagnostic, and therapeutic purposes. Au offers a unique advantage of fabricating gold nanostructures (GNS) having exact physical, chemical, optical, and enzyme-like properties required for the specific biomedical application. In this Review, the emerging trend of GNS for various biomedical applications is highlighted. Some notable structural and chemical modifications achieved for the detection of biomolecules, pathogens, diagnosis of diseases, and therapeutic applications are discussed in brief. The limitations of GNS during biomedical usage are highlighted and the way forward to overcome these limitations are discussed.
Collapse
Affiliation(s)
- Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | | | - Apurva Dusane
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
5
|
Li XY, Zhang MM, Zhou XD, Hu JM. A functional peptide-mediated colorimetric assay for mercury ion based on dual-modified gold nanoparticles. Anal Biochem 2021; 631:114369. [PMID: 34516968 DOI: 10.1016/j.ab.2021.114369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
In the work, a rapid and accurate biosensor for mercury ions (Hg2+) was constructed, with which aggregation of dual-modified (DGPFHR- and CALNN-) gold nanoparticles (D/C-AuNPs) could be triggered by the high specificity of peptides to Hg2+. The given peptide DGPFHR possesses great capability of capturing Hg2+, accompanied by the conformational folding. Under the circumstances, D/C-AuNPs were employed as the detection probes to accomplish the quantitative analysis of Hg2+. This is primarily because the specific Hg2+-induced folding of peptides reduces the electrostatic repulsion and steric hindrance, thus accelerating the AuNPs aggregation. The principle and application potential of this proposal was proved by evidence. And the results demonstrated that Hg2+ ions could be selectively detected as low as 28 nM with a linear range of 100-800 nM. In consideration of superior simplicity, selectivity, accuracy and stability, the protocol was advantageous over other projects in practical measurement of various water samples.
Collapse
Affiliation(s)
- Xin-Yi Li
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China
| | - Miao-Miao Zhang
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China
| | - Xiao-Dong Zhou
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China.
| | - Ji-Ming Hu
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
6
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
8
|
Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today 2020; 26:94-105. [PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles (AuNPs) have garnered much attention as contrast agents for computerized tomography (CT) because of their facile synthesis and surface functionalization, in addition to their significant X-ray attenuation and minimal cytotoxicity. Cell labeling using AuNPs and tracking of the labeled cells using CT has become a time-efficient and cost-effective method. Actively targeted AuNPs can enhance CT contrast and sensitivity, and further reduce the radiation dosage needed during CT imaging. In this review, we summarize the state-of-the-art use of AuNPs in CT for cell tracking, including the precautionary steps necessary for their use and the difficulty in translating the process into clinical use.
Collapse
Affiliation(s)
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Rajendran Jc Bose
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea; Masonic Medical Research Institute, Utica, NY, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Egorova E, van Rijt MMJ, Sommerdijk N, Gooris GS, Bouwstra JA, Boyle AL, Kros A. One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS NANO 2020; 14:5874-5886. [PMID: 32348119 PMCID: PMC7254838 DOI: 10.1021/acsnano.0c01021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The functionalization of gold nanoparticles (GNPs) with peptidic moieties can prevent their aggregation and facilitate their use for applications both in vitro and in vivo. To date, no peptide-based coating has been shown to stabilize GNPs larger than 30 nm in diameter; such particles are of interest for applications including vaccine development, drug delivery, and sensing. Here, GNPs with diameters of 20, 40, and 100 nm are functionalized with peptide amphiphiles. Using a combination of transmission electron microscopy, UV-vis spectroscopy, and dynamic light scattering, we show that GNPs up to 100 nm in size can be stabilized by these molecules. Moreover, we demonstrate that these peptide amphiphiles form curvature-dependent, ordered structures on the surface of the GNPs and that the GNPs remain disperse at high-salt concentrations and in the presence of competing thiol-containing molecules. These results represent the development of a peptide amphiphile-based coating system for GNPs which has the potential to be beneficial for a wide range of biological applications, in addition to image enhancement and catalysis.
