1
|
Sonar S, Das A, Yeong Zher L, Narayanan Ravi R, Zheng Kong EQ, Dhar R, Narayanan K, Gorai S, Subramaniyan V. Exosome-Based Sensor: A Landmark of the Precision Cancer Diagnostic Era. ACS APPLIED BIO MATERIALS 2025. [PMID: 40366154 DOI: 10.1021/acsabm.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Extracellular vesicles are nanoscale vesicles released by a diversity of cells that mediate intercellular communication by transporting an array of biomolecules. They are gaining increasing attention in cancer research due to their ability to carry specific biomarkers. This characteristic makes them potentially useful for highly sensitive, noninvasive diagnostic procedures and more precise prognostic assessments. Consequently, EVs are emerging as a transformative tool in cancer treatment, facilitating early detection and personalized medicine. Despite significant progress, clinical implementation is hindered by challenges in EV isolation, purification, and characterization. However, developing advanced biosensor technologies offers promising solutions to these obstacles. This review highlights recent progress in biosensors for EV detection and analysis, focusing on various sensing modalities including optical, electrochemical, microfluidic, nanomechanical, and biological sensors. We also explore techniques for EV isolation, characterization, and analysis, such as electron microscopy, atomic force microscopy, nanoparticle tracking analysis, and single-particle analysis. Furthermore, the review critically assesses the challenges associated with EV detection and put forward future directions, aiming to usher in a cutting-edge era of precision medicine through advanced, sensor-based, noninvasive early cancer diagnosis by detecting EV-carried biomarkers.
Collapse
Affiliation(s)
- Swarup Sonar
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Asmit Das
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Lee Yeong Zher
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Ram Narayanan Ravi
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Eason Qi Zheng Kong
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Rajib Dhar
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| | - Kumaran Narayanan
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
2
|
Yan R, Ke X, Cheng Y, Liu X, Wang Z, Meltzer SJ. Delivery of cancer cell-derived extracellular vesicles modulates the morphology and gene expression of Barrett esophagus and duodenal organoids (Article). Biochem Biophys Res Commun 2025; 769:151976. [PMID: 40349460 DOI: 10.1016/j.bbrc.2025.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Extracellular vesicles (EVs) facilitate intercellular communication, especially in the signaling mechanisms employed by tumor cells to influence both local and distant cells and tissues. This study investigated the impact of cancer cell-derived EVs (CEVs) on patient-derived organoids. Co-culture experiments examined the morphology, growth, proliferation, and cancer-related gene/miRNA expression in Barrett's esophagus (BE) and duodenal organoids. Our results indicate that CEVs promoted organoid proliferation, increased cancer-related mRNA/miRNA expression, and induced phenotypic changes. Artificial modulation of specific oncomiRNAs in CEVs-such as miR-21 and miR-210, influenced CEV-mediated effects on co-cultured organoid growth. These findings align with EV-mediated transformations in benign organoid models, providing a valuable tool to study EV-associated miRNAs/proteins in gastrointestinal preneoplastic/neoplastic conditions and potentially other organs. This lays a foundation for future research on cancer cell-microenvironment interactions and EV roles in tumorigenesis/metastasis.
Collapse
Affiliation(s)
- Rong Yan
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China; Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Xiquan Ke
- First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| | - Yulan Cheng
- Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Xi Liu
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
| | - Zhixiong Wang
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Stephen J Meltzer
- Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
3
|
Tan W, Zhu Y, Chen S. Innovative approach to the detection of circulating tumor biomarkers: multi-dimensional application of liposome technology. Lipids Health Dis 2025; 24:160. [PMID: 40295973 PMCID: PMC12036244 DOI: 10.1186/s12944-025-02578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025] Open
Abstract
Malignant tumors represent a significant worldwide health challenge, with elevated morbidity and mortality rates necessitating enhanced early identification and individualized treatment. Liposomes, as biomimetic lipid-based nanovesicles, have developed as a multifaceted platform for detecting and treating malignant tumors due to their excellent biocompatibility, stability, and membrane fusion properties. Circulating tumor markers, such as circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor proteins (CTPs), and circulating tumor nucleic acids (ctNAs), play a key role in early cancer diagnosis, disease progression monitoring, and personalized therapy. Liposome-based platforms enable effective molecular recognition, targeted detection, and signal amplification by targeting circulating tumor biomarkers, significantly increasing the potential for early tumor diagnosis and treatment. This review systematically summarizes advancements in the study of liposomes concerning circulating tumor markers, including applications in targeted recognition, early detection, and disease diagnosis, while discussing present problems and prospective applications of existing technology.
