1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Wang H, Xu M, Zhang T, Pan J, Li C, Pan B, Zhou L, Huang Y, Gao C, He M, Xue Y, Ji X, Zhang X, Wang N, Zhou H, Wang Q, Li JZ. PYCR1 promotes liver cancer cell growth and metastasis by regulating IRS1 expression through lactylation modification. Clin Transl Med 2024; 14:e70045. [PMID: 39422696 PMCID: PMC11488319 DOI: 10.1002/ctm2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Liver cancer (LC) is among the deadliest cancers worldwide, with existing treatments showing limited efficacy. This study aimed to elucidate the role and underlying mechanisms of pyrroline-5-carboxylate reductase 1 (PYCR1) as a potential therapeutic target in LC. METHODS Immunohistochemistry and Western blot were used to analyse the expression of PYCR1 in LC cells and tissues. EdU assays, colony-forming assays, scratch wound healing assays, Transwell assays, nude mouse xenograft models and nude mouse lung metastasis models were used to detect the growth and metastasis abilities of LC cells. Transcriptome sequencing was used to search for downstream target genes regulated by PYCR1, and metabolomics was used to identify the downstream metabolites regulated by PYCR1. ChIP assays were used to analyse the enrichment of H3K18 lactylation in the IRS1 promoter region. RESULTS We found that the expression of PYCR1 was significantly increased in HCC and that this high expression was associated with poor prognosis in HCC patients. Knockout or inhibition of PYCR1 inhibited HCC cell proliferation, migration and invasion both in vivo and in vitro. In addition, we revealed that knocking out or inhibiting PYCR1 could inhibit glycolysis in HCC cells and reduce H3K18 lactylation of the IRS1 histone, thereby inhibiting IRS1 expression. CONCLUSIONS Our findings identify PYCR1 as a pivotal regulator of LC progression that influences tumour cell metabolism and gene expression. By demonstrating the potential of targeting PYCR1 to inhibit LC cell proliferation and metastasis, this study identified PYCR1 as a promising therapeutic target for LC. HIGHLIGHTS Pyrroline-5-carboxylate reductase 1 (PYCR1) promotes the proliferation and metastasis of liver cancer (LC) cells. The expression of PYCR1 in LC is regulated by DNA methylation. Knocking down or inhibiting PYCR1 inhibits glycolysis as well as the PI3K/AKT/mTOR and MAPK/ERK pathways in LC cells. PYCR1 regulates the transcriptional activity of IRS1 by affecting H3K18 lactylation in its promoter region.
Collapse
Affiliation(s)
- Haoyu Wang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Mu Xu
- Department of Laboratory MedicineNanjing First HospitalNanjing Medical UniversityNanjingJiangsuChina
| | - Tong Zhang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Jinkun Pan
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Chaopu Li
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Bei Pan
- Department of Laboratory MedicineNanjing First HospitalNanjing Medical UniversityNanjingJiangsuChina
| | - Linpeng Zhou
- School of Basic Medicine and Clinical PharmacyNanjing First HospitalChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yun Huang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Chenzi Gao
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Mengping He
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Yao Xue
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Xuetao Ji
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Ning Wang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Hongwen Zhou
- Department of EndocrinologyThe First affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Qian Wang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
- Department of EndocrinologyThe affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityNorthern Jiangsu Institute of Clinical MedicineHuaianJiangsuChina
- Tianjian Laboratory of Advanced Biomedical SciencesInstitute of Advanced Biomedical SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
3
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhao C, Ma T, Cheng X, Zhang G, Bai Y. Genome-wide association study of cardiometabolic multimorbidity in the UK Biobank. Clin Genet 2024; 106:72-81. [PMID: 38409652 DOI: 10.1111/cge.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
Considering the high prevalence and poor prognosis of cardiometabolic multimorbidity (CMM), identifying causal factors and actively implementing preventive measures is crucial. However, Mendelian randomization (MR), a key method for identifying the causal factors of CMM, requires knowledge of the effects of SNPs on CMM, which remain unknown. We first analyzed the genetic overlap of single cardiometabolic diseases (CMDs) using the latest genome-wide association study (GWAS) for evidential support and comparison. We observed strong positive genetic correlations and shared loci among all CMDs. Further, GWAS and post-GWAS analyses of CMM were performed in 407 949 European ancestry individuals from the UK Biobank. Eleven loci and 12 lead SNPs were identified. By comparison, we found these SNPs were a subset of SNPs associated with CMDs, including both shared and non-shared SNPs. Then, the polygenic risk score model predicted the risk of CMM (C-index = 0.62) and we identified candidate genes related to lipid metabolism and immune function. Finally, as an example, two-sample MR analysis based on the GWAS revealed potential causal effects of total cholesterol, serum urate, body mass index, and smoking on CMM. These results provide a basis for future MR research and inspire future studies on the mechanism and prevention of CMM.
Collapse
Affiliation(s)
- Chenxuan Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianqi Ma
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xunjie Cheng
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yongping Bai
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Wu CY, Guo YY, Ma ZY, Zhou J, Long F, Shen H, Xu JD, Zhou SS, Huo JG, Hu CH, Li SL. Rationality of the ethanol precipitation process in modern preparation production of Zishui-Qinggan decoction evaluated by integrating UPLC-QTOF-MS/MS-based chemical profiling/serum pharmacochemistry and network pharmacology. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:733-753. [PMID: 38219286 DOI: 10.1002/pca.3325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Zishui-Qinggan decoction (ZQD) is a classical traditional Chinese medicine formula (TCMF) for alleviating menopausal symptoms (MPS) induced by endocrine therapy in breast cancer patients. In the production of TCMF modern preparations, ethanol precipitation (EP) is a commonly but not fully verified refining process. OBJECTIVES Chemical profiling/serum pharmacochemistry and network pharmacology approaches were integrated for exploring the rationality of the EP process in the production of ZQD modern preparations. MATERIAL AND METHODS Ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) was applied to identify the chemical profiles and absorbed components of ZQD. Network pharmacology was used to identify targets and pathways related to MPS-relieving efficacy. RESULTS The chemicals of ZQDs without/with EP process (referred to as ZQD-W and ZQD-W-P, respectively) were qualitatively similar with 89 and 87 components identified, respectively, but their relative contents were different; 51 components were detectable in the serum of rats orally administered with ZQD-W, whereas only 19 were detected in that administered with ZQD-W-P. Key targets, such as AKT1, and pathways, such as the PI3K-Akt signalling pathway, affected by ZQD-W and ZQD-W-P were similar, while the neuroactive ligand-receptor interaction pathway among others and the MAPK signalling pathway among others were specific pathways affected by ZQD-W and ZQD-W-P, respectively. The specifically absorbed components of ZQD-W could combine its specific key targets. CONCLUSION The EP process quantitatively altered the chemical profiles of ZQD, subsequently affected the absorbed components of ZQD, and then affected the key targets and pathways of ZQD for relieving MPS. The EP process might result in variation of the MPS-relieving efficacy of ZQD, which deserves further in vivo verification.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Yi-Yin Guo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen-Yue Ma
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Jie-Ge Huo
- Oncology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can-Hong Hu
- Oncology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| |
Collapse
|
6
|
Pavlin M, Škorja Milić N, Kandušer M, Pirkmajer S. Importance of the electrophoresis and pulse energy for siRNA-mediated gene silencing by electroporation in differentiated primary human myotubes. Biomed Eng Online 2024; 23:47. [PMID: 38750477 PMCID: PMC11097476 DOI: 10.1186/s12938-024-01239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - Nives Škorja Milić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Maša Kandušer
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Pharmacy Institute, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
8
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
9
|
Roberts BM, Geddis AV, Matheny RW. Differential activation of AKT isoforms by growth factors in human myotubes. Physiol Rep 2023; 11:e15805. [PMID: 37879895 PMCID: PMC10599983 DOI: 10.14814/phy2.15805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023] Open
Abstract
AKT signaling plays a crucial role in muscle physiology, and is activated by stimuli, including insulin, growth factors, and exercise. Three AKT isoforms have been identified in mammals, and they possess both distinct and redundant functions. However, it is currently unknown what the predominant AKT isoform is in primary human skeletal myotubes, and very little is known regarding the effects of insulin and insulin-like growth factor-I (IGF-I) on AKT isoforms activation in human myotubes. Thus, we sought to determine the abundances of each AKT isoform in primary human skeletal myotubes and their responses to insulin or IGF-I. Analysis of protein lysates by liquid chromatography-parallel reaction monitoring/mass spectrometry revealed that AKT1 was the most abundant AKT isoform and AKT3 was the least-abundant isoform. Next, myotubes were treated with either 100 nM insulin or 10 nM IGF-I for 5, 20, 45, or 60 min. In response to insulin, there was a significant treatment effect on phosphorylation of AKT1 and AKT2, but not AKT3 (p < 0.01). In response to IGF-I, there was a significant treatment effect on phosphorylation of pan-AKT at all timepoints compared to control (p < 0.01). Next, we determined how much of the total AKT isoform pool was phosphorylated. For insulin stimulation, AKT1 was significantly higher than AKT2 at 5 min and 60 min posttreatment (p < 0.05 both) and significantly different than AKT3 at all timepoints (p < 0.05). For IGF-I stimulation, AKT1 was significantly higher than AKT2 at 45 and 60 min posttreatment (p < 0.05 both) and significantly higher than AKT3 at all timepoints (p < 0.05). Our findings reveal the differential phosphorylation patterns among the AKT isoforms and suggest a potential explanation for the regulatory role of AKT1 in skeletal muscle.
