1
|
Lian CY, Yao XY, Lv ZH, Zhang XL, Shao JW. Genetic diversity of canine coronavirus identified in dogs in yulin city, southern China. Virology 2025; 608:110528. [PMID: 40233446 DOI: 10.1016/j.virol.2025.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
The global outbreak of the novel coronavirus has renewed interest in related viral pathogens, including canine coronavirus (CCoV), which causes severe gastroenteritis, diarrhea, and vomiting in dogs worldwide. While cases of CCoV have been reported in China, specific instances in the Guangxi Zhuang Autonomous Region-a major center for dog breeding and consumption-have not been documented. In this study, we collected spleen tissue samples from dogs in Yulin city and conducted meta-transcriptomic sequencing. Bioinformatics analysis confirmed CCoV presence in these samples. Furthermore, virus screening and phylogenetic analyses identified the circulation of two CCoV genotypes within the dog population, revealing an overall prevalence of 14.2 %, with CCoV-IIb being the predominant genotype. Notably, two significant recombination events were detected among the analyzed strains. These findings provide valuable insights into the presence and genetic diversity of CCoV Yulin's dog populations, enhancing the understanding of its genetic variation and evolution.
Collapse
Affiliation(s)
- Chun-Yang Lian
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xin-Yan Yao
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhi-Hang Lv
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xue-Lian Zhang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jian-Wei Shao
- School of Animal Science and Technology, Foshan University, Foshan 528225, China.
| |
Collapse
|
2
|
Zhang C, Gu H, Peng J, He B, Liu Y, Yan X, Feng J, Liu Y. Phylogenetic relationships and species composition of host community influence the transmission of coronaviruses in sympatric bats. Mol Phylogenet Evol 2025; 207:108343. [PMID: 40147782 DOI: 10.1016/j.ympev.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Since the emergence of Severe Acute Respiratory Syndrome (SARS) in 2002, bats have been recognized as important reservoirs of diverse coronaviruses (CoVs). Despite extensive research on the broad geographic transmission of bat CoVs, there is a notable gap in understanding the transmission dynamics within sympatric bat communities. Using a phylogeographic Bayesian statistical framework, we examined CoV transmission patterns and their determinants in a region where four bat roosting caves coexist and CoVs circulate persistently. Our findings reveal that two subgenera of CoVs, α-CoVs and β-CoVs dominate different bat caves at varying times. Notably, β-CoVs show more frequent cross-species transmission events among the dominant reservoir hosts, bats of Rhinolophidae. Phylogenetic distance between host species emerges as the key influence factor of viral cross-species transmission, whereas cohabitation duration and the number of hosts sharing caves do not significantly influence viral transmission. In addition, we emphasize that the compositional similarity of species in the roosting caves is critical for the inter-cave transmission of bat-CoVs, rather than the distance between cave. These results provide novel insights into the complex transmission dynamics of bat CoVs within sympatric bat communities.
Collapse
Affiliation(s)
- Chen Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Jie Peng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China.
| | - Yuhang Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Xiaomin Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China.
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; College of Life Science, Jilin Agricultural University, Changchun, China; Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, China.
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, China.
| |
Collapse
|
3
|
Qi K, Chen J, Ma X, Li D, Baele G, Li X, Qin Y, Ji X, Zhu M, Li XX, Guo D, Merits A, Veit M, Zhai X, Tian J, Wang N, Jiao H. Novel coronaviruses identified in livestock: The urgent need to enhance coronavirus surveillance to mitigate zoonotic risks. J Infect 2025; 91:106512. [PMID: 40383396 DOI: 10.1016/j.jinf.2025.106512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Affiliation(s)
- Kaili Qi
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Ma
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongyan Li
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Xinxin Li
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Qin
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Mengmeng Zhu
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Xin Li
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Nooruse Street 1, 50411 Tartu, Estonia
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany
| | - Xiaofeng Zhai
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Ningning Wang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China.
| | - Houqi Jiao
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Huang Q, Kang L, Wei X, Gong C, Xie H, Li M, Wang Y, Dong M, Huang F. Epidemiology and genetic diversity of common human coronaviruses in Beijing, 2015-2023: A prospective multicenter study. Int J Infect Dis 2025:107926. [PMID: 40379085 DOI: 10.1016/j.ijid.2025.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
OBJECTIVES To investigate the epidemiological and genetic features of common human coronaviruses (HCoVs) in Beijing in the context of the COVID-19 pandemic. METHODS We collected clinical samples from patients with acute respiratory tract infections (ARTIs) in 35 sentinel hospitals from 2015 to 2023. HCoVs were detected via multiple real-time PCRs, and S gene sequencing and phylogenetic analysis were subsequently performed. RESULTS From 2015 to 2023, the combined detection rate of HCoVs was 1.55% (909/58,550). During the COVID-19 pandemic, a significant increase in HCoVs detection was observed (P < 0.001). Overall, the epidemic season of four HCoVs was from July to October, and each HCoV showed different epidemic seasons. Notably, HCoV-NL63 and HCoV-229E exhibited pronounced annual alternations in prevalence. The highest combined detection rates of HCoVs were in the ≥60 years age group (1.85%), followed by the 0-5 years age group (1.48%). HCoV-229E was more prevalent in patients with severe community-acquired pneumonia (sCAP) (P=0.001). Phylogenetic analyses revealed that the four HCoVs were subjected to negative selection pressure, and multiple high-frequency amino acid site mutations were observed. HCoV-229E formed an emerging lineage after 2021. CONCLUSIONS This nine-year multicenter study in Beijing systematically elucidated that the four HCoVs exhibit distinct epidemiological characteristics, susceptible populations, and common mutations in amino acid sites, especially in the context of COVID-19. Therefore, continuous epidemiological surveillance and genetic characterization studies are imperative for predictive warning and timely identification of emerging coronavirus.
Collapse
Affiliation(s)
- Qi Huang
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China.
| | - Lu Kang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| | - Xiaofeng Wei
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| | - Cheng Gong
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| | - Hui Xie
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| | - Maozhong Li
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| | - Yiting Wang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| | - Mei Dong
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| | - Fang Huang
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100013, China.
| |
Collapse
|
5
|
Jin M, Hassan Z, Li Z, Liu Y, Marakhovskaia A, Wong AHM, Forman A, Nitz M, Gilbert M, Yu H, Chen X, Rini JM. Human coronavirus HKU1 spike structures reveal the basis for sialoglycan specificity and carbohydrate-promoted conformational changes. Nat Commun 2025; 16:4158. [PMID: 40324974 PMCID: PMC12053599 DOI: 10.1038/s41467-025-59137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
The human coronavirus HKU1 uses both sialoglycoconjugates and the protein transmembrane serine protease 2 (TMPRSS2) as receptors. Carbohydrate binding leads to the spike protein up conformation required for TMPRSS2 binding, an outcome suggesting a distinct mechanism for driving fusion of the viral and host cell membranes. Nevertheless, the conformational changes promoted by carbohydrate binding have not been fully elucidated and the basis for HKU1's carbohydrate binding specificity remains unknown. Reported here are high resolution cryo-EM structures of the HKU1 spike protein trimer in its apo form and in complex with the carbohydrate moiety of a candidate carbohydrate receptor, the 9-O-acetylated GD3 ganglioside. The structures show that the spike monomer can exist in four discrete conformational states and that progression through them would promote the up conformation upon carbohydrate binding. We also show that a six-amino-acid insert is a determinant of HKU1's specificity for gangliosides containing a 9-O-acetylated α2-8-linked disialic acid moiety and that HKU1 shows weak affinity for the 9-O-acetylated sialic acids found on decoy receptors such as mucins.
Collapse
Affiliation(s)
- Min Jin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zaky Hassan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ying Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Alan H M Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Adam Forman
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Canada
| | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - James M Rini
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Sharmin S, Islam S, Haque MA, Islam MR. Risk Evaluation and Mitigation Strategies for Newly Detected Mysterious Dinga Dinga Virus Infection in Africa: A Narrative Review. Health Sci Rep 2025; 8:e70836. [PMID: 40432698 PMCID: PMC12106879 DOI: 10.1002/hsr2.70836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/07/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Background and Aims The Dinga Dinga Virus (DDV) has emerged as a mysterious disease gripping women in Uganda, raising alarm due to its unusual and distressing "dancing" like symptoms. These symptoms, characterized by involuntary movements resembling dance, suggest possible neurological involvement, though the exact pathogen remains unidentified. The causative agent for DDV is still unknown. We hypothesized that the possible microorganism could be a virus, bacteria, or vector-borne origin. Therefore, comprehensive research is urgently needed to confirm its cause. Methods We performed a comprehensive literature search in Scopus and Web of Science related to the different outbreaks of viruses. We collected relevant information from appropriate articles for this review. Results The unique representation of the disease is spreading rapidly in localized areas that have the potential to escalate into a broader public health crisis. Preventive measures focused on symptom monitoring, public awareness, and isolation of suspected cases to limit transmission. Authorities emphasize hygiene practices, using personal protective equipment (PPE), and early reporting to manage the outbreak effectively. Simultaneously, global health organizations are being called to collaborate on diagnostic development, therapeutic interventions, and vaccine research. The disproportionate impact on women has brought social and cultural dynamics into the spotlight, as stigma and misinformation exacerbate the outbreak's challenges. Immediate and long-term strategies must address these aspects by strengthening healthcare infrastructure and enhancing disease surveillance systems. Conclusion As the world recovers from the COVID-19 pandemic, the DDV is a stark reminder of the ongoing threat of emerging infectious diseases. Proactive, science-driven efforts are critical to understanding and mitigating this enigmatic disease, ensuring it does not escalate into another global health crisis.