Collapse
Affiliation(s)
- Weichu Tan
- Department of Laboratory Medicine, Medical Research Center of Nanfang Hospital, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yitong Zhu
- Department of Laboratory Medicine, Medical Research Center of Nanfang Hospital, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Siting Chen
- Department of Laboratory Medicine, Medical Research Center of Nanfang Hospital, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People's Republic of China.
| |
Collapse
|
4
|
Liu K, Wang Y, Li Q, Wang Y, Liu J, Zhou J, Song F, Cong Z, Wang Z, Kong N. Hypoxia LUAD H1975 cell-derived exosomal miR-671-3p promotes angiogenesis via regulating KLF2-VEGFR2 axis. Sci Rep 2025; 15:13148. [PMID: 40240492 PMCID: PMC12003721 DOI: 10.1038/s41598-025-97488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
For solid tumors, hypoxia is associated with disease aggressiveness and poor outcomes. In addition to undergoing broad intracellular molecular and metabolic adaptations, hypoxic tumor cells extensively communicate with their microenvironments to facilitate conditions favorable for their survival, growth, and metastasis. This communication is mediated by diverse secretory factors, including exosomes (extracellular vesicles of endosomal origin). Exosomal cargo is altered considerably by hypoxia, with significant impacts on tumor-cell communication with both local and distant microenvironments. Exosomes released by cancer cells influence the tumor environment to accelerate metastasis. While tumor-derived exosomes have been identified as a major driver of premetastatic niche formation at distant sites, this mechanism in lung adenocarcinoma (LUAD) remains unclear. We found that miR-671-3p in exosomes derived from H1975 under hypoxic conditions target Krüppel-like factor 2 (KLF2) to regulate VEGFR2 expression in endothelial cells to promote angiogenesis. In addition, miR-671-3p is expressed at high levels in circulating exosomes isolated from patients with LUAD. Our study suggests that exosome miR-671-3p is involved in the formation of premetastatic niche and may serve as a blood-based biomarker for LUAD metastasis.
Collapse
Affiliation(s)
- Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China.
| | - Qisen Li
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yujue Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Jinrui Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Jintao Zhou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feiyu Song
- Jilin Connell Pharmaceutical Company, Changchun, China
| | - Zhongyi Cong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Zhe Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ning Kong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China.
| |
Collapse
|
5
|
Sun L, Wei X, Zhao Q, Mao L, Bai X, Li C, Gu J, Kong Y, Cui C, Chi Z, Sheng X, Lian B, Wang X, Li S, Yan X, Tang B, Zhou L, Li J, Guo J, Si L, Dai J. Dynamic Change of PD-L2 on Circulating Plasma Extracellular Vesicles as a Predictor of Treatment Response in Melanoma Patients Receiving Anti-PD-1 Therapy. J Extracell Vesicles 2025; 14:e70054. [PMID: 40135876 PMCID: PMC11938378 DOI: 10.1002/jev2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/30/2024] [Accepted: 02/04/2025] [Indexed: 03/27/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have provided new hope for melanoma patients, however, not all patients benefit. Furthermore, ICI-related therapies cause significant immune-related adverse events that adversely affect patient outcomes. Therefore, there is a pressing need for reliable biomarkers to identify patients most likely to benefit from these treatments. In this study, we employed an extracellular vesicles (EVs) protein expression array to explore the longitudinal membrane protein profiles of plasma-derived EVs from 32 melanoma patients receiving anti-PD-1 and anti-angiogenesis therapy at baseline and early treatment. We found that the dynamic changes in PD-L2 on the EV membrane were associated with treatment response and patient survival. The dynamic change of EV PD-L2 as an indication of treatment efficacy was validated in an independent cohort of melanoma patients treated with anti-PD-1 monotherapy. Plasma-derived PD-L2+ EVs from patients with mucosal melanoma significantly reduced the frequency of granzyme B+ CD8 T cells within the peripheral blood mononuclear cells (PBMCs) of healthy individuals. The inhibitory effect of PD-L2+ EVs on CD8 T cells was further validated using human melanoma cell lines and the B16-F10 mouse model. Although intratumoural injection of PD-L2+ EVs could promote melanoma growth in vivo, tumours with PD-L2+ EVs showed a higher response to anti-PD-1 than those without PD-L2+ EVs. Collectively, our study demonstrates that PD-L2+ EVs inhibit CD8 T cell activation and promote melanoma growth, and changes in PD-L2 on circulating EVs during early treatment could serve as a biomarker for ICI-based therapy.