Collapse
Affiliation(s)
| | - Alyssa V. Geddis
- US Army Research of Environmental MedicineNatickMassachusettsUSA
| | - Ronald W. Matheny
- US Army Research of Environmental MedicineNatickMassachusettsUSA
- Military Operational Medicine Research ProgramFt. DetrickMarylandUSA
| |
Collapse
|
10
|
Kang JS, Kim MJ, Kwon ES, Lee KP, Kim C, Kwon KS, Yang YR. Identification of novel genes associated with exercise and calorie restriction effects in skeletal muscle. Aging (Albany NY) 2023; 15:204793. [PMID: 37310402 DOI: 10.18632/aging.204793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Exercise and caloric restriction (CR) significantly increase longevity across a range of species and delay aging-related losses in organ function. Although both interventions enhance skeletal muscle function, the molecular mechanisms underlying these associations are unknown. We sought to identify genes regulated by CR and exercise in muscle, and investigate their relationship with muscle function. To do this, expression profiles of Gene Expression Omnibus datasets obtained from the muscle tissue of calorie-restricted male primates and young men post-exercise were analyzed. There were seven transcripts (ADAMTS1, CPEB4, EGR2, IRS2, NR4A1, PYGO1, and ZBTB43) that were consistently upregulated by both CR and exercise training. We used C2C12 murine myoblasts to investigate the effect of silencing these genes on myogenesis, mitochondrial respiration, autophagy, and insulin signaling, all of which are processes affected by CR and exercise. Our results show that in C2C12 cells, Irs2 and Nr4a1 expression were critical for myogenesis, and five genes (Egr2, Irs2, Nr4a1, Pygo1, and ZBTB43) regulated mitochondrial respiration while having no effect on autophagy. Cpeb4 knockdown increased the expression of genes involved in muscle atrophy and induced myotube atrophy. These findings suggest new resources for studying the mechanisms underlying the beneficial effects of exercise and calorie restriction on skeletal muscle function and lifespan extension.
Collapse
Affiliation(s)
- Jae Sook Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Ju Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Aventi Inc., Daejeon 34141, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Aventi Inc., Daejeon 34141, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
12
|
Le C, Hu X, Tong L, Ye X, Zhang J, Yan J, Sherchan P, Zhang JH, Gao F, Tang J. Inhibition of LAR attenuates neuroinflammation through RhoA/IRS-1/Akt signaling pathway after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2023; 43:869-881. [PMID: 36802818 PMCID: PMC10196755 DOI: 10.1177/0271678x231159352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Leukocyte common antigen-related phosphatase (LAR) is widely expressed in the central nervous system and is known to regulate a variety of processes including cell growth, differentiation, and inflammation. However, little is currently known about LAR signaling mediated neuroinflammation after intracerebral hemorrhage (ICH). The objective of this study was to investigate the role of LAR in ICH using autologous blood injection-induced ICH mouse model. Expression of endogenous proteins, brain edema and neurological function after ICH were evaluated. Extracellular LAR peptide (ELP), an inhibitor of LAR, was administered to ICH mice and outcomes were evaluated. LAR activating-CRISPR or IRS inhibitor NT-157 was administered to elucidate the mechanism. The results showed that expressions of LAR, its endogenous agonist chondroitin sulfate proteoglycans (CSPGs) including neurocan and brevican, and downstream factor RhoA increased after ICH. Administration of ELP reduced brain edema, improved neurological function, and decreased microglia activation after ICH. ELP decreased RhoA and phosphorylated serine-IRS1, increased phosphorylated tyrosine-IRS1 and p-Akt, and attenuated neuroinflammation after ICH, which was reversed by LAR activating-CRISPR or NT-157. In conclusion, this study demonstrated that LAR contributed to neuroinflammation after ICH via RhoA/IRS-1 pathway, and ELP may be a potential therapeutic strategy to attenuate LAR mediated neuroinflammation after ICH.
Collapse
Affiliation(s)
- Chensheng Le
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurology, Ningbo
Medical Center Lihuili Hospital, Ningbo, China
| | - Xin Hu
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, West
China Hospital, Sichuan University, Chengdu, China
| | - Lusha Tong
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xianghua Ye
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Junyi Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Yan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Guangxi
Medical University Cancer Hospital, Nanning, China
| | - Prativa Sherchan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Feng Gao
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Jiping Tang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
13
|
Bhat N, Mani A. Dysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:2323. [PMID: 37242206 PMCID: PMC10222271 DOI: 10.3390/nu15102323] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a highly prevalent condition affecting approximately a quarter of the global population. It is associated with increased morbidity, mortality, economic burden, and healthcare costs. The disease is characterized by the accumulation of lipids in the liver, known as steatosis, which can progress to more severe stages such as steatohepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). This review focuses on the mechanisms that contribute to the development of diet-induced steatosis in an insulin-resistant liver. Specifically, it discusses the existing literature on carbon flux through glycolysis, ketogenesis, TCA (Tricarboxylic Acid Cycle), and fatty acid synthesis pathways in NAFLD, as well as the altered canonical insulin signaling and genetic predispositions that lead to the accumulation of diet-induced hepatic fat. Finally, the review discusses the current therapeutic efforts that aim to ameliorate various pathologies associated with NAFLD.
Collapse
Affiliation(s)
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
14
|
Liu X, Yang Y, Shao H, Liu S, Niu Y, Fu L. Globular adiponectin ameliorates insulin resistance in skeletal muscle by enhancing the LKB1-mediated AMPK activation via SESN2. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:34-41. [PMID: 36994173 PMCID: PMC10040333 DOI: 10.1016/j.smhs.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Adiponectin has been demonstrated to be a mediator of insulin sensitivity; however, the underlined mechanisms remain unclear. SESN2 is a stress-inducible protein that phosphorylates AMPK in different tissues. In this study, we aimed to validate the amelioration of insulin resistance by globular adiponectin (gAd) and to reveal the role of SESN2 in the improvement of glucose metabolism by gAd. We used a high-fat diet-induced wild-type and SESN2-/- C57BL/6J insulin resistance mice model to study the effects of six-week aerobic exercise or gAd administration on insulin resistance. In vitro study, C2C12 myotubes were used to determine the potential mechanism by overexpressing or inhibiting SESN2. Similar to exercise, six-week gAd administration decreased fasting glucose, triglyceride and insulin levels, reduced lipid deposition in skeletal muscle and reversed whole-body insulin resistance in mice fed on a high-fat diet. Moreover, gAd enhanced skeletal muscle glucose uptake by activating insulin signaling. However, these effects were diminished in SESN2-/- mice. We found that gAd administration increased the expression of SESN2 and Liver kinase B1 (LKB1) and increased AMPK-T172 phosphorylation in skeletal muscle of wild-type mice, while in SESN2-/- mice, LKB1 expression was also increased but the pAMPK-T172 was unchanged. At the cellular level, gAd increased cellular SESN2 and pAMPK-T172 expression. Immunoprecipitation experiment suggested that SESN2 promoted the formation of complexes of AMPK and LKB1 and hence phosphorylated AMPK. In conclusion, our results revealed that SESN2 played a critical role in gAd-induced AMPK phosphorylation, activation of insulin signaling and skeletal muscle insulin sensitization in mice with insulin resistance.