Collapse
Affiliation(s)
| | - Salsabil Islam
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | | | | |
Collapse
|
7
|
Zhang R, Li D, Gao P, Ruan W, Qiao S, Xu S, Dai L, Luo T, Zhao X, Gao GF. A SARS-CoV and SARS-CoV-2 RBD Heterodimer Vaccine Candidate. J Med Virol 2025; 97:e70367. [PMID: 40317517 DOI: 10.1002/jmv.70367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
The continuous evolution of SARS-CoV-2 through accumulating mutations, combined with the persistent risk of zoonotic sarbecovirus transmission events, highlights the critical demand for broadly protective vaccines. Building on our previous findings that a heterodimeric receptor-binding domain (RBD) design substantially improves cross-reactive immunogenicity in vaccine candidates, we propose this strategy as a foundation for developing pan-sarbecovirus vaccines with cross-neutralizing capacity against diverse and emerging variants. In this study, we developed a sarbecovirus immunogen, utilizing a heterodimeric strategy incorporating the RBDs from both SARS-CoV and SARS-CoV-2. Pseudovirus neutralization assays revealed that mice immunized with the SARS-CoV-2 prototype (PT)-SARS-CoV heterodimer (PT-SARS) developed 39.9- to 305.6-fold higher neutralizing antibody (NAb) titers against SARS-CoV-2 sub-variants compared to the SARS-CoV RBD homodimer (SARS-SARS). Furthermore, PT-SARS elicited 17.6- and 31.2-fold enhanced neutralization against WIV1 and SARS-CoV, respectively, relative to the SARS-CoV-2 PT homodimer (PT-PT). To address evolving Omicron sub-variants, we further updated BA.1-SARS and BA.2-SARS immunogens. Notably, BA.2-SARS exhibited a 6.2-fold increase in neutralizing potency against BA.2.86 compared to PT-SARS. Crucially, the heterodimeric immunogen induced balanced and broadly reactive NAbs against multiple sarbecoviruses, including RaTG13, Pangolin GD, SARS-CoV, and SARS-CoV-2 variants/sub-variants, demonstrating its potential as a sarbecovirus immunogen candidate.
Collapse
Affiliation(s)
- Rong Zhang
- College of Animal Sciences and Veterinary Medicine, Guangxi University (GXU), Nanning, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyue Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Science, University of Science and Technology of China (USTC), Hefei, China
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenjing Ruan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Science, University of Science and Technology of China (USTC), Hefei, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Senyu Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tingrong Luo
- College of Animal Sciences and Veterinary Medicine, Guangxi University (GXU), Nanning, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
8
|
Jia X, Liu H, Sun Y, Wang N, Qian M, Wang Z, Li M, Xiang Y, Wei Z, Zheng L. Effective preparation and immunogenicity analysis of antigenic proteins for prevention of porcine enteropathogenic coronaviruses PEDV/TGEV/PDCoV. Int J Biol Macromol 2025; 308:142394. [PMID: 40122422 DOI: 10.1016/j.ijbiomac.2025.142394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) cause highly contagious gastrointestinal damage to piglets with high coinfection in clinical. However, there is no available trivalent vaccine against the three viruses. Here, a trivalent subunit vaccine by combining PEDV-SCOE, TGEV-SAD, and PDCoV-RBD proteins with ISA 201 adjuvant was effectively prepared, and the immunogenicity was evaluated. The detection results showed that the vaccine induced specific humoral IgG, neutralizing antibodies, and increased levels of Th1 and Th2 cytokines. Splenocytes proliferation and specific cytotoxic T lymphocytes (CTL) were activated. Furthermore, the three antigenic proteins up-regulated CD4+ and CD8+ T lymphocytes, activated the germinal center (GC) through the Tfh-GC axis, and promoted the differentiation of GC B cells in to plasma cells and memory B cells. Overall, the three antigenic proteins will provide helpful information for further exploration of trivalent vaccines against PEDV, TGEV, and PDCoV.
Collapse
Affiliation(s)
- Xinhao Jia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China
| | - Hang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China
| | - Yinhe Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China
| | - Nianxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China
| | - Mengwei Qian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China
| | - Zi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China
| | - Muzi Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China
| | - Yuqiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China.
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China.
| | - Lanlan Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, PR China; Longhu Laboratory of Henan Province, Zhengzhou 450046, PR China.
| |
Collapse
|
9
|
Tang L, Que H, Wei Y, Yang T, Tong A, Wei X. Replicon RNA vaccines: design, delivery, and immunogenicity in infectious diseases and cancer. J Hematol Oncol 2025; 18:43. [PMID: 40247301 PMCID: PMC12004886 DOI: 10.1186/s13045-025-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
Replicon RNA (RepRNA) represents a cutting-edge technology in the field of vaccinology, fundamentally transforming vaccine design and development. This innovative approach facilitates the induction of robust immune responses against a range of infectious diseases and cancers. RepRNA vaccines leverage the inherent capabilities of RNA-dependent RNA polymerase associated with self-replicating repRNA, allowing for extreme replication within host cells. This process enhances antigen production and subsequently stimulates adaptive immunity. Additionally, the generation of double-stranded RNA during RNA replication can activate innate immune responses. Numerous studies have demonstrated that repRNA vaccines elicit potent humoral and cellular immune responses that are broader and more durable than those generated by conventional mRNA vaccines. These significant immune responses have been shown to provide protection in various models for infectious diseases and cancers. This article will explore the design and delivery of RepRNA vaccines, the mechanisms of immune activation, preclinical studies addressing infectious diseases and tumors, and related clinical trials that focus on safety and immunogenicity.
Collapse
Affiliation(s)
- Lirui Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| | - Aiping Tong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Wang Q, Mei SQ, Dong TY, Su J, Pan YF, Zhu Y, Wu K, Zhang LB, Shi M, Zhou P. WITHDRAWN: Comparative metatranscriptome analysis in gut reveals insignificant host or microbiota changes in SARS-related coronavirus naturally infected bats. Virol Sin 2025:S1995-820X(25)00037-9. [PMID: 40204156 DOI: 10.1016/j.virs.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
The publisher regrets that this article has withdrawn. The full Elsevier Policy on Article Withdrawal can be found athttps://www.elsevier.com/about/policies-and-standards/article-withdrawal.
Collapse
Affiliation(s)
- Qi Wang
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Shi-Qiang Mei
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian-Yi Dong
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Jia Su
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yan Zhu
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ke Wu
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Li-Biao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Peng Zhou
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical School, Guangzhou 510005, China.
| |
Collapse
|
11
|
Dong B, Chen Y, Wang X, Li J, Zhang S, Kang X, Li Y, Li B, Liao L, Zhang Z, Xiong J, Shao L, Huang S, Feng Y, Jiang T. Development of a highly sensitive luciferase assay for intracellular evaluation of coronavirus Mpro activity. Front Microbiol 2025; 16:1560251. [PMID: 40241735 PMCID: PMC12000094 DOI: 10.3389/fmicb.2025.1560251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
COVID-19, caused by SARS-CoV-2 virus, has emerged as a global threat to human health. The main protease (Mpro) of SARS-CoV-2 is an excellent target for the development of antiviral drugs against COVID-19, and various protease biosensors have been developed to evaluate anti-coronavirus drugs. However, the application of these protease biosensors was limited due to high background fluorescence, poor signal-to-noise ratios, and constraints in enzyme activity thresholds for accessing live viruses. In this study, we rationally designed a highly conserved Mpro cleavage site sequence among different coronaviruses (CoVs) with high proteolytic activity, and described an intracellular coronavirus Mpro proteolytic (ICMP) reporter system that takes advantage of virus-encoded Mpro expressed in infected cells to reform the NanoBiT fluorescent protein. The system can be used to visualize and identify cells infected with coronavirus, and demonstrated high compatibility with various Mpro proteins from 13 different mammalian coronaviruses (covering α, β, γ, and δ CoVs), exhibiting at least a 1,030-fold increase in luminescence. Stronger Nluc signals were detectable with CoV 229E virus infection at a MOI of 0.001. Additionally, the system proved suitable for evaluating and screening of antiviral compounds, including lufotrelvir, GC376, Nirmatrelvir, X77, MG-101, and the potential inhibitor Cynaroside. The ICMP system is not only an invaluable tool for the detection of live coronaviruses, but also for the discovery of antivirals against current and future pandemic coronaviruses.
Collapse
Affiliation(s)
- Bao Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Biao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liangning Liao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
| | - Zhengwei Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiaqi Xiong
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
| | - Lele Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shenghai Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Tao Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Singh A, Jangid K, Nehul S, Dhaka P, Rani R, Pareek A, Sharma GK, Kumar P, Tomar S. Structural and Mechanistic Insights into the Main Protease (Mpro) Dimer Interface Destabilization Inhibitor: Unveiling New Therapeutic Avenues against SARS-CoV-2. Biochemistry 2025; 64:1589-1605. [PMID: 39882595 DOI: 10.1021/acs.biochem.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity. This study identified six highly efficacious antiviral SARS-CoV-2 compounds (WIN-62577, KT185, bexarotene, ledipasvir, diacerein, and simepervir) using structure-based virtual screening of compound libraries against Mpro. Using SPR and ITC, the binding of selected inhibitory compounds to the target Mpro was validated. The FRET-based protease assay demonstrated that the identified molecules effectively inhibit Mpro with IC50 values in the range from 0.64 to 11.98 μM. Additionally, in vitro cell-based antiviral assays showed high efficacy with EC50 values in the range of 1.51 to 18.92 μM. The crystal structure of the Mpro-minocycline complex detailed the possible inhibition mechanism of minocycline, an FDA-approved antibiotic. Minocycline binds to an allosteric site, revealing residues critical for the loss of protease activity due to destabilization of molecular interactions at the dimeric interface, which are crucial for the proteolytic activity of Mpro. The study suggests that the binding of minocycline to the allosteric site may play a role in Mpro dimer destabilization and direct the rational design of minocycline derivatives as antiviral drugs.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Kuldeep Jangid
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Akshay Pareek
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Gaurav Kumar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
13
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
14
|
Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H, Wang T, Tang X. Molecular breeding of pigs in the genome editing era. Genet Sel Evol 2025; 57:12. [PMID: 40065264 PMCID: PMC11892312 DOI: 10.1186/s12711-025-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population. This limitation restricts the transfer of desirable alleles across different genera and species. This article systematically reviews past and current research advancements in porcine molecular breeding. It discusses the screening of clustered regularly interspaced short palindromic repeats (CRISPR) to identify resistance loci in swine and the challenges and future applications of genetically modified pigs. MAIN BODY The emergence of transgenic and gene editing technologies has prompted researchers to apply these methods to pig breeding. These advancements allow for alterations in the pig genome through various techniques, ranging from random integration into the genome to site-specific insertion and from target gene knockout (KO) to precise base and prime editing. As a result, numerous desirable traits, such as disease resistance, high meat yield, improved feed efficiency, reduced fat deposition, and lower environmental waste, can be achieved easily and effectively by genetic modification. These traits can serve as valuable resources to enhance swine breeding programmes. CONCLUSION In the era of genome editing, molecular breeding of pigs is critical to the future of agriculture. Long-term and multidomain analyses of genetically modified pigs by researchers, related policy development by regulatory agencies, and public awareness and acceptance of their safety are the keys to realizing the transition of genetically modified products from the laboratory to the market.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Haoran Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xiao Tan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shihan Yan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tiefeng Wang
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China.