Collapse
Affiliation(s)
- Elena
A. Egorova
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Mark M. J. van Rijt
- Laboratory
of Physical Chemistry and the Centre for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The
Netherlands
| | - Nico Sommerdijk
- Radboud
Institute for Molecular Life Sciences, Radboud
University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Gert S. Gooris
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Joke A. Bouwstra
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Aimee L. Boyle
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| |
Collapse
|
10
|
Li XY, Feng FY, Zhou XD, Hu JM. Rational design of an anchoring peptide for high-efficiency and quantitative modification of peptides and DNA strands on gold nanoparticles. NANOSCALE 2018; 10:11491-11497. [PMID: 29888777 DOI: 10.1039/c8nr03565b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The pentapeptide Cys-Ala-Leu-Asn-Asn (CALNN) could stabilize gold nanoparticles (AuNPs), most of which serve as anchoring blocks for various bioanalyses by introducing recognition blocks. However, the typical conjugation strategy greatly suffers from excessive use of peptides, overnight incubation and consequently low efficiency. In this study, new design criteria for the efficacious anchor were established. In addition, a stable, instantaneous and effective modification of the anchoring peptide RRFPDD or its derivatives on AuNPs is first proposed for the first time. With low consumption of peptides (50 μM), the loading process could be realized in 100 seconds. The anchor RRFPDD also allowed for the quantitative adsorption of appended recognition blocks (e.g., peptides or DNAs), thus adjusting their proportions for better performance. In particular, the biological characteristics of those recognition blocks were fully retained. Furthermore, the anchor RRFPDD contributed to a time-saving and high-efficiency (85%) hydrolysis of peptide-capped AuNPs. Considering these advantages of the new anchor, a reliable assay for cardiac troponin I (cTnI) was developed with a detection limit as low as 0.45 ng mL-1, and also successfully applied in human serum samples.
Collapse
Affiliation(s)
- Xin-Yi Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | | | |
Collapse
|
11
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
12
|
Zong J, Cobb SL, Cameron NR. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci 2018; 5:872-886. [PMID: 28304023 DOI: 10.1039/c7bm00006e] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colloidal gold solutions have been used for centuries in a wide variety of applications including staining glass and in the colouring of ceramics. More recently, gold nanoparticles (GNPs) have been studied extensively due to their interesting size-dependent electronic and optical properties. GNPs can be functionalized easily with biomolecules that contain thiols, amines, or even phosphine moieties. For example, the reaction of thiol-containing peptides with GNPs has been used extensively to prepare novel hybrid materials for biomedical applications. A range of different types of peptides can be used to access biomaterials that are designed to perform a specific role such as cancer cell targeting. In addition, specific peptide sequences that are responsive to external stimuli (e.g. temperature or pH) can be used to stabilise/destabilise the aggregation of colloidal GNPs. Such systems have exciting potential applications in the field of colorimetric sensing (including bio-sensing) and in targeted drug delivery platforms. In this review, we will give an overview of the current methods used for preparing peptide functionalized GNPs, and we will discuss their key properties outlining the various applications of this class of biomaterial. In particular, the potential applications of peptide functionalized GNPs in areas of sensing and targeted drug delivery will be discussed.
Collapse
Affiliation(s)
- Jingyi Zong
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | |
Collapse
|
13
|
Horáček M, Armstrong RE, Zijlstra P. Heterogeneous Kinetics in the Functionalization of Single Plasmonic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:131-138. [PMID: 29185760 PMCID: PMC5763282 DOI: 10.1021/acs.langmuir.7b04027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 05/18/2023]
Abstract
The functionalization of gold nanoparticles with DNA has been studied extensively in solution; however, these ensemble measurements do not reveal particle-to-particle differences. Here we study the functionalization of gold nanorods with thiolated single-stranded DNA (ssDNA) at the single-particle level. We exploit the sensitivity of the plasmon resonance to the local refractive index to study the functionalization in real time using single-particle spectroscopy. We find particle-to-particle variations of the plasmon shift that are attributed to the particle size distribution and variations in ssDNA coverage. We find that the ssDNA coverage varies by ∼10% from particle to particle, beyond the expected variation due to Poisson statistics. Surprisingly, we find binding rates that differ from particle to particle by an order of magnitude, even though the buffer conditions are identical. We ascribe this heterogeneity to a distribution of activation energies caused by particle-to-particle variations in effective surface charge. These results yield insight into the kinetics of biofunctionalization at the single particle level and highlight that significant kinetic heterogeneity has to be taken into account in applications of functional particles. The presented methodology is easily extended to any nanoparticle coating and can be used to optimize functionalization protocols.
Collapse
Affiliation(s)
- Matěj Horáček
- Molecular
Biosensing for Medical Diagnostics, Faculty of Applied
Physics, and Institute for Complex Molecular Systems, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rachel E. Armstrong
- Molecular
Biosensing for Medical Diagnostics, Faculty of Applied
Physics, and Institute for Complex Molecular Systems, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Molecular
Biosensing for Medical Diagnostics, Faculty of Applied
Physics, and Institute for Complex Molecular Systems, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- E-mail (P.Z.)
