1
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
2
|
Oliynyk I, Hussain R, Amin A, Johannesson M, Roomans GM. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells. Exp Mol Pathol 2013; 94:474-80. [PMID: 23523754 DOI: 10.1016/j.yexmp.2013.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/17/2022]
Abstract
Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that the effect of GSNO on Cl(-) efflux is, at least in part, due to its properties as an NO-donor, and the effect is likely to be mediated by CFTR, not by Ca(2+)-activated Cl(-) channels.
Collapse
Affiliation(s)
- Igor Oliynyk
- School of Health and Medical Sciences, University of Örebro, Örebro University Hospital, Örebro, Sweden
| | | | | | | | | |
Collapse
|
3
|
Blouquit-Laye S, Dannhoffer L, Braun C, Dinh-Xuan AT, Sage E, Chinet T. Effect of nitric oxide on epithelial ion transports in noncystic fibrosis and cystic fibrosis human proximal and distal airways. Am J Physiol Lung Cell Mol Physiol 2012; 303:L617-25. [DOI: 10.1152/ajplung.00368.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The airways of patients with cystic fibrosis (CF) exhibit decreased nitric oxide (NO) concentrations, which might affect airway function. The aim of this study was to determine the effects of NO on ion transport in human airway epithelia. Primary cultures of non-CF and CF bronchial and bronchiolar epithelial cells were exposed to the NO donor sodium nitroprusside (SNP), and bioelectric variables were measured in Ussing chambers. Amiloride was added to inhibit the Na+channel ENaC, and forskolin and ATP were added successively to stimulate cAMP- and Ca2+-dependent Cl−secretions, respectively. The involvement of cGMP was assessed by measuring the intracellular cGMP concentration in bronchial cells exposed to SNP and the ion transports in cultures exposed to 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (ODQ), or to 8Z, a cocktail of 8-bromo-cGMP and zaprinast (phosphodiesterase 5 inhibitor). SNP decreased the baseline short-circuit current ( Isc) and the changes in Iscinduced by amiloride, forskolin, and ATP in non-CF bronchial and bronchiolar cultures. The mechanism of this inhibition was studied in bronchial cells. SNP increased the intracellular cGMP concentration ([cGMP]i). The inhibitory effect of SNP was abolished by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO scavenger (PTIO) and ODQ and was partly mimicked by increasing [cGMP]i. In CF cultures, SNP did not significantly modify ion transport; in CF bronchial cells, 8Z had no effect; however, SNP increased the [cGMP]i. In conclusion, exogenous NO may reduce transepithelial Na+absorption and Cl−secretion in human non-CF airway epithelia through a cGMP-dependent pathway. In CF airways, the NO/cGMP pathway appears to exert no effect on transepithelial ion transport.
Collapse
Affiliation(s)
- Sabine Blouquit-Laye
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| | - Luc Dannhoffer
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| | - Camille Braun
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| | - Anh-Tuan Dinh-Xuan
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Paris, France; and
| | - Edouard Sage
- Service de chirurgie thoracique, Hôpital Foch, Suresnes, France
| | - Thierry Chinet
- UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France
| |
Collapse
|
4
|
Roomans GM. Pharmacological Approaches to Correcting the Ion Transport Defect in Cystic Fibrosis. ACTA ACUST UNITED AC 2012; 2:413-31. [PMID: 14719993 DOI: 10.1007/bf03256668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cystic fibrosis (CF) is a lethal genetic disease caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), which mainly (but not exclusively) functions as a chloride channel. The main clinical symptoms are chronic obstructive lung disease, which is responsible for most of the morbidity and mortality associated with CF, and pancreatic insufficiency. About 1000 mutations of the gene coding for CFTR are currently known; the most common of these, present in the great majority of the patients (Delta508) results in the deletion of a phenylalanine at position 508. In this mutation, the aberrant CFTR is not transported to the membrane but degraded in the ubiquitin-proteasome pathway. The aim of this review is to give an overview of the pharmacologic strategies currently used in attempts to overcome the ion transport defect in CF. One strategy to develop pharmacologic treatment for CF is to inhibit the breakdown of DeltaF508-CFTR by interfering with the chaperones involved in the folding of CFTR. At least in in vitro systems, this can be accomplished by sodium phenylbutyrate, or S-nitrosoglutathione (GSNO), and also by genistein or benzo[c]quinolizinium compounds. It is also possible to stimulate CFTR or its mutated forms, when present in the plasma membrane, using xanthines, genistein, and various other compounds, such as benzamidizoles and benzoxazoles, benzo[c]quinolizinium compounds or phenantrolines. Experimental results are not always unambiguous, and adverse effects have been incompletely tested. Some clinical tests have been done on sodium phenyl