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Jiang Y, Xu L, Zheng X, Shi H. Recent advances in nutritional metabolism studies on SARS-CoV-2 infection. INFECTIOUS MEDICINE 2025; 4:100162. [PMID: 39936106 PMCID: PMC11810712 DOI: 10.1016/j.imj.2025.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025]
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), metabolic research has become crucial for in-depth exploration of viral infection mechanisms and in searching for therapeutic strategies. This paper summarizes the interrelationships between carbohydrate, lipid, and amino acid metabolism and COVID-19 infection, discussing their roles in infection progression. SARS-CoV-2 infection leads to insulin resistance and increased glycolysis, reducing glucose utilization and shifting metabolism to use fat as an energy source. Fat is crucial for viral replication, and imbalances in amino acid metabolism may interfere with immune regulation. Consequently, metabolic changes such as hyperglycemia, hypolipidemia, and deficiency of certain amino acids following SARS-CoV-2 infection can contribute to progression toward severe conditions. These metabolic pathways not only have potential value in prediction and diagnosis but also provide new perspectives for the development of therapeutic strategies. By monitoring metabolic changes, infection severity can be predicted early, and modulating these metabolic pathways may help reduce inflammatory responses, improve immune responses, and reduce the risk of thrombosis. Research on the relationship between metabolism and SARS-CoV-2 infection provides an important scientific basis for addressing the global challenge posed by COVID-19, however, further studies are needed to validate these findings and provide more effective strategies for disease control.
Collapse
Affiliation(s)
- Yufen Jiang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Linle Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xuexing Zheng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Hongbo Shi
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
16
|
Ahmad S, Alafnan A, Alobaida A, Shahab U, Rehman S, Khan S, Khan MY, Puri P, Pandey RP, Ahmad I, Rafi Z. Decoding the SARS-CoV-2 infection process: Insights into origin, spread, and therapeutic approaches. Microb Pathog 2025; 200:107328. [PMID: 39863091 DOI: 10.1016/j.micpath.2025.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Globally, over 768 million confirmed cases and 6.9 million deaths had been documented as of July 17, 2023. Coronaviruses have a relatively large RNA genome. As with other viruses, SARS-CoV-2 does have an envelope film produced from host cells that are assisted by virally encoded glycoproteins that are required for infectivity, immunological assault, and viral particle production. Although the intermediate source of origin and transmission to humans is unexplained, rapid transmission from human to human has been established. This review focuses on the mechanistic framework for understanding the SARS-CoV-2 viral infection. Additionally, it discusses the origins and implications of COVID-19 using direct quotations from the published scientific literature to avoid misinterpretation of this catastrophic event that resulted in a massive loss of human life and impact on the global economy. The current available information unfolds large number of topics related with COVID-19 and/or the coronavirus (SARS-CoV-2) responsible of the disease. This review article also delves into the multifaceted aspects of COVID-19 and SARS-CoV-2, with a specific focus on a controversial yet essential issue: the possible association between SARS-CoV-2's origin and aldose reductase, an enzyme known for its role in diabetic retinopathy. Exploring this connection holds utmost significance, offering valuable insights into COVID-19's pathogenesis and unlocking new avenues for therapeutic interventions. It is important to trace back the evolution of coronaviruses and reveal the possible origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | - Ahmed Alafnan
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Ahmed Alobaida
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Uzma Shahab
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, U.P., India.
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, 2440, Hail, 2440, Saudi Arabia.
| | - Mohd Yasir Khan
- Department of Biotechnology, School of Applied & Life Science, Uttaranchal University Dehradun, India.
| | - Paridhi Puri
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India.
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana, 131029, India.
| | - Irfan Ahmad
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Zeeshan Rafi
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India.
| |
Collapse
|
17
|
Mao L, Cai X, Li J, Li X, Li S, Li W, Lu H, Dong Y, Zhai J, Xu X, Li B. Discovery of a novel Betacoronavirus 1, cpCoV, in goats in China: The new risk of cross-species transmission. PLoS Pathog 2025; 21:e1012974. [PMID: 40100842 PMCID: PMC11918373 DOI: 10.1371/journal.ppat.1012974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Betacoronavirus is a causative agent of respiratory and enteric diseases in humans and animals. Several ruminants are recognized to be intermediate hosts in the transmission of emerging coronaviruses from reservoir hosts to humans. Here, we first report a novel Betacoronavirus isolated from goats suffering from diarrhea in China, putatively named caprine coronavirus (cpCoV). Full-genome characterization and nuclear acid comparisons demonstrated that this virus is an evolutionarily distinct Betacoronavirus belonging to the subgenus Embecovirus and is a Betacoronavirus 1 species. Notably, on phylogenetic trees based on complete genomes and RdRp, S, and N genes, the cpCoVs were grouped into a clade distinct from other Betacoronavirus strains and were closely related to the HKU23- and HKU23-associated coronaviruses. CpCoV possessed a unique genome organization with a truncated NS4a protein and an elongated NS4b protein that showed no significant matches in the GenBank database. The homology of the S and NS4a-4b genes between cpCoV and Embecovirus was less than 95%. Analysis revealed possible recombination events occurred during the evolution of cpCoV and HKU23, and there are striking similarities between the two viruses in evolutionary terms. In addition, cpCoV showed a narrow cell tropism, replicating in human- and bovine-origin cells in vitro, and caused diarrhea and enteric pathologic changes in goats and calves in vivo. We have provided epidemiological, virological, evolutionary, and experimental evidence that cpCoV is a novel etiological agent for enteric disease in goats. Evidently, a spilling-over event might have occurred between ruminants, including goats, camels, cattle, and wild animals. This study highlights the importance of identifying coronavirus diversity and inter-species transmission in ruminants worldwide, broadens our understanding of the ecology of coronaviruses, and aids in the prevention of animal-to-human transmission and outbreaks.
Collapse
Affiliation(s)
- Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xia Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Honghui Lu
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Yichun Dong
- Animal Husbandry and Veterinary Station of Haian City, Nantong, China
| | - Junjun Zhai
- Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Yulin University, Yulin, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
18
|
Tsai YX, Chien YC, Hsu MF, Khoo KH, Hsu STD. Molecular basis of host recognition of human coronavirus 229E. Nat Commun 2025; 16:2045. [PMID: 40016196 PMCID: PMC11868633 DOI: 10.1038/s41467-025-57359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
Human coronavirus 229E (HCoV-229E) is the earliest CoV found to infect humans. It binds to the human aminopeptidase N (hAPN) through the receptor binding domain (RBD) of its spike (S) protein to achieve host recognition. We present the cryo-electron microscopy structure of two HCoV-229E S protein in complex with a dimeric hAPN to provide structural insights on how the HCoV-229E S protein opens up its RBD to engage with its host receptor, information that is currently missing among alphacoronaviruses to which HCoV-229E belong. We quantitatively profile the glycosylation of HCoV-229E S protein and hAPN to deduce the glyco-shielding effects pertinent to antigenicity and host recognition. Finally, we present an atomic model of fully glycosylated HCoV-229E S in complex with hAPN anchored on their respective membrane bilayers to recapitulate the structural basis of the first step of host infection by HCoV-229E.
Collapse
Affiliation(s)
- Yu-Xi Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chun Chien
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
19
|
Ghosh S, Biswas S, Mohanty R, Misra N, Suar M, Kushwaha GS. Structural and Phylogenetic Analysis on the Proofreading Activity of SARS-CoV-2. Curr Microbiol 2025; 82:149. [PMID: 39992393 DOI: 10.1007/s00284-025-04130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Maintenance of genomic integrity is a fundamental characteristic of viruses, however, RNA-dependent RNA Polymerase (RdRp) lacks exonuclease activity for proofreading. To facilitate genomic proofreading in viruses, an independent exonuclease domain assists RdRp to maintain fidelity during replication. In contrast to high fidelity in DNA viruses, RNA viruses have to evolve into new variants through comparatively delicate mutagenesis activity for genetic diversity. Coronavirideae, a family of single positive-stranded RNA (+ ssRNA) viruses, meticulously sustain a balance between genetic diversity and large-size RNA genome. In coronaviruses, the proofreading activity is accomplished by an exonuclease (ExoN) domain located at the N-terminal of non-structural protein 14 (nsp14). ExoN is responsible for the new variants and antiviral resistance towards nucleotide analogs. Here, we provide an evolutionary characterization of ExoN by using a well-defined phylogenetic pipeline and structural analysis based on host and habitat. We carried out a phylogenetic analysis on ExoN, methyltransferase domain, nsp14, and whole genomes of ExoN-containing viruses. Furthermore, a three-dimensional structural comparison of the ExoN domain from various sources is also carried out to understand structural preservation. Our study has unveiled the evolutionary trajectories and structural conservation of the ExoN domain within the Coronaviridae family, highlighting its distinct evolutionary path independent of other domains. Structural analyses revealed minimal variance in RMSD values, underscoring the conserved nature of ExoN despite diverse ecological settings.
Collapse
Affiliation(s)
- Soujanya Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Soumya Biswas
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Rupali Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
- Transcription Regulation Group, International Centre of Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
20
|
Heffner AL, Rouault TA. A Comparison of Conserved Features in the Human Coronavirus Family Shows That Studies of Viruses Less Pathogenic than SARS-CoV-2, Such as HCoV-OC43, Are Good Model Systems for Elucidating Basic Mechanisms of Infection and Replication in Standard Laboratories. Viruses 2025; 17:256. [PMID: 40007010 PMCID: PMC11860170 DOI: 10.3390/v17020256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
In 2021, at the height of the COVID-19 pandemic, coronavirus research spiked, with over 83,000 original research articles related to the word "coronavirus" added to the online resource PubMed. Just 2 years later, in 2023, only 30,900 original research articles related to the word "coronavirus" were added. While, irrefutably, the funding of coronavirus research drastically decreased, a possible explanation for the decrease in interest in coronavirus research is that projects on SARS-CoV-2, the causative agent of COVID-19, halted due to the challenge of establishing a good cellular or animal model system. Most laboratories do not have the capabilities to culture SARS-CoV-2 'in house' as this requires a Biosafety Level (BSL) 3 laboratory. Until recently, BSL 2 laboratory research on endemic coronaviruses was arduous due to the low cytopathic effect in isolated cell culture infection models and the lack of means to quantify viral loads. The purpose of this review article is to compare the human coronaviruses and provide an assessment of the latest techniques that use the endemic coronaviruses-HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1-as lower-biosafety-risk models for the more pathogenic coronaviruses-SARS-CoV-2, SARS-CoV, and MERS-CoV.
