1
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
2
|
Yin X, Li S, Wang J, Wang M, Yang J. Research progress of active compounds from traditional Chinese medicine in the treatment of stroke. Eur J Med Chem 2025; 291:117599. [PMID: 40188582 DOI: 10.1016/j.ejmech.2025.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Stroke is a serious cerebrovascular disease that is categorized into two types: ischemic and hemorrhagic. The pathological mechanisms of ischemic stroke are complex and diverse, encompassing processes such as neuroinflammation and apoptosis. The pathological processes of hemorrhagic stroke primarily involve the disruption of the blood-brain barrier and cerebral edema. Western medical treatment methods show certain effectiveness during the acute phase of stroke, but they are limited by a narrow therapeutic window and secondary injuries. Traditional Chinese medicine (TCM) has a long history and unique advantages in treating stroke. Studies confirm that active compounds derived from TCM exert multi-pathway, multi-target effects, significantly improving therapeutic outcomes and reducing adverse reactions. However, due to the complexity of the components in TCM, research on monomeric components still faces challenges. This article reviews the relevant research progress published in domestic and international journals over the past twenty years regarding the mechanisms of action of monomeric components of TCM in the treatment of stroke, aiming to provide insights and references for the clinical application of TCM in stroke treatment and further new drug development.
Collapse
Affiliation(s)
- Xinyi Yin
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Junwei Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
3
|
Chen G, Zhang K, Sun M, Xie N, Wu L, Zhang G, Guo B, Huang C, Man Hoi MP, Zhang G, Shi C, Sun Y, Zhang Z, Wang Y. Multi-functional memantine nitrate attenuated cognitive impairment in models of vascular dementia and Alzheimer's disease through neuroprotection and increased cerebral blood flow. Neuropharmacology 2025; 272:110410. [PMID: 40081796 DOI: 10.1016/j.neuropharm.2025.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) are two prevalent forms of dementia. VaD is linked to cerebrovascular lesions, such as those from white matter ischemia and chronic cerebral hypoperfusion, which can also occur in AD. Nitric oxide (NO) regulates cerebral blood flow (CBF) in the central nervous system. Memantine is an NMDA receptor antagonist approved for AD treatment. This study investigated the efficacy and molecular mechanism of MN-08, a novel memantine nitrate, in one VaD model (2VO) and two AD models (APP/PS1 mice and Aβ1-42-induced mice). MN-08 increased CBF, ameliorated cognitive and memory functions in VaD and AD, and was more effective than memantine. MN-08 increased the survival rate of CA1 neurons and mitigated white matter lesions and axonal damage. Moreover, MN-08 protected neurons from OGD-induced loss and promoted axonal outgrowth in the hippocampus by upregulating phosphorylated Akt (p-Akt), glycogen synthase kinase-3β (p-GSK3β), and high-molecular-weight neurofilaments (p-NFH). The beneficial effects of MN-08 were attenuated by carboxy-PTIO, a potent NO scavenger, suggesting that MN-08-derived NO may alleviate cognitive impairment from cerebral hypoperfusion. Taken together, our studies demonstrate that MN-08 is a promising therapeutic agent for the treatment of dementia including VaD and AD.
Collapse
Affiliation(s)
- Guangying Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Kexin Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Minghua Sun
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Department of Radiology, The Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Liangmiao Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China; Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region, China
| | - Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Chunhui Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| |
Collapse
|
4
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 PMCID: PMC11691467 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q. Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Tang P, Liu Y, Peng S, Cai Z, Tang G, Zhou Z, Hu K, Zhong Y. Cerebral [ 18F]AIF-FAPI-42-Based PET Imaging of Fibroblast Activation Protein for Non-invasive Quantification of Fibrosis After Ischemic Stroke. Transl Stroke Res 2025; 16:848-858. [PMID: 38940873 DOI: 10.1007/s12975-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.
Collapse
Affiliation(s)
- Peipei Tang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Liu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Simin Peng
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhikai Cai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhou Zhou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Smalcova J, Suen J, Huptych M, Franek O, Kavalkova P, Brodska HL, Balik M, Malik J, Pudil J, Smid O, Fajkus M, McInerney MR, Belohlavek J. The Significance of Possible Non-Occlusive Mesenteric Ischemia in Relation to Neurological Outcomes in Patients with Refractory Cardiac Arrest - Secondary Analysis of the Prague OHCA Study. Resuscitation 2025:110642. [PMID: 40381979 DOI: 10.1016/j.resuscitation.2025.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Intestinal injury as a consequence of ischemia-reperfusion injury after refractory cardiac arrest is not fully understood. This study evaluates the occurrence of clinical signs reflecting possible non-occlusive mesenteric ischemia (NOMI) to outcomes in patients with refractory cardiac arrest. METHODS In a post-hoc analysis of a randomized, prospective Prague OHCA study comparing ECPR vs. CPR approaches in refractory out-of-hospital CA, all patients who survived longer than one hour after hospital admission were analyzed. We assessed possible NOMI based on clinical signs (mainly profuse diarrhea and abdominal distension) and their onset within 12 hours of admission. Its occurrence was correlated with neurologically unfavorable outcome (Cerebral Performance Category (CPC) Scale 3-5) at 180 days. Cox regression was used to evaluate the relationship of particular variables to adverse neurological outcomes. RESULTS Of the 256 study participants, 61 developed possible NOMI: 46 (51.7%) in the ECPR group and 15 (16.5%) in the CPR group. Adverse neurological outcomes occurred in 41 (89%) and nine (60%) patients, respectively. The number of patients developing possible NOMI was higher in those treated with ECPR (p>0.01). Its occurrence correlated with cardiac arrest length, elevated levels of neuron-specific enolase and procalcitonin at 48 and 72 hours. It was independently associated with adverse outcomes. In Cox regression, possible NOMI was associated with poor neurological outcomes in ECPR patients. CONCLUSION The development of profuse diarrhea, abdominal distension and other signs suggesting non-occlusive mesenteric ischemia in patients with refractory out-of-hospital cardiac arrest are observed more frequently in patients with poor neurological outcome at day 180, especially in patients treated with ECPR. TRIAL REGISTRATION ClinicalTrials.gov: NCT01511666.
Collapse
Affiliation(s)
- Jana Smalcova
- 2(nd) Department of Cardiovascular Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; Critical Care Research Group, Brisbane, Australia; Emergency Medical Service Prague, Prague, Czech Republic.
| | - Jacky Suen
- Critical Care Research Group, Brisbane, Australia
| | - Michal Huptych
- Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Technical University in Prague, Prague, Czech Republic
| | - Ondrej Franek
- Emergency Medical Service Prague, Prague, Czech Republic
| | - Petra Kavalkova
- 2(nd) Department of Cardiovascular Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Helena Lahoda Brodska
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Balik
- Department of Anesthesiology and Intensive Care Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Jan Malik
- 3(rd) Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Jan Pudil
- 2(nd) Department of Cardiovascular Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ondrej Smid
- 2(nd) Department of Cardiovascular Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Martin Fajkus
- Tomas Bata University in Zlin, Faculty of Applied Informatics, Zlin, Czech Republic
| | | | - Jan Belohlavek
- 2(nd) Department of Cardiovascular Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
7
|
Ren ZL, Lan X, Cheng JL, Zheng YX, Chen CA, Liu Y, He YH, Han JH, Wang QG, Cheng FF, Li CX, Wang XQ. Astrocyte-neuron metabolic crosstalk in ischaemic stroke. Neurochem Int 2025; 185:105954. [PMID: 39988284 DOI: 10.1016/j.neuint.2025.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Ischemic stroke (IS) is caused by temporary or permanent obstruction of the brain's blood supply. The disruption in glucose and oxygen delivery that results from the drop in blood flow impairs energy metabolism. A significant pathological feature of IS impaired energy metabolism. Astrocytes, as the most prevalent glial cells in the brain, sit in between neurons and the microvasculature. By taking advantage of their special anatomical location, they play a crucial part in regulating cerebral blood flow (CBF) and metabolism. Astrocytes can withstand hypoxic and ischemic conditions better than neurons do. Additionally, astrocytes are essential for maintaining the metabolism and function of neurons. Therefore, the "neurocentric" perspective on neuroenergetics is gradually giving way to a more comprehensive perspective that takes into account metabolic interaction between astrocytes and neurons. Since neurons in the core region of the infarct are unable to undergo oxidative metabolism, the focus of attention in this review is on neurons in the peri-infarct region. We'll go over the metabolic crosstalk of astrocytes and neurons during the acute phase of IS using three different types of metabolites: lactate, fatty acids (FAs), and amino acids, as well as the mitochondria. After IS, astrocytes in the peri-infarct zone can produce lactate, ketone bodies (KBs), glutamine (Gln), and l-serine, shuttling these metabolites, along with mitochondria, to neurons. This process helps maintain the energy requirements of neurons, preserves their redox state, and regulates neurotransmitter receptor activity.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Lan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Lin Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Ai Chen
- Beijing Chinese Medicine Hospital, Capital Medical University, Beijing, 100010, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Hui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin-Hua Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Zhao Y, Afzal A, Zu Z. Asymmetry analysis of nuclear Overhauser enhancement effect at -1.6 ppm in ischemic stroke. Med Phys 2025; 52:2922-2937. [PMID: 39933960 PMCID: PMC12059535 DOI: 10.1002/mp.17677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The nuclear Overhauser enhancement (NOE)-mediated saturation transfer effect at -1.6 ppm, termed NOE(-1.6 ppm), has demonstrated potential for detecting ischemic stroke. However, the quantification of the NOE(-1.6 ppm) effect usually relies on a multiple-pool Lorentzian fit method, which necessitates a time-consuming acquisition of the entire chemical exchange saturation transfer (CEST) Z-spectrum with high-frequency resolution, thus hindering its clinical applications. PURPOSE This study aims to assess the feasibility of employing asymmetry analysis, a rapid CEST data acquisition and analysis method, for quantifying the NOE(-1.6 ppm) effect in an animal model of ischemic stroke. METHODS We examined potential contaminations from guanidinium/amine CEST, NOE(-3.5 ppm), and asymmetric magnetization transfer (MT) effects, which could reduce the specificity of the asymmetry analysis of NOE(-1.6 ppm). First, a Lorentzian difference (LD) analysis was used to mitigate direct water saturation and MT effects, providing separate estimations of the contributions from the guanidinium/amine CEST and NOE effects. Then, the asymmetry analysis of the LD fitted spectrum was compared with the asymmetry analysis of the raw CEST Z-spectrum to evaluate the contribution of the asymmetric MT effect at -1.6 ppm. RESULTS Results show that the variations of the LD quantified NOE(-1.6 ppm) in stroke lesions are much greater than that of the CEST signals at +1.6 ppm and NOE(-3.5 ppm), suggesting that NOE(-1.6 ppm) has a dominating contribution to the asymmetry analysis at -1.6 ppm compared with the guanidinium/amine CEST and NOE(-3.5 ppm) in ischemic stroke. The NOE(-1.6 ppm) variations in the asymmetry analysis of the raw CEST Z-spectrum are close to those in the asymmetry analysis of the LD fitted spectrum, revealing that the NOE(-1.6 ppm) dominates over the asymmetric MT effects. CONCLUSION Our study demonstrates that the asymmetry analysis can quantify the NOE(-1.6 ppm) contrast in ischemic stroke with high specificity, thus presenting a viable alternative for rapid mapping of ischemic stroke.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Aqeela Afzal
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleUSA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
| |
Collapse
|
9
|
Jia Y, Xu L, Leng S, Sun Y, Huang X, Wang Y, Ren H, Li G, Bai Y, Zhang Z, Han B, Shen L, Ju M, Chen L, Yao H. Nose-to-Brain Delivery of Circular RNA SCMH1-Loaded Lipid Nanoparticles for Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500598. [PMID: 40143778 DOI: 10.1002/adma.202500598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Ischemic stroke represents one of the leading cerebrovascular diseases with a high rate of mortality and disability globally. To date, there are no effective clinical drugs available to improve long-term outcomes for post-stroke patients. A novel nucleic acid agent circSCMH1 which can promote sensorimotor function recovery in rodent and nonhuman primate animal stroke models has been found. However, there are still delivery challenges to overcome for its clinical implementation. Besides, its effects on post-stroke cognitive functions remain unexplored. Herein, lipid nanoparticle circSCMH1@LNP1 is established to deliver circSCMH1 and explore its therapeutic efficacy comprehensively. Distribution experiments demonstrate that intranasal administration of circSCMH1@LNP1 significantly increases circSCMH1 distribution in the peri-infarct region and reduces its non-specific accumulation in other organs compared to intravenous injection. Therapeutic results indicate that circSCMH1@LNP1 promotes synaptic plasticity, vascular repair, neuroinflammation relief, and myelin sheath formation, thereby achieving enhanced sensorimotor and cognitive function recovery in post-stroke mice. In conclusion, this research presents a simple and effective LNP system for efficient delivery of circSCMH1 via intranasal administration to repair post-stroke brain injury. It is envisioned that this study may bridge a crucial gap between basic research and translational application, paving the way for clinical implementation of novel circSCMH1 in post-stroke patient management.
