1
|
Fernandes EA, Martins CF, Sales JR, Carvalho DFP, Prates JAM, Lordelo MM, Martins LL, Raymundo A, Almeida AM. Impact of a 15% spirulina (Limnospira platensis) dietary inclusion on productive performance and meat traits in naked neck and fully feathered slow-growing broiler strains. Poult Sci 2024; 103:104106. [PMID: 39159573 PMCID: PMC11381824 DOI: 10.1016/j.psj.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
Global population is rising, leading to higher demand for meat and concerns on environmental and economic impacts of conventional feedstuffs that corn and soybean meal have. Recently there has been a shift towards more sustainable feedstuffs such as Spirulina (Limnospira platensis) due to its nutritional value and ability to be produced locally. Consumer awareness prompts shifts towards free range poultry production but presents environmental challenges due to climate change. The naked neck (Na) gene, which reduces feather coverage, and enhances growth under adverse conditions offers a possible solution for improved welfare and efficiency. This study aims to investigate the impact of a diet with 15% Spirulina inclusion on growth performance, carcass traits, and meat quality of two slow-growth broiler strains: naked neck (NN) and fully feathered (FF). Forty, 1-day-old male broilers, 20 per strain, were randomly assigned to either a control or a diet containing 15% Spirulina, housed individually in cages and fed ad libitum for 84 d. Growth, carcass, and meat traits were evaluated. Results indicated that animals fed a control diet generally outperformed those fed a Spirulina diet in final body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion rate (FCR) (P < 0.001). Additionally, Spirulina incorporation led to an increase in the length of the gastrointestinal tract and digesta viscosity in the duodenum plus jejunum (P < 0.05). Although there were no significant differences in breast muscle yield between dietary groups, SP-fed broilers had higher yellowness (*b) values in meat (P < 0.05). Except for the decrease in water holding capacity (WHC) observed in the NN group animals (P < 0.05), there were no significant differences between the strains for the remaining meat quality traits (P > 0.05). The 15% Spirulina inclusion increased the concentrations of n-3 polyunsaturated fatty acids (PUFA) (P < 0.0001) in breast meat and decreased (P < 0.0001) nutritional ratios. Overall, under thermoneutral conditions, animals from the NN strain showed negative effects on growth parameters. Spirulina inclusion improved certain aspects of breast meat quality, particularly fatty acid profiles.
Collapse
Affiliation(s)
- E A Fernandes
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - C F Martins
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - J R Sales
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - D F P Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - J A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; AL4AnimalS - Laboratório Associado para Ciência Animal e Veterinária, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - M M Lordelo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - L L Martins
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - A Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - A M Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
2
|
Shayesteh H, Laird DW, Hughes LJ, Nematollahi MA, Kakhki AM, Moheimani NR. Co-Producing Phycocyanin and Bioplastic in Arthrospira platensis Using Carbon-Rich Wastewater. BIOTECH 2023; 12:49. [PMID: 37489483 PMCID: PMC10366904 DOI: 10.3390/biotech12030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023] Open
Abstract
Microalgae can treat waste streams containing elevated levels of organic carbon and nitrogen. This process can be economically attractive if high value products are created simultaneously from the relatively low-cost waste stream. Co-production of two high value microalgal products, phycocyanin and polyhydroxybutyrate (PHB), was investigated using non-axenic Arthrospira platensis MUR126 and supplemental organic carbon (acetate, oxalate, glycerol and combinations). All supplemented cultures had higher biomass yield (g/L) than photoautotrophic control. All cultures produced PHB (3.6-7.8% w/w), except the control and those fed oxalate. Supplemented cultures showed a two to three-fold increase in phycocyanin content over the eight-day cultivation. Results indicate co-production of phycocyanin and PHB is possible in A. platensis, using mixed-waste organic carbon. However, supplementation resulted in growth of extremophile bacteria, particularly in cultures fed glycerol, and this had a negative impact on culture health. Refinement of the carbon dosing rate is required to minimise impacts of native bacterial contamination.
Collapse
Affiliation(s)
- Hajar Shayesteh
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48978, Iran
| | - Damian W Laird
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
| | - Leonie J Hughes
- School of Mathematics, Statistics, Chemistry and Physics, College of Science, Technology, Engineering, and Mathematics, Murdoch University, Murdoch 6150, Australia
| | - Mohammad A Nematollahi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj Campus, Tehran 77871-31587, Iran
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48978, Iran
| | - Navid R Moheimani
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
3
|
Witthohn M, Strieth D, Kollmen J, Schwarz A, Ulber R, Muffler K. Process Technologies of Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 36571615 DOI: 10.1007/10_2022_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the handling and exploitation of cyanobacteria is associated with some challenges, these phototrophic bacteria offer great opportunities for innovative biotechnological processes. This chapter covers versatile aspects of working with cyanobacteria, starting with up-to-date in silico and in vitro screening methods for bioactive substances. Subsequently, common conservation techniques and vitality/viability estimation methods are compared and supplemented by own data regarding the non-invasive vitality evaluation via pulse amplitude modulated fluorometry. Moreover, novel findings about the influence the state of the pre-cultures have on main cultures are presented. The following sub-chapters deal with different photobioreactor-designs, with special regard to biofilm photobioreactors, as well as with heterotrophic and mixotrophic cultivation modes. The latter topic provides information from literature on successfully enhanced cyanobacterial production processes, augmented by own data.