Collapse
Affiliation(s)
- Audrey L. Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A. Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Madhloom IH, Othman RM, Al-Bayati HAM. Molecular detection of coronavirus in camelids and bovines using real-time quantitative polymerase chain reaction in Wasit Province, Iraq. Open Vet J 2025; 15:765-773. [PMID: 40201811 PMCID: PMC11974302 DOI: 10.5455/ovj.2025.v15.i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/08/2025] [Indexed: 04/10/2025] Open
Abstract
Background Coronaviruses (CoVs) are a diverse group of RNA viruses that cause respiratory and gastrointestinal diseases in humans and animals. Over the past two decades, outbreaks of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and bovine coronavirus (BCoV) have affected animal populations, especially in regions with close animal-human interactions, such as the Arabian Peninsula and Iraq. Given the potential for zoonotic transmission, understanding the prevalence and spread of CoVs among livestock is essential for managing potential risks to animal and human health. Aim This study aimed to investigate the prevalence of MERS-CoV in camels and BCoV in bovines within the Wasit Governorate of Iraq to assess the infection rates and potential interspecies transmission risks. Methods One hundred and fifty nasal swab samples (75 from camels and 75 from bovines) were collected between November 2022 and April 2023. The samples were analyzed for the presence of MERS-CoV and BCoV using real- time quantitative reverse transcription PCR (qRT-PCR) targeting the nucleocapsid (N) gene for each virus. Standard procedures for RNA extraction were followed, and qRT-PCR assays were conducted using specific primers to ensure high sensitivity and specificity. Results MERS-CoV was present in (42%) of the camel samples, whereas BCoV was detected in (34%) of the bovine samples. Statistical analysis indicated a significant difference (p < 0.05) in infection rates between camels and bovines, with a higher prevalence observed in camels. The clinical signs observed in infected camels included fever, nasal discharge, and appetite loss, whereas infected bovines exhibited symptoms such as diarrhea and respiratory distress. Conclusion The high prevalence of MERS-CoV and BCoV in camels and bovines in the Wasit region indicates a substantial risk for the continued spread of these viruses within animal populations. These findings underscore the importance of surveillance and biosecurity measures to control the spread of coronavirus among livestock, potentially reducing zoonotic transmission risks. Further research is required to understand the transmission dynamics of CoVs in mixed livestock farming systems.
Collapse
Affiliation(s)
- Ibrahim Hasan Madhloom
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Rasha Munther Othman
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
22
|
Hikmat H, Le Targa L, Boschi C, Py J, Morand A, Lagier J, Aherfi S, Fantini J, La Scola B, Colson P. Five-Year (2017-2022) Evolutionary Dynamics of Human Coronavirus HKU1 in Southern France With Emergence of Viruses Harboring Spike H512R Substitution. J Med Virol 2025; 97:e70217. [PMID: 39949218 PMCID: PMC11826117 DOI: 10.1002/jmv.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/13/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
HCoV-HKU1 diversity and evolution were scarcely studied. We performed next-generation sequencing (NGS) and analysis of HCoV-HKU1 genomes over 5 years. NGS used Illumina technology on NovaSeq 6000 following whole genome PCR amplification by an in-house set of primers designed using Gemi and PrimalScheme. Genome assembly and analyses used CLC Genomics, Mafft, BioEdit, Nextstrain, Nextclade, MEGA, and iTol bioinformatic tools. Spike molecular modeling and dynamics simulations used Molegro Molecular Viewer and Hyperchem programs. Twenty-eight PCR systems allowed obtaining 158 HCoV-HKU1 genomes including 69 and 89 of genotypes A and B, respectively. Both genotypes co-circulated during the study period but one predominated each year. A total of 1683 amino acid substitutions including 80 in ≥ 10 genomes were detected in genotype A relatively to a 2004 reference. H512R in spike, first detected in 2009 and reported as involved in antibody neutralization, was found in all genotype A, almost always with V387I and K478N, and was predicted here to significantly improve cellular TMPRSS2 protein binding. Also, 1802 amino acid substitutions including 64 in ≥ 10 genomes were detected in genotype B relatively to a 2005 reference. This study substantially expands the global set of HCoV-HKU1 genomes. Genomics with protein structural analyses contributed to our understanding of HCoV-HKU1 evolution.
Collapse
Affiliation(s)
- Houmadi Hikmat
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | - Lorlane Le Targa
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- BiosellalLyonFrance
| | - Céline Boschi
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Justine Py
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | - Aurélie Morand
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
- Service d'accueil des Urgences Pédiatriques, Hôpital NordAssistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
- Service de Pédiatrie Générale, Hôpital TimoneAssistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Jean‐Christophe Lagier
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Sarah Aherfi
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | | | - Bernard La Scola
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Philippe Colson
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix‐Marseille Université (AMU)MarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| |
Collapse
|
23
|
Trende R, Darling TL, Gan T, Wang D, Boon ACM. Barcoded SARS-CoV-2 viruses define the impact of duration and route of exposure on the transmission bottleneck in a hamster model. SCIENCE ADVANCES 2025; 11:eads2927. [PMID: 39813353 PMCID: PMC11778309 DOI: 10.1126/sciadv.ads2927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
The transmission bottleneck, defined as the number of viruses shed from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission bottleneck remains poorly characterized. We adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes, infected donor hamsters with this pool, and exposed contact hamsters to paired infected donors, varying the duration and route of exposure. Following exposure, the nasal turbinates, trachea, and lungs were collected and the number of barcodes in each tissue was enumerated. We found that longer and more direct exposures increased the transmission bottleneck and that the upper airway is the primary source of transmitted virus in this model. Together, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission.
Collapse
Affiliation(s)
- Reed Trende
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C. M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Sekine R, Takeda K, Suenaga T, Tsuno S, Kaiya T, Kiso M, Yamayoshi S, Takaku Y, Ohno S, Yamaguchi Y, Nishizawa S, Sumitomo K, Ikuta K, Kanda T, Kawaoka Y, Nishimura H, Kuge S. G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication. Commun Biol 2025; 8:27. [PMID: 39815031 PMCID: PMC11735773 DOI: 10.1038/s42003-024-07351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice. G12(S) might exhibit a stable G-tetrad with left-handed parallel-stranded G-quadruplex, and inhibit the replication process by impeding interaction between viral nucleoproteins and viral RNA in the cytoplasm. Unlike previous antiviral strategies that target the G-quadruplexes of the viral genome, we now show that excess exogenous G-quadruplex-forming small RNA displaces genomic RNA from ribonucleoprotein, effectively inhibiting viral replication. The approach has the potential to facilitate the creation of versatile middle-molecule antivirals featuring lipid nanoparticle-free delivery.
Collapse
Affiliation(s)
- Ryoya Sekine
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouki Takeda
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tsukasa Suenaga
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Satsuki Tsuno
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Takumi Kaiya
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihide Takaku
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Kazuhiro Sumitomo
- Division of Geriatric and Community Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Kazufumi Ikuta
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, National Hospital Organization Sendai Medical Center, 2-1-12, Miyagino, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan
| | - Shusuke Kuge
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
25
|
Anteneh AB, Asfaw ZG. Time to recovery of COVID-19 patients and its predictors: a retrospective cohort study in HUCSH, Sidama, Ethiopia. BMC Public Health 2025; 25:74. [PMID: 39773164 PMCID: PMC11707994 DOI: 10.1186/s12889-024-21229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION The 2019 COVID-19 pandemic had a global impact, leading to numerous deaths, long recovery times, and economic challenges worldwide, especially in countries with limited financial resources like Ethiopia. In Ethiopia, Hawassa lacks viral shedding information. Identifying predictors can help ease economic impact of illness.Therefore, this research aimed to examine the demographics, clinical features, and recovery time of COVID-19 patients, as well as determine predictive markers for severe adverse outcomes. METHODS Study at Hawassa University Comprehensive Speciality Hospital COVID-19 quarantine and therapy facility in Ethiopia (Sep 24, 2020 - Nov 26, 2021) with 804 patients. Extracted clinical, epidemiological, demographic info from medical records. Researchers used statistical tests like T tests, Chi-square tests, and Fisher's exact tests to analyze relationships between variables. They also used a Cox PH model to identify risk factors for COVID-19 patient recovery time. Significance level was set at 0.05 for all analyses. RESULTS Out of 804 COVID-19 patients, 74% recovered at an average age of 44.8 years, with 64.1% being male. Severe and critical cases were 24.1% and 21.4% of the population, respectively, with only 16.0% of critical cases and 19.5% of severe cases recovering. Average length of stay was 12.3 days. 88.4% of recovered patients had symptoms, with chest pain (66.7%), cough (64.4%), shortness of breath (59.2%), and fever (57.1%) being common. Nearly half had comorbidities, with diabetes (15.9%) and hypertension (15.2%) prevalent. Male patients had higher recovery rates, while severe/critical patients had lower rates. Patients over 39 age category had lower recovery chance. Existence of at least one comorbidities, diabetes, fever, and hypertension impacted recovery. Fever with gender and shortness of breath affected recovery. Assumptions were met with no multicollinearity. CONCLUSIONS Recent studies found that about 95% of COVID-19 patients recover within 30 days, with a median of 12 days. Severe cases, elderly, and those with comorbidities may take longer to recover. By effectively managing hypertension and diabetes, individuals can improve their prognosis and facilitate a quicker recovery. Public health concerns persist regarding COVID-19, especially for comorbidities like diabetic and hypertension. Early detection of fever and treatment of hypertension may expedite recovery.