butyrate, GSNO and genistein, mostly in respect to other diseases, and the results demonstrate that these drugs are reasonably well tolerated. Their efficiency in the treatment of CF has not yet been demonstrated, however. An alternative strategy is to compensate for the defective chloride transport by CFTR by stimulation of other chloride channels. This can be done via purinergic receptors. A phase I study using a stable uridine triphosphate analog has recently been completed. A second alternative strategy is to attempt to maintain hydration of the airway mucus by inhibiting Na(+) uptake by the epithelial Na(+) channel using amiloride or stable analogs of amiloride. Clinical tests so far have been inconclusive. A number of other suggestions are currently being explored. The minority of patients with CF who have a stop mutation may benefit from treatment with gentamicin. The difficulties in finding a pharmacologic treatment for CF may be due to the fact that CFTR has additional functions besides chloride transport, and interfering with CFTR biosynthesis or activation implies interference with central cellular processes, which may have undesirable adverse effects.
Collapse
Affiliation(s)
- Godfried M Roomans
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
5
|
Althaus M. Gasotransmitters: novel regulators of epithelial na(+) transport? Front Physiol 2012; 3:83. [PMID: 22509167 PMCID: PMC3321473 DOI: 10.3389/fphys.2012.00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/20/2012] [Indexed: 11/13/2022] Open
Abstract
The vectorial transport of Na(+) across epithelia is crucial for the maintenance of Na(+) and water homeostasis in organs such as the kidneys, lung, or intestine. Dysregulated Na(+) transport processes are associated with various human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, pulmonary edema, cystic fibrosis, or intestinal disorders, which indicate that a precise regulation of epithelial Na(+) transport is essential. Novel regulatory signaling molecules are gasotransmitters. There are currently three known gasotransmitters: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). These molecules are endogenously produced in mammalian cells by specific enzymes and have been shown to regulate various physiological processes. There is a growing body of evidence which indicates that gasotransmitters may also regulate Na(+) transport across epithelia. This review will summarize the available data concerning NO, CO, and H(2)S dependent regulation of epithelial Na(+) transport processes and will discuss whether or not these mediators can be considered as true physiological regulators of epithelial Na(+) transport biology.
Collapse
Affiliation(s)
- Mike Althaus
- Institute of Animal Physiology, Justus Liebig University of Giessen Giessen, Germany
| |
Collapse
|
6
|
Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011; 2011:174306. [PMID: 22131798 PMCID: PMC3205707 DOI: 10.1155/2011/174306] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/16/2011] [Indexed: 12/13/2022] Open
Abstract
The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance of the volume and viscosity of the fluid layer covering the epithelium is one of the most important functions of the epithelial barrier that forms the outer surface area of the lungs. Therefore, the epithelial cells are equipped with a wide variety of ion transport proteins, among which Na+, Cl−, and K+ channels have been identified to play a role in the regulation of the fluid layer. Malfunctions of pulmonary epithelial ion transport processes and, thus, impairment of the liquid balance in our lungs is associated with severe diseases, such as cystic fibrosis and pulmonary oedema. Due to the important role of pulmonary epithelial ion transport processes for proper lung function, the present paper summarizes the recent findings about composition, function, and ion transport properties of the airway epithelium as well as of the alveolar epithelium.
Collapse
|
7
|
Eaton DC, Helms MN, Koval M, Bao HF, Jain L. The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol 2009; 71:403-23. [PMID: 18831683 DOI: 10.1146/annurev.physiol.010908.163250] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amiloride-sensitive epithelial sodium channels (ENaC) play an important role in lung sodium transport. Sodium transport is closely regulated to maintain an appropriate fluid layer on the alveolar surface. Both alveolar type I and II cells have several different sodium-permeable channels in their apical membranes that play a role in normal lung physiology and pathophysiology. In many epithelial tissues, ENaC is formed from three subunit proteins: alpha, beta, and gamma ENaC. Part of the diversity of sodium-permeable channels in lung arises from assembling different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. Thus, lung epithelium has enormous flexibility to alter the magnitude of salt and water transport. In lung, ENaC is regulated by many transmitter and hormonal agents. Regulation depends upon the type of sodium channel but involves controlling the number of apical channels and/or the activity of individual channels.
