1
|
Chanpanitkitchote P, Nuanpirom J, Pongsapich W, Asavapanumas N, Mendler S, Wiesmann N, Brieger J, Jinawath N. EMILIN-1 Suppresses Cell Proliferation through Altered Cell Cycle Regulation in Head and Neck Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:995-1012. [PMID: 39892781 DOI: 10.1016/j.ajpath.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Extracellular matrix (ECM) proteins play an important role in the pathological processes of tumor development and progression. Elastic microfibril interface located protein-1 (EMILIN-1), an ECM glycoprotein, is linked to cell adhesion and migration. It was identified from head and neck squamous cell carcinoma (HNSCC) tissues that down-regulated EMILIN-1. It is associated with an increased risk of secondary primary malignancy development in HNSCC and hypothesized to function as a tumor suppressor in HNSCC. This study showed that EMILIN-1 expression in HNSCC tissues was specific to the stromal area, and secreted-EMILIN-1 level was higher in fibroblasts isolated from HNSCC tissues than in HNSCC cells. EMILIN-1 overexpression decreased cell proliferation, migration, and invasion in FaDu and CAL27 cells. Knockdown of EMILIN-1 in HNSCC cancer-associated fibroblasts induced cell proliferation and migration. The conditioned medium from EMILIN-1 knockdown cancer-associated fibroblasts increased HNSCC cell proliferation, and the co-culture system enhanced cancer cell migration and invasion. RNA-sequencing analysis revealed that the cell cycle and aurora kinase signaling were the most significant enrichment pathways, confirmed at the protein level. Furthermore, in an in ovo chick chorioallantoic membrane model, overexpression of EMILIN-1 in FaDu cells reduced tumor size and Ki-67-positivity and increased cleaved caspase-3-positive cells. These findings suggest that EMILIN-1 suppresses HNSCC growth partly through the down-regulation of cell cycle and aurora kinase signaling pathways.
Collapse
Affiliation(s)
| | - Jiratchaya Nuanpirom
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Warut Pongsapich
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Natini Jinawath
- Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Sheng GX, Zhang YJ, Shang T. Synergistic inhibition of colorectal cancer progression by silencing Aurora A and the targeting protein for Xklp2. World J Gastrointest Surg 2025; 17:97148. [PMID: 39872788 PMCID: PMC11757184 DOI: 10.4240/wjgs.v17.i1.97148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/27/2024] Open
Abstract
BACKGROUND Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence. AURKA/TPX2 co-overexpression in cancer may contribute to tumorigenesis. Despite its pivotal role in CRC development and progression, the action mechanism of AURKA remains unclear. Further research is needed to explore the complex interplay between AURKA and TPX2 and to develop effective targeted treatments for patients with CRC. AIM To compare effects of AURKA and TPX2 and their combined knockdown on CRC cells. METHODS We evaluated three CRC gene datasets about CRC (GSE32323, GSE25071, and GSE21510). Potential hub genes associated with CRC onset were identified using the Venn, search tool for the retrieval of interacting genes, and KOBAS platforms, with AURKA and TPX2 emerging as significant factors. Subsequently, cell models with knockdown of AURKA, TPX2, or both were constructed using SW480 and LOVO cells. Quantitative real-time polymerase chain reaction, western blotting, cell counting kit-8, cell cloning assays, flow cytometry, and Transwell assays were used. RESULTS Forty-three highly expressed genes and 39 poorly expressed genes overlapped in cancer tissues compared to controls from three datasets. In the protein-protein interaction network of highly expressed genes, AURKA was one of key genes. Its combined score with TPX2 was 0.999, and their co-expression score was 0.846. In CRC cells, knockdown of AURKA, TPX2, or both reduced cell viability and colony number, while blocking G0/G1 phase and enhancing cell apoptosis. Additionally, they were weakened cell proliferation and migration abilities. Furthermore, the expression levels of B-cell lymphoma-2-Associated X, caspase 3, and tumor protein P53, and E-cadherin increased with a decrease in B-cell lymphoma-2, N-cadherin, and vimentin proteins. These effects were amplified when both AURKA and TPX2 were concurrently downregulated. CONCLUSION Combined knockdown of AURKA and TPX2 was effective in suppressing the malignant phenotype in CRC. Co-inhibition of gene expression is a potential developmental direction for CRC treatment.
