1
|
Noreen S, Ishaq I, Saleem MH, Ali B, Muhammad Ali S, Iqbal J. Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis. Cancer Biol Ther 2025; 26:2475581. [PMID: 40079211 PMCID: PMC11913392 DOI: 10.1080/15384047.2025.2475581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.
Collapse
Affiliation(s)
- Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Izwa Ishaq
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Muhammad Ali
- Nursing Department, Communicable Disease Center Hamad Medical Corporation, Doha, Qatar
| | - Javed Iqbal
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
4
|
Verzino SJ, Priyev SA, Estrada VAS, Crowley GX, Rutkowski A, Lam AC, Nazginov ES, Kotemelo P, Bacelo A, Sukhram DT, Vázquez FX, Juárez JF. Expanding salivary biomarker detection by creating a synthetic neuraminic acid sensor via chimeragenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598939. [PMID: 38915506 PMCID: PMC11195194 DOI: 10.1101/2024.06.13.598939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Accurate and timely diagnosis of oral squamous cell carcinoma (OSCC) is crucial in preventing its progression to advanced stages with a poor prognosis. As such, the construction of sensors capable of detecting previously established disease biomarkers for the early and non-invasive diagnosis of this and many other conditions has enormous therapeutic potential. In this work, we apply synthetic biology techniques for the development of a whole-cell biosensor (WCB) that leverages the physiology of engineered bacteria in vivo to promote the expression of an observable effector upon detection of a soluble molecule. To this end, we have constructed a bacterial strain expressing a novel chimeric transcription factor (Sphnx) for the detection of N-acetylneuraminic acid (Neu5Ac), a salivary biomolecule correlated with the onset of OSCC. This WCB serves as the proof-of-concept of a platform that can eventually be applied to clinical screening panels for a multitude of oral and systemic medical conditions whose biomarkers are present in saliva.
Collapse
|
5
|
Liu Y, Zhao X, Wang X, Ding A, Zhang D. Application of whole-cell bioreporters for ecological risk assessment and bioremediation potential evaluation after a benzene exceedance accident in groundwater in Lanzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167846. [PMID: 37844638 DOI: 10.1016/j.scitotenv.2023.167846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Oil spill events challenge human health and ecosystem safety, which are priority concerned issues for sustainable development. There is then an increasing demand of tools for ecological risks assessment at contaminated sites. In this study, we introduced two whole-cell bioreporters, ADPWH_alk and ADPWH_recA, to measure the available n-alkanes and the genotoxicities of total petroleum hydrocarbons in soils and groundwater which were contaminated by the Benzene Exceedance Accident in Lanzhou, China. Comparing to traditional chemical analysis methods, the whole-cell bioreporter method could provide risk assessment on cell level within a shorter time and a less cost, which is economical and environment friendly. The highest contents of available alkanes in soil and groundwater were 18,737 mg/kg and 308.4 mg/L, respectively. In addition, the available n-alkanes significantly (p < 0.01) correlated to chemical analysis of total n-alkanes. The highest genotoxicity level was found in soil and groundwater samples with lower TPHs concentration (4338.0 mg/kg and 1.4 mg/L Mitomycin C equivalent), suggesting the significant impacts of geochemical variables and alkane availability on the ecological risks of petroleum contamination. Combining chemical analysis and whole-cell bioreporter results, bioremediation strategies were suggested for groundwater and soils with higher n-alkane availability and lower ecological risks, whereas chemical oxidation were suggested for other contaminated sites. For the first time, we mapped the distribution of available n-alkanes and petroleum toxicities in a large scale soil-groundwater system using whole-cell bioreporters, showing their huge potential for rapid contaminant detection and fast risk assessment.
Collapse
Affiliation(s)
- Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Xiaohui Zhao
- China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
6
|
Chen Y, Guo Y, Liu Y, Xiang Y, Liu G, Zhang Q, Yin Y, Cai Y, Jiang G. Advances in bacterial whole-cell biosensors for the detection of bioavailable mercury: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161709. [PMID: 36682565 DOI: 10.1016/j.scitotenv.2023.161709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) and its organic compounds, especially monomethylmercury (MeHg), cause major damage to the ecosystem and human health. In surface water or sediments, microorganisms play a crucial role in the methylation and demethylation of Hg. Given that Hg transformation processes are intracellular reactions, accurate assessment of the bioavailability of Hg(II)/MeHg in the environment, particularly for microorganisms, is of major importance. Compared with traditional analytical methods, bacterial whole-cell biosensors (BWCBs) provide a more accurate, convenient, and cost-effective strategy to assess the environmental risks of Hg(II)/MeHg. This Review summarizes recent progress in the application of BWCBs in the detection of bioavailable Hg(II)/MeHg, providing insight on current challenges and strategies. The principle and components of BWCBs for Hg(II)/MeHg bioavailability analysis are introduced. Furthermore, the impact of water chemical factors on the bioavailability of Hg is discussed as are future perspectives of BWCBs in bioavailable Hg analysis and optimization of BWCBs.