Collapse
Affiliation(s)
- Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
8
|
Sobczak K, Willing A, Kusche K, Bangel N, Weber WM. Amiloride-sensitive sodium absorption is different in vertebrates and invertebrates. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2318-27. [PMID: 17332162 DOI: 10.1152/ajpregu.00549.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amiloride-sensitive Na+absorption is a well-described feature of numerous transporting epithelia in vertebrates. Yet, very little is known about this important physiological process regarding invertebrates. In the present paper, we compare vertebrate Na+absorption mediated by the amiloride-sensitive epithelial Na+channel (ENaC) and its invertebrate counterpart. We used the dorsal skin of the annelid Hirudo medicinalis as a model for the Na+absorption of invertebrate epithelia. In applying electrophysiological, molecular, and biochemical techniques we found striking functional and structural differences between vertebrate and invertebrate amiloride-sensitive Na+absorption. Using modified Ussing chambers, we analyzed the influence of different known blockers and effectors of vertebrate ENaC on leech epithelial Na+absorption. We demonstrate that the serine protease trypsin had no effect on the Na+transport across leech integument, while it strongly activates vertebrate ENaC. While protons, and the divalent cations Ni2+and Zn2+stimulate vertebrate ENaC, amiloride-sensitive Na+currents in leech integument were substantially reduced. For molecular studies, we constructed a cDNA library of Hirudo medicinalis and screened it with specific ENaC antibodies. We performed numerous PCR approaches using a vast number of different degenerated and specific ENaC primers to identify ENaC-like structures. Yet, both strategies did not reveal any ENaC-like sequence in leech integument. From these data we conclude that amiloride-sensitive Na+absorption in leech skin is not mediated by an ENaC-like Na+channel but by a still unknown invertebrate member of the ENaC/DEG family that we termed lENaTP (leech epithelial Na+transporting protein).
Collapse
Affiliation(s)
- Katja Sobczak
- Institute of Animal Physiology, Westphalian Wilhelms-University Muenster, Hindenburgplatz 55, D-48143 Muenster, Germany
| | | | | | | | | |
Collapse
|
9
|
Helms MN, Yu L, Malik B, Kleinhenz DJ, Hart CM, Eaton DC. Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia. Am J Physiol Cell Physiol 2005; 289:C717-26. [PMID: 15843443 DOI: 10.1152/ajpcell.00006.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have shown that nitric oxide (NO) inhibits Na(+) transport in renal and alveolar monolayers. However, the mechanisms by which NO alters epithelial Na(+) channel (ENaC) activity is unclear. Therefore, we examined the effect of applying the NO donor drug l-propanamine 3,2-hydroxy-2-nitroso-1-propylhidrazino (PAPA-NONOate) to cultured renal epithelial cells. A6 and M1 cells were maintained on permeable supports in medium containing 1.5 microM dexamethasone and 10% bovine serum. After 1.5 microM PAPA-NONOate was applied, amiloride-sensitive short-circuit current measurements decreased 29% in A6 cells and 44% in M1 cells. This differed significantly from the 3% and 19% decreases in A6 and M1 cells, respectively, treated with control donor compound (P < 0.0005). Subsequent application of PAPA-NONOate to amiloride-treated control (no NONOate) A6 and M1 cells did not further decrease transepithelial current. In single-channel patch-clamp studies, NONOate significantly decreased ENaC open probability (P(o)) from 0.186 +/- 0.043 to 0.045 +/- 0.009 (n = 7; P < 0.05) without changing the unitary current. We also showed that aldosterone significantly decreased NO production in primary cultures of alveolar type II (ATII) epithelial cells. Because inducible nitric oxide synthase (iNOS) coimmunoprecipitated with the serum- and glucocorticoid-inducible kinase (SGK1) and both proteins colocalized in the cytoplasm (as shown in our studies in mouse ATII cells), SGK1 may also be important in regulating NO production in the alveolar epithelium. Our study also identified iNOS as a novel SGK1 phosphorylated protein (at S733 and S903 residues in miNOS) suggesting that one way in which SGK1 could increase Na(+) transport is by altering iNOS production of NO.