Collapse
Affiliation(s)
- Marco Witthohn
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Dorina Strieth
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jonas Kollmen
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| |
Collapse
|
4
|
Nosratimovafagh A, Fereidouni AE, Krujatz F. Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM). Life (Basel) 2022; 12:life12030371. [PMID: 35330122 PMCID: PMC8953219 DOI: 10.3390/life12030371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
Arthrospira platensis (Spirulina) biomass is a valuable source of sustainable proteins, and the basis for new food and feed products. State-of-the-art production of Spirulina biomass in open pond systems only allows limited control of essential process parameters, such as light color, salinity control, or mixotrophic growth, due to the high risk of contaminations. Closed photobioreactors offer a highly controllable system to optimize all process parameters affecting Spirulina biomass production (quantity) and biomass composition (quality). However, a comprehensive analysis of the impact of light color, salinity effects, and mixotrophic growth modes of Spirulina biomass production has not been performed yet. In this study, Response Surface Methodology (RSM) was employed to develop statistical models, and define optimal mixotrophic process conditions yielding maximum quantitative biomass productivity and high-quality biomass composition related to cellular protein and phycocyanin content. The individual and interaction effects of 0, 5, 15, and 30 g/L of sodium chloride (S), and 0, 1.5, 2, and 2.5 g/L of glucose (G) in three costume-made LED panels (L) where the dominant color was white (W), red (R), and yellow (Y) were investigated in a full factorial design. Spirulina was cultivated in 200 mL cell culture flasks in different treatments, and data were collected at the end of the log growth phase. The lack-of-fit test showed that the cubic model was the most suitable to predict the biomass concentration and protein content, and the two-factor interaction (2FI) was preferred to predict the cellular phycocyanin content (p > 0.05). The reduced models were produced by excluding insignificant terms (p > 0.05). The experimental validation of the RSM optimization showed that the highest biomass concentration (1.09, 1.08, and 0.85 g/L), with improved phycocyanin content of 82.27, 59.47, 107 mg/g, and protein content of 46.18, 39.76, 53.16%, was obtained under the process parameter configuration WL4.28S2.5G, RL10.63S1.33G, and YL1.00S0.88G, respectively.
Collapse
Affiliation(s)
- Ahmad Nosratimovafagh
- Department of Fisheries Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari P.O. Box 578, Iran;
| | - Abolghasem Esmaeili Fereidouni
- Department of Fisheries Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari P.O. Box 578, Iran;
- Correspondence: ; Tel.: +98-1133822565
| | - Felix Krujatz
- Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01069 Dresden, Germany;
- biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, Bautzner Landstraße 45, 01454 Radeberg, Germany
| |
Collapse
|
5
|
Yun HS, Kim YS, Yoon HS. Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of Chlorella sp. and Biocompositions. Front Bioeng Biotechnol 2022; 9:774143. [PMID: 34976972 PMCID: PMC8718857 DOI: 10.3389/fbioe.2021.774143] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
In the past, biomass production using microalgae culture was dependent on inorganic carbon sources as microalgae are photosynthetic organisms. However, microalgae utilize both organic and inorganic carbon sources, such as glucose. Glucose is an excellent source of organic carbon that enhances biomass yield and the content of useful substances in microalgae. In this study, photoautotrophic, mixotrophic, and heterotrophic cultivation conditions were applied to three well-known strains of Chlorella (KNUA104, KNUA114, and KNUA122) to assess biomass productivity, and compositional changes (lipid, protein, and pigment) were evaluated in BG11 media under photoautotrophic, mixotrophic, and heterotrophic conditions utilizing different initial concentrations of glucose (5, 10, 15, 20, and 25 g L−1). Compared to the photoautotrophic condition (biomass yield: KNUA104, 0.35 ± 0.04 g/L/d; KNUA114, 0.40 ± 0.08 g/L/d; KNUA122, 0.38 ± 0.05 g/L/d) glucose was absent, and the biomass yield improved in the mixotrophic (glucose: 20 g L−1; biomass yield: KNUA104, 2.99 ± 0.10 g/L/d; KNUA114, 5.18 ± 0.81 g/L/d; KNUA122, 5.07 ± 0.22 g/L/d) and heterotrophic conditions (glucose: 20 g L−1; biomass yield: KNUA104, 1.72 ± 0.26 g/L/d; KNUA114, 4.26 ± 0.27 g/L/d; KNUA122, 4.32 ± 0.32 g/L/d). All strains under mixotrophic and heterotrophic conditions were optimally cultured when 15–20 g L−1 initial glucose was provided. Although bioresourse productivity improved under both mixotrophic and heterotrophic conditions where mixotrophic conditions were found to be optimal as the yields of lipid and pigment were also enhanced. Protein content was less affected by the presence of light or the concentration of glucose. Under mixotrophic conditions, the highest lipid content (glucose: 15 g L−1; lipid content: 68.80 ± 0.54%) was obtained with Chlorella vulgaris KNUA104, and enhanced pigment productivity of Chlorella sorokiniana KNUA114 and KNUA122 (additional pigment yield obtained with 15 g L−1 glucose: KNUA 114, 0.33 ± 0.01 g L−1; KNUA122, 0.21 ± 0.01 g L−1). Also, saturated fatty acid (SFA) content was enhanced in all strains (SFA: KNUA104, 29.76 ± 1.31%; KNUA114, 37.01 ± 0.98%; KNUA122, 33.37 ± 0.17%) under mixotrophic conditions. These results suggest that mixotrophic cultivation of Chlorella vulgaris and Chlorella sorokiniana could improve biomass yield and the raw material quality of biomass.