Collapse
Affiliation(s)
- Yanpeng Jia
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Lian Xu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Shuo Leng
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Yan Sun
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Xinxin Huang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Guanlong Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Zhongkun Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Lehui Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China
| |
Collapse
|
10
|
Yang X, Sun H, Hou S, Zhang W, Meng H. The impact of nutritional and inflammatory status on mortality in stroke patients: Results from NHANES 2005-2018. J Stroke Cerebrovasc Dis 2025; 34:108334. [PMID: 40316067 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Stroke significantly impacts global health, being a primary cause of disability, dementia, and mortality. The interplay of nutritional deficiency and systemic inflammation plays a pivotal role in determining stroke outcomes. While the Prognostic Nutritional Index (PNI) and the Advanced Lung Cancer Inflammation Index (ALI) have been recognized for their prognostic value in various diseases, their relevance in stroke prognosis necessitates further exploration. METHODS This study utilized data from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018, analyzing 908 stroke survivors to examine the associations between PNI, ALI, and mortality outcomes. Weighted Cox proportional hazards models were applied to assess the associations, controlling for demographic and health-related variables. Kaplan-Meier curves and restricted cubic splines were used to evaluate survival differences and non-linear relationships, respectively. Additionally, subgroup and sensitivity analyses were conducted to verify the robustness of the associations. RESULTS In our cohort, elevated PNI was associated with significantly lower risks of all-cause mortality (Hazard Ratio [HR]: 0.53, 95 % Confidence Interval [CI]: 0.37-0.75, p < 0.001) and cardiovascular mortality (HR: 0.60, 95 % CI: 0.38-0.94, p = 0.028). Similarly, higher ALI levels correlated with a reduced risk of all-cause mortality (HR: 0.53, 95 % CI: 0.37-0.72, p < 0.001), though its impact on cardiovascular mortality did not reach statistical significance after adjustment. Subgroup analysis revealed that gender, age, and diabetes status modulated the relationship between PNI/ALI and mortality outcomes, with significant interactions observed especially in diabetic patients (PNI: P for interaction = 0.025 and ALI: P for interaction = 0.007). CONCLUSIONS This study confirms that higher PNI and ALI are associated with lower all-cause mortality in stroke survivors. Elevated PNI also reduces cardiovascular mortality risk. Gender, age, and diabetes status influence these associations. These findings highlight the importance of monitoring nutritional and inflammatory status in stroke recovery.
Collapse
Affiliation(s)
- Xi Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Ziebarth T, Pape N, Nelson JS, van Alphen FI, Kalia M, Meijer HG, Rose CR, Reiner A. Atypical plume-like events contribute to glutamate accumulation in metabolic stress conditions. iScience 2025; 28:112256. [PMID: 40241754 PMCID: PMC12002667 DOI: 10.1016/j.isci.2025.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Neural glutamate homeostasis is important for health and disease. Ischemic conditions, like stroke, cause imbalances in glutamate release and uptake due to energy depletion and depolarization. We here used the glutamate sensor SF-iGluSnFR(A184V) to probe how chemical ischemia affects the extracellular glutamate dynamics in slice cultures from mouse cortex. SF-iGluSnFR imaging showed spontaneous glutamate release indicating synchronous network activity, similar to calcium imaging with GCaMP6f. Glutamate imaging further revealed local, atypically large, and long-lasting plume-like release events. Plumes occurred with low frequency, independent of network activity, and persisted in tetrodotoxin (TTX). Blocking glutamate uptake with TFB-TBOA favored plumes, whereas blocking ionotropic glutamate receptors (iGluRs) suppressed plumes. During chemical ischemia plumes became more pronounced, overly abundant and contributed to large-scale glutamate accumulation. Similar plumes were previously observed in cortical spreading depression and migraine models, and they may thus be a more general consequence of glutamate uptake dysfunctions in neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tim Ziebarth
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Fleur I.M. van Alphen
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Manu Kalia
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Hil G.E. Meijer
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
12
|
Domi T, Honarvar F, Sare D, Slim M, Dlamini N, Kassner A. Characterizing the evolution of lesion, penumbra and blood-brain barrier permeability in a photothrombotic juvenile rat stroke model using MRI and histology. Sci Rep 2025; 15:12267. [PMID: 40210640 PMCID: PMC11985919 DOI: 10.1038/s41598-025-87902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/22/2025] [Indexed: 04/12/2025] Open
Abstract
Pediatric stroke is a significant cause of childhood mortality and morbidity. The clinical research in this field bears certain limitations that do not exist in the pre-clinical setting. Experimental models of ischemic stroke show differences in lesion evolution and blood-brain barrier (BBB) permeability between adult and neonatal rats. However, little is known about these factors in the juvenile stage. Here, we characterize the evolution of the lesion, penumbra and degree of BBB permeability in a photothrombotic ring model of juvenile stroke using a mixed longitudinal and cross-sectional study. Fourteen Sprague Dawley juvenile rats (weight 130-189 g), lesion, penumbra volume and blood-brain barrier (BBB) leakage were measured longitudinally on days 0, 2, and 7 following photothrombotic stroke. Magnetic resonance imaging (MRI) techniques were used to measure lesion and penumbra volumes (T2-weighted imaging [T2]), water restriction (diffusion-weighted imaging [DWI]) and BBB leakage (with dynamic contrast-enhanced imaging [DCE]). To confirm stroke, histology was performed (n = 9) with Triphenyltetrazolium chloride staining (TTC) (n=9), (Haemotoxylin and Eosin (H&E) staining (n=3); andn Evans Blue (EB) staining to assess BBB permeability (n=9). We found the volume of the penumbra to be larger and better delineated on MRI and histology in the acute compared to the subacute and chronic stages. The lesion was smaller in volume and increased over time following same time trajectory. The BBB was most compromised at the hyperacute stage (day 0) and decreasingly, yet persistently, disrupted to day 7. Our in vivo and ex vivo findings provide insight into the evolution of stroke and could serve as a study model to test blood-brain barrier stabilization agents in the pediatric setting.
Collapse
Affiliation(s)
- Trish Domi
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Faraz Honarvar
- Faculty of Medicine, Queen's University, Kingston, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Daniel Sare
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mahmoud Slim
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Child Health Evaluative Sciences Program , The Hospital for Sick Children, Toronto, ON, Canada
| | - Nomazulu Dlamini
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Kassner
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Chen W, Wu Y, Liang Y, Su X, Ke M, Deng D, Zang J, Zhu J, Mai H, Xu A, Lu D. Small Extracellular Vesicles From Hypoxia-Neuron Maintain Blood-Brain Barrier Integrity. Stroke 2025. [PMID: 40171669 DOI: 10.1161/strokeaha.124.048446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Acute ischemic stroke disrupts communication between neurons and blood vessels in penumbral areas. How neurons and blood vessels cooperate to achieve blood-brain barrier repair remains unclear. Here, we reveal crosstalk between ischemic penumbral neurons and endothelial cells (ECs) mediated by circular RNA originating from oxoglutarate dehydrogenase (CircOGDH). METHODS We analyzed clinical data from patients with acute ischemic stroke to explore the relationship between CircOGDH levels and hemorrhagic transformation events. In addition, a middle cerebral artery occlusion and reperfusion mouse model with neuronal CircOGDH suppression was used to assess endothelial permeability. ECs with increased CircOGDH expression were analyzed for changes in COL4A4 (collagen type IV alpha 4) levels, and in vitro coculture experiments were conducted to examine small extracellular vesicle-mediated CircOGDH transfer between neurons and ECs. RESULTS Clinical data indicated that reduced CircOGDH levels were correlated with increased hemorrhagic transformation in patients with acute ischemic stroke. In the middle cerebral artery occlusion and reperfusion model, neuronal CircOGDH suppression impaired the restoration of endothelial permeability. ECs with increased CircOGDH expression exhibited higher COL4A4 levels, which helped maintain vascular stability. In vitro, hypoxic neurons transferred CircOGDH to ECs via small extracellular vesicles, leading to elevated COL4A4 expression and enhanced endothelial integrity. CONCLUSIONS Our findings highlight the significance of CircOGDH in neuron-EC crosstalk via small extracellular vesicles in the ischemic penumbra, emphasizing the need for balanced intervention strategies in acute ischemic stroke management.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (W.C.)