Collapse
Affiliation(s)
- Yueqian Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Hu S, Zhang G, Jia X. Improvement of a highly sensitive and specific whole-cell biosensor by adding a positive feedback amplifier. Synth Syst Biotechnol 2023; 8:292-299. [PMID: 37090062 PMCID: PMC10113786 DOI: 10.1016/j.synbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, we designed a Cd2+ whole-cell biosensor with both positive and negative feedback cascade amplifiers in Pseudomonas putida KT2440 (LTCM) based on our previous design with only a negative feedback amplifier (TCM). The results showed that the newly developed biosensor LTCM was greatly improved compared to TCM. Firstly, the linear response range of LTCM was expanded while the maximum linear response range was raised from 0.05 to 0.1 μM. Meanwhile, adding a positive feedback amplifier further increased the fluorescence output signal of LTCM 1.11-2.64 times under the same culture conditions. Moreover, the response time of LTCM for detection of practical samples was reduced from 6 to 4 h. At the same time, LTCM still retained very high sensitivity and specificity, while its lowest detection limit was 0.1 nM Cd2+ and the specificity was 23.29 (compared to 0.1 nM and 17.55 in TCM, respectively). In summary, the positive and negative feedback cascade amplifiers effectively improved the performance of the biosensor LTCM, resulting in a greater linear response range, higher output signal intensity, and shorter response time than TCM while retaining comparable sensitivity and specificity, indicating better potential for practical applications.
Collapse
|
8
|
Transcription Factor-Based Biosensors for Detecting Pathogens. BIOSENSORS 2022; 12:bios12070470. [PMID: 35884273 PMCID: PMC9312912 DOI: 10.3390/bios12070470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022]
Abstract
Microorganisms are omnipresent and inseparable from our life. Many of them are beneficial to humans, while some are not. Importantly, foods and beverages are susceptible to microbial contamination, with their toxins causing illnesses and even death in some cases. Therefore, monitoring and detecting harmful microorganisms are critical to ensuring human health and safety. For several decades, many methods have been developed to detect and monitor microorganisms and their toxicants. Conventionally, nucleic acid analysis and antibody-based analysis were used to detect pathogens. Additionally, diverse chromatographic methods were employed to detect toxins based on their chemical and structural properties. However, conventional techniques have several disadvantages concerning analysis time, sensitivity, and expense. With the advances in biotechnology, new approaches to detect pathogens and toxins have been reported to compensate for the disadvantages of conventional analysis from different research fields, including electrochemistry, nanotechnology, and molecular biology. Among them, we focused on the recent studies of transcription factor (TF)-based biosensors to detect microorganisms and discuss their perspectives and applications. Additionally, the other biosensors for detecting microorganisms reported in recent studies were also introduced in this review.
Collapse
|
9
|
Zaitsev B, Borodina I, Alsowaidi A, Karavaeva O, Teplykh A, Guliy O. Microbial Acoustical Analyzer for Antibiotic Indication. SENSORS (BASEL, SWITZERLAND) 2022; 22:2937. [PMID: 35458922 PMCID: PMC9031926 DOI: 10.3390/s22082937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
In this study, a compact acoustic analyzer for express analysis of antibiotics based on a piezoelectric resonator with a lateral electric field and combined with a computer was developed. The possibility of determining chloramphenicol in aqueous solutions in the concentration range of 0.5-15 μg/mL was shown. Bacterial cells that are sensitive to this antibiotic were used as a sensory element. The change in the electrical impedance modulus of the resonator upon addition of the antibiotic to the cell suspension served as an analytical signal. The analysis time did not exceed 4 min. The correlation of the experimental results of an acoustic sensor with the results obtained using the light phase-contrast microscopy and standard microbiological analysis was established. The compact biological analyzer demonstrated stability, reproducibility, and repeatability of results.
Collapse
Affiliation(s)
- Boris Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (I.B.); (A.T.)
| | - Irina Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (I.B.); (A.T.)
| | - Ali Alsowaidi
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.A.); (O.K.); (O.G.)
| | - Olga Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.A.); (O.K.); (O.G.)
| | - Andrey Teplykh
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (I.B.); (A.T.)
| | - Olga Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.A.); (O.K.); (O.G.)
| |
Collapse
|
10
|
Multiplexed direct detection of barcoded protein reporters on a nanopore array. Nat Biotechnol 2022; 40:42-46. [PMID: 34385692 PMCID: PMC8766897 DOI: 10.1038/s41587-021-01002-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Detection of specific proteins using nanopores is currently challenging. To address this challenge, we developed a collection of over twenty nanopore-addressable protein tags engineered as reporters (NanoporeTERs, or NTERs). NTERs are constructed with a secretion tag, folded domain and a nanopore-targeting C-terminal tail in which arbitrary peptide barcodes can be encoded. We demonstrate simultaneous detection of up to nine NTERs expressed in bacterial or human cells using MinION nanopore sensor arrays.