Collapse
Affiliation(s)
- Hyun-Sik Yun
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Young-Saeng Kim
- Research Institute of Ulleung-do & Dok-do, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea.,Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea.,Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Gonabadi E, Samadlouie HR, Shafafi Zenoozian M. Optimization of culture conditions for enhanced Dunaliella salina productions in mixotrophic culture. Prep Biochem Biotechnol 2021; 52:154-162. [PMID: 34057884 DOI: 10.1080/10826068.2021.1922917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dunaliella salina (D. salina) is a green microalga known for its tendency to produce lipid and β-carotene. Fatty acid profile, lipid and β-carotene productions of the microalga D. salina cultivated under different mixotrophic conditions were assayed. Notably, in spite of a broad spectrum of substrates served, mixotrophic cultivations slightly affected the fatty acid composition, and as a result C16:0 and C18:0, C18:1, C18:2 and C18:3 were identified as main fatty acids. Lipid in dry weight biomass (DWB) hit a high of 24.3% at 5% of NaCL and linolenic acid in lipid reached a peak of 9.15% at 15% of NaCL in medium containing glucose and equal amounts of yeast extract and soy bean powder. One-factor-at-a-time was applied to elucidate the substrates which had noticeable impacts on β-carotene production. Glucose, meat peptone, titanium dioxide nanoparticles (TiO2 NPs), pH 7.5 and 5% NaCL were identified as key process parameters impacting β-carotene production. Following, the concentration of glucose, meat peptone and TiO2 NPs were optimized by using response surface method. The highest content of β-carotene, 25.23 mg/g DWB, was obtained in medium composed of (g/L); 22.92 glucose, 5 meat peptone and 0.002 TiO2 NPs.
Collapse
Affiliation(s)
- Ebrahim Gonabadi
- Department of Food Science and Technology, Islamic Azad University, Sabzevar Branch, Sabzevar, Iran
| | - Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Masoud Shafafi Zenoozian
- Department of Food Science and Technology, Islamic Azad University, Sabzevar Branch, Sabzevar, Iran
| |
Collapse
|
7
|
Mehta AK, Chakraborty S. Multiscale integration of mixotrophic microalgal cultivation, lipid synthesis, rapid biomass harvesting, and nutrient recycling in pilot-scale photobioreactors. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Pandey A, Srivastava S, Kumar S. Development and cost-benefit analysis of a novel process for biofuel production from microalgae using pre-treated high-strength fresh cheese whey wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23963-23980. [PMID: 32304062 DOI: 10.1007/s11356-020-08535-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel two-step integrated process is proposed to facilitate the microalgae biofuel production as well as fresh cheese whey wastewater (FCWW) treatment simultaneously. The pre- and post-treatment of high-strength FCWW were performed by means of coagulation and algal cultivation, respectively. The pre-treatment of FCWW for maximum removal of chemical oxygen demand (COD), turbidity (TUR) and total solids (TS) as responses was obtained by statistical optimization of coagulation parameters. The maximum removal of COD, TUR and TS at the optimum level of variables was obtained as 68.09%, 47.80% and 73.63%, respectively. The pre-treated FCWW was further treated by Chlorella pyrenoidosa and observed a significant reduction in the above-mentioned responses (87-94%). The maximum algal biomass yield and lipid productivity were observed as 2.44 g L-1 and 77.41 mg L-1 day-1, respectively. Based on promising results of FCWW treatment and its use as a third-generation biodiesel feedstock, a cost-benefit analysis of the developed process was assessed for microalgal oil production. The total profit earned by the integrated process model was $9.59 million year-1. Accordingly, the estimated production cost of algal oil (TAG) from the developed system was estimated to be $79.03 per barrel.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Nematollahi MA, Laird DW, Hughes LJ, Raeisossadati M, Moheimani NR. Effect of organic carbon source and nutrient depletion on the simultaneous production of a high value bioplastic and a specialty pigment by Arthrospira platensis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Gomaa M, Yousef N. Optimization of production and intrinsic viscosity of an exopolysaccharide from a high yielding Virgibacillus salarius BM02: Study of its potential antioxidant, emulsifying properties and application in the mixotrophic cultivation of Spirulina platensis. Int J Biol Macromol 2020; 149:552-561. [DOI: 10.1016/j.ijbiomac.2020.01.289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
11
|
Carbone DA, Olivieri G, Pollio A, Melkonian M. Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor. Appl Microbiol Biotechnol 2020; 104:3109-3119. [PMID: 32060692 DOI: 10.1007/s00253-020-10383-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
The extremophile red alga Galdieria sulphuraria was successfully grown immobilized in a twin-layer porous substrate bioreactor (TL-PSBR). A maximal biomass growth rate of 10 g dry weight m-2 day-1 was measured at a photon fluence rate of 200 μmol photons m-2 s-1 with addition of 1% CO2 and a temperature of 34 °C. Under these conditions, a maximal biomass value of 232 g m-2 was attained after 33 days of growth. Phycobilin productivity, however, was highest at a lower photon fluence rate of 100 μmol photons m-2 s-1 and reached a phycobilin value of 14 g m-2, a phycobilin content in the biomass of 63 mg g-1 and a phycobilin growth rate of 0.28 g m-2 day-1 for phycocyanin and 0.23 g m-2 day-1 for allophycocyanin. Addition of CO2 was essential to enhance growth and phycobilin production in G. sulphuraria and further optimization of the cultivation process in the TL-PSBR appears possible using a multi-phase approach, higher growth temperatures and optimization of nutrient supply. It is concluded that autotrophic cultivation of G. sulphuraria in a TL-PSBR is an attractive alternative to suspension cultivation for phycobilin production and applications in bioremediation.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Laboratory of Biological Oceanography, Stazione Zoologica "A. Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Giuseppe Olivieri
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio, 80,, 80125, Naples, Italy
| | - Antonino Pollio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 26,, 80126, Naples, Italy
| | - Michael Melkonian
- Botanisches Institut, Universität zu Köln, Zülpicher Str. 47 b, 50674, Koln, Germany.,Campus Essen, Faculty of Biology, University of Duisburg-Essen,, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
12
|
Pereira MIB, Chagas BME, Sassi R, Medeiros GF, Aguiar EM, Borba LHF, Silva EPE, Neto JCA, Rangel AHN. Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity. PLoS One 2019; 14:e0224294. [PMID: 31648264 PMCID: PMC6812818 DOI: 10.1371/journal.pone.0224294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022] Open