- China National Clinical Research Center for Neurological Diseases, Beijing (W.C.)
| | - Yousheng Wu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Ying Liang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Xuanlin Su
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Man Ke
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Die Deng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Department of Neurology, The First People's Hospital of Foshan, China (J. Zang)
| | - Jielin Zhu
- Department of Neurology, The Affiliated Shunde Hospital of Jinan University, Foshan, China (J. Zhu)
| | - Hongcheng Mai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (H.M.)
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| |
Collapse
|
14
|
Kim D, Morikawa S, Nakagawa T, Okano H, Kase Y. Advances in brain ischemia mechanisms and treatment approaches: Recent insights and inflammation-driven risks. Exp Neurol 2025; 386:115177. [PMID: 39922448 DOI: 10.1016/j.expneurol.2025.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The application of existing radical treatments for stroke is limited to a small number of cases, with current practices predominantly focusing on conservative therapy. This review examines the pathophysiology of excitotoxicity, oxidative stress, and inflammation during brain ischemia caused by stroke, highlighting insights into each pathology and reporting the latest therapeutic developments that are expected to serve as new treatment options. Finally, we outline the recent attention given to the relationship between periodontal disease and stroke. We propose addressing the limitations of existing treatments for stroke and suggest novel therapeutic approaches while also presenting the potential contribution of periodontal disease treatment to the prevention of stroke.
Collapse
Affiliation(s)
- Doyoon Kim
- Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Regenerative Medicine Research Center, Keio University; 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki-shi, 210-0821, Japan; Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University; 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi 470-1192, Japan
| | - Yoshitaka Kase
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Regenerative Medicine Research Center, Keio University; 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki-shi, 210-0821, Japan; Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University; 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi 470-1192, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
15
|
Gong J, Li J, Li J, He A, Ren B, Zhao M, Li K, Zhang Y, He M, Liu Y, Wang Z. Impact of Microglia-Derived Extracellular Vesicles on Resident Central Nervous System Cell Populations After Acute Brain Injury Under Various External Stimuli Conditions. Mol Neurobiol 2025:10.1007/s12035-025-04858-w. [PMID: 40126599 DOI: 10.1007/s12035-025-04858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Acute brain injuries (ABI) caused by various emergencies can lead to structural and functional damage to brain tissue. Common causes include traumatic brain injury, cerebral hemorrhage, ischemic stroke, and heat stroke. Globally, ABI represent a significant portion of neurosurgical cases. Previous studies have emphasized the significant therapeutic potential of stem cell-derived extracellular vesicles (EVs). Recent research indicates that EVs extracted from resident cells in the central nervous system (CNS) also show therapeutic potential following brain injury. Microglia, as innate immune cells of the CNS, respond to changes in the internal environment by altering their phenotype and secreting EVs that impact various CNS cells, including neurons, astrocytes, oligodendrocytes, endothelial cells, neural stem cells (NSCs), and microglia themselves. Notably, under different external stimuli, microglia can either promote neuronal survival, angiogenesis, and myelin regeneration while reducing glial scarring and inflammation, or they can exert opposite effects. This review summarizes and evaluates the current research findings on how microglia-derived EVs influence various CNS cells after ABI under different external stimuli. It analyzes the interaction mechanisms between EVs and resident CNS cells and discusses potential future research directions and clinical applications.
Collapse
Affiliation(s)
- Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Anqi He
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Kexin Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuchi Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mengyao He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| |
Collapse
|
16
|
Long S, Wang Y. Association of TAB2 gene polymorphism with endometrial cancer susceptibility and clinical analysis. Turk J Obstet Gynecol 2025; 22:1-12. [PMID: 40062608 PMCID: PMC11894771 DOI: 10.4274/tjod.galenos.2025.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025] Open
Abstract
Objective Transforming growth factor-β-activated kinase 1 binding protein 2 (TAB2) plays a vital role in inflammatory pathways. It has also been considered a potential target for the enhancement of the the antiestrogen effects. Previous evidence has indicated that TAB2 gene variants are associated with several diseases, whereas their potential correlation with endometrial cancer (EC) is unclear. This study aims to initially explore the association between TAB2 gene polymorphisms (rs237028 /AG, rs521845 T/G, and rs652921 T/C) and EC. Materials and Methods Polymerase chain reaction-restriction fragment length polymorphism was applied to determine the genotype composition and the allele frequencies of TAB2 gene variant polymorphisms in 270 EC patients and 294 healthy controls. Results The G allele of rs521845 was related to the increase of EC risk [p=0.08, odds ratio (OR): 0.72, 95% confidence interval (CI): 0.56-0.91]. Moreover, EC risk was associated with rs521845 in different genetic models (p=0.017, OR: 0.63, 95% CI: 0.44-0.91 in the codominant model; p=0.0051, OR: 0.61, 95% CI: 0.43-0.87 in the dominant model). For rs237028, the percentage of AG genotype in patients with highly differentiated tumours (G1) was significantly higher than that in moderately, poorly differentiated patients (G2/G3) (p=0.031, OR: 0.77, 95% CI: 0.45-1.30). Conclusion Our results showed that the rs521845 polymorphism of TAB2, was associated with EC risk, suggesting that TAB2 may play a crucial role in EC prognosis.
Collapse
Affiliation(s)
- Siyu Long
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
- Sichuan University West China Second University Hospital, Clinic of Andrology/Sichuan Human Sperm Bank, Chengdu, China
| | - Yanyun Wang
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
| |
Collapse
|
17
|
Beuker C, Schreiner U, Strecker JK, Altach E, Rätzel V, Schmidt-Pogoda A, Wiendl H, Minnerup J, Diederich K. Ghrelin promotes neurologic recovery and neurogenesis in the chronic phase after experimental stroke. Neurol Res Pract 2025; 7:14. [PMID: 40025613 PMCID: PMC11921976 DOI: 10.1186/s42466-025-00371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND The neuroprotective and proangiogenic potential of ghrelin in acute ischemic stroke has been demonstrated in experimental studies. However, the transferability of these results is limited as ghrelin was administered either before or very early after stroke onset and follow-up was limited to the first days after stroke. The aim of this study was therefore to close and extend this knowledge gap. To this end, we investigated the effect of ghrelin in two different translational animal models, one investigating acute and one investigating long-term structural and functional recovery after experimental stroke. METHODS Middle cerebral artery occlusion (MCAO) or photothrombotic stroke was induced in 65 adult male Wistar rats. Eleven sham-operated animals served as controls. The rats were treated with either ghrelin, the ghrelin receptor antagonist [D-Lys]-GHRP-6 or a control substance. Up to four weeks after ischemia, behavioral tests such as the cylinder test, the tape removal test, and the rotarod test were performed to examine sensorimotor deficits, and the Morris water maze was performed to examine effects on the acquisition and consolidation of new memories. The structural outcome was determined by a differential analysis of neurogenesis in relation to survival and proliferation of newborn neurons in the post-ischemic brain, angiogenesis and determination of infarct size. RESULTS Ghrelin treatment improved motor and somatosensory functions and preserved the consolidation of new memories after photothrombotic stroke. As a structural correlate, long-term survival and sustained proliferation of neuronal cells after stroke was significantly increased in ghrelin-treated rats, while angiogenesis remained unaffected. In contrast to these neuroregenerative mechanisms, ghrelin did not induce immediate neuroprotective effects after MCAO. CONCLUSIONS Our results suggest that ghrelin has a significant pro-neuroregenerative effect by enhancing long-term survival and sustained proliferation of neurons in the dentate gyrus and peri-infarct area, thus promoting functional recovery. Overall, ghrelin represents a promising target in the subacute and chronic phase after ischemic stroke.
Collapse
Affiliation(s)
- Carolin Beuker
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany.
| | - Ulrike Schreiner
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany
| | - Jan-Kolja Strecker
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany
| | - Elena Altach
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany
| | - Verena Rätzel
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany
| | - Antje Schmidt-Pogoda
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany
| | - Heinz Wiendl
- Clinic of Neurology and Neurophysiology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany
- Department of Neurology, University of Lübeck and University Medical Center of Schleswig- Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Kai Diederich
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149, Muenster, Germany
| |
Collapse
|
18
|
Debatisse J, Chalet L, Eker OF, Cho TH, Becker G, Wateau O, Wiart M, Costes N, Mérida I, Léon C, Langlois JB, Lancelot S, Lux F, Boutelier T, Nighoghossian N, Mechtouff L, Canet-Soulas E. Quantitative imaging outperforms No-reflow in predicting functional outcomes in a translational stroke model. Neurotherapeutics 2025; 22:e00529. [PMID: 39893086 PMCID: PMC12014402 DOI: 10.1016/j.neurot.2025.e00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Microvascular dysfunction and no-reflow are considered a major cause of secondary damage despite revascularization in acute ischemic stroke (AIS), ultimately affecting patient outcomes. We used quantitative PET-MRI imaging to characterize early microvascular damages in a preclinical non-human primate model mimicking endovascular mechanical thrombectomy (EVT). During occlusion, PET perfusion and MRI diffusion were used to measure ischemic and lesion core volumes respectively. Following revascularization, multiparametric PET-MRI included perfusion, diffusion, blood-brain barrier (BBB) permeability MRI, and 15O-oxygen metabolism PET. Lesion growth on MRI was evaluated at one week, and the neurological score was assessed daily; a poor outcome was defined as a score>6 (0-normal, 60-death) after one week. Early after recanalization, the gold-standard PET ischemic threshold (<0.2 mL/min/g) identified post-EVT hypoperfusion in 67 % of the cases (14/21) located in the occlusion acute lesion. Acquired 110 min post-EVT, the area of MRI Tmax hypoperfusion was larger and even more frequent (18/20) and was also located within the acute lesion. Eight of the total cases (38 %) had a poor outcome, and all of them had no-reflow (7/8 MRI no-reflow and 6/8 PET no-reflow). Diffusion ADC alterations and post-EVT oxygen extraction fraction (OEF) values were significantly different in PET no-reflow cases compared to those without no-reflow, exhibiting an inverse correlation. Independently of no-reflow, long perfusion Tmax and post-EVT high BBB Ktrans in the lesion core were the hallmarks of poor outcome and infarct growth. This early quantitative imaging signature may predict infarct growth and poor outcome and help to identify neuroprotection targets.