Collapse
Affiliation(s)
- Ali B Anteneh
- Department of Statistics, Hawassa University, Hawassa, Ethiopia.
| | - Zeytu Gashaw Asfaw
- Department of Epidemiology and Biostatistics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
26
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore IN, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. PLoS Pathog 2025; 21:e1012456. [PMID: 39847599 PMCID: PMC11793774 DOI: 10.1371/journal.ppat.1012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/04/2025] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n = 6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Sarah E. Scheuermann
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
Gasmi A, Kassym L, Menzel A, Anzar W, Dadar M, Semenova Y, Arshad M, Bihunyak T, Meguid NA, Peana M, Bekbergenova Z, Bjørklund G. Genetic and Epigenetic Determinants of COVID-19 Susceptibility: A Systematic Review. Curr Med Chem 2025; 32:753-770. [PMID: 38251695 DOI: 10.2174/0109298673267890231221100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The molecular mechanisms regulating coronavirus pathogenesis are complex, including virus-host interactions associated with replication and innate immune control. However, some genetic and epigenetic conditions associated with comorbidities increase the risk of hospitalization and can prove fatal in infected patients. This systematic review will provide insight into host genetic and epigenetic factors that interfere with COVID-19 expression in light of available evidence. METHODS This study conducted a systematic review to examine the genetic and epigenetic susceptibility to COVID-19 using a comprehensive approach. Through systematic searches and applying relevant keywords across prominent online databases, including Scopus, PubMed, Web of Science, and Science Direct, we compiled all pertinent papers and reports published in English between December 2019 and June 2023. RESULTS The findings reveal that the host's HLA genotype plays a substantial role in determining how viral protein antigens are showcased and the subsequent immune system reaction to these antigens. Within females, genes responsible for immune system regulation are found on the X chromosome, resulting in reduced viral load and inflammation levels when contrasted with males. Possessing blood group A may contribute to an increased susceptibility to contracting COVID-19 as well as a heightened risk of mortality associated with the disease. The capacity of SARS-CoV-2 involves inhibiting the antiviral interferon (IFN) reactions, resulting in uncontrolled viral multiplication. CONCLUSION There is a notable absence of research into the gender-related predisposition to infection, necessitating a thorough examination. According to the available literature, a significant portion of individuals affected by the ailment or displaying severe ramifications already had suppressed immune systems, categorizing them as a group with elevated risk.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Laura Kassym
- Department of Research, Astana Medical University, Astana, Kazakhstan
| | - Alain Menzel
- Department of Research, Laboratoires Réunis, Junglinster, Luxembourg
| | - Wajiha Anzar
- Department of Research, Dow University of Health Sciences, Karachi, Pakistan
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- Department of Research, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Mehreen Arshad
- Department of Research, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tetyana Bihunyak
- Department of Research, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Nagwa Abdel Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | | | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
28
|
Al-Humaidi JY, Gomha SM, Nayl AA, Aly AA, Ibrahim MAA, Zaki MEA, Bräse S, Haggam RA. Synthesis, Characterization, and Molecular Modeling Studies of Novel Indenopyridazine-thiazole Molecular Hybrids. Curr Org Synth 2025; 22:79-89. [DOI: 10.2174/0115701794266795231129074028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 05/14/2025]
Abstract
Background:
Previous studies have reported various biological activities of indeno-pyridazine and thiazole derivatives, including antiviral activity and CoV-19 inhibition. In this paper, the authors aimed to design, synthesize, and characterize a novel series of indenopyridazinethiazoles, starting with 2-(4-cyano-3-oxo-2,3-dihydro-9H-indeno[2,1-c]pyridazin-9-ylidene)-hydrazine-1-car-bothioamide and available laboratory reagents.
Methods:
The strategy involved the synthesis of indeno[2,1-c]pyridazincarbothioamide, followed by its reaction with various hydrazonoyl chlorides and α-halocompounds (phenacyl bromides and α-chloroketones) to obtain the desired indenopyridazinethiazole derivatives. The synthesized structures were confirmed using IR, NMR, mass spectra, elemental analysis, and alternative synthesis when possible. Docking scores and poses of thirteen synthesized compounds were examined using Auto-Dock4.2.6 software against multiple targets of SARS-CoV-2, including 3C-like protease (3CLpro), helicase, receptor binding domain (RBD), papain-like protease (PLpro), neuropilin-1 (NRP-1), RNA-dependent RNA polymerase (RdRp), and human angiotensin‐converting enzyme 2 (ACE2).
Results:
Docking predictions revealed that compound 13d exhibited high potency against 3CLpro and helicase, with docking scores of -10.9 and -10.5 kcal/mol, respectively. Compound 10c showed su-perior docking scores against RBD and ACE2, with values of -8.7 and -11.8 kcal/mol, respectively. Compounds 10a, 13c, and 7b demonstrated excellent docking scores against RdRp, PLpro, and NRP-1, with values of -10.3, -10.4, and -8.6 kcal/mol, respectively.
Conclusion:
The authors recommend further experimental assessments of compounds 13d, 10c, 10a, 13c, and 7b against SARS-CoV-2 multi-targets, considering their promising docking scores.
Collapse
Affiliation(s)
- Jehan Y. Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka, 72341, Al Jouf, Saudi Arabia
| | - Ashraf A. Aly
- Department of Chemistry, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Menia, Egypt
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Department of Chemistry, Faculty of Science, Minia University, Minia, 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban, 4000, South Africa
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Reda A. Haggam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- De-partment of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
29
|
Tian Y, Sun J, Hou X, Liu Z, Chen Z, Pan X, Wang Y, Ren J, Zhang D, Yang B, Si L, Bi Y, Liu K, Shang G, Tian WX, Wang Q, Gao GF, Niu S. Cross-species recognition of two porcine coronaviruses to their cellular receptor aminopeptidase N of dogs and seven other species. PLoS Pathog 2025; 21:e1012836. [PMID: 39774464 PMCID: PMC11741606 DOI: 10.1371/journal.ppat.1012836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/17/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis coronavirus (TGEV), the two causative agents of porcine diarrhea, have been reported to be at risk of cross-species transmission, including to humans. However, the potential host range in which these two CoVs interact remains unclear. We screened 16 animal counterparts for porcine aminopeptidase N (APN), the receptor of PDCoV and TGEV, and found that APNs from eight of 17 animals could bind to the receptor-binding domains (RBDs) of PDCoV and TGEV. Furthermore, the animal APNs that could bind to the RBDs could mediate cellular infection by both viruses. Dog APN (dAPN) has been identified as the animal receptor with the highest capability to mediate the virus infection. We further resolved the complex structures of dAPN bound to the PDCoV RBD/TGEV RBD, respectively, establishing its divergent receptor-binding modes. We identified R325 of dAPN as an important residue in the PDCoV RBD-dAPN interaction, and found the central role of Q746 and T749 in dAPN in the interaction with the TGEV RBD. These findings provide the molecular basis of the potential cross-species transmission of these two porcine CoVs and shed light on future surveillance of these CoVs.
Collapse
Affiliation(s)
- Yuyang Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaohan Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zhimin Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zeao Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoqian Pan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Longlong Si
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yuhai Bi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guijun Shang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Qihui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
30
|
Jamwal J, Chhabra A, Qadir A, Ganie MA, Qadri SM, Lone A, Shah NN. New Onset Diabetes After COVID 19 (NODAC) is predominantly due to exacerbated Insulin Resistance (IR) rather than beta cell dysfunction: Lessons from tertiary care hospital data during confluence of two epidemics. Endocrine 2025; 87:126-135. [PMID: 39190050 DOI: 10.1007/s12020-024-04006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE To investigate determinants of new onset diabetes after COVID-19 (NODAC) and its recovery at 6 months. METHODS This was an observational follow up study conducted from August, 2020 to July, 2023, recruiting patients with preexisting DM and COVID 19 patients with no history of DM. Multivariate regression analysis was used to determine the factors responsible for severity of COVID 19 infection in preexisting DM group. Clinical, laboratory and glycometabolic parameters were estimated at baseline and 6 months in NODAC and euglycemic group to determine the factors responsible for NODAC and its persistence at 6 months. RESULTS Of 1310 patients, 855 (65.3%) COVID 19 patients were further divided based on their glycemic status: preexisting DM (19%), NODAC (8.5%) and euglycemia (72.5%). Older age and male gender were independent risk factors for severe COVID 19 disease in patients with preexisting diabetes. Prevalence of NODAC in present study was 8.5%. Patients with NODAC had higher mean fasting blood glucose (FBG), random blood glucose (RBG) and HbA1c at baseline as compared to COVID with euglycemic group with no difference in serum C-peptide levels. Female gender, family history of DM, signs of insulin resistance, higher BMI, WHR, HbA1c, serum insulin levels, FBG and RBG predicted persistence of NODAC at 6 months. CONCLUSION Preexisting DM is a risk factor for severe COVID 19 disease. Patients with NODAC have evidence of persistence insulin resistance on follow up, underscoring the need for long term glycemic monitoring.
Collapse
Affiliation(s)
- Juhi Jamwal
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Ankit Chhabra
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Ajaz Qadir
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Mohd Ashraf Ganie
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, 190011, India.
| | - Syed Mudasir Qadri
- Department of General Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Adnan Lone
- Department of General Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Naveed Nazir Shah
- Department of Chest Diseases, CD Hospital, Srinagar, Jammu & Kashmir, 190011, India
| |
Collapse
|
31
|
Zhao X, Wei T, Hou Y, Wu Y, Zhou H, Meng J, Wang Q, Liu Y. ATM/ATR-Mediated DNA Damage Response Facilitates SARS-CoV-2 Spike Protein-Induced Syncytium Formation. J Med Virol 2025; 97:e70137. [PMID: 39740081 DOI: 10.1002/jmv.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2. We found that both homologous and heterologous cell fusion activated the ATR-CHK1 and ATM-CHK2 signaling axis and induced the aggregation of γH2AX, 53BP1 and RAD51 in syncytia. In addition, siRNA or inhibitors of ATM and ATR suppressed syncytia formation by decreasing the level of S protein. These results showed the important role of DDR in stabilizing the S protein and in favoring its induction of cell fusion and syncytium formation, suggesting that the virus exploits the host DDR to facilitate its spread among infected cells.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tingting Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yujia Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yanjin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Haitao Zhou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiahui Meng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
32
|
Laskar R, Hoque M, Ali S. Phylogeogenomic analysis of the earliest reported sequences of SARS-CoV-2 from 161 countries. APMIS 2025; 133:e13499. [PMID: 39563179 DOI: 10.1111/apm.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
The SARS-CoV-2 is the causative agent of COVID-19 whose evolutionary path with geographical context forms the focus of present study. The first reported sequence from each of the 161 countries was downloaded from the GISAID database. Multiple sequence alignment was performed using MAFFT v.7, and a TCS-based network was constructed using PopART v.1.7. A total of 27 proteins were analyzed including structural and non-structural proteins. NSP3 and NSP12, responsible for viral replication and RNA synthesis, respectively, had the highest mutation incidence and frequency among non-structural proteins. The spike (S) protein, critical for viral attachment and entry, had the highest prevalence and frequency of mutations. ORF3a had the highest mutation incidence and frequency among accessory proteins. The phylogeogenomic network identified six haplogroups containing 35 sequences, while the remaining sequences belonged to different haplotypes. The virus's genetic distinctiveness was higher in European genomes, with four haplogroups dominated by Europe-linked sequences. The triangular-shaped pattern observed in the virus's evolutionary path suggests that it spread to different continents from Asia. Multiple transmission pathways connecting different countries affirm the virus's ability to emerge in multiple countries by early 2020. The possibility of new species emergence through "saltation" due to the pandemic is also discussed.