Abstract
Mixotrophic cultivation of microalgae provides a very promising alternative for producing carbohydrate-rich biomass to convert into bioethanol and value-added biocompounds, such as vitamins, pigments, proteins, lipids and antioxidant compounds. Spirulina platensis may present high yields of biomass and carbohydrates when it is grown under mixotrophic conditions using cheese whey. However, there are no previous studies evaluating the influence of this culture system on the profile of fatty acids or antioxidant compounds of this species, which are extremely important for food and pharmaceutical applications and would add value to the cultivation process. S. platensis presented higher specific growth rates, biomass productivity and carbohydrate content under mixotrophic conditions; however, the antioxidant capacity and the protein and lipid content were lower than that of the autotrophic culture. The maximum biomass yield was 2.98 ±0.07 g/L in growth medium with 5.0% whey. The phenolic compound concentration was the same for the biomass obtained under autotrophic and mixotrophic conditions with 2.5% and 5.0% whey. The phenolic compound concentrations showed no significant differences except for that in the growth medium with 10.0% whey, which presented an average value of 22.37±0.14 mg gallic acid/g. Mixotrophic cultivation of S. platensis using whey can be considered a viable alternative to reduce the costs of producing S. platensis biomass and carbohydrates, shorten cultivation time and produce carbohydrates, as it does not require adding expensive chemical nutrients to the growth medium and also takes advantage of cheese whey, an adverse dairy industry byproduct.
Collapse
Affiliation(s)
- Maria I. B. Pereira
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Bruna M. E. Chagas
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Roberto Sassi
- Department of Systematic Ecology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Guilherme F. Medeiros
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Emerson M. Aguiar
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Luiz H. F. Borba
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Emanuelle P. E. Silva
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Júlio C. Andrade Neto
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Adriano H. N. Rangel
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
13
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
14
|
Patel A, Matsakas L, Rova U, Christakopoulos P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. BIORESOURCE TECHNOLOGY 2019; 278:424-434. [PMID: 30685131 DOI: 10.1016/j.biortech.2019.01.063] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
The importance of expanding our knowledge on microorganisms derived from extreme environments stems from the development of novel and sustainable technologies for our health, food, and environment. Microalgae and cyanobacteria represent a group of diverse microorganisms that inhabit a wide range of environments, are capable of oxygenic photosynthesis, and form a thick microbial mat even at extreme environments. Studies of thermophilic microorganisms have shown a considerable biotechnological potential due to their optimum growth and metabolisms at high temperatures (≥50 °C), which is supported by their thermostable enzymes. Microalgal and cyanobacterial communities present in high-temperature ecosystems account for a large part of the total ecosystem biomass and productivity, and can be exploited to generate several value-added products of agricultural, pharmaceutical, nutraceutical, and industrial relevance. This review provides an overview on the current status of biotechnological applications of thermophilic microalgae and cyanobacteria, with an outlook on the challenges and future prospects.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
15
|
Li X, Li W, Zhai J, Wei H, Wang Q. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. BIORESOURCE TECHNOLOGY 2019; 273:368-376. [PMID: 30453251 DOI: 10.1016/j.biortech.2018.11.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
To enhance microalgal growth and optimize ammonium utilization, the effect of ammonium on microalgal growth, biochemical composition and photosynthetic performance were investigated by mixotrophic cultivation of microalga Spirulina platensis comparing with autotrophic cultivation. The results indicated that elevated ammonium significantly affected the microalgal growth, but the microalga in mixotrophic cultivation showed better growth and stronger tolerance to higher ammonium. The microalgal proteins were increased by increasing nitrogen concentration. The synthesis of microalgal carbohydrates was inhibited by higher ammonium, especially in mixotrophic cultivation. The addition of ammonium decreased the microalgal lipids in autotrophic cultivation but increased microalgal lipids in mixotrophic cultivation. Ammonium negatively affected the microalgal photosynthetic performance. The inhibition was intensified by elevated ammonium, inducing stronger photosystem protection mechanism, particularly in mixotrophic cultivation. The rate of ammonium inhibition to the microalgal photosystem was quick in the early stage by decreasing electron transport rate of PS II.
Collapse
Affiliation(s)
- Xiaoting Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Wei Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China.
| | - Jun Zhai
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China.
| | - Haoxuan Wei
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Quanfeng Wang
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| |
Collapse
|
16
|
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2018; 37:193-222. [PMID: 30500354 DOI: 10.1016/j.biotechadv.2018.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
Abstract
Research on marine microalgae has been abundantly published and patented these last years leading to the production and/or the characterization of some biomolecules such as pigments, proteins, enzymes, biofuels, polyunsaturated fatty acids, enzymes and hydrocolloids. This literature focusing on metabolic pathways, structural characterization of biomolecules, taxonomy, optimization of culture conditions, biorefinery and downstream process is often optimistic considering the valorization of these biocompounds. However, the accumulation of knowledge associated with the development of processes and technologies for biomass production and its treatment has sometimes led to success in the commercial arena. In the history of the microalgae market, red marine microalgae are well positioned particularly for applications in the field of high value pigment and hydrocolloid productions. This review aims to establish the state of the art of the diversity of red marine microalgae, the advances in characterization of their metabolites and the developments of bioprocesses to produce this biomass.