Collapse
Affiliation(s)
- Xinmeng Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Heng Shao
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Kawamura G, Kokaji T, Kawata K, Sekine Y, Suzuki Y, Soga T, Ueda Y, Endo M, Kuroda S, Ozawa T. Optogenetic decoding of Akt2-regulated metabolic signaling pathways in skeletal muscle cells using transomics analysis. Sci Signal 2023; 16:eabn0782. [PMID: 36809024 DOI: 10.1126/scisignal.abn0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Insulin regulates various cellular metabolic processes by activating specific isoforms of the Akt family of kinases. Here, we elucidated metabolic pathways that are regulated in an Akt2-dependent manner. We constructed a transomics network by quantifying phosphorylated Akt substrates, metabolites, and transcripts in C2C12 skeletal muscle cells with acute, optogenetically induced activation of Akt2. We found that Akt2-specific activation predominantly affected Akt substrate phosphorylation and metabolite regulation rather than transcript regulation. The transomics network revealed that Akt2 regulated the lower glycolysis pathway and nucleotide metabolism and cooperated with Akt2-independent signaling to promote the rate-limiting steps in these processes, such as the first step of glycolysis, glucose uptake, and the activation of the pyrimidine metabolic enzyme CAD. Together, our findings reveal the mechanism of Akt2-dependent metabolic pathway regulation, paving the way for Akt2-targeting therapeutics in diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Genki Kawamura
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Kentaro Kawata
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka Sekine
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yoshibumi Ueda
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033, Japan
| | - Mizuki Endo
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033, Japan
| |
Collapse
|
16
|
Mäkinen S, Datta N, Rangarajan S, Nguyen YH, Olkkonen VM, Latva-Rasku A, Nuutila P, Laakso M, Koistinen HA. Finnish-specific AKT2 gene variant leads to impaired insulin signalling in myotubes. J Mol Endocrinol 2023; 70:JME-21-0285. [PMID: 36409629 PMCID: PMC9874976 DOI: 10.1530/jme-21-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Finnish-specific gene variant p.P50T/AKT2 (minor allele frequency (MAF) = 1.1%) is associated with insulin resistance and increased predisposition to type 2 diabetes. Here, we have investigated in vitro the impact of the gene variant on glucose metabolism and intracellular signalling in human primary skeletal muscle cells, which were established from 14 male p.P50T/AKT2 variant carriers and 14 controls. Insulin-stimulated glucose uptake and glucose incorporation into glycogen were detected with 2-[1,2-3H]-deoxy-D-glucose and D-[14C]-glucose, respectively, and the rate of glycolysis was measured with a Seahorse XFe96 analyzer. Insulin signalling was investigated with Western blotting. The binding of variant and control AKT2-PH domains to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) was assayed using PIP StripsTM Membranes. Protein tyrosine kinase and serine-threonine kinase assays were performed using the PamGene® kinome profiling system. Insulin-stimulated glucose uptake and glycogen synthesis in myotubes in vitro were not significantly affected by the genotype. However, the insulin-stimulated glycolytic rate was impaired in variant myotubes. Western blot analysis showed that insulin-stimulated phosphorylation of AKT-Thr308, AS160-Thr642 and GSK3β-Ser9 was reduced in variant myotubes compared to controls. The binding of variant AKT2-PH domain to PI(3,4,5)P3 was reduced as compared to the control protein. PamGene® kinome profiling revealed multiple differentially phosphorylated kinase substrates, e.g. calmodulin, between the genotypes. Further in silico upstream kinase analysis predicted a large-scale impairment in activities of kinases participating, for example, in intracellular signal transduction, protein translation and cell cycle events. In conclusion, myotubes from p.P50T/AKT2 variant carriers show multiple signalling alterations which may contribute to predisposition to insulin resistance and T2D in the carriers of this signalling variant.
Collapse
Affiliation(s)
- Selina Mäkinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
| | - Neeta Datta
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
| | - Savithri Rangarajan
- Pam Gene International B.V., Wolvenhoek, BJ ´s-Hertogenbosch, The Netherlands
| | - Yen H Nguyen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, Haartmaninkatu, University of Helsinki, Helsinki, Finland
| | - Aino Latva-Rasku
- Turku PET Centre, University of Turku, Kiinamyllynkatu, Turku, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Kiinamyllynkatu, Turku, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu, Turku, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Puijonlaaksontie, Kuopio, Finland
| | - Heikki A Koistinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
- Correspondence should be addressed to H A Koistinen:
| |
Collapse
|
17
|
Comparative Transcriptomic Analysis of mRNAs, miRNAs and lncRNAs in the Longissimus dorsi Muscles between Fat-Type and Lean-Type Pigs. Biomolecules 2022; 12:biom12091294. [PMID: 36139132 PMCID: PMC9496231 DOI: 10.3390/biom12091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
In pigs, meat quality and production are two important traits affecting the pig industry and human health. Compared to lean-type pigs, fat-type pigs contain higher intramuscular fat (IMF) contents, better taste and nutritional value. To uncover genetic factors controlling differences related to IMF in pig muscle, we performed RNA-seq analysis on the transcriptomes of the Longissimus dorsi (LD) muscle of Laiwu pigs (LW, fat-type pigs) and commercial Duroc × Landrace × Yorkshire pigs (DLY, lean-type pigs) at 150 d to compare the expression profiles of mRNA, miRNA and lncRNA. A total of 225 mRNAs, 12 miRNAs and 57 lncRNAs were found to be differentially expressed at the criteria of |log2(foldchange)| > 1 and q < 0.05. The mRNA expression of LDHB was significantly higher in the LD muscle of LW compared to DLY pigs with log2(foldchange) being 9.66. Using protein interaction prediction method, we identified more interactions of estrogen-related receptor alpha (ESRRA) associated with upregulated mRNAs, whereas versican (VCAN) and proenkephalin (PENK) were associated with downregulated mRNAs in LW pigs. Integrated analysis on differentially expressed (DE) mRNAs and miRNAs in the LD muscle between LW and DLY pigs revealed two network modules: between five upregulated mRNA genes (GALNT15, FKBP5, PPARGC1A, LOC110258214 and LOC110258215) and six downregulated miRNA genes (ssc-let-7a, ssc-miR190-3p, ssc-miR356-5p, ssc-miR573-5p, ssc-miR204-5p and ssc-miR-10383), and between three downregulated DE mRNA genes (IFRD1, LOC110258600 and LOC102158401) and six upregulated DE miRNA genes (ssc-miR1379-3p, ssc-miR1379-5p, ssc-miR397-5p, ssc-miR1358-5p, ssc-miR299-5p and ssc-miR1156-5p) in LW pigs. Based on the mRNA and ncRNA binding site targeting database, we constructed a regulatory network with miRNA as the center and mRNA and lncRNA as the target genes, including GALNT15/ssc-let-7a/LOC100523888, IFRD1/ssc-miR1379-5p/CD99, etc., forming a ceRNA network in the LD muscles that are differentially expressed between LW and DLY pigs. Collectively, these data may provide resources for further investigation of molecular mechanisms underlying differences in meat traits between lean- and fat-type pigs.
Collapse
|
18
|
Stocks B, Zierath JR. Post-translational Modifications: The Signals at the Intersection of Exercise, Glucose Uptake, and Insulin Sensitivity. Endocr Rev 2022; 43:654-677. [PMID: 34730177 PMCID: PMC9277643 DOI: 10.1210/endrev/bnab038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/19/2022]
Abstract
Diabetes is a global epidemic, of which type 2 diabetes makes up the majority of cases. Nonetheless, for some individuals, type 2 diabetes is eminently preventable and treatable via lifestyle interventions. Glucose uptake into skeletal muscle increases during and in recovery from exercise, with exercise effective at controlling glucose homeostasis in individuals with type 2 diabetes. Furthermore, acute and chronic exercise sensitizes skeletal muscle to insulin. A complex network of signals converge and interact to regulate glucose metabolism and insulin sensitivity in response to exercise. Numerous forms of post-translational modifications (eg, phosphorylation, ubiquitination, acetylation, ribosylation, and more) are regulated by exercise. Here we review the current state of the art of the role of post-translational modifications in transducing exercise-induced signals to modulate glucose uptake and insulin sensitivity within skeletal muscle. Furthermore, we consider emerging evidence for noncanonical signaling in the control of glucose homeostasis and the potential for regulation by exercise. While exercise is clearly an effective intervention to reduce glycemia and improve insulin sensitivity, the insulin- and exercise-sensitive signaling networks orchestrating this biology are not fully clarified. Elucidation of the complex proteome-wide interactions between post-translational modifications and the associated functional implications will identify mechanisms by which exercise regulates glucose homeostasis and insulin sensitivity. In doing so, this knowledge should illuminate novel therapeutic targets to enhance insulin sensitivity for the clinical management of type 2 diabetes.