Collapse
Affiliation(s)
- Gui-Xian Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Yu-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Tao Shang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
3
|
Teli G, Maji L, Pal R, Maheshwari N, Purawarga Matada GS, Chawla PA, Chawla V. Recent advancements in mechanistic research, therapeutic potential, and structure-activity relationships of aurora kinase inhibitors in cancer therapies. Bioorg Chem 2025; 154:107976. [PMID: 39603069 DOI: 10.1016/j.bioorg.2024.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aurora kinases (AURKs)-a family of serine/threonine protein kinases consisting of AURK-A, AURK-B, and AURK-C, are critical regulators of chromosomal segregation, centrosome maturation, and cytokinesis during the cell cycle. Each kinase is activated via phosphorylation at unique threonine residues: Thr288 (AURK-A), Thr232 (AURK-B), and Thr195 (AURK-C). Activation of AURK-A and AURK-B through phosphorylation triggers a series of downstream signaling pathways, including RalA, NF-κB, p53, PLK1, BRCA1/BRCA2, H2AX, and Kif2C, as well as multiple transmembrane kinase receptors. Dysregulation of these pathways has been implicated in cancer development and progression, positioning AURKs as pivotal targets for anticancer drug research. Inhibition of AURKs has demonstrated significant efficacy in tumor growth suppression and induction of cancer cell death, thereby focusing recent research on the development of potent AURK inhibitors. This review provides an in-depth exploration of AURK inhibitors, discussing their biological activities, structure-activity relationships, selectivity profiles, and mechanisms of action. Notably, compounds 6, 27, and 16 exhibit potent AURK-A inhibition with IC50 values of 1.7 nM, 11.83 nM, and 15 nM, respectively. Similarly, compounds 28, 16, and 7 demonstrate strong AURK-B inhibitory activity, with IC50 values of 10.5 nM, 12 nM, and 14.09 nM, respectively. This comprehensive overview aims to support medicinal chemists in developing more potent, selective, and safe AURK inhibitors as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Ghanshyam Teli
- School of Pharmacy, Sangam University, NH-79, Atoon, Bhilwara, 311001, Rajasthan, India; University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203 India
| | - Lalmohan Maji
- Department of Pharmaceutical Chemistry, Tarifa Memorial Institute of Pharmacy, Murshidabad, 742166, West Bengal, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Neelesh Maheshwari
- School of Pharmacy, Sangam University, NH-79, Atoon, Bhilwara, 311001, Rajasthan, India
| | | | - Pooja A Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203 India.
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203 India.
| |
Collapse
|
4
|
Morgan EL, Saleh AD, Cornelius S, Carlson SG, Toni T, Cheng H, Jeon J, Viswanathan R, Yang X, Silvin C, Clavijo PE, Sowers AL, Mitchell JB, Ormanoglu P, Lal Nag M, Martin SE, Chen Z, Van Waes C. Functional RNAi Screening Identifies G2/M and Kinetochore Components as Modulators of TNFα/NF-κB Prosurvival Signaling in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2903-2918. [PMID: 39392349 PMCID: PMC11541648 DOI: 10.1158/2767-9764.crc-24-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
SIGNIFICANCE Here, RNAi library screening reveals that multiple G2/M and kinetochore components, including TTK/monopolar spindle 1, modulate TNFα-induced NF-κB activation, cell survival, and genotoxicity, underscoring their potential importance as therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anthony D. Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Sophie G. Carlson
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Jun Jeon
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Christopher Silvin
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Pinar Ormanoglu
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Madhu Lal Nag
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Scott E. Martin