Collapse
Affiliation(s)
- Rezwanuzzaman Laskar
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mehboob Hoque
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| |
Collapse
|
33
|
Pan F, Zhou Q, Yan M, Yang S, Hu R, Chen Y, Wen Y, Chao Y, Xie C, Ou W, Li Y, Zhang H, Guo D, Zhang X. Development of pyrimidone derivatives as nonpeptidic and noncovalent 3-chymotrypsin-like protease (3CL pro) inhibitors with anti-coronavirus activities. Bioorg Chem 2025; 154:107988. [PMID: 39591689 DOI: 10.1016/j.bioorg.2024.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
3CLPro is crucial to the life cycle of SARS-CoV-2 and exhibits high sequence similarity with other coronaviruses, while being absent in human proteases. This makes it an ideal target for developing broad-spectrum antiviral drugs. Ensitrelvir (S-217622) is the only launched non-covalent, non-peptidomimetic 3CLPro inhibitor, offering certain advantages in terms of dosage and metabolism. Using S-217622 as the lead, we designed and synthesized 43 pyrimidone derivatives and conducted a systematic evaluation of their structure-activity relationships. Among them, A36 exhibited strong inhibitory activity against several β-coronaviruses and demonstrated low cytotoxicity. A36 also displayed moderate stability in mouse liver microsomes. Co-crystal structure analysis of 3CLPro in complex with A36 revealed the similar binding mode with S-217622. A36 shows strong potential as a promising lead for broad-spectrum anti-coronavirus therapy, warranting further investigation.
Collapse
Affiliation(s)
- Fan Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Qifan Zhou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China.
| | - Ming Yan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Ruiyu Hu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yongzhi Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yuanmei Wen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yang Chao
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Cailing Xie
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Weixin Ou
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Yingjun Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Hongmin Zhang
- Institute of High Energy Physics, CAS, Beijing 100000, China; China Spallation Neutron Source, CAS, Dongguan, Guangdong 523000, China.
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China.
| |
Collapse
|
34
|
Shao G, Fu J, Pan Y, Gong S, Song C, Chen S, Feng K, Zhang X, Xie Q. Development of a recombinant infectious bronchitis virus vaccine expressing infectious laryngotracheitis virus multiple epitopes. Poult Sci 2025; 104:104578. [PMID: 39671857 PMCID: PMC11699591 DOI: 10.1016/j.psj.2024.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious disease, usually controlled by vaccination with live attenuated vaccines. However, the latent infection and adverse reactions caused by the live attenuated vaccines against infectious laryngotracheitis virus (ILTV) have limited its use in poultry. Infectious bronchitis virus (IBV) is considered a potential vector for vaccine development, but the issue of poor stability in recombinant IBV expressing foreign genes has not yet been resolved. In this study, we designed a multi-epitope cassette (gD-T/B) containing multiple T and B cell epitopes of ILTV gD protein. The genetic stability of the full-length gD gene and the gD-T/B multi-epitope cassette replacing non-essential genes in IBV was systematically analyzed. We found that, at the same insertion site, the stability of inserting gD-T/B multi-epitope cassette was consistently higher compared to the full-length gD gene. This difference may be related to the presence of more signals affecting virus replication or transcription in larger heterologous genes. In addition, the stability of recombinant IBV varied depending on the genome region being replaced. When the gene 5 was replaced, rH120-Δ5ab-gD-T/B was maintained up to at least passage 20 (P20). Compared with the parental virus H120 strain, rH120-Δ5ab-gD-T/B showed similar growth kinetics. Clinical observations and scoring of clinical signs in the vaccination-challenge experiment showed that rH120-Δ5ab-gD-T/B provided 90% protection against virulent ILTV, effectively alleviating clinical signs caused by infection with a virulent strain of ILTV. Furthermore, rH120-Δ5ab-gD-T/B significantly reduced the replication and shedding of ILTV in the trachea. Overall, this study suggests that rH120-Δ5ab-gD-T/B is a promising candidate vaccine against ILTV.
Collapse
Affiliation(s)
- Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Institute of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, PR China
| | - Yun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China
| | - Shiying Gong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Chaoyi Song
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Institute of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, PR China
| | - Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China.
| |
Collapse
|
35
|
Musaeva T, Fadeev A, Pisareva M, Eder V, Ksenafontov A, Korzhanova M, Tsvetkov V, Perederiy A, Kiseleva I, Danilenko D, Lioznov D, Komissarov A. Development of Primer Panels for Whole-Genome Amplification and Sequencing of Human Seasonal Coronaviruses: hCoV-OC43, hCoV-HKU1, hCoV-229E, and hCoV-NL63. Viruses 2024; 17:13. [PMID: 39861802 PMCID: PMC11768711 DOI: 10.3390/v17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human seasonal coronaviruses (hCoVs) are a group of viruses that affect the upper respiratory tract. While seasonal patterns and the annual variability of predominant hCoV species are well-documented, their genetic and species diversity in St. Petersburg and across Russia remains largely unexplored. In this study, we developed a two-pool, long-amplicon (900-1100 bp) PCR primer panel for the whole-genome sequencing of four seasonal hCoV species. The panel was validated using nasopharyngeal swab samples collected within the Global Influenza Hospital Surveillance Network (GIHSN) project. Over a period of six epidemiological seasons from 2017 to 2023, we retrospectively analyzed 14,704 nasopharyngeal swabs collected from patients hospitalized in St. Petersburg clinics. Of these samples, 5010 (34.07%) tested positive for respiratory viruses, with 424 (2.88% of all samples) identified as seasonal human coronaviruses. The assessment of species diversity showed that predominant hCoV species alternate between seasons. Whole-genome sequences for 85 seasonal human coronaviruses (hCoVs) with >70% genome coverage were obtained, including 23 hCoV-OC43, 6 hCoV-HKU1, 39 hCoV-229E, and 17 hCoV-NL63. These represent the first near-complete genomes of seasonal hCoVs from the Russian Federation, addressing a significant gap in the genomic epidemiology of these viruses. A detailed phylogenetic analysis of the sequenced genomes was conducted, highlighting the emergence of hCoV-229E subclades 7b.1 and 7b.2, which carry numerous substitutions in the Spike protein. Additionally, we sequenced a historical hCoV-229E isolate collected in the USSR in 1979, the oldest sequenced 229E virus from Eurasia, and demonstrated that it belongs to Genotype 2. The newly developed PCR-based sequencing protocol for seasonal hCoVs is straightforward and well-suited for genomic surveillance, providing a valuable tool to enhance our understanding of the genetic diversity of human seasonal coronaviruses.
Collapse
Affiliation(s)
- Tamila Musaeva
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Artem Fadeev
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Maria Pisareva
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Veronika Eder
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Andrey Ksenafontov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Margarita Korzhanova
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Valery Tsvetkov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Alexander Perederiy
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Irina Kiseleva
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
- Department of Infectious Diseases and Epidemiology, First Pavlov State Medical University, 197022 Saint Petersburg, Russia
| | - Andrey Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| |
Collapse
|
36
|
Foutel-Rodier F, Charpentier A, Guérin H. Optimal vaccination policy to prevent endemicity: a stochastic model. J Math Biol 2024; 90:10. [PMID: 39694893 PMCID: PMC11655619 DOI: 10.1007/s00285-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
We examine here the effects of recurrent vaccination and waning immunity on the establishment of an endemic equilibrium in a population. An individual-based model that incorporates memory effects for transmission rate during infection and subsequent immunity is introduced, considering stochasticity at the individual level. By letting the population size going to infinity, we derive a set of equations describing the large scale behavior of the epidemic. The analysis of the model's equilibria reveals a criterion for the existence of an endemic equilibrium, which depends on the rate of immunity loss and the distribution of time between booster doses. The outcome of a vaccination policy in this context is influenced by the efficiency of the vaccine in blocking transmissions and the distribution pattern of booster doses within the population. Strategies with evenly spaced booster shots at the individual level prove to be more effective in preventing disease spread compared to irregularly spaced boosters, as longer intervals without vaccination increase susceptibility and facilitate more efficient disease transmission. We provide an expression for the critical fraction of the population required to adhere to the vaccination policy in order to eradicate the disease, that resembles a well-known threshold for preventing an outbreak with an imperfect vaccine. We also investigate the consequences of unequal vaccine access in a population and prove that, under reasonable assumptions, fair vaccine allocation is the optimal strategy to prevent endemicity.
Collapse
Affiliation(s)
| | - Arthur Charpentier
- Département de Mathématiques, Université du Québec à Montréal, Montréal, Canada
| | - Hélène Guérin
- Département de Mathématiques, Université du Québec à Montréal, Montréal, Canada
| |
Collapse
|
37
|
Lukina-Gronskaya AV, Chudinov IK, Korneenko EV, Mashkova SD, Semashko TA, Sinkova MA, Penkin LN, Litvinova EM, Feoktistova NY, Speranskaya AS. Novel coronaviruses and mammarenaviruses of hedgehogs from Russia including the comparison of viral communities of hibernating and active specimens. Front Vet Sci 2024; 11:1486635. [PMID: 39736935 PMCID: PMC11683907 DOI: 10.3389/fvets.2024.1486635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Small mammals, especially rodents and bats, are known reservoirs of zoonotic viruses, but little is known about the viromes of insectivorous species including hedgehogs (order Eulipotyphla), which often live near human settlements and come into contact with humans. Methods We used high-throughput sequencing and metaviromic analysis to describe the viromes of 21 hedgehogs (Erinaceus sp.) sampled from summer 2022 to spring 2023. We captured 14 active animals from the wild (seven in European Russia and the other seven in Central Siberia). The remaining 7 animals were hibernating in captivity (captured in European Russia before the experiment). Results and discussion The diversity of identified viral taxa as well as the total number of reads classified as viral was high in all active animals (up to eight different viral families per animal), but significantly lower in hibernating animals (zero or no more than three different viral families per animal). The present study reports, for the first time, betacoronaviruses and mammasrenaviruses in hedgehogs from Russia. Erinaceus coronaviruses (EriCoVs) were found in 4 of 7 active animals captured in the wild, in European Russia, making it is the easiest finding of EriCoVs in Europe. One animal was found to carry of two different EriCoVs. Both strains belong to the same phylogenetic clade as other coronaviruses from European hedgehogs. Pairwise comparative analysis suggested that one of these two strains arose by recombination with an unknown coronavirus, since all of identified SNPs (n = 288) were found only in the local genome region (the part of ORF1b and S gene). The novel mammarenaviruses (EriAreVs) were detected in 2 out of 7 active and in 2 out of 7 hibernating animals from the European Russia. Several complete L and S segments of EriAreVs were assembled. All identified EriAreVs belonged to the same clade as the recently described MEMV virus from Hungarian hedgehogs. As the hibernating hedgehogs were positive for EriAreVs when kept in controlled conditions without contact with each other, we suggest the possibility of persistent arenavirus infection in hedgehogs, but further experiments are needed to prove this.