Collapse
Affiliation(s)
- Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Koo BK, Lim S. Metabolic Syndrome and Metabolic Dysfunction‐Associated Fatty Liver Disease. CLINICAL OBESITY IN ADULTS AND CHILDREN 2022:159-177. [DOI: 10.1002/9781119695257.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Yokota‐Nakagi N, Omoto S, Tazumi S, Kawakami M, Takamata A, Morimoto K. Estradiol replacement improves high-fat diet-induced insulin resistance in ovariectomized rats. Physiol Rep 2022; 10:e15193. [PMID: 35238495 PMCID: PMC8892597 DOI: 10.14814/phy2.15193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 05/15/2023] Open
Abstract
The role of 17β-estradiol (E2) in high-fat diet (HFD)-induced alteration of the protein kinase B (Akt) signaling pathway in ovariectomized (OVX) rats is unclear. Therefore, we examined whether chronic estrogen replacement restores HFD-induced impairment in insulin sensitivity by its effects concomitant with alterations in the Akt isoform 2 (Akt2) and Akt substrate of 160 kDa (AS160) phosphorylation in muscles of OVX rats. Nine-week-old female Wistar rats underwent ovariectomy under anesthesia; after 4 weeks, subcutaneous implantation of either E2 or placebo (PL) pellets was performed, and HFD feeding was initiated. Intravenous glucose tolerance tests were performed to assess insulin sensitivity. Following insulin injection into rats' portal vein, the liver and gastrocnemius muscle were dissected for insulin signaling analysis. We observed that HFD increased energy intake and body weight in the PL group; however, it was temporarily decreased in the E2 group. Adipose tissue accumulation was larger in HFD-fed rats than in normal chow diet (NCD)-fed rats in the PL group; however, this difference was not observed in the E2 group. HFD reduced insulin sensitivity in the PL group only. In vivo insulin stimulation increased Akt2 phosphorylation in the muscles of NCD-fed rats in both groups. In contrast, HFD affected insulin-stimulated phosphorylation of Akt2 and AS160 in the muscles of rats in the PL group but not in the E2 group. Our data suggest that E2 replacement improves HFD-induced insulin resistance, and this effect is accompanied by the alterations in the Akt2 and AS160 phosphorylation in insulin-stimulated muscles of OVX rats.
Collapse
Affiliation(s)
- Naoko Yokota‐Nakagi
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
- Department of Health and NutritionFaculty of Health ScienceKyoto Koka Women’s UniversityKyotoJapan
| | - Sayo Omoto
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Shoko Tazumi
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Mizuho Kawakami
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Akira Takamata
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Keiko Morimoto
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
- Department of Health and NutritionFaculty of Health ScienceKyoto Koka Women’s UniversityKyotoJapan
| |
Collapse
|
21
|
McDonnell T, Cussen L, McIlroy M, O’Reilly MW. Characterizing skeletal muscle dysfunction in women with polycystic ovary syndrome. Ther Adv Endocrinol Metab 2022; 13:20420188221113140. [PMID: 35874313 PMCID: PMC9297442 DOI: 10.1177/20420188221113140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition affecting women. It has traditionally been viewed as a primarily reproductive disorder; however, it is increasingly recognized as a lifelong metabolic disease. Women with PCOS are at increased risk of insulin resistance (IR), type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular disease. Although not currently a diagnostic criterion, IR is a cardinal pathophysiological feature and highly prevalent in women with PCOS. Androgens play a bidirectional role in the pathogenesis of IR, and there is a complex interplay between IR and androgen excess in women with PCOS. Skeletal muscle has a key role in maintaining metabolic homeostasis and is also a metabolic target organ of androgen action. Skeletal muscle is the organ responsible for the majority of insulin-mediated glucose disposal. There is growing interest in the relationship between skeletal muscle, androgen excess and mitochondrial dysfunction in the pathogenesis of metabolic disease in PCOS. Molecular mechanisms underpinning defects in skeletal muscle dysfunction in PCOS remain to be elucidated, but may represent promising targets for future therapeutic intervention. In this review, we aim to explore the role of skeletal muscle in metabolism, focusing particularly on perturbations in skeletal muscle specific to PCOS as observed in recent molecular and in vivo human studies. We review the possible role of androgens in the pathophysiology of skeletal muscle abnormalities in PCOS, and identify knowledge gaps, areas for future research and potential therapeutic implications. Despite increasing interest in the area of skeletal muscle dysfunction in women with PCOS, significant challenges and unanswered questions remain, and going forward, novel innovative approaches will be required to dissect the underlying mechanisms.
Collapse
Affiliation(s)
- Tara McDonnell
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Republic of Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Leanne Cussen
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Republic of Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Republic of Ireland
| | | |
Collapse
|
22
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
23
|
Morgunova GV, Shilovsky GA, Khokhlov AN. Effect of Caloric Restriction on Aging: Fixing the Problems of Nutrient Sensing in Postmitotic Cells? BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1352-1367. [PMID: 34903158 DOI: 10.1134/s0006297921100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review discusses the role of metabolic disorders (in particular, insulin resistance) in the development of age-related diseases and normal aging with special emphasis on the changes in postmitotic cells of higher organisms. Caloric restriction helps to prevent such metabolic disorders, which could probably explain its ability to prolong the lifespan of laboratory animals. Maintaining metabolic homeostasis is especially important for the highly differentiated long-lived body cells, whose lifespan is comparable to the lifespan of the organism itself. Normal functioning of these cells can be ensured only upon correct functioning of the cytoplasm clean-up system and availability of all required nutrients and energy sources. One of the central problems in gerontology is the age-related disruption of glucose metabolism leading to obesity, diabetes, metabolic syndrome, and other related pathologies. Along with the adipose tissue, skeletal muscles are the main consumers of insulin; hence the physical activity of muscles, which supports their energy metabolism, delays the onset of insulin resistance. Insulin resistance disrupts the metabolism of cardiomyocytes, so that they fail to utilize the nutrients to perform their functions even being surrounded by a nutrient-rich environment, which contributes to the development of age-related cardiovascular diseases. Metabolic pathologies also alter the nutrient sensitivity of neurons, thus disrupting the action of insulin in the central nervous system. In addition, there is evidence that neurons can develop insulin resistance as well. It has been suggested that affecting nutritional sensors (e.g., AMPK) in postmitotic cells might improve the state of the entire multicellular organism, slow down its aging, and increase the lifespan.
Collapse
Affiliation(s)
- Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Gregory A Shilovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
24
|
O'Reilly CL, Uranga S, Fluckey JD. Culprits or consequences: Understanding the metabolic dysregulation of muscle in diabetes. World J Biol Chem 2021; 12:70-86. [PMID: 34630911 PMCID: PMC8473417 DOI: 10.4331/wjbc.v12.i5.70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of research dedicated to finding the culprits of this debilitating disease. Skeletal muscle is arguably the most important contributor to glucose disposal making it a clear target in insulin resistance and T2D research. Within skeletal muscle there is a clear link to metabolic dysregulation during the progression of T2D but the determination of culprits vs consequences of the disease has been elusive. Emerging evidence in skeletal muscle implicates influential cross talk between a key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and its associated complexes (mTORC1 and mTORC2), and the well-described canonical signaling for insulin-stimulated glucose uptake. This new understanding of cellular signaling crosstalk has blurred the lines of what is a culprit and what is a consequence with regard to insulin resistance. Here, we briefly review the most recent understanding of insulin signaling in skeletal muscle, and how anabolic responses favoring anabolism directly impact cellular glucose disposal. This review highlights key cross-over interactions between protein and glucose regulatory pathways and the implications this may have for the design of new therapeutic targets for the control of glucoregulatory function in skeletal muscle.