Collapse
Affiliation(s)
- Justine Debatisse
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France
| | - Lucie Chalet
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France; Olea Medical, La Ciotat, France
| | - Omer Faruk Eker
- Université Claude Bernard Lyon1, CREATIS, CNRS, INSERM, INSA Lyon, Bât. Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne 69621, France; Neuroradiology Department, Hospices Civils of Lyon, 69000, Lyon, France
| | - Tae-Hee Cho
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France; Neuroradiology Department, Hospices Civils of Lyon, 69000, Lyon, France; Stroke Department, Hospices Civils of Lyon, 69000, Lyon, France
| | - Guillaume Becker
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France
| | | | - Marlène Wiart
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France
| | | | | | - Christelle Léon
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France
| | | | - Sophie Lancelot
- CERMEP - Imagerie du Vivant, Lyon, France; Department of Radiopharmacy, Hospices Civils of Lyon, 69000, Lyon, France
| | - François Lux
- Universite Claude Bernard Lyon1, Institut Lumière Matière, CNRS, France
| | | | - Norbert Nighoghossian
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France; Neuroradiology Department, Hospices Civils of Lyon, 69000, Lyon, France; Stroke Department, Hospices Civils of Lyon, 69000, Lyon, France
| | - Laura Mechtouff
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France; Neuroradiology Department, Hospices Civils of Lyon, 69000, Lyon, France; Stroke Department, Hospices Civils of Lyon, 69000, Lyon, France
| | - Emmanuelle Canet-Soulas
- Université Claude Bernard Lyon1, CarMeN Laboratory, INSERM, INRAE, Bât. B13, Groupement Hospitalier Est, 59 Boulevard Pinel, Lyon, France.
| |
Collapse
|
19
|
Garcia-Bonilla L. NP10679: A new horizon for neuroprotection in aneurysmal subarachnoid hemorrhage. J Pharmacol Exp Ther 2025; 392:103390. [PMID: 39933230 DOI: 10.1016/j.jpet.2025.103390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Affiliation(s)
- Lidia Garcia-Bonilla
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
20
|
Li J, Wang N, Huang Q, Jiao C, Liu W, Yang C, Tang X, Mao R, Zhou Q, Ding Y, Shan B, Xu L. Acute Treatment with Salvianolic Acid A Produces Neuroprotection in Stroke Models by Inducing Excitatory Long-Term Synaptic Depression. ACS Chem Neurosci 2025; 16:659-672. [PMID: 39888337 DOI: 10.1021/acschemneuro.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Acute ischemic stroke (AIS) is a significant brain disease with a high mortality and disability rate. Additional therapies for AIS are urgently needed, and neuroplasticity mechanisms by agents are expected to be neuroprotective for AIS. As a major active component of Salvia miltiorrhiza, salvianolic acid A (SAA) has shown potential for preventing cardiovascular diseases. However, there is no evidence of the long-term effect of SAA on ischemic injury or its mechanism. Therefore, using rats and mice, we systematically investigated the impact of SAA on AIS from the perspective of neuroprotective and neuroplasticity. Here, we report that SAA induces a long-term depression (LTD)-like process in synapses. This antiexcitotoxicity action supports the SAA effect, including alleviating infarction and promoting blood circulation in photothrombosis and middle cerebral artery occlusion (MCAO) models. Furthermore, repeated positron emission tomography/computed tomography (PET/CT) imaging and behavioral assessments two months after AIS induction reveal that acute treatment of SAA promotes recovery from disrupted whole-brain glucose metabolism and impaired spatial memory. These data suggest that acute treatment of SAA is neuroprotective by improving long-term functional outcomes through a synaptic LTD-like process, providing a promising adjunct to current therapies to enable better recovery for AIS.
Collapse
Affiliation(s)
- Jinnan Li
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Niya Wang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Huang
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Chunxiang Jiao
- College of Pharmacy and Chemistry, Dali University, Dali 671000, China
| | - Weilin Liu
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chunxian Yang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xun Tang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Rongrong Mao
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming Medical University, Kunming 650500, China
| | - Qixin Zhou
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Yuqiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Baoci Shan
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| |
Collapse
|
21
|
Capó T, Rebassa JB, Raïch I, Lillo J, Badia P, Navarro G, Reyes-Resina I. Future Perspectives of NMDAR in CNS Disorders. Molecules 2025; 30:877. [PMID: 40005187 PMCID: PMC11857888 DOI: 10.3390/molecules30040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's diseases are among the leading causes of physical and cognitive disability across the globe. Fifty million people worldwide suffer these diseases, and that number is expected to rise as the population ages. Ictus is another pathology that also courses with neurodegeneration and is a leading cause of mortality and long-term disability in developed countries. Schizophrenia is not as common as other mental disorders, affecting approximately 24 million people worldwide. All these disorders have in common that still there is not an effective pharmacological treatment to cure them. The N-methyl-D-aspartate (NMDA) receptor (NMDAR) has attracted attention as a potential therapeutic target due to its important role in learning and memory and also due to its implication in excitotoxicity processes. Some drugs targeting NMDARs are already being used to treat symptoms of disorders affecting the central nervous system (CNS). Here, we aim to review the implications of NMDAR in these CNS pathologies, its role as a potential therapeutic target, and the future perspectives for developing new treatments focused on these receptors.
Collapse
Affiliation(s)
- Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Pau Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| |
Collapse
|
22
|
Fu Q, Yu Q, Luo H, Liu Z, Ma X, Wang H, Cheng Z. Protective effects of wogonin in the treatment of central nervous system and degenerative diseases. Brain Res Bull 2025; 221:111202. [PMID: 39814324 DOI: 10.1016/j.brainresbull.2025.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties. In ischemic stroke models, wogonin reduces infarct size and enhances neurological outcomes by mitigating inflammation and oxidative stress. For patients with hemorrhagic stroke and traumatic brain injury, it accelerates hematoma regression, mitigates secondary brain damage, and promotes neurogenesis, making it an entirely new treatment option for patients with limited access to this type of therapy. Its anticonvulsant and anxiolytic effects are mediated through GABA-A receptor modulation. Moreover, wogonin shows promise in treating neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease by promoting autophagy and reducing neuroinflammation. Additionally, it exhibits antiviral properties, offering potential benefits against CNS infections. Despite extensive preclinical evidence, further clinical studies are warranted to confirm its efficacy and safety in humans. This review highlights the great therapeutic potential of wogonin in terms of CNS protection. However, despite the substantial preclinical evidence, further large-scale clinical studies are necessary. Future researchers need to further explore the long-term efficacy and safety of wogonin in clinical trials and translate it for early application in the clinical treatment of true CNS disorders.
Collapse
Affiliation(s)
- Qingan Fu
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Qingyun Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Hongdan Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowei Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Huijian Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Zhijuan Cheng
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
23
|
Ma T, Gao H, Wu J, Zhao J, Chang B, Zhang Z, Zhang S, Zhang B, Fang J. Diselenides as novel effective fluorescence quenchers to construct a two-photon fluorescent probe for thiols in a mouse stroke model. Chem Commun (Camb) 2025; 61:1910-1913. [PMID: 39774747 DOI: 10.1039/d4cc06286h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A fluorescence quenching mechanism using linear diselenides was proposed for the first time through a combination of intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET). Herein, we synthesized and screened a two-photon fluorescent probe AFC-SeSe, demonstrating a remarkable 300-fold increase in response to glutathione (GSH). Additionally, AFC-SeSe enabled real-time observation of increased thiol levels following treatment within a short timeframe in a mouse model of stroke.