Collapse
|
11
|
Farooq A, Bhat KA, Mir RA, Mahajan R, Nazir M, Sharma V, Zargar SM. Emerging trends in developing biosensor techniques to undertake plant phosphoproteomic analysis. J Proteomics 2021; 253:104458. [PMID: 34923172 DOI: 10.1016/j.jprot.2021.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
Protein modifications particularly phosphorylation is governed by a complex array of mechanisms to attain a functional conformation and regulate important biological processes in organisms during external environmental stimuli and hormone signaling. Phosphoproteomics is a promising field of proteomics for identification of proteins with phosphate groups and their impact on structure, function and localization of proteins. Techniques that allow quantitative detection of proteins and their post-translational modifications (PTMs) have immensely led to understand the structural and functional dynamics of proteins. Biosensor systems are a relatively new biotechnological approach that works on the principle of transforming the interactions of different biological samples viz proteins, enzymes, aptamers, nucleic acids and so on into the signals such as electrochemical, colorimetric, optical or magnetic which have been effectively useful in the detection and characterization of phosphoproteins. The focus of our review is to provide a comprehensive account of the critical role and utility of novel biosensors such as, fluorescence based, enrichment based, nanobody based biosensors, as promising technical intercessions to identify phosphoproteins and their influence on structural dynamics of proteins. Furthermore, by studying the innovative phosphoprotein biosensors we will be able to identify the aberrant phosphorylation patterns to precisely diagnose diseases.
Collapse
Affiliation(s)
- Asmat Farooq
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir 190025, India; Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu 180009, India
| | - Kaisar Ahmad Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir 190025, India; Department of Biotechnology, School of Biosciences & Biotechnology, BGSB University, Rajouri, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences & Biotechnology, BGSB University, Rajouri, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir 190025, India
| | - Muslima Nazir
- CORD, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir, India
| | - Vikas Sharma
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu 180009, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir 190025, India.
| |
Collapse
|
12
|
Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. SOFT MATTER 2021; 17:785-809. [PMID: 33410841 DOI: 10.1039/d0sm01905d] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stimuli-responsive materials are able to undergo controllable changes in materials properties in response to external cues. Increasing efforts have been directed towards building materials that mimic the responsive nature of biological systems. Nevertheless, limitations remain surrounding the way these synthetic materials interact and respond to their environment. In particular, it is difficult to synthesize synthetic materials that respond with specificity to poorly differentiated (bio)chemical and weak physical stimuli. The emerging area of engineered living materials (ELMs) includes composites that combine living cells and synthetic materials. ELMs have yielded promising advances in the creation of stimuli-responsive materials that respond with diverse outputs in response to a broad array of biochemical and physical stimuli. This review describes advances made in the genetic engineering of the living component and the processing-property relationships of stimuli-responsive ELMs. Finally, the implementation of stimuli-responsive ELMs as environmental sensors, biomedical sensors, drug delivery vehicles, and soft robots is discussed.
Collapse
Affiliation(s)
- Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA.
| | | | | |
Collapse
|
13
|
Wang A, Madden LA, Paunov VN. Advanced biomedical applications based on emerging 3D cell culturing platforms. J Mater Chem B 2020; 8:10487-10501. [PMID: 33136103 DOI: 10.1039/d0tb01658f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is of great value to develop reliable in vitro models for cell biology and toxicology. However, ethical issues and the decreasing number of donors restrict the further use of traditional animal models in various fields, including the emerging fields of tissue engineering and regenerative medicine. The huge gap created by the restrictions in animal models has pushed the development of the increasingly recognized three-dimensional (3D) cell culture, which enables cells to closely simulate authentic cellular behaviour such as close cell-to-cell interactions and can achieve higher functionality. Furthermore, 3D cell culturing is superior to the traditional 2D cell culture, which has obvious limitations and cannot closely mimic the structure and architecture of tissues. In this study, we review several methods used to form 3D multicellular spheroids. The extracellular microenvironment of 3D spheroids plays a role in many aspects of biological sciences, including cell signalling, cell growth, cancer cell generation, and anti-cancer drugs. More recently, they have been explored as basic construction units for tissue and organ engineering. We review this field with a focus on the previous research in different areas using spheroid models, emphasizing aqueous two-phase system (ATPS)-based techniques. Multi-cellular spheroids have great potential in the study of biological systems and can closely mimic the in vivo environment. New technologies to form and analyse spheroids such as the aqueous two-phase system and magnetic levitation are rapidly overcoming the technical limitations of spheroids and expanding their applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK.