| |
Collapse
|
14
|
Shinde S, Kim DY, Saratale RG, Syed A, Ameen F, Ghodake G. A Spectral Probe for Detection of Aluminum (III) Ions Using Surface Functionalized Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E287. [PMID: 28937661 PMCID: PMC5666452 DOI: 10.3390/nano7100287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
A simple green route has been developed for the synthesis of casein peptide functionalized gold nanoparticles (AuNPs), in which casein peptide acts as a reducing as well as the stabilizing agent. In this report, AuNPs have been characterized on the basis of spectroscopic and microscopic results; which showed selective and sensitive response toward Al3+ in aqueous media, and Al3+ induces aggregation of AuNPs. The sensing study performed for Al3+ revealed that the color change from red to blue was due to a red-shift in the surface plasmon resonance (SPR) band and the formation of aggregated species of AuNPs. The calibration curve determines the detection limit (LOD) for Al3+ about 20 ppb (0.067 μM) is presented using both decrease and increase in absorbance at 530 and 700 nm, respectively. This value is considerably lower than the higher limit allowed for Al3+ in drinking water by the world health organization (WHO) (7.41 μM), representing enough sensitivity to protect water quality. The intensity of the red-shifted band increases with linear pattern upon the interaction with different concentrations of Al3+, thus the possibility of producing unstable AuNPs aggregates. The method is successfully used for the detection of Al3+ in water samples collected from various sources, human urine and ionic drink. The actual response time required for AuNPs is about 1 min, this probe also have several advantages, such as ease of synthesis, functionalization and its use, high sensitivity, and enabling on-site monitoring.
Collapse
Affiliation(s)
- Surendra Shinde
- College of Life Science and Biotechnology, Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu 10326, Goyang-si, Korea.
| | - Dae-Young Kim
- College of Life Science and Biotechnology, Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu 10326, Goyang-si, Korea.
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu 10326, Goyang-si, Korea.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Gajanan Ghodake
- College of Life Science and Biotechnology, Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu 10326, Goyang-si, Korea.
| |
Collapse
|
15
|
Browning LM, Lee KJ, Nallathamby PD, Cherukuri PK, Huang T, Warren S, Xu XHN. Single Nanoparticle Plasmonic Spectroscopy for Study of Charge-Dependent Efflux Function of Multidrug ABC Transporters of Single Live Bacillus subtilis Cells. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:21007-21016. [PMID: 29662596 PMCID: PMC5899213 DOI: 10.1021/acs.jpcc.6b03313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multidrug membrane transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, and they are responsible for ineffective treatment of a wide range of diseases (e.g., infection and cancer). Their underlying molecular mechanisms remain elusive. In this study, we functionalized Ag NPs (11 nm in diameter) with two biocompatible peptides (CALNNK, CALNNE) to prepare positively and negatively charged Ag-peptide NPs (Ag-CALNNK NPs+ζ, Ag-CALNNE NPs-4ζ), respectively. We used them as photostable plasmonic imaging probes to study charge-dependent efflux kinetics of BmrA (ABC) membrane transporter of single live Bacillus (B.) subtilis cells. Two strains of the cells, normal expression of BmrA (WT) or devoid of BmrA (ΔBmrA), were used to study the charge-dependent efflux kinetics of single NPs upon the expression of BmrA. The NPs (1.4 nM) were stable (non-aggregated) in a PBS buffer and biocompatible to the cells. We found the high dependent accumulation of the intracellular NPs in both WT and ΔBmrA upon the charge and concentration of NPs. Notably, the accumulation rates of the positively charged NPs in single live WT cells are nearly identical to those in ΔBmrA cells, showing independence upon the expression of BmrA. In contrast, the accumulation rates of the negatively charged NPs in WT are much lower than in ΔBmrA, showing high dependence upon the expression of BmrA and suggesting that BmrA extrude the negatively charged NPs, but not positively charged NPs, out of the WT. The accumulation of positively charged NPs in both WT and ΔBmrA increases nearly proportionally to the NP concentration. The accumulation of negatively charged NPs in ΔBmrA, but not in WT, also increases nearly proportionally to the NP concentration. These results suggest that both negatively and positively charged NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane, and BmrA can only extrude the negatively charged NPs out of the WT. This study shows that single NP plasmon spectroscopy can serve as a powerful tool to identify single plasmonic NPs and to probe the charge-dependent efflux kinetics and function of single membrane transporters in single live cells in real time.