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Berginski ME, Jenner MR, Joisa CU, Herrera Loeza G, Golitz BT, Lipner MB, Leary JR, Rashid N, Johnson GL, Yeh JJ, Gomez SM. Kinome state is predictive of cell viability in pancreatic cancer tumor and cancer-associated fibroblast cell lines. PeerJ 2024; 12:e17797. [PMID: 39221276 PMCID: PMC11365483 DOI: 10.7717/peerj.17797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous aspects of cellular signaling are regulated by the kinome-the network of over 500 protein kinases that guides and modulates information transfer throughout the cell. The key role played by both individual kinases and assemblies of kinases organized into functional subnetworks leads to kinome dysregulation driving many diseases, particularly cancer. In the case of pancreatic ductal adenocarcinoma (PDAC), a variety of kinases and associated signaling pathways have been identified for their key role in the establishment of disease as well as its progression. However, the identification of additional relevant therapeutic targets has been slow and is further confounded by interactions between the tumor and the surrounding tumor microenvironment. In this work, we attempt to link the state of the human kinome, or kinotype, with cell viability in treated, patient-derived PDAC tumor and cancer-associated fibroblast cell lines. We applied classification models to independent kinome perturbation and kinase inhibitor cell screen data, and found that the inferred kinotype of a cell has a significant and predictive relationship with cell viability. We further find that models are able to identify a set of kinases whose behavior in response to perturbation drive the majority of viability responses in these cell lines, including the understudied kinases CSNK2A1/3, CAMKK2, and PIP4K2C. We next utilized these models to predict the response of new, clinical kinase inhibitors that were not present in the initial dataset for model devlopment and conducted a validation screen that confirmed the accuracy of the models. These results suggest that characterizing the perturbed state of the human protein kinome provides significant opportunity for better understanding of signaling behavior and downstream cell phenotypes, as well as providing insight into the broader design of potential therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Matthew E. Berginski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Madison R. Jenner
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chinmaya U. Joisa
- Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, United States of America
| | - Gabriela Herrera Loeza
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian T. Golitz
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Matthew B. Lipner
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jack R. Leary
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biostatistics, University of Florida, Gainsville, FL, United States of America
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shawn M. Gomez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, United States of America
| |
Collapse
|
7
|
Hu Y, Wu X, Tan X, Zhang J. Hsa_circRNA_007630 knockdown delays colon cancer progression by modulation of ferroptosis via miR-506-3p/AURKA axis. J Biochem Mol Toxicol 2024; 38:e23771. [PMID: 39015057 DOI: 10.1002/jbt.23771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Colon cancer contributes to high mortality rates internationally that has seriously endangered human health. Aurora kinase A (AURKA) served as a key molecule in colon cancer. However, its role of AURKA on regulating ferroptosis in colon cancer and their possible interactions with miRNAs and circRNAs remain still elusive. Comprehensive bioinformatics analysis after RNA-sequencing was conducted to determine the differentially expressed genes (DEGs), ferroptosis-related DEGs and hub genes. The direct relationship between miR-506-3p and hsa_circRNA_007630 or AURKA was predicted, then verified by dual luciferase reporter and quantitative real-time polymerase chain reaction. The rescue experiments were conducted by cotransfection with si-hsa_circRNA_007630, miR-506-3p inhibitor or pcDNA-AURKA in HT29 cells. Erastin was used to induce ferroptosis in HT29 cells and validated by detecting levels of intracellular Fe2+, lipid reactive oxygen species, glutathione, malondialdehyde and ferroptosis markers expression. We screened a total of 331 DEGs, 26 ferroptosis-related genes, among which 3 hub genes were identified through PPI network analysis. Therein, AURKA expression was elevated in colon cancer cells. Moreover, AURKA was targeted by miR-506-3p, and hsa_circRNA_007630 operated as miR-506-3p sponge. The effect of hsa_circRNA_007630 depletion on the inhibiting malignant phenotypes of HT29 cells was rescued by inhibition of miR-506-3p or AURKA overexpression. Additionally, AURKA reduced erastin-induced ferroptosis in HT29 cells. Depletion of circRNA_007630 exerts as a suppressive role in colon cancer through a novel miR-506-3p/AURKA pathway related to ferroptosis, and might become a novel marker for colon cancer.