Collapse
Affiliation(s)
- Clement Gaignard
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nesrine Gargouch
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cedric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Celine Laroche
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
17
|
Xiao R, Li X, Zheng Y. Comprehensive Study of Cultivation Conditions and Methods on Lipid Accumulation of a Marine Protist, Thraustochytrium striatum. Protist 2018; 169:451-465. [DOI: 10.1016/j.protis.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
|
18
|
Phycocyanin Production by Aphanothece microscopica Nägeli in Synthetic Medium Supplemented with Sugarcane Vinasse. Appl Biochem Biotechnol 2018; 187:129-139. [PMID: 29911264 DOI: 10.1007/s12010-018-2811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/05/2018] [Indexed: 01/30/2023]
Abstract
This study focused on the evaluation of mixotrophic and heterotrophic production of phycocyanin by A. microscopica, analysis of kinetic parameters, the effect of freezing and thawing on phycocyanin yield, and nutrient removal during heterotrophic growth. During mixotrophic growth, maximum phycocyanin yield (1.50 mgphycocyanin g-1biomass) was obtained after 12 h, while the heterotrophic cultivation yielded 1.39 mgphycocyanin g-1biomass. The mixotrophic cultivation of A. microscopica showed maximum specific growth rate of 0.025 h-1, against 0.010 h-1 for the photoautotrophic cultivation, and 0.08 h-1 in heterotrophic conditions. The mixotrophic cultivation had a specific rate of phycocyanin production of 9.86 mgphycocyanin mgbiomass-1 h-1, while the photoautotrophic had 2.81 mgphycocyanin mgbiomass-1 h-1, and the heterotrophic, 49.18 mgphycocyanin mgbiomass-1 h-1. Carbon and nitrogen contents present in sugarcane vinasse were decreased in 16.69 and 15.97%, respectively, after 6 h of heterotrophic growth. Thus, it was shown that the mixotrophic production of phycocyanin by Aphanothece microscopica Nägeli in BG11 medium supplemented with vinasse is feasible.
Collapse
|
19
|
|
20
|
Hu H, Ma LL, Shen XF, Li JY, Wang HF, Zeng RJ. Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea. AMB Express 2018; 8:50. [PMID: 29603024 PMCID: PMC5878155 DOI: 10.1186/s13568-018-0580-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/25/2018] [Indexed: 11/10/2022] Open
Abstract
In this study, Tisochrysis lutea was cultivated in mixotrophic and heterotrophic cultures with glycerol as a carbon source and with glucose and acetate for comparison; autotrophic cultivation was the control group without a carbon source. It was found that T. lutea used glycerol and did not use glucose and acetate under mixotrophy. Mixotrophy slightly elevated the docosahexaenoic acid (DHA) and total fatty acids (TFA) content in the dry-weight and enhanced the DHA and TFA production in medium (41.3 and 31.9% respectively) at the end of a 16-day cultivation, while heterotrophy reduced the DHA content and TFA production. Under the mixotrophy, the glycerol contribution to the DHA production (16.19 mg/L) and the TFA production (97.8 mg/L) was not very high and the DHA yield [2.63% chemical oxygen demand (COD)] and TFA yield (13.1% COD) were also very low. Furthermore, T. lutea using glycerol had a period of adaptation, indicating that T. lutea was not an ideal microalga for organic carbon utilization.
Collapse
|
21
|
Gupta A, Mohan D, Saxena RK, Singh S. Phototrophic cultivation of NaCl-tolerant mutant of Spirulina platensis for enhanced C-phycocyanin production under optimized culture conditions and its dynamic modeling. JOURNAL OF PHYCOLOGY 2018; 54:44-55. [PMID: 29027201 DOI: 10.1111/jpy.12597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Commercial cultivation of Spirulina sp. is highly popular due to the presence of high amount of C-phycocyanin (C-PC) and other valuable chemicals like carotenoids and γ-linolenic acid. In this study, the pH and the concentrations of nitrogen and carbon source were manipulated to achieve improved cell growth and C-PC production in NaCl-tolerant mutant of Spirulina platensis. In this study, highest C-PC (147 mg · L-1 ) and biomass (2.83 g · L-1 ) production was achieved when a NaCl-tolerant mutant of S. platensis was cultivated in a nitrate and bicarbonate sufficient medium (40 and 60 mM, respectively) at pH 9.0 under phototrophic conditions. Kinetic study of wildtype S. platensis and its NaCl-tolerant mutant was also done to determine optimum nitrate concentrations for maximum growth and C-PC production. Kinetic parameter of inhibition (Haldane model) was fitted to the relationship between specific growth rate and substrate concentration obtained from the growth curves. Results showed that the maximum specific growth rate (μmax ) for NaCl-tolerant mutant increased by 17.94% as compared to its wildtype counterpart, with a slight increase in half-saturation constant (Ks ), indicating that this strain could grow well at high concentration of NaNO3 . C-PC production rate (Cmax ) in mutant cells increased by 12.2% at almost half the value of Ks as compared to its wildtype counterpart. Moreover, the inhibition constant (Ki ) value was 207.85% higher in NaCl-tolerant mutant as compared to its wildtype strain, suggesting its ability to produce C-PC even at high concentrations of NaNO3 .