Collapse
Affiliation(s)
| | - Selina Uranga
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| | - James D Fluckey
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| |
Collapse
|
25
|
Coudert L, Osseni A, Gangloff YG, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol 2021; 19:153. [PMID: 34330273 PMCID: PMC8323235 DOI: 10.1186/s12915-021-01091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Myogenesis is a highly regulated process ending with the formation of myotubes, the precursors of skeletal muscle fibers. Differentiation of myoblasts into myotubes is controlled by myogenic regulatory factors (MRFs) that act as terminal effectors of signaling cascades involved in the temporal and spatial regulation of muscle development. Such signaling cascades converge and are controlled at the level of intracellular trafficking, but the mechanisms by which myogenesis is regulated by the endosomal machinery and trafficking is largely unexplored. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery composed of four complexes ESCRT-0 to ESCRT-III regulates the biogenesis and trafficking of endosomes as well as the associated signaling and degradation pathways. Here, we investigate its role in regulating myogenesis. Results We uncovered a new function of the ESCRT-0 hepatocyte growth factor-regulated tyrosine kinase substrate Hrs/Hgs component in the regulation of myogenesis. Hrs depletion strongly impairs the differentiation of murine and human myoblasts. In the C2C12 murine myogenic cell line, inhibition of differentiation was attributed to impaired MRF in the early steps of differentiation. This alteration is associated with an upregulation of the MEK/ERK signaling pathway and a downregulation of the Akt2 signaling both leading to the inhibition of differentiation. The myogenic repressors FOXO1 as well as GSK3β were also found to be both activated when Hrs was absent. Inhibition of the MEK/ERK pathway or of GSK3β by the U0126 or azakenpaullone compounds respectively significantly restores the impaired differentiation observed in Hrs-depleted cells. In addition, functional autophagy that is required for myogenesis was also found to be strongly inhibited. Conclusions We show for the first time that Hrs/Hgs is a master regulator that modulates myogenesis at different levels through the control of trafficking, signaling, and degradation pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01091-4.
Collapse
Affiliation(s)
- L Coudert
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - A Osseni
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - Y G Gangloff
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - L Schaeffer
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - P Leblanc
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France.
| |
Collapse
|
26
|
Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 2021; 32:500-514. [PMID: 33975804 DOI: 10.1016/j.tem.2021.04.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic condition characterized by hepatic fat accumulation combined with underlying metabolic dysregulation. Having evolved from the previous term of nonalcoholic fatty liver disease (NAFLD), the term MAFLD more closely implicates the presence of overweight/obesity, type 2 diabetes, or metabolic dysregulation as essential pathogenic factors, leading to better identification of individuals with this metabolic liver disease. Low-grade inflammation, increased oxidative stress, mitochondrial dysfunction, and intestinal dysbiosis are also involved in its pathogenesis. MAFLD is not only associated with liver-related complications, but also with adverse cardiometabolic outcomes. Further studies are needed to assess whether the newly proposed definition of MAFLD is more accurate than the NAFLD in predicting the adverse liver-related and extrahepatic outcomes.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea.
| | - Jin-Wook Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
27
|
De Paoli M, Zakharia A, Werstuck GH. The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1490-1498. [PMID: 34102108 DOI: 10.1016/j.ajpath.2021.05.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
Insulin resistance results when peripheral tissues, including adipose, skeletal muscle, and liver, do not respond appropriately to insulin, causing the ineffective uptake of glucose. This represents a risk factor for the development of type 2 diabetes mellitus. Along with abdominal obesity, hypertension, high levels of triglycerides, and low levels of high-density lipoproteins, insulin resistance is a component of a condition known as the metabolic syndrome, which significantly increases the risk of developing cardiometabolic disorders. Accumulating evidence shows that biological sex has a major influence in the development of cardiometabolic disturbances, with females being more protected than males. This protection appears to be driven by female sex hormones (estrogens), as it tends to disappear with the onset of menopause but can be re-established with hormone replacement therapy. This review evaluates current knowledge on the protective role of estrogens in the relevant pathways associated with insulin resistance. The importance of increasing our understanding of sex as a biological variable in cardiometabolic research to promote the development of more effective preventative strategies is emphasized.
Collapse
Affiliation(s)
- Monica De Paoli
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alexander Zakharia
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
28
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
29
|
Abstract
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
Collapse
|
30
|
Arous C, Mizgier ML, Rickenbach K, Pinget M, Bouzakri K, Wehrle-Haller B. Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells. J Biol Chem 2020; 295:16510-16528. [PMID: 32934005 PMCID: PMC7864053 DOI: 10.1074/jbc.ra120.012957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/09/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2-AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)-dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.
Collapse
Affiliation(s)
- Caroline Arous
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland.
| | - Maria Luisa Mizgier
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Katharina Rickenbach
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Michel Pinget
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Karim Bouzakri
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Manohar S, Yu Q, Gygi SP, King RW. The Insulin Receptor Adaptor IRS2 is an APC/C Substrate That Promotes Cell Cycle Protein Expression and a Robust Spindle Assembly Checkpoint. Mol Cell Proteomics 2020; 19:1450-1467. [PMID: 32554797 PMCID: PMC8143631 DOI: 10.1074/mcp.ra120.002069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/01/2020] [Indexed: 01/21/2023] Open
Abstract
Insulin receptor substrate 2 (IRS2) is an essential adaptor that mediates signaling downstream of the insulin receptor and other receptor tyrosine kinases. Transduction through IRS2-dependent pathways is important for coordinating metabolic homeostasis, and dysregulation of IRS2 causes systemic insulin signaling defects. Despite the importance of maintaining proper IRS2 abundance, little is known about what factors mediate its protein stability. We conducted an unbiased proteomic screen to uncover novel substrates of the Anaphase Promoting Complex/Cyclosome (APC/C), a ubiquitin ligase that controls the abundance of key cell cycle regulators. We found that IRS2 levels are regulated by APC/C activity and that IRS2 is a direct APC/C target in G1 Consistent with the APC/C's role in degrading cell cycle regulators, quantitative proteomic analysis of IRS2-null cells revealed a deficiency in proteins involved in cell cycle progression. We further show that cells lacking IRS2 display a weakened spindle assembly checkpoint in cells treated with microtubule inhibitors. Together, these findings reveal a new pathway for IRS2 turnover and indicate that IRS2 is a component of the cell cycle control system in addition to acting as an essential metabolic regulator.
Collapse
Affiliation(s)
- Sandhya Manohar
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Randall W King
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
32
|
Bouzakri K, Veyrat-Durebex C, Holterman C, Arous C, Barbieux C, Bosco D, Altirriba J, Alibashe M, Tournier BB, Gunton JE, Mouche S, Bietiger W, Forterre A, Berney T, Pinget M, Christofori G, Kennedy C, Szanto I. Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxid Redox Signal 2020; 32:618-635. [PMID: 31931619 DOI: 10.1089/ars.2018.7579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate β-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, β-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (β) cells. In vivo, mice with β-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in β-cell failure in diabetic conditions.
Collapse
Affiliation(s)
- Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Chet Holterman
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Charlotte Barbieux
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mohamed Alibashe
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Vulnerability Biomarkers Unit, Division of General Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Millennium Institute, The University of Sydney, Sydney, Australia.,Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, Australia
| | - Sarah Mouche
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Thierry Berney
- Division of Transplantation, Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Pinget
- Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Christopher Kennedy
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ildiko Szanto
- Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine at the University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Jiao P, Yuan Y, Zhang M, Sun Y, Wei C, Xie X, Zhang Y, Wang S, Chen Z, Wang X. PRL/microRNA-183/IRS1 Pathway Regulates Milk Fat Metabolism in Cow Mammary Epithelial Cells. Genes (Basel) 2020; 11:E196. [PMID: 32069836 PMCID: PMC7073568 DOI: 10.3390/genes11020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to understand the internal relationship between milk quality and lipid metabolism in cow mammary glands. A serial of studies was conducted to assess the molecular mechanism of PRL/microRNA-183/IRS1 (Insulin receptor substrate) pathway, which regulates milk fat metabolism in dairy cows. microRNA-183 (miR-183) was overexpressed and inhibited in cow mammary epithelial cells (CMECs), and its function was detected. The function of miR-183 in inhibiting milk fat metabolism was clarified by triglycerides (TAG), cholesterol and marker genes. There is a CpG island in the 5'-flanking promoter area of miR-183, which may inhibit the expression of miR-183 after methylation. Our results showed that prolactin (PRL) inhibited the expression of miR-183 by methylating the 5' terminal CpG island of miR-183. The upstream regulation of PRL on miR-183 was demonstrated, and construction of the lipid metabolism regulation network of microRNA-183 and target gene IRS1 was performed. These results reveal the molecular mechanism of PRL/miR-183/IRS1 pathway regulating milk fat metabolism in dairy cows, thus providing an experimental basis for the improvement of milk quality.