Collapse
Affiliation(s)
- Tao Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhibin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
24
|
Lee JS, Kang HG, Ahn SH, Song TJ, Shin DI, Bae HJ, Kim CH, Heo SH, Cha JK, Lee YB, Kim EG, Park MS, Park HK, Kim J, Yu S, Mo H, Sohn SI, Kwon JH, Kim JG, Kim YS, Choi JC, Hwang YH, Jung KH, Kim SK, Seo WK, Seo JH, Yoo J, Chang JY, Park M, Lee JS, San An C, Gwag BJ, Choi DW, Kwon SU. Nelonemdaz and Patients With Acute Ischemic Stroke and Mechanical Reperfusion: The RODIN Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2456535. [PMID: 39874036 PMCID: PMC11775734 DOI: 10.1001/jamanetworkopen.2024.56535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Importance Nelonemdaz selectively antagonizes the 2B subunit of the N-methyl-d-aspartate glutamate receptor and scavenges free radical species. Objective To evaluate whether nelonemdaz enhances the clinical outcomes of patients with acute ischemic stroke undergoing emergent reperfusion therapy. Design, Setting, and Participants This multicenter double-blind placebo-controlled randomized phase 3 trial (December 25, 2021, to June 30, 2023, in South Korea) recruited patients with acute ischemic stroke who met the following criteria: National Institutes of Health Stroke Scale score greater than or equal to 8, Alberta Stroke Program Early Computed Tomography score greater than or equal to 4, and endovascular thrombectomy within 12 hours after stroke onset. Intervention Patients were assigned in a 1:1 ratio to receive intravenous infusions of nelonemdaz twice a day for 5 days or a matching placebo. Main Outcomes and Measures The primary end point was a favorable shift in the modified Rankin scale (mRS) 12 weeks after stroke onset. The secondary end points included various composites of the mRS at 5 and 12 weeks, symptomatic intracranial hemorrhage, and infarct volume. Both intention-to-treat and per-protocol analyses were conducted. Results A total of 496 patients were enrolled across 24 Korean stroke centers, of whom 39 dropped out (254 men [55.6%]; mean [SD] age, 72.9 [12.1] years). Baseline characteristics of study participants did not significantly differ. For the primary end point, the distribution of the mRS scores at 12 weeks did not significantly differ between the nelonemdaz and placebo groups (common odds ratio, 0.95; 95% CI, 0.69-1.31). For the secondary end points, a median of mRS at 5 weeks (3 vs 3) and mRS 0 at 12 weeks (18.1% vs 18.2%) did not differ substantially between groups. The occurrence of symptomatic intracranial hemorrhage (2.7% vs 0.9%) and infarct volume within 24 hours of the last trial drug infusion (42 vs 38 mL) did not differ significantly between groups. No serious adverse events were reported regarding the trial drug and placebo. Conclusions and Relevance In this randomized clinical trial, nelonemdaz did not meet the primary efficacy end point compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT05041010.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Hyun Goo Kang
- Department of Neurology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seong Hwan Ahn
- Department of Neurology, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Woman’s University College of Medicine, Seoul, Republic of Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chang Hun Kim
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwan Cha
- Department of Neurology, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Yeong Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Eung Gyu Kim
- Department of Neurology, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea
| | - Man Seok Park
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hee-Kwon Park
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Sungwook Yu
- Department of Neurology, Korea University Anam Hospital, Korea University Medicine, Seoul, Republic of Korea
| | - Heejung Mo
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Sung Il Sohn
- Department of Neurology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jee Hyun Kwon
- Department of Neurology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jae Guk Kim
- Department of Neurology, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, Wonkwang University Hospital, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Jay Chol Choi
- Department of Neurology, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Keun Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Kyoung Kim
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Woo Keun Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Hwa Seo
- Department of Neurology, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jun Young Chang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mooseok Park
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Woman’s University College of Medicine, Seoul, Republic of Korea
| | - Ji Sung Lee
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chun San An
- GNT Pharma Co Ltd, Yongin, Republic of Korea
| | | | - Dennis W. Choi
- Department of Neurology, Stony Brook University School of Medicine, New York, New York
| | - Sun U. Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Liu Y, Li X, Cao C, Ding H, Shi X, Zhang J, Li H. Critical role of Slc22a8 in maintaining blood-brain barrier integrity after experimental cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2025; 45:85-101. [PMID: 39068534 PMCID: PMC11572098 DOI: 10.1177/0271678x241264401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Blood-brain barrier (BBB) damage significantly affects the prognosis of ischemic stroke patients. This project employed multi-omics analysis to identify key factors regulating BBB disruption during cerebral ischemia-reperfusion. An integrated analysis of three transcriptome sequencing datasets from mouse middle cerebral artery occlusion/reperfusion (MCAO/R) models identified eight downregulated genes in endothelial cells. Additionally, transcriptome analysis of BBB (cortex) and non-BBB (lung) endothelium of E13.5 mice revealed 2,102 upregulated genes potentially associated with BBB integrity. The eight downregulated genes were intersected with the 2,102 BBB-related genes and mapped using single-cell RNA sequencing data, revealing that solute carrier family 22 member 8 (Slc22a8) is specifically expressed in endothelial cells and pericytes and significantly decreases after MCAO/R. This finding was validated in the mouse MCAO/R model at both protein and mRNA levels in this study. External overexpression of Slc22a8 using a lentivirus carrying Tie2 improved Slc22a8 and tight junction protein levels and reduced BBB leakage after MCAO/R, accompanied by Wnt/β-catenin signaling activation. In conclusion, this study suggested that MCAO/R-induced downregulation of Slc22a8 expression may be a crucial mechanism underlying BBB disruption. Interventions that promote Slc22a8 expression or enhance its function hold promise for improving the prognosis of patients with cerebral ischemia.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xuan Shi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Wang L, Li X, Chen L, Mei S, Shen Q, Liu L, Liu X, Liao S, Zhao B, Chen Y, Hou J. Mitochondrial Uncoupling Protein-2 Ameliorates Ischemic Stroke by Inhibiting Ferroptosis-Induced Brain Injury and Neuroinflammation. Mol Neurobiol 2025; 62:501-517. [PMID: 38874704 DOI: 10.1007/s12035-024-04288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ischemic stroke is a devastating disease in which mitochondrial damage or dysfunction substantially contributes to brain injury. Mitochondrial uncoupling protein-2 (UCP2) is a member of the UCP family, which regulates production of mitochondrial superoxide anion. UCP2 is reported to be neuroprotective for ischemic stroke-induced brain injury. However, the molecular mechanisms of UCP2 in ischemic stroke remain incompletely understood. In this study, we investigated whether and how UCP2 modulates neuroinflammation and regulates neuronal ferroptosis following ischemic stroke in vitro and in vivo. Wild-type (WT) and UCP2 knockout (Ucp2-/-) mice were subjected to middle cerebral artery occlusion (MCAO). BV2 cells (mouse microglial cell line) and HT-22 cells (mouse hippocampal neuronal cell line) were transfected with small interfering (si)-RNA or overexpression plasmids to knockdown or overexpress UCP2 levels. Cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/RX) to simulate hypoxic injury in vitro. We found that UCP2 expression was markedly reduced in a time-dependent manner in both in vitro and in vivo ischemic stroke models. In addition, UCP2 was mainly expressed in neurons. UCP2 deficiency significantly enlarged infarct volumes, aggravated neurological deficit scores, and exacerbated cerebral edema in mice after MCAO. In vitro knockdown of Ucp2 and in vivo genetic depletion of Ucp2 (Ucp2-/- mice) increased neuronal ferroptosis-related indicators, including Fe2+, malondialdehyde, glutathione, and lipid peroxidation. Overexpression of UCP2 in neuronal cells resulted in reduced ferroptosis. Moreover, knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ischemic stroke models, suggesting that endogenous UCP2 inhibits neuroinflammation following ischemic stroke. Upregulation of UCP2 expression in microglia appeared to decrease the release of pro-inflammatory factors and increase the levels of anti-inflammatory factors. Further investigation showed that UCP2 deletion inhibited expression of AMPKα/NRF1 pathway-related proteins, including p-AMPKα, t-AMPKα, NRF1, and TFAM. Thus, UCP2 protects the brain from ischemia-induced ferroptosis by activating AMPKα/NRF1 signaling. Activation of UCP2 represents an attractive strategy for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Li
- Department of Pain Medicine, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shenglan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Yannan Chen
- Department of Endocrinology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China.
| |
Collapse
|
27
|
Dettori I, Bulli I, Venturini M, Magni G, Cherchi F, Rossi F, Lee H, Pedata F, Jacobson KA, Pugliese AM, Coppi E. MRS3997, a dual adenosine A 2A/A 2B receptor agonist, reduces brain ischemic damage and alleviates neuroinflammation in rats. Neuropharmacology 2025; 262:110214. [PMID: 39522676 PMCID: PMC11789432 DOI: 10.1016/j.neuropharm.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The endogenous neuromodulator adenosine is massively released during hypoxic/ischemic insults and differentially modulates post-ischemic damage depending on the expression and recruitment of its four metabotropic receptor subtypes, namely A1, A2A, A2B and A3 receptors (A1Rs, A2ARs, A2BRs and A3Rs). We previously demonstrated, by using a model of transient middle cerebral artery occlusion (tMCAo) in rats, that selective activation of A2ARs, as well as A2BRs, ameliorates post-ischemic brain damage in contrast to neuroinflammation. In the present study, we investigated whether the multitarget nucleoside MRS3997, a full agonist at both A2ARs and A2BRs, would afford higher neuroprotection in post-ischemic damage. Chronic systemic treatment with MRS3997 reduced neurological deficit, body weight loss and infarct volume in the cortex and striatum measured 7 days after ischemia. The dual agonist counteracted neuronal loss, reduced myelin damage, and prevented morphological changes indicative of microglia and astrocyte activation. Finally, MRS3997 shifted plasma cytokine levels to an anti-inflammatory profile. These effects were preceded, at 2 days after the insult, by a reduced granulocyte infiltration in the ischemic cortex and, differently from what was observed with selective A2AR or A2BR agonism, also in striatum. In summary, we demonstrate here that MRS3997, systemically administered for 7 days after tMCAO, protects ischemic areas from neuronal and glial damage and inhibits neuroinflammation, therefore representing an attractive strategy to ameliorate post-stroke damage and neurological symptoms.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Hobin Lee
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
29
|
Wu J, Huang C, Ren S, Wu T, Li Y, Zhong H, Su T, Chen Y, Tan X, Wu W, Wang J, Li W. Design, green synthesis, and anti-glutamate damage screening of chalcone derivatives with spiro-heterocyclic structures as potential anti-ischemic brain and eye damage agents. Bioorg Chem 2024; 153:107870. [PMID: 39423774 DOI: 10.1016/j.bioorg.2024.107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Antagonizing excessive glutamate-induced neuroexcitatory toxicity is one of the treatments for brain and retinal nerve damage in ischemic stroke patients. In this work, a series of 3-benzoyl-4-phenyl-spiropyrrolidone (spiroheterocyclic) compounds were designed and synthesized by modifying the Michael receptor of chalcone to reduce its toxicity. Several compounds with superior protective effects on PC12 cells were screened through an experimental model of glutamate-induced damage, and a quantitative evaluation of the structure-activity relationship (QSAR) model with a regression coefficient of R2 = 0.90723 was established through the random forest (RF) algorithm. Among these compounds, E38 significantly increased the survival rate of damaged cells, promoted colony formation, and inhibited LDH release and apoptosis, and the protective effect of E38 was possibly partly through the HO-1/SIRT1 pathway. More importantly, in mice model of middle cerebral artery occlusion (MCAO), E38 decreased cerebral infarct size, improved neurological scores, and mitigated retinal damage. In conclusion, this work presents a novel class of chalcone derivatives with neuroprotective activity and offers potential compounds for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jianzhang Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chenyang Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuo Ren
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Wu
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yujia Li
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hongliang Zhong
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tiande Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yinqi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangpeng Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Jingsong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wulan Li
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
30
|
Lee J, Geum D, Park DH, Kim JH. Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles. Pharmaceutics 2024; 16:1492. [PMID: 39771472 PMCID: PMC11678501 DOI: 10.3390/pharmaceutics16121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
31
|
El Hamamy A, Iqbal Z, Le NM, Ranjan A, Zhang Y, Lin HW, Tan C, Sumani D, Patrizz A, McCullough LD, Li J. Targeted TGF-βR2 Silencing in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01306-0. [PMID: 39543011 DOI: 10.1007/s12975-024-01306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke. Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-βR2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN. CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 silencing in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 silencing similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following silencing. Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Collapse
Affiliation(s)
- Ahmad El Hamamy
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zahid Iqbal
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ngoc Mai Le
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arya Ranjan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - YuXing Zhang
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Destiny Sumani
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anthony Patrizz
- Department of Neurological Surgery and Brain Repair, University of South Florida at Tampa, Tampa, FL, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
32
|
Qin L, Tong F, Li S, Ren C. Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease. Biomolecules 2024; 14:1408. [PMID: 39595584 PMCID: PMC11592304 DOI: 10.3390/biom14111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Cerebrovascular diseases (CVDs), comprising predominantly ischemic stroke and chronic cerebral hypoperfusion (CCH), are a significant threat to global health, often leading to disability and mortality. Remote ischemic conditioning (RIC) has emerged as a promising, non-pharmacological strategy to combat CVDs by leveraging the body's innate defense mechanisms. This review delves into the neuroprotective mechanisms of RIC, categorizing its effects during the acute and chronic phases of stroke recovery. It also explores the synergistic potential of RIC when combined with other therapeutic strategies, such as pharmacological treatments and physical exercise. Additionally, this review discusses the pathways through which peripheral transmission can confer central neuroprotection. This review concludes by addressing the challenges regarding and future directions for RIC, emphasizing the need for standardized protocols, biomarker identification, and expanded clinical trials to fully realize its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Q.); (F.T.); (S.L.)