Collapse
Affiliation(s)
- Lauren M. Browning
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Kerry J. Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Prakash D. Nallathamby
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Pavan K. Cherukuri
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Tao Huang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Seth Warren
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Xiao-Hong Nancy Xu
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
16
|
Fraga S, Brandão A, Soares ME, Morais T, Duarte JA, Pereira L, Soares L, Neves C, Pereira E, Bastos MDL, Carmo H. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1757-66. [DOI: 10.1016/j.nano.2014.06.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 12/26/2022]
|
17
|
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2:48. [PMID: 25077142 PMCID: PMC4097105 DOI: 10.3389/fchem.2014.00048] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Collapse
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jorge T. Dias
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Valeria Grazú
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Maria Moros
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Pedro V. Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Jesus M. de la Fuente
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
- Fundacion ARAIDZaragoza, Spain
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Bio-Nano Science and Engineering, Institute of Nano Biomedicine and Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
18
|
Liu L, Xing Y, Zhang H, Liu R, Liu H, Xia N. Amplified voltammetric detection of glycoproteins using 4-mercaptophenylboronic acid/biotin-modified multifunctional gold nanoparticles as labels. Int J Nanomedicine 2014; 9:2619-26. [PMID: 24920899 PMCID: PMC4043723 DOI: 10.2147/ijn.s62343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ultrasensitive detection of protein biomarkers is essential for early diagnosis and therapy of many diseases. Glycoproteins, differing from other types of proteins, contain carbohydrate moieties in the oligosaccharide chains. Boronic acid can form boronate ester covalent bonds with diol-containing species. Herein, we present a sensitive and cost-effective electrochemical method for glycoprotein detection using 4-mercaptophenylboronic acid (MBA)/biotin-modified gold nanoparticles (AuNPs) (MBA-biotin-AuNPs) as labels. To demonstrate the feasibility and sensitivity of this method, recombinant human erythropoietin (rHuEPO) was tested as a model analyte. Specifically, rHuEPO was captured by the anti-rHuEPO aptamer-covered electrode and then derivatized with MBA-biotin-AuNPs through the boronic acid-carbohydrate interaction. The MBA-biotin-AuNPs facilitated the attachment of streptavidin-conjugated alkaline phosphatase for the production of electroactive p-aminophenol from p-aminophenyl phosphate substrate. A detection limit of 8 fmol L(-1) for rHuEPO detection was achieved. Other glycosylated and non-glycosylated proteins, such as horseradish peroxidase, prostate specific antigen, metallothionein, streptavidin, and thrombin showed no interference in the detection assay.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China ; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People's Republic of China
| | - Yun Xing
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Hui Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Ruili Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Huijing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China ; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
19
|
Liu L, Xia N, Liu H, Kang X, Liu X, Xue C, He X. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosens Bioelectron 2014; 53:399-405. [DOI: 10.1016/j.bios.2013.10.026] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/02/2013] [Accepted: 10/11/2013] [Indexed: 11/17/2022]
|
20
|
Fratoddi I, Venditti I, Cametti C, Russo MV. Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. J Mater Chem B 2014; 2:4204-4220. [DOI: 10.1039/c4tb00383g] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gold nanoparticles and their conjugates as drug delivery vehicles for selective targeting of cancer cells.
Collapse
Affiliation(s)
- I. Fratoddi
- Dipartimento di Chimica
- University of Rome “La Sapienza”
- Rome, Italy
| | - I. Venditti
- Dipartimento di Chimica
- University of Rome “La Sapienza”
- Rome, Italy
| | - C. Cametti
- Dipartimento di Fisica
- University of Rome “La Sapienza”
- CNR-INFM-SOFT
- Rome, Italy
| | - M. V. Russo
- Dipartimento di Chimica
- University of Rome “La Sapienza”
- Rome, Italy
| |
Collapse
|
21
|
Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B. Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 2013; 4:35-63. [PMID: 23977421 PMCID: PMC3746278 DOI: 10.4331/wjbc.v4.i3.35] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health.
Collapse
|
22
|
de Oliveira R, Zhao P, Li N, de Santa Maria LC, Vergnaud J, Ruiz J, Astruc D, Barratt G. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Int J Pharm 2013; 454:703-11. [PMID: 23701998 DOI: 10.1016/j.ijpharm.2013.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
Abstract
The aim of these studies was to synthesize, characterize and evaluate the efficacy of pegylated gold nanoparticles (AuNPs) that differed in their PEG molecular weight, using PEG 550 and PEG 2000. The synthesis of the gold nanoparticles was carried out by modified Brust method with a diameter of 4-15 nm. The targeting agent folic acid was introduced by the covalent linkage. Finally, the anti-cancer drug docetaxel was encapsulated by the AuNPs by non covalent adsorption. The nanoparticles were characterized by transmission electron microscopy and used for in vitro studies against a hormone-responsive prostate cancer cell line, LnCaP. The loaded nanoparticles reduced the cell viability in more than 50% at concentrations of 6 nM and above after 144 h of treatment. Moreover, observation of prostate cancer cells by optical microscopy showed damage to the cells after exposure to drug-loaded AuNPs while unloaded AuNPs had much less effect.
Collapse
|
23
|
Lee KJ, Browning LM, Nallathamby PD, Xu XHN. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol 2013; 26:904-17. [PMID: 23621491 DOI: 10.1021/tx400087d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanomaterials possess unusually high surface area-to-volume ratios and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameter) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs(+ζ)), negatively (Ag-CALNNS NPs(-2ζ)), and more negatively charged NPs (Ag-CALNNE NPs(-4ζ)), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral, and negative charges on the surface of the NPs at pH 4-10. We have studied their charge-dependent transport into early developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs(+ζ) (positively charged) are the most biocompatible while the Ag-CALNNE NPs(-4ζ) (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups, and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs in vivo and in tissues, and reveals the possibility of rational design of biocompatible NPs.