Collapse
Affiliation(s)
- Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Y.S.); (C.W.); (X.X.); (Y.Z.)
| | - Yuan Yuan
- School of Nursing, Yangzhou University, Yangzhou 225009, China;
| | - Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Y.S.); (C.W.); (X.X.); (Y.Z.)
| | - Youran Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Y.S.); (C.W.); (X.X.); (Y.Z.)
| | - Chuanzi Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Y.S.); (C.W.); (X.X.); (Y.Z.)
| | - Xiaolai Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Y.S.); (C.W.); (X.X.); (Y.Z.)
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Y.S.); (C.W.); (X.X.); (Y.Z.)
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Xiaolong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
34
|
Edick AM, Auclair O, Burgos SA. Role of Grb10 in mTORC1-dependent regulation of insulin signaling and action in human skeletal muscle cells. Am J Physiol Endocrinol Metab 2020; 318:E173-E183. [PMID: 31794259 DOI: 10.1152/ajpendo.00025.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that binds to the insulin receptor, upon which insulin signaling and action are thought to be inhibited. Grb10 is also a substrate for the mechanistic target of rapamycin complex 1 (mTORC1) that mediates its feedback inhibition on phosphatidylinositide 3-kinase (PI3K)/Akt signaling. To characterize the function of Grb10 and its regulation by mTORC1 in human muscle, primary skeletal muscle cells were isolated from healthy lean young men and then induced to differentiate into myotubes. Knockdown of Grb10 enhanced insulin-induced PI3K/Akt signaling and glucose uptake in myotubes, reinforcing the notion underlying its function as a negative regulator of insulin action in human muscle. The increased insulin responsiveness in Grb10-silenced myotubes was associated with a higher abundance of the insulin receptor. Furthermore, insulin and amino acids independently and additively stimulated phosphorylation of Grb10 at Ser476. However, acute inhibition of mTORC1 with rapamycin blocked Grb10 Ser476 phosphorylation and repressed a negative-feedback loop on PI3K/Akt signaling that increased myotube responsiveness to insulin. Chronic rapamycin treatment reduced Grb10 protein abundance in conjunction with increased insulin receptor protein levels. Based on these findings, we propose that mTORC1 controls PI3K/Akt signaling through modulation of insulin receptor abundance by Grb10. These findings have potential implications for obesity-linked insulin resistance, as well as clinical use of mTORC1 inhibitors.
Collapse
Affiliation(s)
- Ashlin M Edick
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Olivia Auclair
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sergio A Burgos
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Mohammadian Gol T, Rodemann HP, Dittmann K. Depletion of Akt1 and Akt2 Impairs the Repair of Radiation-Induced DNA Double Strand Breaks via Homologous Recombination. Int J Mol Sci 2019; 20:ijms20246316. [PMID: 31847370 PMCID: PMC6941063 DOI: 10.3390/ijms20246316] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination repair (HRR), non-homologous end-joining (NHEJ) and alternative NHEJ are major pathways that are utilized by cells for processing DNA double strand breaks (DNA-DSBs); their function plays an important role in the radiation resistance of tumor cells. Conflicting data exist regarding the role of Akt in homologous recombination (HR), i.e., the regulation of Rad51 as a major protein of this pathway. This study was designed to investigate the specific involvement of Akt isoforms in HRR. HCT116 colon cancer cells with stable AKT-knock-out and siRNA-mediated AKT-knockdown phenotypes were used to investigate the role of Akt1 and Akt2 isoforms in HR. The results clearly demonstrated that HCT116 AKT1-KO and AKT2-KO cells have a significantly reduced Rad51 foci formation 6 h post irradiation versus parental cells. Depletion of Akt1 and Akt2 protein levels as well as inhibition of Akt kinase activity resulted in an increased number of residual-γH2AX in CENP-F positive cells mainly representing the S and G2 phase cells. Furthermore, inhibition of NHEJ and HR using DNA-PK and Rad51 antagonists resulted in stronger radiosensitivity of AKT1 and AKT2 knockout cells versus wild type cells. These data collectively show that both Akt1 and Akt2 are involved in DSBs repair through HRR.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany;
- DKFZ Partner Site Tübingen, German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
| | - H. Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany;
- DKFZ Partner Site Tübingen, German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
- Correspondence: (H.P.R.); (K.D.); Tel.: +49-70-7129-87465 (K.D.); Fax: +49-70-7129-5900 (K.D.)
| | - Klaus Dittmann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany;
- DKFZ Partner Site Tübingen, German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
- Correspondence: (H.P.R.); (K.D.); Tel.: +49-70-7129-87465 (K.D.); Fax: +49-70-7129-5900 (K.D.)
| |
Collapse
|
36
|
Jiang X, Tian W, Nicolls MR, Rockson SG. The Lymphatic System in Obesity, Insulin Resistance, and Cardiovascular Diseases. Front Physiol 2019; 10:1402. [PMID: 31798464 PMCID: PMC6868002 DOI: 10.3389/fphys.2019.01402] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity, insulin resistance, dyslipidemia, and hypertension are fundamental clinical manifestations of the metabolic syndrome. Studies over the last few decades have implicated chronic inflammation and microvascular remodeling in the development of obesity and insulin resistance. Newer observations, however, suggest that dysregulation of the lymphatic system underlies the development of the metabolic syndrome. This review summarizes recent advances in the field, discussing how lymphatic abnormality promotes obesity and insulin resistance, and, conversely, how the metabolic syndrome impairs lymphatic function. We also discuss lymphatic biology in metabolically dysregulated diseases, including type 2 diabetes, atherosclerosis, and myocardial infarction.
Collapse
Affiliation(s)
- Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark R Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Stanley G Rockson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
37
|
Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Front Pharmacol 2019; 10:661. [PMID: 31258478 PMCID: PMC6587894 DOI: 10.3389/fphar.2019.00661] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a condition in which insulin sensitivity is reduced and the insulin signaling pathway is impaired. Although often expressed as an increase in insulin concentration, the disease is characterized by a decrease in insulin action. This increased workload of the pancreas and the consequent decompensation are not only the main mechanisms for the development of type 2 diabetes (T2D), but also exacerbate the damage of metabolic diseases, including obesity, nonalcoholic fatty liver disease, polycystic ovary syndrome, metabolic syndrome, and others. Many clinical trials have suggested the potential role of herbs in the treatment of insulin resistance, although most of the clinical trials included in this review have certain flaws and bias risks in their methodological design, including the generation of randomization, the concealment of allocation, blinding, and inadequate reporting of sample size estimates. These studies involve not only the single-flavored herbs, but also herbal formulas, extracts, and active ingredients. Numerous of in vitro and in vivo studies have pointed out that the role of herbal medicine in improving insulin resistance is related to interventions in various aspects of the insulin signaling pathway. The targets involved in these studies include insulin receptor substrate, phosphatidylinositol 3-kinase, glucose transporter, AMP-activated protein kinase, glycogen synthase kinase 3, mitogen-activated protein kinases, c-Jun-N-terminal kinase, nuclear factor-kappaB, protein tyrosine phosphatase 1B, nuclear factor-E2-related factor 2, and peroxisome proliferator-activated receptors. Improved insulin sensitivity upon treatment with herbal medicine provides considerable prospects for treating insulin resistance. This article reviews studies of the target mechanisms of herbal treatments for insulin resistance.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Yang Y, Liu C, Adeola AC, Sulaiman X, Xie HB, Zhang YP. Artificial selection drives differential gene expression during pig domestication. J Genet Genomics 2019; 46:97-100. [PMID: 30850275 DOI: 10.1016/j.jgg.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/08/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Yang Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Chaorui Liu
- National Pilot School of Software, Yunnan University, Kunming, 650500, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | | | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
39
|
Zhang Q, Duplany A, Moncollin V, Mouradian S, Goillot E, Mazelin L, Gauthier K, Streichenberger N, Angleraux C, Chen J, Ding S, Schaeffer L, Gangloff YG. Lack of muscle mTOR kinase activity causes early onset myopathy and compromises whole-body homeostasis. J Cachexia Sarcopenia Muscle 2019; 10:35-53. [PMID: 30461220 PMCID: PMC6438346 DOI: 10.1002/jcsm.12336] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The protein kinase mechanistic target of rapamycin (mTOR) controls cellular growth and metabolism. Although balanced mTOR signalling is required for proper muscle homeostasis, partial mTOR inhibition by rapamycin has beneficial effects on various muscle disorders and age-related pathologies. Besides, more potent mTOR inhibitors targeting mTOR catalytic activity have been developed and are in clinical trials. However, the physiological impact of loss of mTOR catalytic activity in skeletal muscle is currently unknown. METHODS We have generated the mTORmKOKI mouse model in which conditional loss of mTOR is concomitant with expression of kinase inactive mTOR in skeletal muscle. We performed a comparative phenotypic and biochemical analysis of mTORmKOKI mutant animals with muscle-specific mTOR knockout (mTORmKO) littermates. RESULTS In striking contrast with mTORmKO littermates, mTORmKOKI mice developed an early onset rapidly progressive myopathy causing juvenile lethality. More than 50% mTORmKOKI mice died before 8 weeks of age, and none survived more than 12 weeks, while mTORmKO mice died around 7 months of age. The growth rate of mTORmKOKI mice declined beyond 1 week of age, and the animals showed profound alterations in body composition at 4 weeks of age. At this age, their body weight was 64% that of mTORmKO mice (P < 0.001) due to significant reduction in lean and fat mass. The mass of isolated muscles from mTORmKOKI mice was remarkably decreased by 38-56% (P < 0.001) as compared with that from mTORmKO mice. Histopathological analysis further revealed exacerbated dystrophic features and metabolic alterations in both slow/oxidative and fast/glycolytic muscles from mTORmKOKI mice. We show that the severity of the mTORmKOKI as compared with the mild mTORmKO phenotype is due to more robust suppression of muscle mTORC1 signalling leading to stronger alterations in protein synthesis, oxidative metabolism, and autophagy. This was accompanied with stronger feedback activation of PKB/Akt and dramatic down-regulation of glycogen phosphorylase expression (0.16-fold in tibialis anterior muscle, P < 0.01), thus causing features of glycogen storage disease type V. CONCLUSIONS Our study demonstrates a critical role for muscle mTOR catalytic activity in the regulation of whole-body growth and homeostasis. We suggest that skeletal muscle targeting with mTOR catalytic inhibitors may have detrimental effects. The mTORmKOKI mutant mouse provides an animal model for the pathophysiological understanding of muscle mTOR activity inhibition as well as for mechanistic investigation of the influence of skeletal muscle perturbations on whole-body homeostasis.