| | | | | |
Collapse
|
14
|
Matejczyk M, Ofman P, Dąbrowska K, Świsłocka R, Lewandowski W. The study of biological activity of transformation products of diclofenac and its interaction with chlorogenic acid. J Environ Sci (China) 2020; 91:128-141. [PMID: 32172961 DOI: 10.1016/j.jes.2020.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
In the present work we compared the biological activity of DCF, 4'-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products (2-hydroxyphenylacetic acid; 2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline) which are produced during AOPs, such as ozonation and UV/H2O2. We also examined the interaction of DCF with chlorogenic acid (CGA). CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge. In the present experiment the evaluation of following parameters was performed: E. coli K-12 cells viability, growth inhibition of E. coli K-12 culture, LC50 and mortality of Chironomus aprilinus, genotoxicity, sodA promoter induction and ROS generation. In addition the reactivity of E. coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured. The results showed the influence of DCF, 4'-OHDCF and 5-OHDCF on E. coli K-12 cells viability and bacteria growth, comparable to AOPs by-products. The highest toxicity was observed for selected, tested AOPs by-products, in comparison to the DCF, 4'-OHDCF and 5-OHDCF. Genotoxicity assay indicated that 2,6-dichloroaniline (AOPs by-product) had the highest toxic effect. The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF, 4'-OHDCF and 5-OHDCF, compared to other tested compounds. We have also found that there is an interaction between chlorogenic acid and DCF, which resulted in increased toxicity of the mixture of the both compounds to E. coli K-12, comparable to parent chemicals. The strongest response of E. coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters, comparable to control sample was noticed. It indicates, that E. coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment. Due to toxicity and biological activity of tested DCF transformation products, there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.
Collapse
Affiliation(s)
- Marzena Matejczyk
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, 15-341, Bialystok, Poland.
| | - Piotr Ofman
- Bialystok University of Technology, Department of Environmental Engineering Technology, Bialystok, 15-341, Poland
| | - Katarzyna Dąbrowska
- Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Microbiology, 02-532, Warsaw, Poland
| | - Renata Świsłocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, 15-341, Bialystok, Poland
| | - Włodzimierz Lewandowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, 15-341, Bialystok, Poland
| |
Collapse
|
15
|
Elcin E, Öktem HA. Inorganic Cadmium Detection Using a Fluorescent Whole-Cell Bacterial Bioreporter. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1755867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Evrim Elcin
- Department of Agricultural Biotechnology, Adnan Menderes University, Aydın, Turkey
| | - Huseyin Avni Öktem
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Nanobiz Technology Inc, Ankara, Turkey
| |
Collapse
|
16
|
Kim H, Jang G, Yoon Y. Specific heavy metal/metalloid sensors: current state and perspectives. Appl Microbiol Biotechnol 2019; 104:907-914. [PMID: 31832713 DOI: 10.1007/s00253-019-10261-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/09/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Heavy metal(loid)s play pivotal roles in regulating physiological and developmental aspects in living organisms depending on their concentration. For example, a trace amount of heavy metal(loid)s is essential for living organisms, but heavy metal(loid)s in high concentrations negatively affect their physiology and development. Because of rapid industrial developments, heavy metal(loid)s have been accumulating in environmental systems, thereby becoming a threat to human health and the earth's ecosystem. Thus, the development of tools to quantify and monitor heavy metal(loid)s in environmental systems has become essential. Typically, risk has been determined through instrument-based analysis, regardless of the shortcomings regarding expense and duration. Nowadays, the need for alternative tools, besides instrumental analysis, to detect heavy metals has prompted the development of new techniques, and many different methods have been reported from various research areas, including new techniques based on electrochemistry and biological systems. Nonetheless, it seems that the gap between laboratory and fieldwork is still greater than it should be when it comes to applying these systems. In this mini-review, we discuss the current status of heavy metals/metalloid detection techniques, with an emphasis on biosensors. Moreover, we discuss the advantages and disadvantages as well as the mechanisms behind newly developed sensors and make suggestions to improve applicability and to develop new objective targeting sensors. Although many different types of metal(loid) sensors are available, we focused on metal sensors based on biological systems. Additionally, we suggest potent approaches to developing new biosensor systems based on current metal sensor mechanisms.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
17
|
Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4798793. [PMID: 30719443 PMCID: PMC6335823 DOI: 10.1155/2019/4798793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022]
Abstract
All biosensing platforms rest on two pillars: specific biochemical recognition of a particular analyte and transduction of that recognition into a readily detectable signal. Most existing biosensing technologies utilize proteins that passively bind to their analytes and therefore require wasteful washing steps, specialized reagents, and expensive instruments for detection. To overcome these limitations, protein engineering strategies have been applied to develop new classes of protein-based sensor/actuators, known as protein switches, responding to small molecules. Protein switches change their active state (output) in response to a binding event or physical signal (input) and therefore show a tremendous potential to work as a biosensor. Synthetic protein switches can be created by the fusion between two genes, one coding for a sensor protein (input domain) and the other coding for an actuator protein (output domain) by domain insertion. The binding of a signal molecule to the engineered protein will switch the protein function from an “off” to an “on” state (or vice versa) as desired. The molecular switch could, for example, sense the presence of a metabolite, pollutant, or a biomarker and trigger a cellular response. The potential sensing and response capabilities are enormous; however, the recognition repertoire of natural switches is limited. Thereby, bioengineers have been struggling to expand the toolkit of molecular switches recognition repertoire utilizing periplasmic binding proteins (PBPs) as protein-sensing components. PBPs are a superfamily of bacterial proteins that provide interesting features to engineer biosensors, for instance, immense ligand-binding diversity and high affinity, and undergo large conformational changes in response to ligand binding. The development of these protein switches has yielded insights into the design of protein-based biosensors, particularly in the area of allosteric domain fusions. Here, recent protein engineering approaches for expanding the versatility of protein switches are reviewed, with an emphasis on studies that used PBPs to generate novel switches through protein domain insertion.