Collapse
Affiliation(s)
- A. V. Lukina-Gronskaya
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - I. K. Chudinov
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - E. V. Korneenko
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
- Department of Epidemiology, Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Saint Petersburg, Russia
| | - S. D. Mashkova
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - T. A. Semashko
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - M. A. Sinkova
- Zoological Museum of Moscow State University Named After M.V. Lomonosov, Moscow, Russia
| | - L. N. Penkin
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - E. M. Litvinova
- Biological Department, Lomonosov Moscow State University, Moscow, Russia
| | - N. Yu Feoktistova
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - A. S. Speranskaya
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| |
Collapse
|
38
|
Gychka SG, Nikolaienko SI, Shults NV, Vasylyk VM, Pasichnyk BO, Kagan IV, Dibrova YV, Tuffaha M, Suzuki YJ. Histopathological Evaluation of Pulmonary Arterial Remodeling in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628253. [PMID: 39713422 PMCID: PMC11661234 DOI: 10.1101/2024.12.12.628253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A positive-sense single-stranded RNA virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused the coronavirus disease 2019 (COVID-19) pandemic that devastated the world. While this is a respiratory virus, one feature of the SARS-CoV-2 infection was recognized to cause pathogenesis of other organs. Because the membrane fusion protein of SARS-CoV-2, the spike protein, binds to its major host cell receptor angiotensin-converting enzyme 2 (ACE2) that regulates a critical mediator of cardiovascular diseases, angiotensin II, COVID-19 is largely associated with vascular pathologies. In fact, we have previous reported that postmortem lung tissues collected from patients who died of COVID-19 exhibited thickened pulmonary vascular walls and reduced vascular lumen. The present study extended these findings by further characterizing the pulmonary vasculature of COVID-19 patients using larger sample sizes and providing mechanistic information through histological observations. The examination of 56 autopsy lung samples showed thickened vascular walls of small pulmonary arteries after 14 days of disease compared to H1N1 influenza patients who died before COVID- 19 pandemic started. Pulmonary vascular remodeling in COVID-19 patients was associated with hypertrophy of the smooth muscle layer, perivascular fibrosis, edema and lymphostasis, inflammatory infiltration, perivascular hemosiderosis and neoangiogenesis. We found a correlation between the duration of hospital stay and the thickness of the muscular layer of pulmonary arterial walls. These results further confirm that COVID-19 affects the pulmonary vasculature and warrants an evaluation of patients that survived COVID-19 for possible future development of pulmonary arterial hypertension.
Collapse
|
39
|
Tikhomirova MA, Kuzmenko OL, Arifulin EA, Shirokova OM, Musinova YR, Sheval EV. The Nucleocapsid (N) Proteins of Different Human Coronaviruses Demonstrate a Variable Capacity to Induce the Formation of Cytoplasmic Condensates. Int J Mol Sci 2024; 25:13162. [PMID: 39684875 DOI: 10.3390/ijms252313162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
To date, seven human coronaviruses (HCoVs) have been identified. Four of these viruses typically manifest as a mild respiratory disease, whereas the remaining three can cause severe conditions that often result in death. The reasons for these differences remain poorly understood, but they may be related to the properties of individual viral proteins. The nucleocapsid (N) protein plays a crucial role in the packaging of viral genomic RNA and the modification of host cells during infection, in part due to its capacity to form dynamic biological condensates via liquid-liquid phase separation (LLPS). In this study, we investigated the capacity of N proteins derived from all HCoVs to form condensates when transiently expressed in cultured human cells. Some of the transfected cells were observed to contain cytoplasmic granules in which most of the N proteins were accumulated. Notably, the N proteins of SARS-CoV and SARS-CoV-2 showed a significantly reduced tendency to form cytoplasmic condensates. The condensate formation was not a consequence of overexpression of N proteins, as is typical for LLPS-inducing proteins. These condensates contained components of stress granules (SGs), indicating that the expression of N proteins caused the formation of SGs, which integrate N proteins. Thus, the N proteins of two closely related viruses, SARS-CoV and SARS-CoV-2, have the capacity to antagonize SG induction and/or assembly, in contrast to all other known HCoVs.
Collapse
Affiliation(s)
- Maria A Tikhomirova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Oleg L Kuzmenko
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Eugene A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya M Shirokova
- Central Scientific Research Laboratory, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
| | - Yana R Musinova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
40
|
Shum MHH, Lee Y, Tam L, Xia H, Chung OLW, Guo Z, Lam TTY. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput Struct Biotechnol J 2024; 23:759-770. [PMID: 38304547 PMCID: PMC10831124 DOI: 10.1016/j.csbj.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Coronaviruses (CoVs) pose a major risk to global public health due to their ability to infect diverse animal species and potential for emergence in humans. The CoV spike protein mediates viral entry into the cell and plays a crucial role in determining the binding affinity to host cell receptors. With particular emphasis on α- and β-coronaviruses that infect humans and domestic animals, current research on CoV receptor use suggests that the exploitation of the angiotensin-converting enzyme 2 (ACE2) receptor poses a significant threat for viral emergence with pandemic potential. This review summarizes the approaches used to study binding interactions between CoV spike proteins and the human ACE2 (hACE2) receptor. Solid-phase enzyme immunoassays and cell binding assays allow qualitative assessment of binding but lack quantitative evaluation of affinity. Surface plasmon resonance, Bio-layer interferometry, and Microscale Thermophoresis on the other hand, provide accurate affinity measurement through equilibrium dissociation constants (KD). In silico modeling predicts affinity through binding structure modeling, protein-protein docking simulations, and binding energy calculations but reveals inconsistent results due to the lack of a standardized approach. Machine learning and deep learning models utilize simulated and experimental protein-protein interaction data to elucidate the critical residues associated with CoV binding affinity to hACE2. Further optimization and standardization of existing approaches for studying binding affinity could aid pandemic preparedness. Specifically, prioritizing surveillance of CoVs that can bind to human receptors stands to mitigate the risk of zoonotic spillover.
Collapse
Affiliation(s)
- Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yang Lee
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leighton Tam
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Hui Xia
- Department of Chemistry, South University of Science and Technology of China, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Oscar Lung-Wa Chung
- Department of Chemistry, South University of Science and Technology of China, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
41
|
Li R, Tendu A, Kane Y, Omondi V, Ying J, Mao L, Xu S, Xu R, Chen X, Chen Y, Descorps-Declère S, Bienes KM, Fassatoui M, Hughes AC, Berthet N, Wong G. Differential prevalence and risk factors for infection with coronaviruses in bats collected from Yunnan Province, China. One Health 2024; 19:100923. [PMID: 39605930 PMCID: PMC11600012 DOI: 10.1016/j.onehlt.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Coronaviruses (CoVs) pose a threat to human health globally, as highlighted by severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and the COVID-19 pandemic. Bats from the Greater Mekong Subregion (GMS) are an important natural reservoir for CoVs. Here we report the differential prevalence of CoVs in bats within Yunnan Province across biological and ecological variables. We also show the coexistence of CoVs in individual bats and identify an additional putative host for SARS-related CoV, with higher dispersal capacity than other known hosts. Notably, 11 SARS-related coronaviruses (SARSr-CoVs) were discovered in horseshoe bats (family Rhinolophidae) and a Chinese water myotis bat (Myotis laniger) by pan-CoV detection and Illumina sequencing. Our findings facilitate an understanding of the fundamental features of the distribution and circulation of CoVs in nature as well as zoonotic spillover risk in the One health framework.
Collapse
Affiliation(s)
- Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Jiaxu Ying
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Lingjing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Kathrina Mae Bienes
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
- Institut Pasteur, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
42
|
Sartalamacchia K, Porter MS, Veletanlic V, Ogden KM. Avian deltacoronaviruses encode fusion-associated small transmembrane proteins that can induce syncytia formation. Virology 2024; 600:110258. [PMID: 39406032 PMCID: PMC11737098 DOI: 10.1016/j.virol.2024.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Fusion-associated small transmembrane (FAST) proteins are nonstructural viral proteins that induce cell-cell fusion. FAST proteins, which previously were identified in the genomes of double-stranded RNA viruses, typically contain an acylated N-terminal ectodomain, central transmembrane domain, and C-terminal endodomain with a polybasic region. Using sequence homology and protein motif prediction, we identified accessory proteins in a subset of avian deltacoronaviruses as putative FAST proteins. Transient expression of thrush coronavirus NS7b or common moorhen coronavirus NS7a, but not night heron coronavirus NS7b, induced cell-cell fusion. Syncytia were detected in primate kidney epithelial cells or fibroblasts but not chicken embryo fibroblasts, and addition of an N-terminal FLAG peptide to the proteins ablated fusion activity. These findings suggest that multiple avian deltacoronaviruses, positive-sense RNA viruses, encode nonstructural proteins that can mediate cell-cell fusion and share features with known FAST proteins. Additional studies are needed to understand contributions of these proteins to deltacoronavirus biology.
Collapse
Affiliation(s)
- Kylie Sartalamacchia
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 2404, Nashville, TN, 37232, USA.
| | - Monique S Porter
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Suite D-2220, Nashville, TN, 37232, USA
| | - Vanesa Veletanlic
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 2404, Nashville, TN, 37232, USA
| | - Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 2404, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Suite D-2220, Nashville, TN, 37232, USA.
| |
Collapse
|
43
|
Ardalan M, Cool K, Gaudreault NN, Bold D, Mannix A, Hanzlicek GA, Richt JA, Pogranichniy RM. Cattle, sheep, and goat humoral immune responses against SARS-CoV-2. Vet Anim Sci 2024; 26:100408. [PMID: 39619867 PMCID: PMC11607650 DOI: 10.1016/j.vas.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Following the emergence of SARS-CoV-2 in late 2019, several species of domestic and wild animals have been found to be susceptible to SARS-CoV-2 infection through experimental inoculation and animal surveillance activities. Detection of SARS-CoV-2 specific antibodies in animals is an important surveillance tool since viral shedding in animals can only be detected for a short period of time. In this study, convenience serum samples were collected from 691 cattle, 698 sheep, and 707 goats from several regions in the United States, between 2019 and 2022. The samples were evaluated for the presence of SARS-CoV-2 specific antibodies using two commercial enzyme-linked immunosorbent assays (ELISA); one based on the inhibition of the SARS-CoV-2 receptor-binding domain (sVNT) and the other based on the nucleocapsid protein (N-ELISA) of SARS-CoV-2. Positive samples from the sVNT were additionally evaluated using a conventional virus neutralization test (VNT) employing the Wuhan-like SARS-CoV-2 USA/WA1/2020 isolate. Our results indicate that ∼1 % (6/691) of cattle, ∼2 % (13/698) of sheep, and ∼2.5 % (18/707) of goat serum samples were positive when using the sVNT, whereas ∼4 % of cattle (25/691) and sheep (27/698), and 2.5 % (18/707) of goat serum samples tested positive with the N-ELISA. None of the sVNT positive cattle, sheep, or goat serum samples had detectable neutralizing antibody activity (<1:8) against the SARS-CoV-2 USA/WA1/2020 isolate by the VNT. Our results indicate low seropositivity in cattle, sheep, and goats in the U.S., indicating the importance to continue monitoring for SARS-CoV-2 prevalence in animal species that are in close contact with humans.