Collapse
Affiliation(s)
- Kerry J Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | | | | | | |
Collapse
|
24
|
Nergiz SZ, Slocik JM, Naik RR, Singamaneni S. Surface defect sites facilitate fibrillation: an insight into adsorption of gold-binding peptides on Au(111). Phys Chem Chem Phys 2013; 15:11629-33. [DOI: 10.1039/c3cp50972a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Sangeetha NM, Blanck C, Nguyen TTT, Contal C, Mésini PJ. Size-selective 2D ordering of gold nanoparticles using surface topography of self-assembled diamide template. ACS NANO 2012; 6:8498-8507. [PMID: 22974475 DOI: 10.1021/nn302206h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Size-selective organization of ~2 nm dodecanethiol stabilized gold nanoparticles (AuNPs) into periodic 1D arrays by using the surface topographical features of a soft template is described. The template consists of micrometer length nanotapes organized into nanosheets with periodic valleys running along their length and is generated by the hierarchical self-assembly of a diamide molecule (BHPB) in cyclohexane. The AuNP ordering achieved simply by mixing the preformed template with the readily available ~2 nm dodecanethiol stabilized AuNPs is comparable to those obtained using programmable DNA and functional block copolymers. The observed periodicity of the AuNP arrays provided valuable structural clues about the organization of nanotapes into nanosheets. Self-assembling BHPB molecules in the presence of AuNPs by heating and cooling the two components led to a comparatively disordered organization because the template structure was changed under these conditions. Moreover, the template could not order larger AuNPs (~5 nm) into a similar 1D array, owing to the steric restriction imposed by the dimension of the valleys on the template. Interestingly, this geometric constraint led to AuNP size sorting when a polydisperse sample (2.5 ± 0.9 nm) was used for organization, with AuNPs attached to the template edges being larger (≥2.2 ± 0.9 nm) than those associated to the inner valleys (1.6 ± 0.8 nm). This is a unique example of size-sorting induced by the surface topographical features of a soft template.
Collapse
|
26
|
Biosensors Based on Nanoparticles and Electrochemical Detection. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-415769-9.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
27
|
Li T, He X, Wang Z. The Application of Peptide Functionalized Gold Nanoparticles. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1113.ch004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiuxia He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
28
|
Peltier R, Siah WR, Williams GVM, Brimble MA, Tilley RD, Williams DE. Novel Phosphopeptides as Surface-Active Agents in Iron Nanoparticle Synthesis. Aust J Chem 2012. [DOI: 10.1071/ch12168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report the dramatic effect of rationally-designed phosphopeptides on the size and shape of iron-iron oxide core-shell nanoparticles prepared in a one-pot synthesis by sodium borohydride reduction of an iron salt. These phosphopeptides are effective at small ratios of peptide to metal, in contrast to the behaviour of conventional capping agents, which must be added at high concentration to control the particle growth.
Collapse
|
29
|
Designing bifunctionalized gold nanoparticle for colorimetric detection of Pb2+ under physiological condition. Biosens Bioelectron 2011; 31:505-9. [PMID: 22138466 DOI: 10.1016/j.bios.2011.11.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 11/22/2022]
Abstract
In the present work, a kind of peptide functionalized gold nanoparticle (AuNP) has been synthesized and employed for colorimetric detection of Pb(2+) in both aqueous solution and living cell. The AuNPs are capped by two peptide ligands: glutathione (GSH) and pentapeptide (CALNN). The GSH is used as a functional group for selectively sensing Pb(2+) by coordination reaction, and CALNN is employed as a stabilize ligand for improving the stability of AuNPs under physiological condition, respectively. The AuNP enables to strongly interact with Pb(2+) that leads to distinct color change of solution. Under the optimized molar ratio of GSH to CALNN on the AuNP surface, the colorimetric assay for detecting Pb(2+) in living cell downs to 2.9 fmol Pb(2+)per cell (3 times of standard deviation, 3σ) with linear relationship from 2.9 to 37.7 fmol Pb(2+) per cell. In addition, the method also shows highly selective detection toward Pb(2+) against other common metal ions in both aqueous solution and living cell.