Collapse
Affiliation(s)
- Qing Zhang
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Agnès Duplany
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France
| | - Vincent Moncollin
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France
| | - Sandrine Mouradian
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France
| | - Evelyne Goillot
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France
| | - Laetitia Mazelin
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242, CNRS, ENS Lyon, Lyon Cedex 07, France
| | - Nathalie Streichenberger
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Céline Angleraux
- AniRA PBES, Biosciences Gerland - Lyon Sud (UMS3444/US8), ENS Lyon, Lyon, France
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Laurent Schaeffer
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France.,Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Yann-Gaël Gangloff
- Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France.,LBMC, UMR 5239, ENS Lyon, Lyon Cedex 07, France
| |
Collapse
|
40
|
Gaster M. The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal. APMIS 2018; 127:3-26. [DOI: 10.1111/apm.12908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Gaster
- Laboratory for Molecular Physiology Department of Pathology and Department of Endocrinology Odense University Hospital Odense Denmark
| |
Collapse
|
41
|
Kawakami M, Yokota-Nakagi N, Uji M, Yoshida KI, Tazumi S, Takamata A, Uchida Y, Morimoto K. Estrogen replacement enhances insulin-induced AS160 activation and improves insulin sensitivity in ovariectomized rats. Am J Physiol Endocrinol Metab 2018; 315:E1296-E1304. [PMID: 30179516 DOI: 10.1152/ajpendo.00131.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Menopause predisposes women to impaired glucose metabolism, but the role of estrogen remains unclear. In this study, we examined the effects of chronic estrogen replacement on whole body insulin sensitivity and insulin signaling in ovariectomized rats. Female Wistar rats aged 9 wk were ovariectomized under anesthesia. After 4 wk, pellets containing either 17β-estradiol (E2) or placebo (Pla) were subcutaneously implanted in the rats. After 4 wk of treatment, the intra-abdominal fat accumulation was greater in the Pla group than that in the E2 group. Hyperinsulinemic-euglycemic clamp analysis and intravenous glucose tolerance test revealed that insulin sensitivity was significantly lower in the Pla group than in the E2 group. In addition, Western blotting showed that in vivo insulin stimulation increased protein kinase B (Akt) phosphorylation to a similar degree in the gastrocnemius and liver of both groups, but phosphorylated Akt2 Ser474 was enhanced in the muscle of the E2 group compared with the Pla group. Moreover, insulin-stimulated phosphorylation of Akt substrate of 160 kDa (AS160) Thr642 was observed only in the E2 group, resulting in the difference between the two groups. Additionally, AS160 protein and mRNA levels were higher in muscle of the E2 group than the Pla group. In contrast, E2 replacement had no effect on glucose transporter 4 protein levels in muscle and glycogen synthase kinase-3β in muscle and liver. These results suggest that estrogen replacement improves insulin sensitivity by activating the Akt2/AS160 pathway in the insulin-stimulated muscle of ovariectomized rats.
Collapse
Affiliation(s)
- Mizuho Kawakami
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Naoko Yokota-Nakagi
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Masami Uji
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University , Tokyo , Japan
| | - Shoko Tazumi
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Akira Takamata
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Yuki Uchida
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Keiko Morimoto
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| |
Collapse
|
42
|
MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19123705. [PMID: 30469501 PMCID: PMC6321520 DOI: 10.3390/ijms19123705] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022] Open
Abstract
The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3′UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.
Collapse
|
43
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1682] [Impact Index Per Article: 240.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
44
|
Hörbelt T, Tacke C, Markova M, Herzfeld de Wiza D, Van de Velde F, Bekaert M, Van Nieuwenhove Y, Hornemann S, Rödiger M, Seebeck N, Friedl E, Jonas W, Thoresen GH, Kuss O, Rosenthal A, Lange V, Pfeiffer AFH, Schürmann A, Lapauw B, Rudovich N, Pivovarova O, Ouwens DM. The novel adipokine WISP1 associates with insulin resistance and impairs insulin action in human myotubes and mouse hepatocytes. Diabetologia 2018; 61:2054-2065. [PMID: 29754289 DOI: 10.1007/s00125-018-4636-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP1) has been recently identified as a proinflammatory adipokine. We examined whether WISP1 expression and circulating levels are altered in type 2 diabetes and whether WISP1 affects insulin signalling in muscle cells and hepatocytes. METHODS Serum and visceral adipose tissue (VAT) biopsies, for analysis of circulating WISP1 levels by ELISA and WISP1 mRNA expression by real-time quantitative RT-PCR, were collected from normal-weight men (control group, n = 33) and obese men with (n = 46) and without type 2 diabetes (n = 56) undergoing surgery. Following incubation of primary human skeletal muscle cells (hSkMCs) and murine AML12 hepatocytes with WISP1 and insulin, insulin signalling was analysed by western blotting. The effect of WISP1 on insulin-stimulated glycogen synthesis and gluconeogenesis was investigated in hSkMCs and murine hepatocytes, respectively. RESULTS Circulating WISP1 levels were higher in obese men (independent of diabetes status) than in normal-weight men (mean [95% CI]: 70.8 [55.2, 86.4] ng/l vs 42.6 [28.5, 56.6] ng/l, respectively; p < 0.05). VAT WISP1 expression was 1.9-fold higher in obese men vs normal-weight men (p < 0.05). Circulating WISP1 levels were positively associated with blood glucose in the OGTT and circulating haem oxygenase-1 and negatively associated with adiponectin levels. In hSkMCs and AML12 hepatocytes, recombinant WISP1 impaired insulin action by inhibiting phosphorylation of insulin receptor, Akt and its substrates glycogen synthase kinase 3β, FOXO1 and p70S6 kinase, and inhibiting insulin-stimulated glycogen synthesis and suppression of gluconeogenic genes. CONCLUSIONS/INTERPRETATION Circulating WISP1 levels and WISP1 expression in VAT are increased in obesity independent of glycaemic status. Furthermore, WISP1 impaired insulin signalling in muscle and liver cells.