| |
Collapse
|
33
|
Nakayama T, Abe T, Masuda H, Asahara T, Takizawa S, Nagata E. Intravenous Regeneration-associated Cell Transplantation Enhances Tissue Recovery in Mice with Acute Ischemic Stroke. Keio J Med 2024:2024-0005-OA. [PMID: 39496397 DOI: 10.2302/kjm.2024-0005-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Previously, we reported that transplantation of regeneration-associated cells (RACs) via the ipsilateral external carotid artery reduced stroke volume in mice with permanent occlusion of the middle cerebral artery (MCA). However, intracarotid arterial transplantation is invasive and requires skill, and severe complications may occur, such as thromboembolism, infection, and decreased cerebral blood flow. This study aimed to investigate the efficacy of intravenous injection of RACs in reducing stroke volume and increasing anti-inflammatory and angiogenic factors in mice with focal cerebral ischemia. Mice with occluded MCAs received intravenous injections of phosphate-buffered saline (PBS) (control), low-dose RACs, or high-dose RACs. The proximal part of the left MCA was occluded to induce permanent focal ischemia. After 3 days, we administered PBS or low-dose (1 × 104 /50 µL) or high-dose RACs (1 × 105 /50 µL) through the tail vein and assessed the infarct volume on day 7. High-dose RACs significantly decreased infarct volume compared to PBS, whereas low-dose RACs showed no effect. The number of interleukin-10 (IL-10)-positive and vascular endothelial growth factor (VEGF)-positive cells in the peri-infarct area on day 7 was significantly higher in mice treated with low-dose and high-dose RACs than in the PBS control group. Intravenous injection of RACs can reduce ischemic stroke volume; however, a higher dose of RACs is required than the dose used in intraarterial transplantation. By assessing IL-10 and VEGF expression, the study sheds light on the underlying mechanisms of RAC therapy, revealing its potential anti-inflammatory and angiogenic properties in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Taira Nakayama
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Takato Abe
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Haruchika Masuda
- Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
34
|
Kwon HJ, Hahn KR, Moon SM, Yoo DY, Kim DW, Hwang IK. PFKFB3 ameliorates ischemia-induced neuronal damage by reducing reactive oxygen species and inhibiting nuclear translocation of Cdk5. Sci Rep 2024; 14:24694. [PMID: 39433564 PMCID: PMC11494100 DOI: 10.1038/s41598-024-75031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) plays an essential role in glycolysis and in the antioxidant pathway associated with glutathione. Therefore, we investigated the effects of PFKFB3 on oxidative and ischemic damage. We synthesized a fusion protein of transactivator of transcription (Tat)-PFKFB3 to facilitate its passage into the intracellular space and examine its effects against oxidative stress induced by hydrogen peroxide (H2O2) treatment and ischemic damage caused by occlusion of the common carotid arteries for 5 min in gerbils. The Tat-PFKFB3 protein was efficiently delivered into HT22 cells in a concentration- and time-dependent manner, with higher levels observed 18 h after treatment. Furthermore, treatment with 6 µM Tat-PFKFB3 demonstrated intracellular delivery into HT22 cells, as analyzed through immunocytochemical staining. Moreover, it significantly ameliorated the reduction of cell viability induced by 200 µM H2O2 treatment. Tat-PFKFB3 treatment also alleviated H2O2-induced DNA fragmentation and reactive oxygen species formation in HT22 cells. In gerbils, the intraperitoneal administration of 2 mg/kg Tat-PFKFB3 efficiently delivered the substance to all hippocampal areas, including the hippocampal CA1 region. This administration significantly mitigated ischemia-induced hyperlocomotion, long-term memory deficits, and ischemic neuronal death in the hippocampal CA1 region after ischemia. Additionally, treatment with 2 mg/kg Tat-PFKFB3 significantly ameliorated the translocation of Cdk5 from the cytosol to the nucleus in the hippocampal CA1 region 24 h after ischemia, but not in other regions. The treatment also significantly reduced reactive oxygen species formation in the CA1 region. These findings suggest that Tat-PFKFB3 reduces neuronal damage in the hippocampal CA1 region after ischemia through the reduction of Cdk5 signaling and reactive oxygen species formation. Therefore, Tat-PFKFB3 may have potential applications in reducing ischemic damage.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
35
|
Zhao M, Qiao Y, Weiss A, Zhao W. Neuroprotective strategies in acute ischemic stroke: A narrative review of recent advances and clinical outcomes. Brain Circ 2024; 10:296-302. [PMID: 40012592 PMCID: PMC11850939 DOI: 10.4103/bc.bc_165_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Reperfusion therapy, which substantially promotes the vessel recanalization rate and improves clinical outcomes, remains the most effective treatment of acute ischemic stroke (AIS). However, a substantial number of patients are either unsuitable for recanalization therapy or experience limited recovery postreperfusion. There is growing recognition that adjunctive neuroprotective therapies may further improve the outcomes in AIS patients by protecting brain tissue during ischemia. Recent advancements in neuroprotective approaches, including pharmacologic agents such as nerinetide edaravone, and uric acid, as well as nonpharmacological interventions, such as remote ischemic conditioning and normobaric hyperoxia, offer promising potentials in stroke care. This review provides an overview of the current neuroprotective therapies, examines recent clinical evidence, and discusses the strengths and weaknesses of certain clinical trials aimed at cerebral protection.
Collapse
Affiliation(s)
- Min Zhao
- Department of Neurology, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yue Qiao
- Department of Neurology, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Alexander Weiss
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wenbo Zhao
- Department of Neurology, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
36
|
Han Q, Wang C, Liu J, Wang C, Zhang H, Ni Q, Sun J, Wang Y, Sun B. Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke. Transl Stroke Res 2024; 15:880-892. [PMID: 37555909 DOI: 10.1007/s12975-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Nanozymes are a new kind of material which has been applied since the beginning of this century, and its birth has promoted the development of chemistry, materials science, and biology. Nanozymes can be used as a substitute for natural enzyme and has a wide range of applications; therefore, it has attracted extensive attention from all sectors of the community, and the number of studies has constantly increasing. In this paper, we introduced the outstanding achievements in the field of nanozymes in recent years from the main function, the construction of nanozyme-based biosensors, and the treatment of ischemic stroke, and we also illustrated the internal mechanism and the catalytic principle. In the end, the obstacles and challenges in the future development of nanozymes were proposed.
Collapse
Affiliation(s)
- Qing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chengcheng Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jian Liu
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Cai Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Hongming Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
37
|
Yu C, Yao W, Liu K, Tang D. Serum glucose mediated association of serum lactate with acute kidney injury among AIS patients. Clin Biochem 2024; 131-132:110816. [PMID: 39222865 DOI: 10.1016/j.clinbiochem.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The serum lactate level has been confirmed to be an independent risk factor for the occurrence of acute kidney injury (AKI) in many diseases. However, the correlation between serum lactate level and AKI in critical patients with acute ischemic stroke (AIS) has not been clear. Moreover, limited studies have examined the mediating effect of serum glucose on the association between serum lactate and AKI. METHODS We identified 1,435 AIS patients from the Medical Information Mart for Intensive Care (MIMIC-III) database and divided them into AKI or No-AKI groups. We used a propensity score matching method to reduce confounding factors. Linear regression, logistic regression, and restricted cubic splines (RCS) plots were used to evaluate relationships between serum lactate levels and AKI. Finally, the mediating role of serum glucose on the relationship between serum lactate and AKI was investigated utilizing the mediation analysis. RESULTS In the present study, a total of 634 critical patients aged ≥ 18 years with AIS were included after propensity score matching (1:1). We used RCS plotting to reveal a linear association between serum lactate levels and AKI (P for nonlinearity < 0.001). After full adjustment for potential confounders (Model 3), high lactate levels increased the risk of AKI (odds ratio, 2.216; 95 % confidence interval, 1.559-3.271; P-value < 0.001). Serum glucose explained 14.9 % of the association between serum lactate and AKI among critical patients with AIS (P-value < 0.001), 16.4 % among patients with AIS and diabetes mellitus (DM) (P-value = 0.24), and 19.5 % among patients with AIS and without DM (P-value < 0.001). CONCLUSION Serum lactate was independently associated with increased risk-adjusted AKI in critical patients with AIS. The increase in serum glucose may have mediated this effect, especially in patients without DM.