Collapse
|
30
|
Hnilova M, Khatayevich D, Carlson A, Oren EE, Gresswell C, Zheng S, Ohuchi F, Sarikaya M, Tamerler C. Single-step fabrication of patterned gold film array by an engineered multi-functional peptide. J Colloid Interface Sci 2011; 365:97-102. [PMID: 21962430 DOI: 10.1016/j.jcis.2011.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/01/2011] [Accepted: 09/03/2011] [Indexed: 11/29/2022]
Abstract
This study constitutes a demonstration of the biological route to controlled nano-fabrication via modular multi-functional inorganic-binding peptides. Specifically, we use gold- and silica-binding peptide sequences, fused into a single molecule via a structural peptide spacer, to assemble pre-synthesized gold nanoparticles on silica surface, as well as to synthesize nanometallic particles in situ on the peptide-patterned regions. The resulting film-like gold nanoparticle arrays with controlled spatial organization are characterized by various microscopy and spectroscopy techniques. The described bio-enabled, single-step synthetic process offers many advantages over conventional approaches for surface modifications, self-assembly and device fabrication due to the peptides' modularity, inherent biocompatibility, material specificity and catalytic activity in aqueous environments. Our results showcase the potential of artificially-derived peptides to play a key role in simplifying the assembly and synthesis of multi-material nano-systems in environmentally benign processes.
Collapse
Affiliation(s)
- Marketa Hnilova
- GEMSEC - Genetically Engineered Materials Science and Engineering Center, Materials Science and Engineering Department, University of Washington, Seattle, WA 98195-2120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ocampo-García BE, Ramírez FDM, Ferro-Flores G, De León-Rodríguez LM, Santos-Cuevas CL, Morales-Avila E, de Murphy CA, Pedraza-López M, Medina LA, Camacho-López MA. (99m)Tc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl Med Biol 2011; 38:1-11. [PMID: 21220124 DOI: 10.1016/j.nucmedbio.2010.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/16/2010] [Accepted: 07/17/2010] [Indexed: 11/24/2022]
Abstract
UNLABELLED The aim of this research was to prepare a multifunctional system of technetium-99m-labelled gold nanoparticles conjugated to HYNIC-GGC/mannose and to evaluate its biological behaviour as a potential radiopharmaceutical for sentinel lymph node detection (SLND). METHODS Hydrazinonicotinamide-Gly-Gly-Cys-NH(2) (HYNIC-GGC) peptide and a thiol-triazole-mannose derivative were synthesized, characterized and conjugated to gold nanoparticles (AuNP, 20 nm) to prepare a multifunctional system of HYNIC-GGC-AuNP-mannose by means of spontaneous reaction of the thiol (Cys) present in HYNIC-GGC sequence and in the thiol-mannose derivative. The nanoconjugate was characterized by transmission electron microscopy (TEM), IR, UV-Vis, Raman, fluorescence and X-ray photoelectron spectroscopy (XPS). Technetium-99m labelling was carried out using EDDA/tricine as coligands and SnCl(2) as reducing agent with further size-exclusion chromatography purification. Radiochemical purity was determined by size-exclusion HPLC and ITLC-SG analyses. In vitro binding studies were carried out in rat liver homogenized tissue (mannose-receptor positive tissue). Biodistribution studies were accomplished in Wistar rats and images obtained using a micro-SPECT/CT system. RESULTS TEM and spectroscopy techniques demonstrated that AuNPs were functionalized with HYNIC-GGC-NH(2) and thiol-mannose through interactions with thiol groups and the N-terminal amine of cysteine. Radio-chromatograms showed radiochemical purity higher than 95%. (99m)Tc-EDDA/HYNIC-GGC-AuNP-mannose ((99m)Tc-AuNP-mannose) showed specific recognition for mannose receptors in rat liver tissue. After subcutaneous administration of (99m)Tc-AuNP-mannose in rats (footpad), radioactivity levels in the popliteal and inguinal lymph nodes revealed that 99% of the activity was extracted by the first lymph node (popliteal extraction). Biodistribution studies and in vivo micro-SPECT/CT images in Wistar rats showed an evident lymph node uptake (11.58 ± 1.98 %ID at 1 h) which was retained during 24 h with minimal kidney accumulation (0.98 ± 0.10 %ID) and negligible uptake in all other tissues. CONCLUSIONS This study demonstrated that (99m)Tc-AuNP-mannose remains within the first lymph node during 24 h and therefore might be useful as a target-specific radionanoconjugate for SLND using "1-day" or "2-day" conventional protocols.