Collapse
Affiliation(s)
- Linzi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Xiaoting Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Qian Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Caili Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Junjie Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Xieqiao Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Juan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital & InstituteBeijingChina
| |
Collapse
|
6
|
Azar BKY, Vakhshiteh F. The Pre-metastatic Niche: How Cancer Stem Cell-Derived Exosomal MicroRNA Fit into the Puzzle. Stem Cell Rev Rep 2025:10.1007/s12015-025-10866-z. [PMID: 40095238 DOI: 10.1007/s12015-025-10866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Cancer metastasis is a complicated biological process that critically affects cancer progression, patient outcomes, and treatment plans. A significant step in metastasis is the formation of a pre-metastatic niche (PMN). A small subset of cells within tumors, known as cancer stem cells (CSCs), possess unique characteristics including, differentiation into different cell types within the tumor, self-renewal, and resistance to conventional therapies, that enable them to initiate tumors and drive metastasis. PMN plays an important role in preparing secondary organs for the arrival and proliferation of CSCs, thereby facilitating metastasis. CSC-derived exosomes are crucial components in the complex interplay between CSCs and the tumor microenvironment. These exosomes function as transporters of various substances that can promote cancer progression, metastasis, and modulation of pre-metastatic environments by delivering microRNA (miRNA, miR) cargo. This review aims to illustrate how exosomal miRNAs (exo-miRs) secreted by CSCs can predispose PMN and promote angiogenesis and metastasis.
Collapse
Affiliation(s)
- Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
7
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
8
|
Bai L, Yu L, Ran M, Zhong X, Sun M, Xu M, Wang Y, Yan X, Lee RJ, Tang Y, Xie J. Harnessing the Potential of Exosomes in Therapeutic Interventions for Brain Disorders. Int J Mol Sci 2025; 26:2491. [PMID: 40141135 PMCID: PMC11942545 DOI: 10.3390/ijms26062491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Exosomes, which are nano-sized natural vesicles secreted by cells, are crucial for intercellular communication and interactions, playing a significant role in various physiological and pathological processes. Their characteristics, such as low toxicity and immunogenicity, high biocompatibility, and remarkable drug delivery capabilities-particularly their capacity to traverse the blood-brain barrier-make exosomes highly promising vehicles for drug administration in the treatment of brain disorders. This review provides a comprehensive overview of exosome biogenesis and isolation techniques, strategies for the drug loading and functionalization of exosomes, and exosome-mediated blood-brain barrier penetration mechanisms, with a particular emphasis on recent advances in exosome-based drug delivery for brain disorders. Finally, we address the opportunities and challenges associated with utilizing exosomes as a drug delivery system for the brain, summarizing the barriers to clinical translation and proposing future research directions.
Collapse
Affiliation(s)
- Lu Bai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Leijie Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Mengqiong Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Meng Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xinlei Yan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Robert J. Lee
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| |
Collapse
|
9
|
Chen Y, Zhang M, Qi Y, Lin Y, Liu S, Deng C, Jiang S, Sun N. Efficient extraction via titanium organic frameworks facilitates in-depth profiling of urinary exosome metabolite fingerprints. Anal Bioanal Chem 2025; 417:1543-1555. [PMID: 39853354 DOI: 10.1007/s00216-025-05741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Urinary exosome metabolite analysis has demonstrated notable advantages in uncovering disease status, yet its potential in decoding the intricacies of clear cell renal cell carcinoma (ccRCC) remains untapped. To address this, a core-shell magnetic titanium organic framework was designed to capture urinary exosomes and assist laser desorption/ionization mass spectrometry (LDI MS) to decipher the exosomal metabolic profile of ccRCC, with high sensitivity, throughput, and speed. A total of 492 urinary exosome metabolite fingerprints (UEMFs) from 176 samples were extracted for exploring the differences between ccRCC and healthy individuals. Leveraging machine learning algorithms, the exosomal metabolic profile was disclosed, achieving accurate differentiation and prediction of ccRCC patients versus healthy individuals, with an accuracy exceeding 97.3%. Furthermore, an optimized algorithm panel comprising five key features demonstrated consistent and high diagnosing accuracy rates of over 94.0% both in the training and blind test sets for ccRCC, underscoring the remarkable effectiveness and superiority of this strategy in ccRCC detection. This study not only refines the LDI MS method for metabolite analysis in urinary exosomes but also introduces a promising technical approach for unraveling the mysteries of ccRCC.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Man Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yu Qi
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch Fudan University, Shanghai, 200032, China
| | - Yiwen Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shasha Liu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch Fudan University, Shanghai, 200032, China.