Collapse
Affiliation(s)
- Apurva Gupta
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Devendra Mohan
- Department of Civil Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Rishi Kumar Saxena
- Department of Microbiology, Bundelkhand University, Jhansi, 284128, India
| | - Surendra Singh
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
22
|
Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv 2018; 36:54-67. [DOI: 10.1016/j.biotechadv.2017.09.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/26/2017] [Accepted: 09/20/2017] [Indexed: 10/25/2022]
|
23
|
Mahapatra DM, Varma VS, Muthusamy S, Rajendran K. Wastewater Algae to Value-Added Products. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7431-8_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Marangoni A, Foschi C, Micucci M, Nahui Palomino RA, Gallina Toschi T, Vitali B, Camarda L, Mandrioli M, De Giorgio M, Aldini R, Corazza I, Chiarini A, Cevenini R, Budriesi R. In vitro activity of Spirulina platensis water extract against different Candida species isolated from vulvo-vaginal candidiasis cases. PLoS One 2017; 12:e0188567. [PMID: 29190763 PMCID: PMC5708745 DOI: 10.1371/journal.pone.0188567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022] Open
Abstract
The high incidence of vulvo-vaginal candidiasis, combined with the growing problems about azole resistance and toxicity of antifungal drugs, highlights the need for the development of new effective strategies for the treatment of this condition. In this context, natural compounds represent promising alternatives. The cyanobacterium Spirulina platensis, a blue-green alga, exhibits antimicrobial activities against several microorganisms. Nevertheless, only few data about the antifungal properties of Spirulina platensis are available and its potential toxic effects have not been largely investigated. The aim of this study was to evaluate the in vitro activity of a fully-characterized water extract of Spirulina platensis against 22 strains of Candida spp. Prior to considering its potential topical use, we both investigated whether the extract exerted target activities on guinea pig uterine smooth muscle, and the impact of Spirulina platensis on the dominant microorganisms of the vaginal microbiota (i.e., lactobacilli), in order to exclude possible adverse events. By means of a broth microdilution assay, we found that the microalga extract possesses good antifungal properties (MIC: 0.125-0.5 mg/ml), against all the Candida species with a fungicidal activity. At the concentrations active against candida, Spirulina platensis did not modify the spontaneous basic waves pattern of uterine myometrium as underlined by the absence of aberrant contractions, and did not affect the main health-promoting bacteria of the vaginal ecosystem. Finally, we evaluated the selectivity index of our extract by testing its cytotoxicity on three different cell lines and it showed values ranging between 2 and 16. Further in vivo studies are needed, in particular to evaluate the use of control-release formulations in order to maintain Spirulina platensis concentrations at anti-Candida active doses but below the toxic levels found in the present work.
Collapse
Affiliation(s)
- Antonella Marangoni
- Department of Specialized, Experimental, and Diagnostic Medicine (DIMES), Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Department of Specialized, Experimental, and Diagnostic Medicine (DIMES), Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Matteo Micucci
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DiSTAL), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luca Camarda
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Mara Mandrioli
- Department of Agricultural and Food Sciences (DiSTAL), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Marta De Giorgio
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Rita Aldini
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Department of Specialized, Experimental, and Diagnostic Medicine (DIMES), Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Alberto Chiarini
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Roberto Cevenini
- Department of Specialized, Experimental, and Diagnostic Medicine (DIMES), Operative Unit of Clinical Microbiology, St. Orsola-Malpighi University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Colombo A, Marzorati S, Lucchini G, Cristiani P, Pant D, Schievano A. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. BIORESOURCE TECHNOLOGY 2017; 237:240-248. [PMID: 28341382 DOI: 10.1016/j.biortech.2017.03.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Spirulina was cultivated in cathodic compartments of photo-microbial fuel cells (P-MFC). Anodic compartments were fed with swine-farming wastewater, enriched with sodium acetate (2.34gCODL-1). Photosynthetic oxygen generation rates were sufficient to sustain cathodic oxygen reduction, significantly improving P-MFC electrochemical performances, as compared to water-cathode control experiments. Power densities (0.8-1Wm-2) approached those of air-cathode MFCs, run as control. COD was efficiently removed and only negligible fractions leaked to the cathodic chamber. Spirulina growth rates were comparable to those of control (MFC-free) cultures, while pH was significantly (0.5-1unit) higher in P-MFCs, due to cathodic reactions. Alkaliphilic photosynthetic microorganisms like Spirulina might take advantage of these selective conditions. Electro-migration along with diffusion to the cathodic compartment concurred for the recovery of most nutrients. Only P and Mg were retained in the anodic chamber. A deeper look into electro-osmotic mechanisms should be addressed in future studies.
Collapse
Affiliation(s)
- Alessandra Colombo
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Stefania Marzorati
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Giorgio Lucchini
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Pierangela Cristiani
- RSE - Ricerca sul Sistema Energetico S.p.A., via Rubattino 54, 20134 Milano, Italy
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Andrea Schievano
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
26
|
Rago L, Cristiani P, Villa F, Zecchin S, Colombo A, Cavalca L, Schievano A. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry 2017; 116:39-51. [DOI: 10.1016/j.bioelechem.2017.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023]
|
27
|
Dejsungkranont M, Chisti Y, Sirisansaneeyakul S. Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp. Bioprocess Biosyst Eng 2017; 40:1173-1188. [PMID: 28497178 DOI: 10.1007/s00449-017-1778-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/01/2017] [Indexed: 11/28/2022]
Abstract
The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk's medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m-2 s-1 (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk's culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk's medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m-2 s-1 with the earlier specified light-dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk's medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.