Collapse
Affiliation(s)
- Ying Hu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiongjian Wu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiaobin Tan
- Department of Clinical Laboratory, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Jingzhi Zhang
- Department of Gastroenterology, Ganzhou People's Hospital (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou City, China
| |
Collapse
|
8
|
Grisetti L, Garcia CJC, Saponaro AA, Tiribelli C, Pascut D. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Prolif 2024; 57:e13641. [PMID: 38590119 PMCID: PMC11294426 DOI: 10.1111/cpr.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.
Collapse
Affiliation(s)
- Luca Grisetti
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Clarissa J. C. Garcia
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Anna A. Saponaro
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| | | | - Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| |
Collapse
|
9
|
Huh HD, Park HW. Emerging paradigms in cancer cell plasticity. BMB Rep 2024; 57:273-280. [PMID: 38627950 PMCID: PMC11214895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions. [BMB Reports 2024; 57(6): 273-280].
Collapse
Affiliation(s)
- Hyunbin D. Huh
- Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyun Woo Park
- Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Yang C, Plum PS, Gockel I, Thieme R. Pan-cancer analysis and in vitro validation of the oncogenic and prognostic roles of AURKA in human cancers. Front Oncol 2023; 13:1186101. [PMID: 37965456 PMCID: PMC10642189 DOI: 10.3389/fonc.2023.1186101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Background Aurora kinase A (AURKA) plays a pivotal role in regulating cell mitosis and tumor progression. However, its prognostic significance across diverse cancer types remains relatively unexplored. Methods We conducted a comprehensive analysis of AURKA expression in various cancers using data from The Cancer Genome Atlas, Genotype-Tissue Expression, and The Human Protein Atlas databases. Our investigation encompassed an exploration of the associations between AURKA expression and clinical characteristics, shedding light on potential functional roles of AURKA. Additionally, we delved into the relationship between AURKA and the tumor microenvironment. To substantiate the role of AURKA, we carried out in vitro experiments in esophageal adenocarcinoma (EAC), prostate cancer (PRAD), and pancreatic cancer (PAAD) cells. Results Our analysis revealed that AURKA is prominently overexpressed in a majority of the cancer types under investigation. Elevated AURKA expression correlated closely with poorer prognosis and advanced tumor stages. AURKA was found to be associated with key pathways involved in the cell cycle and arachidonic acid metabolism. Moreover, AURKA expression exhibited significant correlations with immunoregulatory genes and immune cell profiles. Notably, in vitro experiments demonstrated that silencing AURKA expression resulted in reduced cell viability in EAC, PRAD, and PAAD cells, as well as a decrease in clone formation, cell cycle elongation, diminished cell invasion and reduced spheroid size in EAC cells (OE33 and OE19). Conclusion Our study elucidates the oncogenic role of AURKA and underscores its prognostic value across a spectrum of cancers, including EAC. These findings suggest that AURKA holds promise as a predictive biomarker for EAC and various other tumor types.
Collapse
Affiliation(s)
| | | | | | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Fatma H, Siddique HR. AURORA KINASE A and related downstream molecules: A potential network for cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:115-145. [PMID: 36858732 DOI: 10.1016/bs.apcsb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aurora-A kinase (AURKA) belongs to the serine/threonine kinase family specific to cell division. In normal cells, activation of the AURKA protein is essential for regulating chromosomal segregation and centrosome maturation. The physiological concentration of AURKA accumulation has utmost importance during cell division. AURKA starts accumulating during the S phase of the cell cycle, gets functionally activated during the G2/M phase, attaches to the microtubule, and gets degraded during mitotic exit. Overexpression of AURKA could lead to deregulated cell cycle division, which is intrinsic to numerous cancers. Moreover, dysregulated AURKA affects various downstream molecules that aid in cancer pathogenesis. AURKA phosphorylates its substrates, including oncoproteins, transcriptional factors, tumor suppressor proteins, or other kinases central to various oncogenic signaling pathways critical to cancer. Considering the central role of AURKA in cell proliferation and tumorigenesis, targeting AURKA can be a novel alternative to cancer management. Several AURKA inhibitors have shown promising responses against different cancers either as a single agent or combined with various therapies. This chapter briefly discusses the role of AURKA and its downstream molecules in cancer vis-à-vis the role of AURKA inhibitor in chemoprevention.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|