Collapse
Affiliation(s)
- Mehrnaz Ardalan
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Anna Mannix
- Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gregg A. Hanzlicek
- Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Roman M. Pogranichniy
- Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
44
|
Su M, Wang Y, Yan J, Xu X, Zheng H, Cheng J, Du X, Liu Y, Ying J, Zhao Y, Wang Z, Duan X, Yang Y, Cheng C, Ye Z, Sun J, Sun D, Song H. Isolation and characterization of a novel S1-gene insertion porcine epidemic diarrhea virus with low pathogenicity in newborn piglets. Virulence 2024; 15:2397512. [PMID: 39282989 PMCID: PMC11407387 DOI: 10.1080/21505594.2024.2397512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Ziqi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Zhihui Ye
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
45
|
Barghash RF, Gemmati D, Awad AM, Elbakry MMM, Tisato V, Awad K, Singh AV. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Molecules 2024; 29:5564. [PMID: 39683724 PMCID: PMC11643501 DOI: 10.3390/molecules29235564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as fusion inhibitors, protease inhibitors, transcription inhibitors, neuraminidase inhibitors, nucleoside reverse transcriptase, and non-antiviral interventions like importin α/β1-mediated nuclear import inhibitors, neutralizing antibodies, and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Collapse
Affiliation(s)
- Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Mustafa M. M. Elbakry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Veronica Tisato
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Kareem Awad
- Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
46
|
Nanduri S, Black A, Bedford T, Huddleston J. Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2. Virus Evol 2024; 10:veae087. [PMID: 39610652 PMCID: PMC11604119 DOI: 10.1093/ve/veae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Public health researchers and practitioners commonly infer phylogenies from viral genome sequences to understand transmission dynamics and identify clusters of genetically-related samples. However, viruses that reassort or recombine violate phylogenetic assumptions and require more sophisticated methods. Even when phylogenies are appropriate, they can be unnecessary or difficult to interpret without specialty knowledge. For example, pairwise distances between sequences can be enough to identify clusters of related samples or assign new samples to existing phylogenetic clusters. In this work, we tested whether dimensionality reduction methods could capture known genetic groups within two human pathogenic viruses that cause substantial human morbidity and mortality and frequently reassort or recombine, respectively: seasonal influenza A/H3N2 and SARS-CoV-2. We applied principal component analysis, multidimensional scaling (MDS), t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold approximation and projection to sequences with well-defined phylogenetic clades and either reassortment (H3N2) or recombination (SARS-CoV-2). For each low-dimensional embedding of sequences, we calculated the correlation between pairwise genetic and Euclidean distances in the embedding and applied a hierarchical clustering method to identify clusters in the embedding. We measured the accuracy of clusters compared to previously defined phylogenetic clades, reassortment clusters, or recombinant lineages. We found that MDS embeddings accurately represented pairwise genetic distances including the intermediate placement of recombinant SARS-CoV-2 lineages between parental lineages. Clusters from t-SNE embeddings accurately recapitulated known phylogenetic clades, H3N2 reassortment groups, and SARS-CoV-2 recombinant lineages. We show that simple statistical methods without a biological model can accurately represent known genetic relationships for relevant human pathogenic viruses. Our open source implementation of these methods for analysis of viral genome sequences can be easily applied when phylogenetic methods are either unnecessary or inappropriate.
Collapse
Affiliation(s)
- Sravani Nanduri
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States
| | - Allison Black
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
47
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson SI, Manamela NP, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and characterization of a pan-betacoronavirus S2-binding antibody. Structure 2024; 32:1893-1909.e11. [PMID: 39326419 PMCID: PMC11560675 DOI: 10.1016/j.str.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibodies, Viral/chemistry
- Mice
- COVID-19/immunology
- COVID-19/virology
- Cryoelectron Microscopy
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Models, Molecular
- Protein Binding
- Epitopes/immunology
- Epitopes/chemistry
- Antibody-Dependent Cell Cytotoxicity
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandria A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., 53100 Siena, Italy; VisMederi S.r.l, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
48
|
Zehr JD, Kosakovsky Pond SL, Shank SD, McQueary H, Grenier JK, Whittaker GR, Stanhope MJ, Goodman LB. Positive selection, genetic recombination, and intra-host evolution in novel equine coronavirus genomes and other members of the Embecovirus subgenus. Microbiol Spectr 2024; 12:e0086724. [PMID: 39373506 PMCID: PMC11542594 DOI: 10.1128/spectrum.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
There are several examples of coronaviruses in the Betacoronavirus subgenus Embecovirus that have jumped from an animal to the human host. Studying how evolutionary factors shape coronaviruses in non-human hosts may provide insight into the coronavirus host-switching potential. Equids, such as horses and donkeys, are susceptible to equine coronaviruses (ECoVs). With increased testing prevalence, several ECoV genome sequences have become available for molecular evolutionary analyses, especially those from the United States of America (USA). To date, no analyses have been performed to characterize evolution within coding regions of the ECoV genome. Here, we obtain and describe four new ECoV genome sequences from infected equines from across the USA presenting clinical symptoms of ECoV, and infer ECoV-specific and Embecovirus-wide patterns of molecular evolution. Within two of the four data sets analyzed, we find evidence of intra-host evolution within the nucleocapsid (N) gene, suggestive of quasispecies development. We also identify 12 putative genetic recombination events within the ECoV genome, 11 of which fall in ORF1ab. Finally, we infer and compare sites subject to positive selection on the ancestral branch of each major Embecovirus member clade. Specifically, for the two currently identified human coronavirus (HCoV) embecoviruses that have spilled from animals to humans (HCoV-OC43 and HCoV-HKU1), we find that there are 42 and 2 such sites, respectively, perhaps reflective of the more complex ancestral evolutionary history of HCoV-OC43, which involves several different animal hosts.IMPORTANCEThe Betacoronavirus subgenus Embecovirus contains coronaviruses that not only pose a health threat to animals and humans, but also have jumped from animal to human host. Equids, such as horses and donkeys are susceptible to equine coronavirus (ECoV) infections. No studies have systematically examined evolutionary patterns within ECoV genomes. Our study addresses this gap and provides insight into intra-host ECoV evolution from infected horses. Further, we identify and report natural selection pattern differences between two embecoviruses that have jumped from animals to humans [human coronavirus OC43 and HKU1 (HCoV-OC43 and HCoV-HKU1, respectively)], and hypothesize that the differences observed may be due to the different animal host(s) that each virus circulated in prior to its jump into humans. Finally, we contribute four novel, high-quality ECoV genomes to the scientific community.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Stephen D. Shank
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Holly McQueary
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Jennifer K. Grenier
- Cornell Institute of
Biotechnology, Transcriptional Regulation and Expression
Facility, Ithaca,
New York, USA
| | - Gary R. Whittaker
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Michael J. Stanhope
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Laura B. Goodman
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| |
Collapse
|
49
|
Zhang J, Fan X, Wang P, Liang R, Wang D, Xu J, Zhang D, Xie Y, Liao Q, Jiao Z, Shi Y, Peng G. Identification of novel broad-spectrum antiviral drugs targeting the N-terminal domain of the FIPV nucleocapsid protein. Int J Biol Macromol 2024; 279:135352. [PMID: 39242012 DOI: 10.1016/j.ijbiomac.2024.135352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Coronaviruses pose serious threats to human and animal health worldwide, of which their structural nucleocapsid (N) proteins play multiple key roles in viral replication. However, the structures of animal coronavirus N proteins are poorly understood, posing challenges for research on their functions and pathogenic mechanisms as well as the development of N protein-based antiviral drugs. Therefore, N proteins must be further explored as potential antiviral targets. We determined the structure of the NNTD of feline infectious peritonitis virus (FIPV) and identified 3,6-dihydroxyflavone (3,6- DHF) as an effective N protein inhibitor. 3,6-DHF successfully inhibited FIPV replication in CRFK cells, showing broad-spectrum activity and effectiveness against drugresistant strains. Our study provides important insights for developing novel broadspectrum anti-coronavirus drugs and treating infections caused by drug-resistant mutant strains.
Collapse
Affiliation(s)
- Jintao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Xinyu Fan
- Department of Biotechnology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengpeng Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Rui Liang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Donghan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Juan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Ding Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Yunfei Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Qi Liao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China
| | - Zhe Jiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China.
| | - Yuejun Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China.
| | - Guiqing Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
50
|
Gim Y, Jeong SH, Lee YJ, Jang G, Lee C. Incidence and Genetic Investigation of Avian Coronaviruses in Migratory Ducks From South Korea. Transbound Emerg Dis 2024; 2024:9502737. [PMID: 40303022 PMCID: PMC12016717 DOI: 10.1155/2024/9502737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/01/2024] [Accepted: 10/12/2024] [Indexed: 05/02/2025]
Abstract
Coronaviruses (CoVs) belonging to the Gamma-CoV and Delta-CoV genera are widespread in poultry and wildfowl. Migratory birds, particularly duck species, serve as hosts for CoVs and play a pivotal role in transmitting the viruses to other species, including mammals. Despite the potential risks to animals and humans, there remains a narrow knowledge of the genetic and epidemiological properties of CoVs in wild birds. The current research aimed to detect and characterize CoVs present in migratory duck species (Anas acuta, Anas platyrhynchos, and Anas poecilorhyncha) from South Korea. Employing two rounds of pan-CoV real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR (nPCR) assays amplifying the conserved RNA-dependent RNA polymerase (RdRp) portion common to all known CoVs, we screened 2120 duck fecal samples collected during 2022-2023. The results indicated the presence of CoVs in 4.2% (91/2120) of samples from migratory ducks. Nucleotide sequencing of the RdRp gene revealed that all identified CoVs were clustered within the Gamma-CoV genus. Further phylogenetic analysis suggested that South Korean gamma-CoVs belong to the Igacovirus subgenus and share similarities with those found worldwide, highlighting the critical role of migratory ducks in introducing and exporting avian CoVs. We discovered two clade VII igacovirus strains in wild ducks closely related to those in pigeons, implying potential cross infection between these avian species. Overall, our study underscores the importance of active surveillance and monitoring of avian CoVs in wild birds as a preemptive response against the forthcoming emergence of new CoV species that can threaten both animal and human health.
Collapse
Affiliation(s)
- Yunhee Gim
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Song Hwi Jeong
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|