Collapse
|
18
|
Rahimirad N, Kavoosi S, Shirzad H, Sadeghizadeh M. Design and Application of A Bioluminescent Biosensor for Detection Of Toxicity Using Huh7-CMV-Luc Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:686-695. [PMID: 31531052 PMCID: PMC6706743 DOI: 10.22037/ijpr.2019.1100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell-based biosensors (CBBs) are becoming important tools for biosecurity a lications and rapid diagnostics in food microbiology for their unique capability of detecting hazardous materials. Pollutants, such as heavy metals and chemicals, are now considered as a global threat and are associated with detrimental health outcomes. Fast and accurate detection of pollutants is essential to reduce these threats. In this study, the enhancer sequence of human cytomegalovirus (hCMV) IE genes cloned upstream of luc gene in PGL4.26 plasmid, in order to increase basal luciferase activity. This recombinant vector was transfected into Huh7 cell line and after 21 days of treatment with Hygromycin B selectable marker, stable cell line was generated. After several passages, cells containing this vector showed high luciferase activity in normal conditions without any induction following to overexpression of luc gene. Huh7-CMV-luc cell line was able to detect the slightest changes in ATP level, due to the effect of different toxins on the cell which disrupt cellular respiration and ATP production processes. In order to investigate the sensitivity of the cell line, the cells were incubated with 0.1-10 μM of chemical toxins affecting ATP production. These toxins affect luciferase activity in a dose dependent manner, with maximal sensitivity approximately about 0.2 μM to toxin concentrations. Additionally, this biosensor provided a rapid detection as early as 4 h in response to the toxicants. Whole cell biosensors like huh7-CMV-luc cell line can be considered as a powerful tool for the sensitive and efficient monitoring of general toxins, drugs, and environmental pollutants.
Collapse
Affiliation(s)
- Nazanin Rahimirad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeedeh Kavoosi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hadi Shirzad
- Department of Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Michelini E, Calabretta MM, Cevenini L, Lopreside A, Southworth T, Fontaine DM, Simoni P, Branchini BR, Roda A. Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity. Biosens Bioelectron 2019; 123:269-277. [DOI: 10.1016/j.bios.2018.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022]
|
20
|
Butnariu M, Butu A. Plant Nanobionics: Application of Nanobiosensors in Plant Biology. PLANT NANOBIONICS 2019. [PMCID: PMC7123577 DOI: 10.1007/978-3-030-16379-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanobiosensors (NBSs) are a class of chemical sensors which are sensitive to a physical or chemical stimulus (heat, acidity, metabolism transformations) that conveys information about vital processes. NBSs detect physiological signals and convert them into standardized signals, often electrical, to be quantified from analog to digital. NBSs are classified according to the transducer element (electrochemical, piezoelectric, optical, and thermal) in accordance with biorecognition principle (enzyme recognition, affinity immunoassay, whole sensors, DNA). NBSs have varied forms, depending on the degree of interpretation of natural processes in plants. Plant nanobionics uses mathematical models based on qualitative and less quantitative records. NBSs can give information about endogenous concentrations or endogenous fluxes of signaling molecules (phytohormones). The properties of NBSs are temporal and spatial resolution, the ability of being used without significantly interfering with the system. NBSs with the best properties are the optically genetically coded NBSs, but each NBS needs specific development efforts. NBS technologies using antibodies as a recognition domain are generic and tend to be more invasive, and there are examples of their use in plant nanobionics. Through opportunities that develop along with technologies, we hope that more and more NBSs will become available for plant nanobionics. The main advantages of NBSs are short analysis time, low-cost tests and portability, real-time measurements, and remote control.
Collapse
|
21
|
Rathinam NK, Tripathi AK, Smirnova A, Beyenal H, Sani RK. Engineering rheology of electrolytes using agar for improving the performance of bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 263:242-249. [PMID: 29751231 DOI: 10.1016/j.biortech.2018.04.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
The present study is focused on enhancing the rheological properties of the electrolyte and eliminating sedimentation of microorganisms/flocs without affecting the electron transfer kinetics for improved bioelectricity generation. Agar derived from polysaccharide agarose (0.05-0.2%, w/v) was chosen as a rheology modifying agent. Electroanalytical investigations showed that electrolytes modified with 0.15% agar display a nine-fold increase in current density (1.2 mA/cm2) by a thermophilic strain (Geobacillus sp. 44C, 60 °C) when compared with the control. Sodium phosphate buffer (0.1 M, pH 7) electrolyte with riboflavin (0.1 mM) was used as the control. Electrolytes modified with 0.15% agar significantly improved chemical oxygen demand removal rates. This developed electrolyte will aid in improving bioelectricity generation in Bioelectrochemical Systems (BES). The developed strategy avoids the use of peristaltic pumps and magnetic stirrers, thereby improving the energy efficiency of the process.