Collapse
|
32
|
Li X, Gao J, Liu D, Wang Z. Studying the interaction of carbohydrate–protein on the dendrimer-modified solid support by microarray-based plasmon resonance light scattering assay. Analyst 2011; 136:4301-7. [DOI: 10.1039/c1an15230k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Lin YW, Huang CC, Chang HT. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 2011; 136:863-71. [DOI: 10.1039/c0an00652a] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Shaw CP, Fernig DG, Lévy R. Gold nanoparticles as advanced building blocks for nanoscale self-assembled systems. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11945a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Hussain I, Zhang H, Brust M, Barauskas J, Cooper AI. Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates. J Colloid Interface Sci 2010; 350:368-72. [DOI: 10.1016/j.jcis.2010.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 11/25/2022]
|
36
|
MA LN, LIU DJ, WANG ZX. Synthesis and Applications of Gold Nanoparticle Probes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Delong RK, Reynolds CM, Malcolm Y, Schaeffer A, Severs T, Wanekaya A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl 2010; 3:53-63. [PMID: 24198471 DOI: 10.2147/nsa.s8984] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology has virtually exploded in the last few years with seemingly limitless opportunity across all segments of our society. If gene and RNA therapy are to ever realize their full potential, there is a great need for nanomaterials that can bind, stabilize, and deliver these macromolecular nucleic acids into human cells and tissues. Many researchers have turned to gold nanomaterials, as gold is thought to be relatively well tolerated in humans and provides an inert material upon which nucleic acids can attach. Here, we review the various strategies for associating macromolecular nucleic acids to the surface of gold nanoparticles (GNPs), the characterization chemistries involved, and the potential advantages of GNPs in terms of stabilization and delivery.
Collapse
Affiliation(s)
- Robert K Delong
- Department of Biomedical Science (Cell and Molecular Biology Program)
| | | | | | | | | | | |
Collapse
|
38
|
Slaughter LS, Wu Y, Willingham BA, Nordlander P, Link S. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. ACS NANO 2010; 4:4657-4666. [PMID: 20614909 DOI: 10.1021/nn1011144] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have explored the consequences of symmetry breaking on the coupled surface plasmon resonances in individual dimers of gold nanorods using single-particle dark-field scattering spectroscopy and numerical simulations. Pairs of chemically grown nanorods can exhibit wide variation in sizes, gap distances, and relative orientation angles. The combination of single-particle spectroscopy and theoretical analysis allowed us to discern the effects of specific asymmetry-inducing parameters one at a time. The dominant influence of symmetry breaking occurred for longitudinal resonances in strongly coupled nanorods in linear end-to-end configurations. In particular, we found that the normally dark antibonding dimer mode becomes visible when the sizes of the two nanorods are different. In addition, we observed a conductively coupled plasmon mode that was red-shifted by at least 250 nm from the bonding plasmon mode for the corresponding nontouching geometry. Gaining detailed insight into how symmetry breaking influences coupled surface plasmon resonances of individual nanorod dimers is an important step toward the general understanding of the optical properties of assemblies of chemically synthesized nanorods with unavoidable irregularities in size and orientation.
Collapse
|
39
|
Chong YY, Goh WB, Tan ST, Fan WY. Catalytic rate enhancement observed for alkyne hydrocarboxylation using ruthenium carbonyl-capped nanostructures. J Colloid Interface Sci 2010; 348:559-64. [DOI: 10.1016/j.jcis.2010.04.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 10/19/2022]
|
40
|
Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:1333-83. [PMID: 20156828 DOI: 10.1098/rsta.2009.0273] [Citation(s) in RCA: 898] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inorganic colloidal nanoparticles are very small, nanoscale objects with inorganic cores that are dispersed in a solvent. Depending on the material they consist of, nanoparticles can possess a number of different properties such as high electron density and strong optical absorption (e.g. metal particles, in particular Au), photoluminescence in the form of fluorescence (semiconductor quantum dots, e.g. CdSe or CdTe) or phosphorescence (doped oxide materials, e.g. Y(2)O(3)), or magnetic moment (e.g. iron oxide or cobalt nanoparticles). Prerequisite for every possible application is the proper surface functionalization of such nanoparticles, which determines their interaction with the environment. These interactions ultimately affect the colloidal stability of the particles, and may yield to a controlled assembly or to the delivery of nanoparticles to a target, e.g. by appropriate functional molecules on the particle surface. This work aims to review different strategies of surface modification and functionalization of inorganic colloidal nanoparticles with a special focus on the material systems gold and semiconductor nanoparticles, such as CdSe/ZnS. However, the discussed strategies are often of general nature and apply in the same way to nanoparticles of other materials.
Collapse
Affiliation(s)
- R A Sperling
- Institut Català de Nanotecnologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | |
Collapse
|
41
|
Li T, Liu D, Wang Z. Screening Kinase Inhibitors with a Microarray-Based Fluorescent and Resonance Light Scattering Assay. Anal Chem 2010; 82:3067-72. [DOI: 10.1021/ac902804h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
42
|
Smoak EM, Carlo AD, Fowles CC, Banerjee IA. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles. NANOTECHNOLOGY 2010; 21:025603. [PMID: 19955623 DOI: 10.1088/0957-4484/21/2/025603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA(3)) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA(3)-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 degrees C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.