Collapse
Affiliation(s)
- My N Helms
- Dept. of Physiology, Emory University of School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
10
|
Howard M, Fischer H, Roux J, Santos BC, Gullans SR, Yancey PH, Welch WJ. Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J Biol Chem 2003; 278:35159-67. [PMID: 12837761 DOI: 10.1074/jbc.m301924200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cystic fibrosis, the absence of functional CFTR results in thick mucous secretions in the lung and intestines, as well as pancreatic deficiency. Although expressed at high levels in the kidney, mutations in CFTR result in little or no apparent kidney dysfunction. In an effort to understand this phenomenon, we analyzed Delta F508 CFTR maturation and function in kidney cells under conditions that are common to the kidney, namely osmotic stress. Kidney cells were grown in culture and adapted to 250 mM NaCl and 250 mM urea. High performance liquid chromatography analysis of lysates from kidney cells adapted to these conditions identified an increase in the cellular osmolytes glycerophosphorylcholine, myo-inositol, sorbitol, and taurine. In contrast to isoosmotic conditions, hyperosmotic stress led to the proper folding and processing of Delta F508 CFTR. Furthermore, three of the cellular osmolytes, when added individually to cells, proved effective in promoting the proper folding and processing of the Delta F508 CFTR protein in both epithelial and fibroblast cells. Whole-cell patch clamping of osmolyte-treated cells showed that Delta F508 CFTR had trafficked to the plasma membrane and was activated by forskolin. Encouraged by these findings, we looked at other features common to the kidney that may impact Delta F508 maturation and function. Interestingly, a small molecule, S-nitrosoglutathione, which is a substrate for gamma glutamyltranspeptidase, an abundant enzyme in the kidney, likewise promoted Delta F508 CFTR maturation and function. S-Nitrosoglutathione-corrected Delta F508 CFTR exhibited a shorter half-life as compared with wild type CFTR. These results demonstrate the feasibility of a small molecule approach as a therapeutic treatment in promoting Delta F508 CFTR maturation and function and suggest that an additional treatment may be required to stabilize Delta F508 CFTR protein once present at the plasma membrane. Finally, our observations may help to explain why Delta F508 homozygous patients do not present with kidney dysfunction.
Collapse
Affiliation(s)
- Marybeth Howard
- Department of Surgery, Surgical Research Laboratory, University of California, San Francisco, California 94110, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The formation and modulation of nitric oxide (NO) in the lungs is reviewed. Its beneficial and deleterious roles in airways diseases, including asthma, chronic obstructive pulmonary disease, and cystic fibrosis, and in animal models is discussed. The pharmacological effects of agents that modulate NO production or act as NO donors are described. The clinical pharmacology of these agents is described and the therapeutic potential for their use in airways disease is considered.
Collapse
Affiliation(s)
- B J Nevin
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, Cathays Park, Cardiff, CF10 3XF, UK
| | | |
Collapse
|
12
|
Duszyk M. Regulation of anion secretion by nitric oxide in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 281:L450-7. [PMID: 11435220 DOI: 10.1152/ajplung.2001.281.2.l450] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is continuously produced and released in human airways, but the biological significance of this process is unknown. In this study, we have used Calu-3 cells to investigate the effects of NO on transepithelial anion secretion. An inhibitor of NO synthase, NG-nitro-L-arginine methyl ester, reduced short- circuit current (I(sc)), whereas an NO donor, S-nitrosoglutathione (GSNO), increased I(sc), with an EC50 approximately 1.2 microM. The NO-activated current was inhibited by diphenylamine-2-carboxylate, clotrimazole, and charybdotoxin. Selective permeabilization of cell membranes indicated that NO activated both apical anion channels and basolateral potassium channels. An inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, prevented activation of I(sc) by NO but not by 8-bromo-cGMP, suggesting that NO acts via a cGMP-dependent pathway. Sequential treatment of cells with forskolin and GSNO or 1-ethyl-2-benzimidazolinone and GSNO showed additive effects of these chemicals on I(sc). Interestingly, GSNO elevated intracellular Ca2+ concentration ([Ca2+]i) but had no effect on I(sc) activated by thapsigargin. These results show that NO activates transepithelial anion secretion via a cGMP-dependent pathway that involves cross talk between NO and [Ca2+]i.
Collapse
Affiliation(s)
- M Duszyk
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|