Collapse
Affiliation(s)
- Navanietha Krishnaraj Rathinam
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Abhilash K Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Alevtina Smirnova
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Haluk Beyenal
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, USA; Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| |
Collapse
|
22
|
Schirmer C, Posseckardt J, Kick A, Rebatschek K, Fichtner W, Ostermann K, Schuller A, Rödel G, Mertig M. Encapsulating genetically modified Saccharomyces cerevisiae cells in a flow-through device towards the detection of diclofenac in wastewater. J Biotechnol 2018; 284:75-83. [PMID: 30110597 DOI: 10.1016/j.jbiotec.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Recently it has been proposed to use sensors based on genetically engineered reporter cells to perform continuous online water monitoring. Here we describe the design, assembly and performance of a novel flow-through device with immobilized genetically modified yeast cells that produce a fluorescent protein upon stimulation with diclofenac whose intensity is then detected by fluorescence microscopy. Although other devices employing immobilized cells for the detection of various analytes have already been described before, as novelty our system allows safe enclosure of the sensor cells, and thus, to obtain fluorescent signals that are not falsified by a loss of cells. Furthermore, the yeast cells are prevented from being released into the environment. Despite the safe containment, the immobilized reporter cells are accessible to nutrients and analytes. They thus have both the ability to grow and respond to the analyte. Both in cell culture medium and standardized synthetic wastewater, we are able to differentiate between diclofenac concentrations in a range from 10 to 100 μM. As particularly interesting feature, we show that only the biologically active fraction of diclofenac is detected. Nowadays, contamination of wastewater with diclofenac and other pharmaceutical residues is becoming a severe problem. Our investigations may pave the way for an easy-to-use and cost-efficient wastewater monitoring method.
Collapse
Affiliation(s)
- C Schirmer
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - J Posseckardt
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - A Kick
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - K Rebatschek
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - W Fichtner
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - K Ostermann
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - A Schuller
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - G Rödel
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - M Mertig
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany; Professur für Physikalische Chemie, Mess-und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
23
|
Biosensor libraries harness large classes of binding domains for construction of allosteric transcriptional regulators. Nat Commun 2018; 9:3101. [PMID: 30082754 PMCID: PMC6079105 DOI: 10.1038/s41467-018-05525-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
The ability of bacteria to sense specific molecules within their environment and trigger metabolic responses in accordance is an invaluable biotechnological resource. While many transcription factors (TFs) mediating such processes have been studied, only a handful have been leveraged for molecular biology applications. To expand the repertoire of biotechnologically relevant sensors we present a strategy for the construction and testing of chimeric TF libraries, based on the fusion of highly soluble periplasmic binding proteins (PBPs) with DNA-binding domains (DBDs). We validate this concept by constructing and functionally testing two unique sense-and-respond regulators for benzoate, an environmentally and industrially relevant metabolite. This work will enable the development of tailored biosensors for novel synthetic regulatory circuits. Bacterially encoded environmental sensor proteins are potentially a rich source of transcriptional control but only a few have been harnessed for biotechnological applications. Here the authors develop a general strategy for designing custom-made monogenic synthetic sensors and validate the approach by designing two sense-and-respond regulators for benzoate.
Collapse
|
24
|
He W, Hu ZH, Yuan S, Zhong WH, Mei YZ, Dai CC. Bacterial Bioreporter-Based Mercury and Phenanthrene Assessment in Yangtze River Delta Soils of China. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:562-570. [PMID: 29864184 DOI: 10.2134/jeq2017.07.0286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genetically engineered bacterial whole-cell bioreporters were deployed to investigate bioavailable mercury (b-Hg) and phenanthrene (b-PHE). Characterized by high sensitivity and specificity in aqueous solutions, the bioreporter system could detect in amended soils the concentrations of b-Hg and b-PHE in the ranges of 19.6 to 111.6 and 21.5 to 110.9 μg kg, respectively. The sensitivity of the system allowed for the combined analysis of b-Hg and b-PHE from real environmental samples. Therefore, soil samples from three large refinery facilities were tested, and the results from the instrumental analysis strongly correlated with the ones obtained with the bioreporter method. Large-scale and fast screening of soil contamination across the Yangtze River Delta in Eastern China was conducted. More than 36% of the samples contained b-Hg, whereas the fractions of b-PHE were below the detection limit for all the samples. These results indicated a higher toxicity and more hazardous condition for Hg contamination than for PHE. Population densities and airborne 10-μm particulate matter (PM10) concentrations were used as parameters for comparison with the spatial distribution of the b-Hg and b-PHE fractions. The results revealed that the bioreporters could offer a rapid and cost-efficient method to test soil samples from contaminated areas and provide a screening tool for environmental risk assessment.