Collapse
Affiliation(s)
- Monchai Dejsungkranont
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Sarote Sirisansaneeyakul
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Tropical Natural Resources (CASTNAR), National Research University-Kasetsart University (NRU-KU), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
28
|
|
29
|
Socher ML, Löser C, Schott C, Bley T, Steingroewer J. The challenge of scaling up photobioreactors: Modeling and approaches in small scale. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Maria Lisa Socher
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Christian Löser
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Carolin Schott
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Juliane Steingroewer
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
30
|
Griffiths M, Harrison STL, Smit M, Maharajh D. Major Commercial Products from Micro- and Macroalgae. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-12334-9_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Sonani RR, Rastogi RP, Patel R, Madamwar D. Recent advances in production, purification and applications of phycobiliproteins. World J Biol Chem 2016; 7:100-9. [PMID: 26981199 PMCID: PMC4768114 DOI: 10.4331/wjbc.v7.i1.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/07/2015] [Accepted: 12/16/2015] [Indexed: 02/05/2023] Open
Abstract
An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins.
Collapse
|
32
|
Liu L, Guan N, Li J, Shin HD, Du G, Chen J. Development of GRAS strains for nutraceutical production using systems and synthetic biology approaches: advances and prospects. Crit Rev Biotechnol 2015; 37:139-150. [PMID: 26699901 DOI: 10.3109/07388551.2015.1121461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nutraceuticals are food substances with medical and health benefits for humans. Limited by complicated procedures, high cost, low yield, insufficient raw materials, resource waste, and environment pollution, chemical synthesis and extraction are being replaced by microbial synthesis of nutraceuticals. Many microbial strains that are generally regarded as safe (GRAS) have been identified and developed for the synthesis of nutraceuticals, and significant nutraceutical production by these strains has been achieved. In this review, we systematically summarize recent advances in nutraceutical research in terms of physiological effects on health, potential applications, drawbacks of traditional production processes, characteristics of production strains, and progress in microbial fermentation. Recent advances in systems and synthetic biology techniques have enabled comprehensive understanding of GRAS strains and its wider applications. Thus, these microbial strains are promising cell factories for the commercial production of nutraceuticals.
Collapse
Affiliation(s)
- Long Liu
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| | - Ningzi Guan
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| | - Jianghua Li
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China
| | - Hyun-Dong Shin
- d School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta , GA , USA
| | - Guocheng Du
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| | - Jian Chen
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| |
Collapse
|
33
|
Khattar J, Kaur S, Kaushal S, Singh Y, Singh D, Rana S, Gulati A. Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Setyoningrum T, Nur M. Optimization of C-phycocyanin production from S. platensis cultivated on mixotrophic condition by using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Ogbonna JC, McHenry MP. Culture Systems Incorporating Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-16640-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
36
|
Xie Y, Jin Y, Zeng X, Chen J, Lu Y, Jing K. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. BIORESOURCE TECHNOLOGY 2015; 180:281-7. [PMID: 25618497 DOI: 10.1016/j.biortech.2014.12.073] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 05/23/2023]
Abstract
The C-phycocyanin generated in blue-green algae Arthrospira platensis is gaining commercial interest due to its nutrition and healthcare value. In this study, the light intensity and initial biomass concentration were manipulated to improve cell growth and C-phycocyanin production of A.platensis in batch cultivation. The results show that low light intensity and high initial biomass concentration led to increased C-phycocyanin accumulation. The best C-phycocyanin productivity occurred when light intensity and initial biomass concentration were 300μmol/m(2)/s and 0.24g/L, respectively. The fed-batch cultivation proved to be an effective strategy to further enhance C-phycocyanin production of A.platensis. The results indicate that C-phycocyanin accumulation not only requires nitrogen-sufficient condition, but also needs other nutrients. The highest C-phycocyanin content (16.1%), production (1034mg/L) and productivity (94.8mg/L/d) were obtained when using fed-batch strategy with 5mM medium feeding.
Collapse
Affiliation(s)
- Youping Xie
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiwen Jin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen 361005, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Keju Jing
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
37
|
Markou G, Vandamme D, Muylaert K. Microalgal and cyanobacterial cultivation: the supply of nutrients. WATER RESEARCH 2014; 65:186-202. [PMID: 25113948 DOI: 10.1016/j.watres.2014.07.025] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/16/2014] [Accepted: 07/17/2014] [Indexed: 05/09/2023]
Abstract
Microalgae and cyanobacteria are a promising new source of biomass that may complement agricultural crops to meet the increasing global demand for food, feed, biofuels and chemical production. Microalgae and cyanobacteria cultivation does not interfere directly with food production, but care should be taken to avoid indirect competition for nutrient (fertilizer) supply. Microalgae and cyanobacteria production requires high concentrations of essential nutrients (C,N,P,S,K,Fe, etc.). In the present paper the application of nutrients and their uptake by microalgae and cyanobacteria is reviewed. The main focus is on the three most significant nutrients, i.e. carbon, nitrogen and phosphorus; however other nutrients are also reviewed. Nutrients are generally taken up in the inorganic form, but several organic forms of them are also assimilable. Some nutrients do not display any inhibition effect on microalgal or cyanobacterial growth, while others, such as NO2 or NH3 have detrimental effects when present in high concentrations. Nutrients in the gaseous form, such as CO2 and NO face a major limitation which is related mainly to their mass transfer from the gaseous to the liquid state. Since the cultivation of microalgae and cyanobacteria consumes considerable quantities of nutrients, strategies to improve the nutrient application efficiency are needed. Additionally, a promising strategy to improve microalgal and cyanobacterial production sustainability is the utilization of waste streams by recycling of waste nutrients. However, major constraints of using waste streams are the reduction of the range of the biomass applications due to production of contaminated biomass and the possible low bio-availability of some nutrients.