Collapse
Affiliation(s)
- Chunli Yu
- Department of Nephrology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Weiguo Yao
- Department of Nephrology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Kun Liu
- Department of Nephrology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Dingzhong Tang
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
38
|
Pan S, Du K, Liu S, Wang S, Luo L, Xu Y, Cao C, Chen J, Ji X, Wei M. Albumin adjuvant therapy for acute ischemic stroke with large vessel occlusion (AMASS-LVO): rationale, design, and protocol for a phase 1, open-label, clinical trial. Front Neurol 2024; 15:1455388. [PMID: 39403266 PMCID: PMC11471686 DOI: 10.3389/fneur.2024.1455388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is an acute brain injury caused by sudden occlusion of a blood vessel. Endovascular therapy is the most effective way to restore blood flow. However, despite the restoration of blood flow in some patients, their clinical prognosis often remains unsatisfactory. Albumin has shown neuroprotective effects in animal models of AIS. Therefore, this study aims to evaluate the safety, feasibility, and efficacy of local arterial infusions of 20% human serum albumin solution as an adjuvant therapy after endovascular therapy in patients with AIS. METHODS This study is a prospective, therapeutic exploratory, non-randomized, open-label, phase 1 clinical trial testing the use of 20% human serum albumin solution injected via the artery immediately after successful reperfusion in patients with AIS. The study is divided into two stages. In the first stage, a single-dose-finding will explore the maximum safe dose according to the 3 + 3 dose escalation principle;, with the maximum dose being 0.60 g/kg. After recanalizing the occluded blood vessel, human serum albumin solution will be injected into the internal carotid artery region through a guiding catheter for 30 min. The second stage involves an albumin adjuvant therapy cohort (AT) and an endovascular treatment lonely cohort (ET). The AT cohort will encompass at least 15 additional participants to complete safety trials at the maximum safe dose determined in the first stage. The ET cohort will include well-matched patients receiving endovascular therapy alone, derived from a contemporaneous prospective registry, who will be excluded from having cardiopulmonary disorders and from receiving any neuroprotective therapy. The primary outcome of this study will be symptomatic intracranial hemorrhage. Efficacy outcomes will include the proportion of patients with the progression of cerebral infarction volume, a modified Rankin Scale of 0-2 on day 90 after randomization. An exploratory secondary outcome will be the analysis of thromboinflammatory and neuroprotective molecule profiles. CONCLUSION This pilot trial aims to explore the safety and efficacy of arterial infusion of an albumin solution after occlusive vessel opening in AIS. The results will provide data parameters for subsequent tests on the arterial infusion of albumin solutions. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT05953623.
Collapse
Affiliation(s)
- Sihu Pan
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Kangjie Du
- Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shuling Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Sifei Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Leilei Luo
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yongbo Xu
- Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Chen Cao
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Beijing, China
| | - Ming Wei
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
39
|
Passlick S, Ullah G, Henneberger C. Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure. eLife 2024; 13:RP98834. [PMID: 39287515 PMCID: PMC11407764 DOI: 10.7554/elife.98834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Ischemia leads to a severe dysregulation of glutamate homeostasis and excitotoxic cell damage in the brain. Shorter episodes of energy depletion, for instance during peri-infarct depolarizations, can also acutely perturb glutamate signaling. It is less clear if such episodes of metabolic failure also have persistent effects on glutamate signaling and how the relevant mechanisms such as glutamate release and uptake are differentially affected. We modeled acute and transient metabolic failure by using a chemical ischemia protocol and analyzed its effect on glutamatergic synaptic transmission and extracellular glutamate signals by electrophysiology and multiphoton imaging, respectively, in the mouse hippocampus. Our experiments uncover a duration-dependent bidirectional dysregulation of glutamate signaling. Whereas short chemical ischemia induces a lasting potentiation of presynaptic glutamate release and synaptic transmission, longer episodes result in a persistent postsynaptic failure of synaptic transmission. We also observed unexpected differences in the vulnerability of the investigated cellular mechanisms. Axonal action potential firing and glutamate uptake were surprisingly resilient compared to postsynaptic cells, which overall were most vulnerable to acute and transient metabolic stress. We conclude that short perturbations of energy supply lead to a lasting potentiation of synaptic glutamate release, which may increase glutamate excitotoxicity well beyond the metabolic incident.
Collapse
Affiliation(s)
- Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of BonnBonnGermany
| | - Ghanim Ullah
- Department of Physics, University of South FloridaTampaUnited States
| | | |
Collapse
|
40
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
41
|
Kim MJ, Lee D, Ryu JH, Lee SY, Choi BT, Yun YJ, Shin HK. Weisheng-tang protects against ischemic brain injury by modulating microglia activation through the P2Y12 receptor. Front Pharmacol 2024; 15:1347622. [PMID: 39295932 PMCID: PMC11408171 DOI: 10.3389/fphar.2024.1347622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Background: Stroke, a leading cause of death and disability, lacks effective treatments. Post-stroke secondary damage worsens the brain microenvironment, further exacerbating brain injury. Microglia's role in responding to stroke-induced damage in peri-infarct regions is crucial. In this study, we explored Weisheng-tang's potential to enhance ischemic outcomes by targeting microglia. Methods: We induced middle cerebral artery occlusion and reperfusion in mice, followed by behavioral assessments and infarct volume analyses after 48 h, and examined the changes in microglial morphology through skeleton analysis. Results: Weisheng-tang (300 mg/kg) significantly reduced infarction volume and alleviated neurological and motor deficits. The number of activated microglia was markedly increased within the peri-infarct territory, which was significantly reversed by Weisheng-tang. Microglial morphology analysis revealed that microglial processes were retracted owing to ischemic damage but were restored in Weisheng-tang-treated mice. This restoration was accompanied by the expression of the purinergic P2Y12 receptor (P2Y12R), a key regulator of microglial process extension. Weisheng-tang increased neuronal Kv2.1 clusters while suppressing juxtaneuronal microglial activation. The P2Y12R inhibitor-ticagrelor-eliminated the tissue and functional recovery that had been observed with Weisheng-tang after ischemic damage. Discussion: Weisheng-tang improved experimental stroke outcomes by modulating microglial morphology through P2Y12R, shedding light on its neuroprotective potential in ischemic stroke.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Dohee Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Ji Hye Ryu
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Young Ju Yun
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| |
Collapse
|
42
|
Chen R, Wang X, Li N, Golubnitschaja O, Zhan X. Body fluid multiomics in 3PM-guided ischemic stroke management: health risk assessment, targeted protection against health-to-disease transition, and cost-effective personalized approach are envisaged. EPMA J 2024; 15:415-452. [PMID: 39239108 PMCID: PMC11371995 DOI: 10.1007/s13167-024-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Because of its rapid progression and frequently poor prognosis, stroke is the third major cause of death in Europe and the first one in China. Many independent studies demonstrated sufficient space for prevention interventions in the primary care of ischemic stroke defined as the most cost-effective protection of vulnerable subpopulations against health-to-disease transition. Although several studies identified molecular patterns specific for IS in body fluids, none of these approaches has yet been incorporated into IS treatment guidelines. The advantages and disadvantages of individual body fluids are thoroughly analyzed throughout the paper. For example, multiomics based on a minimally invasive approach utilizing blood and its components is recommended for real-time monitoring, due to the particularly high level of dynamics of the blood as a body system. On the other hand, tear fluid as a more stable system is recommended for a non-invasive and patient-friendly holistic approach appropriate for health risk assessment and innovative screening programs in cost-effective IS management. This article details aspects essential to promote the practical implementation of highlighted achievements in 3PM-guided IS management. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00376-2.
Collapse
Affiliation(s)
- Ruofei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Xiaoyan Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, 53127 Germany
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 P. R. China
| |
Collapse
|
43
|
Höfling C, Ulrich L, Burghardt S, Donkersloot P, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses. Cells 2024; 13:1412. [PMID: 39272984 PMCID: PMC11394561 DOI: 10.3390/cells13171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| |
Collapse
|
44
|
Aderinto N, Olatunji G, Kokori E, Sanker V, Yusuf IA, Adefusi TO, Egbunu E, Aboje JE, Apampa OO, Ogieuhi IJ, Obasanjo OM, Awuah WA. miR-210 in ischaemic stroke: biomarker potential, challenges and future perspectives. Eur J Med Res 2024; 29:432. [PMID: 39180099 PMCID: PMC11342498 DOI: 10.1186/s40001-024-02029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024] Open
Abstract
Ischaemic stroke, a leading cause of global morbidity and mortality, necessitates effective biomarkers for enhanced diagnostic and prognostic stratification. MicroRNAs (miRNAs), particularly miR-210, have emerged as promising candidates due to their intricate regulatory roles in cellular responses to hypoxia and neuroprotective effects. This study explores the potential of miR-210 as a biomarker for ischaemic stroke, considering its expression patterns, regulatory functions and diagnostic/prognostic implications. A literature search was conducted on PubMed, Scopus, Google Scholar and Web of Science to identify studies focusing on miR-210 in ischaemic stroke. Inclusion criteria comprised reports on miR-210 expression in ischaemic stroke patients, excluding non-English studies, reviews, commentaries and conference abstracts lacking primary data. Studies investigating miR-210 levels in ischaemic stroke patients revealed significant alterations in expression patterns compared to healthy controls. Diagnostic potential was explored, indicating miR-210's sensitivity and specificity in distinguishing ischaemic stroke from other neurological conditions. Prognostic value was evident through associations with infarct size, functional outcomes and long-term survival. Challenges included variability in miR-210 levels, limited diagnostic specificity, absence of standardised assays and concerns regarding cost-effectiveness and accessibility. While miR-210 holds promise as an ischaemic stroke biomarker, challenges must be addressed for its successful integration into clinical practice. Standardised reference ranges, validation studies in diverse populations and collaborative efforts for assay standardisation are crucial. Despite challenges, miR-210's diagnostic and prognostic potential, particularly in predicting therapeutic responses, suggests a significant role in advancing ischaemic stroke management.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Vivek Sanker
- Department of Neurosurgery, Trivandrum Medical College, Thiruvananthapuram, Kerala, India
| | - Ismaila Ajayi Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University Teaching Hospital, Ife, Nigeria
| | | | | | - John Ehi Aboje
- College of Health Sciences, Benue State University, Benue, Nigeria
| | | | | | | | | |
Collapse
|
45
|
Alghadir AH, Gabr SA, Iqbal A. Enhancing cognitive performance and mitigating dyslipidemia: the impact of moderate aerobic training on sedentary older adults. BMC Geriatr 2024; 24:678. [PMID: 39138393 PMCID: PMC11323678 DOI: 10.1186/s12877-024-05276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The present study aimed to evaluate the effects of 24 weeks of moderate aerobic exercise on lipids and lipoprotein levels; Lipo (a) markers, and their association with cognitive performance in healthy older adults. METHODS A total of 150 healthy subjects (100 males and 50 females; age range: 65-95 years) were recruited for this study. Based on the LOTCA test score, subjects were classified into two groups: the control group (n = 50) and the cognitive impairment group (n = 100). Cognitive functioning, leisure-time physical activity (LTPA), lipid profile, total cholesterol, TG, HDL-c, LDL-C, and lipo(a) were assessed at baseline and post-24-week aerobic exercise interventions using LOTCA battery, pre-validated Global Physical Activity Questionnaire (GPAQ) version II, colorimetric, and immunoassay techniques, respectively. RESULTS Significant improvements in cognitive function and modulation in lipid profile and lipoprotein (a) markers were reported in all older subjects following 24 weeks of moderate exercise. LOTCA-7-sets scores significantly correlated with physical activity status and the regulation of lipids and Lipo (a) markers. Physically active persons showed higher cognitive performance along with a reduction in the levels of T-Cholest., TG, LDL-C, Lipo (a), and an increase in the levels of HDL-C and aerobic fitness VO2max compared with sedentary participants. Cognitive performance correlated positively with increased aerobic fitness, HDL-C, and negatively with T-Cholest., TG, LDL-C, and Lipo (a). However, a significant increase in the improvement of motor praxis, vasomotor organization, thinking operations, attention, and concentration were reported among older adults. CONCLUSIONS The study findings revealed that supervised moderate aerobic training for 24 weeks significantly enhances cognitive functions via mitigating older adults' lipid profiles and lipoprotein (a). Cognitive performance is positively correlated with aerobic fitness and HDL-C level and negatively with T-Cholest., TH, LDL-C, and Lipo (a).