Collapse
|
25
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
26
|
Martín-Betancor K, Durand MJ, Thouand G, Leganés F, Fernández-Piñas F, Rodea-Palomares I. Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring. CHEMOSPHERE 2017; 189:373-381. [PMID: 28946071 DOI: 10.1016/j.chemosphere.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Microorganisms have been very useful in environmental monitoring due to their constant sensing of the surrounding environment, their easy maintenance and low cost. Some freeze-dried toxicity kits based on naturally bioluminescent bacteria are commercially available and commonly used to assess the toxicity of environmental samples such as Microtox (Aliivibrio fischeri) or ToxScreen (Photobacterium leiognathi), however, due to the marine origin of these bacteria, they could not be the most appropriate for fresh-waters monitoring. Cyanobacteria are one of the most representative microorganisms of aquatic environments, and are well suited for detecting contaminants in aqueous samples. This study presents the development and application of the first freeze-dried cyanobacterial bioassay for fresh-water contaminants detection. The effects of different cell growth phases, cryoprotectant solutions, freezing protocols, rehydration solutions and incubation conditions methods were evaluated and the best combination of these parameters for freeze-drying was selected. The study includes detailed characterization of sensitivity towards reference pollutants, as well as, comparison with the standard assays. Moreover, long-term viability and sensitivity were evaluated after 3 years of storage. Freeze-dried cyanobacteria showed, in general, higher sensitivity than the standard assays and viability of the cells remained after 3 years of storage. Finally, the validation of the bioassay using a wastewater sample was also evaluated. Freeze-drying of cyanobacteria in 96-well plates presents a simple, fast and multi-assay method for environmental monitoring.
Collapse
Affiliation(s)
- Keila Martín-Betancor
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | | | | - Francisco Leganés
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Ismael Rodea-Palomares
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
27
|
Alhadrami HA. Biosensors: Classifications, medical applications, and future prospective. Biotechnol Appl Biochem 2017; 65:497-508. [DOI: 10.1002/bab.1621] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/22/2017] [Accepted: 09/30/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Hani A. Alhadrami
- Faculty of Applied Medical SciencesDepartment of Medical Laboratory TechnologyKing Abdulaziz University Jeddah Kingdom of Saudi Arabia
- Special Infectious Agent UnitKing Fahd Medical Research CentreKing Abdulaziz University Jeddah Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Dvořák P, Nikel PI, Damborský J, de Lorenzo V. Bioremediation 3 . 0 : Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 2017; 35:845-866. [DOI: 10.1016/j.biotechadv.2017.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
|
29
|
Li P, Müller M, Chang MW, Frettlöh M, Schönherr H. Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22321-22331. [PMID: 28627870 PMCID: PMC5741077 DOI: 10.1021/acsami.7b07166] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/19/2017] [Indexed: 05/31/2023]
Abstract
Quorum sensing, in which bacteria communities use signaling molecules for inter- and intracellular communication, has been intensively studied in recent decades. In order to fabricate highly sensitive easy-to-handle point of care biosensors that detect quorum sensing molecules, we have developed, as is reported here, reporter bacteria loaded alginate-methacrylate (alginate-MA) hydrogel beads. The alginate-MA beads, which were obtained by electrostatic extrusion, were reinforced by photo-cross-linking to increase stability and thereby to reduce bacteria leaching. In these beads the genetically engineered fluorescent reporter bacterium Escherichia coli pTetR-LasR-pLuxR-GFP (E. coli pLuxR-GFP) was encapsulated, which responds to the autoinducer N-(3-oxododecanoyl)homoserine lactone secreted by Pseudomonas aeruginosa. After encapsulation in alginate-MA hydrogel beads with diameters in the range of 100-300 μm that were produced by an electrostatic extrusion method and rapid photo-cross-linking, the E. coli pLuxR-GFP were found to possess a high degree of viability and sensing activity. The encapsulated bacteria could proliferate inside the hydrogel beads, when exposed to bacteria culture medium. In media containing the autoinducer N-(3-oxododecanoyl)homoserine lactone, the encapsulated reporter bacteria responded with a strong fluorescence signal due to an increased green fluorescent protein (GFP) expression. A prototype dipstick type sensor developed here underlines the potential of encapsulation of viable and functional reporter bacteria inside reinforced alginate-methacrylate hydrogel beads for whole cell sensors for bacteria detection.
Collapse
Affiliation(s)
- Ping Li
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mareike Müller
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Matthew Wook Chang
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI),
Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Martin Frettlöh
- Quh-Lab Food Safety, Siegener Str. 29, 57080 Siegen, Germany
| | - Holger Schönherr
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
30
|
Wynn D, Deo S, Daunert S. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors. Methods Enzymol 2017; 589:51-85. [PMID: 28336074 DOI: 10.1016/bs.mie.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field.
Collapse
Affiliation(s)
- Daniel Wynn
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sapna Deo
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sylvia Daunert
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
31
|
Febbraio F. Biochemical strategies for the detection and detoxification of toxic chemicals in the environment. World J Biol Chem 2017; 8:13-20. [PMID: 28289515 PMCID: PMC5329710 DOI: 10.4331/wjbc.v8.i1.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/12/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the last few years, to replace the high cost, in terms of time and money, of conventional technologies, the scientific community has directed considerable research towards the development both of new detection systems for the measurement of the contamination levels of chemicals in people’s body fluids and tissue, as well as in the environment, and of new remediation strategies for the removal of such chemicals from the environment, as a means of the prevention of human diseases. New emerging biosensors for the analysis of environmental chemicals have been proposed, including VHH antibodies, that combine the antibody performance with the affinity for small molecules, genetically engineered microorganisms, aptamers and new highly stable enzymes. However, the advances in the field of chemicals monitoring are still far from producing a continuous real-time and on-line system for their detection. Better results have been obtained in the development of strategies which use organisms (microorganisms, plants and animals) or metabolic pathway-based approaches (single enzymes or more complex enzymatic solutions) for the fixation, degradation and detoxification of chemicals in the environment. Systems for enzymatic detoxification and degradation of toxic agents in wastewater from chemical and manufacturing industries, such as ligninolytic enzymes for the treatment of wastewater from the textile industry, have been proposed. Considering the high value of these research studies, in terms of the protection of human health and of the ecosystem, science must play a major role in guiding policy changes in this field.