Collapse
Affiliation(s)
- Tina Hörbelt
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Christopher Tacke
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany
| | - Mariya Markova
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Daniella Herzfeld de Wiza
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | | | - Marlies Bekaert
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | - Silke Hornemann
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Maria Rödiger
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Nicole Seebeck
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Elisabeth Friedl
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Wenke Jonas
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kuss
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Duesseldorf, Germany
| | | | - Volker Lange
- Center for Obesity and Metabolic Surgery, Vivantes Hospital, Berlin, Germany
- Helios Hospital Berlin-Buch, Berlin, Germany
| | - Andreas F H Pfeiffer
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Natalia Rudovich
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Spital Bülach, Bülach, Switzerland
| | - Olga Pivovarova
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany.
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany.
| | - D Margriet Ouwens
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
45
|
Ay A, Alkanli N, Sipahi T, Gulyasar T, Ustundag S, Guldiken S, Sut N. Investigation of the relationship between MTHFR, IRS and CALCA gene polymorphisms and development of diabetic nephropathy in patients with type 2 diabetes mellitus. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1485514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Arzu Ay
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Nevra Alkanli
- Department of Biophysics, Faculty of Medicine, T.C. Halic University, Istanbul, Turkey
| | - Tammam Sipahi
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Tevfik Gulyasar
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sedat Ustundag
- Department of Internal Medicine (Nephrology), Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sibel Guldiken
- Department of Internal Medicine (Endocrinology and Metabolic Diseases), Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Necdet Sut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
46
|
Ali Z, Chandrasekera PC, Pippin JJ. Animal research for type 2 diabetes mellitus, its limited translation for clinical benefit, and the way forward. Altern Lab Anim 2018; 46:13-22. [PMID: 29553794 DOI: 10.1177/026119291804600101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) have reached pandemic proportions worldwide, and considerable research efforts have been dedicated to investigating disease pathology and therapeutic options. The two hallmark features of T2DM, insulin resistance and pancreatic dysfunction, have been studied extensively by using various animal models. Despite the knowledge acquired from such models, particularly mechanistic discoveries that sometimes mimic human T2DM mechanisms or pathways, many details of human T2DM pathogenesis remain unknown, therapeutic options remain limited, and a cure has eluded research. Emerging human data have raised concern regarding inter-species differences at many levels (e.g. in gene regulation, pancreatic cytoarchitecture, glucose transport, and insulin secretion regulation), and the subsequent impact of these differences on the clinical translation of animal research findings. Therefore, it is important to recognise and address the translational gap between basic animal-based research and the clinical advances needed to prevent and treat T2DM. The purpose of this report is to identify some limitations of T2DM animal research, and to propose how greater human relevance and applicability of hypothesis-driven basic T2DM research could be achieved through the use of human-based data acquisition at various biological levels. This report addresses how in vitro, in vivo and in silico technologies could be used to investigate particular aspects of human glucose regulation. We do not propose that T2DM animal research has been without value in the identification of mechanisms, pathways, or potential targets for therapies, nor do we claim that human-based methods can provide all the answers. We recognise that the ultimate goal of T2DM animal research is to identify ways to advance the prevention, recognition and treatment of T2DM in humans, but postulate that this is where the use of animal models falls short, despite decades of effort. The best way to achieve this goal is by prioritising human-centred research.
Collapse
Affiliation(s)
- Zeeshan Ali
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | - John J Pippin
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| |
Collapse
|
47
|
Abstract
Numerous natural products available over the counter are commonly consumed by healthy, sub-healthy or ill people for the treatment and prevention of various chronic diseases. Among them, a few dietary polyphenols, including the curry compound curcumin, have been attracting the most attention from biomedical researchers and drug developers. Unlike many so-called "good drug candidates", curcumin and several other dietary polyphenols do not have a single known therapeutic target or defined receptor. In addition, the bioavailability of these polyphenols is usually very low due to their poor absorption in the gut. These recently debated features have created enormous difficulties for drug developers. In this review, I do not discuss how to develop curcumin, other dietary polyphenols or their derivatives into pharmaceutical agents. Instead, I comment on how curcumin and dietary polyphenol research has enriched our knowledge of insulin signaling, including the presentation of my perspectives on how these studies will add to our understanding of the famous hepatic insulin function paradox.
Collapse
|
48
|
Rabiee A, Krüger M, Ardenkjær-Larsen J, Kahn CR, Emanuelli B. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cell Signal 2018; 47:1-15. [PMID: 29550500 DOI: 10.1016/j.cellsig.2018.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1-/- and IRS-2-/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins.
Collapse
Affiliation(s)
- Atefeh Rabiee
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jacob Ardenkjær-Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
49
|
Latva-Rasku A, Honka MJ, Stančáková A, Koistinen HA, Kuusisto J, Guan L, Manning AK, Stringham H, Gloyn AL, Lindgren CM, Collins FS, Mohlke KL, Scott LJ, Karjalainen T, Nummenmaa L, Boehnke M, Nuutila P, Laakso M. A Partial Loss-of-Function Variant in AKT2 Is Associated With Reduced Insulin-Mediated Glucose Uptake in Multiple Insulin-Sensitive Tissues: A Genotype-Based Callback Positron Emission Tomography Study. Diabetes 2018; 67:334-342. [PMID: 29141982 PMCID: PMC5780065 DOI: 10.2337/db17-1142] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Rare fully penetrant mutations in AKT2 are an established cause of monogenic disorders of glucose metabolism. Recently, a novel partial loss-of-function AKT2 coding variant (p.Pro50Thr) was identified that is nearly specific to Finns (frequency 1.1%), with the low-frequency allele associated with an increase in fasting plasma insulin level and risk of type 2 diabetes. The effects of the p.Pro50Thr AKT2 variant (p.P50T/AKT2) on insulin-stimulated glucose uptake (GU) in the whole body and in different tissues have not previously been investigated. We identified carriers (N = 20) and matched noncarriers (N = 25) for this allele in the population-based Metabolic Syndrome in Men (METSIM)study and invited these individuals back for positron emission tomography study with [18F]-fluorodeoxyglucose during euglycemic hyperinsulinemia. When we compared p.P50T/AKT2 carriers to noncarriers, we found a 39.4% reduction in whole-body GU (P = 0.006) and a 55.6% increase in the rate of endogenous glucose production (P = 0.038). We found significant reductions in GU in multiple tissues-skeletal muscle (36.4%), liver (16.1%), brown adipose (29.7%), and bone marrow (32.9%)-and increases of 16.8-19.1% in seven tested brain regions. These data demonstrate that the p.P50T substitution of AKT2 influences insulin-mediated GU in multiple insulin-sensitive tissues and may explain, at least in part, the increased risk of type 2 diabetes in p.P50T/AKT2 carriers.
Collapse
Affiliation(s)
| | | | - Alena Stančáková
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki A Koistinen
- University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Johanna Kuusisto
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Li Guan
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Alisa K Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Heather Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Anna L Gloyn
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, U.K
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, U.K
| | | | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Markku Laakso
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
50
|
The effect of differentiation and TGFβ on mitochondrial respiration and mitochondrial enzyme abundance in cultured primary human skeletal muscle cells. Sci Rep 2018; 8:737. [PMID: 29335583 PMCID: PMC5768688 DOI: 10.1038/s41598-017-18658-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
Measuring mitochondrial respiration in cultured cells is a valuable tool to investigate the influence of physiological and disease-related factors on cellular metabolism; however, the details of the experimental workflow greatly influence the informative value of the results. Working with primary cells and cell types capable of differentiation can be particularly challenging. We present a streamlined workflow optimised for investigation of primary human skeletal muscle cells. We applied the workflow to differentiated and undifferentiated cells and we investigated the effect of TGFβ1 treatment. Differentiation of myoblasts to myotubes increased mitochondrial respiration and abundance of mitochondrial enzymes and mitochondrial marker proteins. Differentiation also induced qualitative changes in mitochondrial protein composition and respiration. TGFβ1 reduced complex IV protein MTCO1 abundance in both myoblasts and myotubes. In myoblasts, spare electron transport system (ETS) capacity was reduced due to a reduction in maximal oxygen consumption. In TGFβ1-treated myotubes, the reduction in spare ETS capacity is mainly a consequence of increased oxidative phosphorylation capacity and complex III protein UQCRC2. Taken together, our data shows that it is important to monitor muscle cell differentiation when mitochondrial function is studied. Our workflow is not only sensitive enough to detect physiological-sized differences, but also adequate to form mechanistic hypotheses.
Collapse
|