Collapse
Affiliation(s)
- Giorgos Markou
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Dries Vandamme
- Laboratory Aquatic Biology, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Koenraad Muylaert
- Laboratory Aquatic Biology, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
38
|
Ethanol effect on batch and fed-batch Arthrospira platensis growth. ACTA ACUST UNITED AC 2014; 41:687-92. [DOI: 10.1007/s10295-014-1404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Abstract
The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L−1 days−1 reached the maximum cell concentration of 2,393 ± 241 mg L−1, about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.
Collapse
|
39
|
Wang J, Yang H, Wang F. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl Biochem Biotechnol 2014; 172:3307-29. [PMID: 24532442 DOI: 10.1007/s12010-014-0729-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.
Collapse
Affiliation(s)
- Jinghan Wang
- Research Institute of Environmental Planning and Management, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China
| | | | | |
Collapse
|
40
|
Jonte Gómez LDV, Rosales-Loaiza N, Bermúdez-González JL, Morales Avendaño ED. Cultivos discontinuos alimentados con urea de la cianobacteria Phormidium sp. en función de la salinidad y edad del cultivo. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2013. [DOI: 10.15446/rev.colomb.biote.v15n2.28125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Chen CY, Kao PC, Tsai CJ, Lee DJ, Chang JS. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. BIORESOURCE TECHNOLOGY 2013; 145:307-312. [PMID: 23664178 DOI: 10.1016/j.biortech.2013.01.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 06/02/2023]
Abstract
Spirulina platensis produces nutraceutical product C-phycocyanin (C-PC) and simultaneously mitigates CO2 emissions during its growth. Using a designed flat-type photobioreactor, the S. platensis biomass production was markedly enhanced, leading to a CO2 removal rate and a biomass concentration of 0.23 g/L/d and 2.25 g/L, respectively. The cell growth, CO2 fixation rate and C-PC production of S. platensis were investigated when it was cultivated under different irradiation conditions. As the light intensity increased from 100 to 700 μmol/m(2)/s, the overall biomass productivity, CO2 consumption rate and maximal C-PC productivity increased significantly to 0.74, 1.53 and 0.11 g/L/d, respectively. After determining the suitable light intensity, the nitrogen concentration was also adjusted to further enhance the performance of CO2 fixation and C-PC production. The results show that with an optimal nitrogen concentration of 0.045 M, the CO2 consumption rate and maximal C-PC productivity were further increased to 1.58 and 0.13 g/L/d, respectively.
Collapse
Affiliation(s)
- Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | |
Collapse
|
42
|
Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. ENERGIES 2013. [DOI: 10.3390/en6094607] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Isolation and characterization of autoflocculating mutants of cyanobacterium Arthrospira platensis. KOREAN J CHEM ENG 2012. [DOI: 10.1007/s11814-012-0146-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. J Taiwan Inst Chem Eng 2012. [DOI: 10.1016/j.jtice.2011.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Evaluation of growth yield of Spirulina (Arthrospira) sp. in photoautotrophic, heterotrophic and mixotrophic cultures. World J Microbiol Biotechnol 2011; 28:437-45. [DOI: 10.1007/s11274-011-0833-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
|
46
|
Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B. Separation and purification of phycocyanin from Spirulina sp. using a membrane process. BIORESOURCE TECHNOLOGY 2011; 102:7159-64. [PMID: 21570281 DOI: 10.1016/j.biortech.2011.04.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 05/13/2023]
Abstract
The highest purity ratio of phycocyanin extract was obtained when fresh biomass was used as raw material. The crude extract was purified by membrane process using microfiltration and ultrafiltration. Membrane of pore sizes 5 μm, at feed flow rate of 150 mL min(-1), permeate flux of 58.5 L h(-1)m(-2) was selected for coarse filtration and membrane with pore size 0.8/0.2 μm at the flow rate of 100 mL min(-1), permeate flux of 336 L h(-1)m(-2) was selected for fine filtration, giving phycocyanin recovery of 88.6% and 82.9%, respectively. For ultrafiltration, membrane with MWCO at 50 kDa, 69 kPa and 75 mL min(-1) of flow rate with a mean permeate flux 26.8 L h(-1)m(-2) and a retention rate of 99% was found to be optimal. Under these filtration conditions, food grade phycocyanin with the purity around 1.0 containing c-phycocyanin as the major component was obtained.
Collapse
Affiliation(s)
- Ratana Chaiklahan
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand.
| | | | | | | | | |
Collapse
|
47
|
YU G, SHI D, CAI Z, CONG W, OUYANG F. Growth and Physiological Features of Cyanobacterium Anabaena sp. Strain PCC 7120 in a Glucose-Mixotrophic Culture. Chin J Chem Eng 2011. [DOI: 10.1016/s1004-9541(09)60185-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 2008; 80:1-14. [DOI: 10.1007/s00253-008-1542-y] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 01/12/2023]
|
49
|
Antelo FS, Costa JA, Kalil SJ. Thermal degradation kinetics of the phycocyanin from Spirulina platensis. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.03.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|