Collapse
|
32
|
A Bigger Toolbox: Biotechnology in Biodiversity Conservation. Trends Biotechnol 2017; 35:55-65. [DOI: 10.1016/j.tibtech.2016.06.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
|
33
|
Bharadwaj S, Mitchell RJ, Qureshi A, Niazi JH. Toxicity evaluation of e-juice and its soluble aerosols generated by electronic cigarettes using recombinant bioluminescent bacteria responsive to specific cellular damages. Biosens Bioelectron 2016; 90:53-60. [PMID: 27875752 DOI: 10.1016/j.bios.2016.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
Electronic-cigarettes (e-cigarette) are widely used as an alternative to traditional cigarettes but their safety is not well established. Herein, we demonstrate and validate an analytical method to discriminate the deleterious effects of e-cigarette refills (e-juice) and soluble e-juice aerosol (SEA) by employing stress-specific bioluminescent recombinant bacterial cells (RBCs) as whole-cell biosensors. These RBCs carry luxCDABE-operon tightly controlled by promoters that specifically induced to DNA damage (recA), superoxide radicals (sodA), heavy metals (copA) and membrane damage (oprF). The responses of the RBCs following exposure to various concentrations of e-juice/SEA was recorded in real-time that showed dose-dependent stress specific-responses against both the e-juice and vaporized e-juice aerosols produced by the e-cigarette. We also established that high doses of e-juice (4-folds diluted) lead to cell death by repressing the cellular machinery responsible for repairing DNA-damage, superoxide toxicity, ion homeostasis and membrane damage. SEA also caused the cellular damages but the cells showed enhanced bioluminescence expression without significant growth inhibition, indicating that the cells activated their global defense system to repair these damages. DNA fragmentation assay also revealed the disintegration of total cellular DNA at sub-toxic doses of e-juice. Despite their state of matter, the e-juice and its aerosols induce cytotoxicity and alter normal cellular functions, respectively that raises concerns on use of e-cigarettes as alternative to traditional cigarette. The ability of RBCs in detecting both harmful effects and toxicity mechanisms provided a fundamental understanding of biological response to e-juice and aerosols.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Sabanci University Nanotechnology Research and Application Center, Orta Mahalle 34956, Tuzla, Istanbul, Turkey
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Anjum Qureshi
- Sabanci University Nanotechnology Research and Application Center, Orta Mahalle 34956, Tuzla, Istanbul, Turkey
| | - Javed H Niazi
- Sabanci University Nanotechnology Research and Application Center, Orta Mahalle 34956, Tuzla, Istanbul, Turkey.
| |
Collapse
|
34
|
Wolf D, Mascher T. The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors. Appl Microbiol Biotechnol 2016; 100:4817-29. [PMID: 27102123 DOI: 10.1007/s00253-016-7519-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 11/28/2022]
Abstract
The cell envelope is an essential bacterial structure that consists of the cytoplasmic membrane, the cell wall, and-in Gram-negative bacteria-the outer membrane. Because of its crucial functions, it represents a prime antibiotic target. Monitoring and maintaining its integrity are therefore keys to survival, especially in competitive environments where antibiotics represent one means of suppressing the growth of competitors. Resistance against external antibiotic threat, as well as auto-immunity against self-produced antibiotics, is often mediated by two-component systems (2CSs). They respond to antibiotic threat by inducing gene expression that results in the production of specific resistance determinants. The underlying transcriptional control is exhibited at the level of specific target promoters, which usually share a number of relevant features: They are tightly controlled and only induced in the presence of specific (sets of) antibiotics. This induction is dose dependent and often very sensitive, that is, it occurs well below inhibitory antibiotic concentrations. Because of these characteristics, a number of well-characterized cell envelope stress-inducible promoters have been developed for two different applied purposes: first, as whole-cell biosensors for antibiotic detection and mechanism-of-action studies, and second, as antibiotic-inducible expression systems for biotechnological purposes. The current state of research in both fields will be discussed in this review, focusing on 2CS-regulated promoters from Firmicutes bacteria that are induced to mediate resistance against antimicrobial peptides (AMPs) targeting the cell envelope.
Collapse
Affiliation(s)
- Diana Wolf
- Institute of Microbiology, Technische Universität (TU) Dresden, 01062, Dresden, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität (TU) Dresden, 01062, Dresden, Germany.
| |
Collapse
|