Collapse
Affiliation(s)
- Evan M Smoak
- Department of Chemistry, Fordham University, Bronx, NY 10458, USA
| | | | | | | |
Collapse
|
43
|
Abstract
To develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, carbohydrate or glycoprotein microarrays have been prepared for binding with lectins. The interaction events are marked by attachment of fluorescent dyes and gold nanoparticles. The attachment of the fluorescent dyes and gold nanoparticles is achieved by standard avidin-biotin chemistry. The detection principle is fluorescence or resonance light scattering (RLS). The electroless deposition of silver onto the gold particles has been employed for RLS signal enhancement. Well-defined recognition systems, three monosaccharides (Man-alpha, Glc-beta, and Gal-beta) or three glycoproteins (Asf, RNase A, and RNase B) with two lectins (ConA and RCA120), are chosen here to establish the microarray-based assay, respectively. Highly selective recognition of carbohydrate-protein down to 25.6 pg/mL for RCA120 in solution and 8 microM for Gal-beta and 32 ng/mL for Asf on the microarray spots is demonstrated.
Collapse
Affiliation(s)
- Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, and Graduate School of the Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
44
|
Synthesis and Applications of Gold Nanoparticle Probes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60013-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Li X, Wang J, Sun L, Wang Z. Gold nanoparticle-based colorimetric assay for selective detection of aluminium cation on living cellular surfaces. Chem Commun (Camb) 2009; 46:988-90. [PMID: 20107673 DOI: 10.1039/b920135a] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric assay based on pentapeptide (CALNN) functionalized gold nanoparticles exhibits high sensitivity and selectivity for detection of aluminium cation (Al(3+)) both in aqueous solution and on living cellular surfaces under physiological condition.
Collapse
Affiliation(s)
- Xiaokun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | |
Collapse
|
46
|
Wang J, Duan T, Sun L, Liu D, Wang Z. Functional gold nanoparticles for studying the interaction of lectin with glycosyl complex on living cellular surfaces. Anal Biochem 2009; 392:77-82. [DOI: 10.1016/j.ab.2009.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
|
47
|
Maus L, Spatz JP, Fiammengo R. Quantification and reactivity of functional groups in the ligand shell of PEGylated gold nanoparticles via a fluorescence-based assay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7910-7917. [PMID: 19419188 DOI: 10.1021/la900545t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a fluorescence-based assay for the characterization of functionalized gold nanoparticles (AuNPs) capped with a self-assembled monolayer of mixed thiols derived from poly(ethylene glycol) (PEG). These water-soluble AuNPs carry primary amino groups at the solvent-exposed interface, which can be used for further conjugation of biologically active molecules. The reported assay allows quantification of the average number of functionalizable amino groups per particle (N(NH(2))) with a relative uncertainty below or equal to +/-14% (95% confidence interval), thus providing essential information for the successive derivatization of the AuNPs. Here, a fluorescently labeled derivative of peptide-neurotoxin conantokin-G was coupled to the amino groups of the particle ligand shell via a flexible linker. We quantitatively determined the average number of peptides per particle (N(pept)) and the yield of the two-step conjugation strategy. AuNPs carrying 50-70 copies of the peptide were obtained. In addition, we have gained insights into the deterioration of the self-assembled monolayer due to thiol desorption with time. Under ordinary storage conditions in solution and at room temperature, a decrease in N(NH(2)) between 48% and 75% could be observed at the end of the period of investigation (42-56 days). Slow desorption of the conjugated peptides upon storage was also observed and quantified ( approximately 25% in 14 days).
Collapse
Affiliation(s)
- Lisa Maus
- Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Germany
| | | | | |
Collapse
|
48
|
Li T, Liu D, Wang Z. Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes. Biosens Bioelectron 2009; 24:3335-9. [DOI: 10.1016/j.bios.2009.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
49
|
Graf P, Mantion A, Foelske A, Shkilnyy A, Masić A, Thünemann AF, Taubert A. Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry 2009; 15:5831-44. [PMID: 19370744 DOI: 10.1002/chem.200802329] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Simple tripeptides are scaffolds for the synthesis and further assembly of peptide/silver nanoparticle composites. Herein, we further explore peptide-controlled silver nanoparticle assembly processes. Silver nanoparticles with a pH-responsive peptide coating have been synthesized by using a one-step precipitation/coating route. The nature of the peptide/silver interaction and the effect of the peptide on the formation of the silver particles have been studied via UV/Vis, X-ray photoelectron, and surface-enhanced Raman spectroscopies as well as through electron microscopy, small angle X-ray scattering and powder X-ray diffraction with Rietveld refinement. The particles reversibly form aggregates of different sizes in aqueous solution. The state of aggregation can be controlled by the solution pH value. At low pH values, individual particles are present. At neutral pH values, small clusters form and at high pH values, large precipitates are observed.
Collapse
Affiliation(s)
- Philipp Graf
- Department of Chemistry, Klingelbergstrasse 80, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
|