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
46
|
Althaus O, ter Jung N, Stahlke S, Theiss C, Herzog-Niescery J, Vogelsang H, Weber T, Gude P, Matschke V. Region-specific protective effects of monomethyl fumarate in cerebellar and hippocampal organotypic slice cultures following oxygen-glucose deprivation. PLoS One 2024; 19:e0308635. [PMID: 39110748 PMCID: PMC11305562 DOI: 10.1371/journal.pone.0308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To date, apart from moderate hypothermia, there are almost no adequate interventions available for neuroprotection in cases of brain damage due to cardiac arrest. Affected persons often have severe limitations in their quality of life. The aim of this study was to investigate protective properties of the active compound of dimethyl fumarate, monomethyl fumarate (MMF), on distinct regions of the central nervous system after ischemic events. Dimethyl fumarate is an already established drug in neurology with known anti-inflammatory and antioxidant properties. In this study, we chose organotypic slice cultures of rat cerebellum and hippocampus as an ex vivo model. To simulate cardiac arrest and return of spontaneous circulation we performed oxygen-glucose-deprivation (OGD) followed by treatments with different concentrations of MMF (1-30 μM in cerebellum and 5-30 μM in hippocampus). Immunofluorescence staining with propidium iodide (PI) and 4',6-diamidine-2-phenylindole (DAPI) was performed to analyze PI/DAPI ratio after imaging with a spinning disc confocal microscope. In the statistical analysis, the relative cell death of the different groups was compared. In both, the cerebellum and hippocampus, the MMF-treated group showed a significantly lower PI/DAPI ratio compared to the non-treated group after OGD. Thus, we showed for the first time that both cerebellar and hippocampal slice cultures treated with MMF after OGD are significantly less affected by cell death.
Collapse
Affiliation(s)
- Oliver Althaus
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Nico ter Jung
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heike Vogelsang
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Izquierdo-Bermejo S, Chamorro B, Martín-de-Saavedra MD, Lobete M, López-Muñoz F, Marco-Contelles J, Oset-Gasque MJ. In Vitro Modulation of Autophagy by New Antioxidant Nitrones as a Potential Therapeutic Approach for the Treatment of Ischemic Stroke. Antioxidants (Basel) 2024; 13:946. [PMID: 39199193 PMCID: PMC11351736 DOI: 10.3390/antiox13080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Stroke is a leading cause of death worldwide, yet current therapeutic strategies remain limited. Among the neuropathological events underlying this disease are multiple cell death signaling cascades, including autophagy. Recent interest has focused on developing agents that target molecules involved in autophagy to modulate this process under pathological conditions. This study aimed to analyze the role of autophagy in cell death induced by an in vitro ischemia-reperfusion (IR) model and to determine whether nitrones, known for their neuroprotective and antioxidant effects, could modulate this process. We focused on key proteins involved in different phases of autophagy: HIF-1α, BNIP3, and BECN1 for induction and nucleation, LC3 for elongation, and p62 for degradation. Our findings confirmed that the IR model promotes autophagy, initially via HIF-1α activation. Additionally, the neuroprotective effect of three of the selected synthetic nitrones (quinolylnitrones QN6 and QN23, and homo-bis-nitrone HBN6) partially derives from their antiautophagic properties, demonstrated by a downregulation of the expression of molecular markers involved in various phases of autophagy. In contrast, the neuroprotective power of cholesteronitrone ChN2 seems to derive from its promoting effects on the initial phases of autophagy, which could potentially help inhibit other forms of cell death. These results underscore the importance of autophagy modulation in neuroprotection, highlighting the potential of inhibiting prodeath autophagy and promoting prosurvival autophagy as promising therapeutic approaches in treating ischemic stroke clinically.
Collapse
Affiliation(s)
- Sara Izquierdo-Bermejo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
| | - Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
| | - María Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Lobete
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
- HM Hospitals Health Research Institute, 28015 Madrid, Spain
- Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research Institute, 28041 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
48
|
Ohshima M, Moriguchi T, Enmi JI, Kawashima H, Koshino K, Zeniya T, Tsuji M, Iida H. [ 123I]CLINDE SPECT as a neuroinflammation imaging approach in a rat model of stroke. Exp Neurol 2024; 378:114843. [PMID: 38823675 DOI: 10.1016/j.expneurol.2024.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Poststroke neuroinflammation exacerbates disease progression. [11C]PK11195-positron emission tomography (PET) imaging has been used to visualize neuroinflammation; however, its short half-life of 20 min limits its clinical use. [123I]CLINDE has a longer half-life (13h); therefore, [123I]CLINDE-single-photon emission computed tomography (SPECT) imaging is potentially more practical than [11C]PK11195-PET imaging in clinical settings. The objectives of this study were to 1) validate neuroinflammation imaging using [123I]CLINDE and 2) investigate the mechanisms underlying stroke in association with neuroinflammation using multimodal techniques, including magnetic resonance imaging (MRI), gas-PET, and histological analysis, in a rat model of ischemic stroke, that is, permanent middle cerebral artery occlusion (pMCAo). At 6 days post-pMCAo, [123I]CLINDE-SPECT considerably corresponded to the immunohistochemical images stained with the CD68 antibody (a marker for microglia/microphages), comparable to the level observed in [11C]PK11195-PET images. In addition, the [123I]CLINDE-SPECT images corresponded well with autoradiography images. Rats with severe infarcts, as defined by MRI, exhibited marked neuroinflammation in the peri-infarct area and less neuroinflammation in the ischemic core, accompanied by a substantial reduction in the cerebral metabolic rate of oxygen (CMRO2) in 15O-gas-PET. Rats with moderate-to-mild infarcts exhibited neuroinflammation in the ischemic core, where CMRO2 levels were mildly reduced. This study demonstrates that [123I]CLINDE-SPECT imaging is suitable for neuroinflammation imaging and that the distribution of neuroinflammation varies depending on the severity of infarction.
Collapse
Affiliation(s)
- Makiko Ohshima
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Visionsgatan 4, Solna 171 64, Sweden
| | - Tetsuaki Moriguchi
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan
| | - Jun-Ichiro Enmi
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidekazu Kawashima
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kazuhiro Koshino
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Systems and Informatics, Hokkaido Information University, 59-2 Nishi-nopporo, Ebetsu, Hokkaido, Japan
| | - Tsutomu Zeniya
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Food and Nutrition, Kyoto Women's University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto 605-8501, Japan.
| | - Hidehiro Iida
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Faculty of Medicine, University of Turku, and Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| |
Collapse
|
49
|
Lee NT, Savvidou I, Selan C, Calvello I, Vuong A, Wright DK, Brkljaca R, Willcox A, Chia JSJ, Wang X, Peter K, Robson SC, Medcalf RL, Nandurkar HH, Sashindranath M. Development of endothelial-targeted CD39 as a therapy for ischemic stroke. J Thromb Haemost 2024; 22:2331-2344. [PMID: 38754782 DOI: 10.1016/j.jtha.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.
Collapse
Affiliation(s)
- Natasha Ting Lee
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ioanna Savvidou
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carly Selan
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ilaria Calvello
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Amy Vuong
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robert Brkljaca
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Abbey Willcox
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Joanne S J Chia
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
50
|
Owjfard M, Rahimian Z, Karimi F, Borhani-Haghighi A, Mallahzadeh A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024; 10:e34121. [PMID: 39082038 PMCID: PMC11284444 DOI: 10.1016/j.heliyon.2024.e34121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Globally, 68 % of all strokes are ischemic, with 32 % being hemorrhagic. Ischemic stroke (IS) poses significant challenges globally, necessitating the development of effective therapeutic strategies. IS is among the deadliest illnesses. Major functions are played by neuroimmunity, inflammation, and oxidative stress in the multiple intricate pathways of IS. Secondary brain damage is specifically caused by the early pro-inflammatory activity that follows cerebral ischemia, which is brought on by excessive activation of local microglia and the infiltration of circulating monocytes and macrophages. Resveratrol, a natural polyphenol found in grapes and berries, has shown promise as a neuroprotective agent in IS. This review offers a comprehensive overview of resveratrol's neuroprotective role in IS, focusing on its mechanisms of action and therapeutic potential. Resveratrol exerts neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways. SIRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO), regulating mitochondrial biogenesis, antioxidant defense, and cellular stress response. Consequently, resveratrol promotes cellular survival and inhibits apoptosis in IS. Moreover, resveratrol activates the NRF2 pathway, a key mediator of the cellular antioxidant response. Activation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic brain. Combined, the activation of SIRT1 and NRF2 pathways contributes to resveratrol's neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in IS. Preclinical studies demonstrate that resveratrol improves functional outcomes, reduces infarct size, regulates cerebral blood flow and preserves neuronal integrity. Gaining a comprehensive understanding of these mechanisms holds promise for the development of targeted therapeutic interventions aimed at promoting neuronal survival and facilitating functional recovery in IS patients and to aid future studies in this matter.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|