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Grossini E, Surico D, Venkatesan S, Ola Pour MM, Aquino CI, Remorgida V. Extracellular Vesicles and Pregnancy-Related Hypertensive Disorders: A Descriptive Review on the Possible Implications "From Bench to Bedside". BIOLOGY 2025; 14:240. [PMID: 40136497 PMCID: PMC11939443 DOI: 10.3390/biology14030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Pregnancy involves extracellular vesicles (EVs) through mechanisms that are poorly understood to date. Furthermore, it is not surprising that EVs may also be involved in the pathophysiology of pre-eclampsia (PE) and gestational hypertension, two clinical conditions with high morbidity and mortality, given their capacity to mediate intracellular communications and regulate inflammation and angiogenesis. We searched major online scientific search engines (PubMed, Google Scholar, Scopus, WES, Embase, etc.) using the terms "Preeclampsia", "Pregnancy", "Hypertension", "Pregnancy-related hypertension", "Extracellular vesicles", "Biomarkers", "Gestation" AND "Obstetrics". Finding potential early biomarkers of risk or illness progression would be essential for the optimum care of expectant mothers with the aforementioned conditions. Nevertheless, none of the various screening assays that have been discovered recently have shown high predictive values. The analysis of EVs in the peripheral blood starting from the first trimester of pregnancy may hold great promise for the possible correlation with gestational hypertension problems and represent a marker of the early stages of the disease. EVs use may be a novel therapeutic approach for the management of various illnesses, as well. In order to define EVs' function in the physiopathology of pregnancy-associated hypertension and PE, as well as their potential as early biomarkers and therapeutic tools, we have compiled the most recent data in this review.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Daniela Surico
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Carmen Imma Aquino
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| | - Valentino Remorgida
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| |
Collapse
|
11
|
Xiao N, Li Q, Liang G, Qian Z, Lin Y, Zhang H, Fu Y, Yang X, Zhang CT, Yang J, Liu A. Regulatory Roles of Exosomes in Aging and Aging-Related Diseases. Biogerontology 2025; 26:61. [PMID: 39966192 DOI: 10.1007/s10522-025-10200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Exosomes are small vesicles with diameters ranging from 30 to 150 nm. They originate from cellular endocytic systems. These vesicles contain a rich payload of biomolecules, including proteins, nucleic acids, lipids, and metabolic products. Exosomes mediate intercellular communication and are key regulators of a diverse array of biological processes, such as oxidative stress and chronic inflammation. Furthermore, exosomes have been implicated in the pathogenesis of infectious diseases, autoimmune disorders, and cancer. Aging is closely associated with the onset and progression of numerous diseases and is significantly influenced by exosomes. Recent studies have consistently highlighted the important functions of exosomes in the regulation of cellular senescence. Additionally, research has explored their potential to delay aging, such as the alleviatory effects of stem cell-derived exosomes on the aging process, which offers broad potential for the development and application of exosomes as anti-aging therapeutic strategies. This review aims to comprehensively investigate the multifaceted impact of exosomes while concurrently evaluating their potential applications and underscoring their strategic significance in advancing anti-aging strategies.
Collapse
Affiliation(s)
- Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yangguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cun-Tai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China.
| |
Collapse
|
12
|
Sych T, Görgens A, Steiner L, Gucluler G, Huge Y, Alamdari F, Johansson M, Aljabery F, Sherif A, Gabrielsson S, El Andaloussi S, Sezgin E. Imaging Single Particle Profiler to Study Nanoscale Bioparticles Using Conventional Confocal Microscopy. NANO LETTERS 2025; 25:2173-2180. [PMID: 39878336 PMCID: PMC11827106 DOI: 10.1021/acs.nanolett.4c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Single particle profiling (SPP) is a unique methodology to study nanoscale bioparticles such as liposomes, lipid nanoparticles, extracellular vesicles, and lipoproteins in a single particle and high throughput manner. The initial version requires the single photon counting modules for data acquisition, which limits its adoptability. Here, we present imaging-based SPP (iSPP) that can be performed by imaging a spot over time in the common imaging mode with confocal detectors. We also provide user-friendly software with a graphical user interface to analyze such data and give quantitative insights on the content and properties of nanoscale bioparticles. We use iSPP to decipher lipid-protein interactions, membrane modifications by drugs, and the heterogeneity of extracellular vesicles isolated from cell lines and human urine. This easily applicable modality of the single particle profiler will facilitate nanoscale bioparticle research in laboratories with access to any confocal microscope.
Collapse
Affiliation(s)
- Taras Sych
- Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, Tomtebodavägen 23, 17165 Solna, Sweden
| | - André Görgens
- Division
of Biomolecular and Cellular Medicine, Department of Laboratory Medicine,
Karolinska ATMP Center, Karolinska Institutet, 14152 Huddinge, Sweden
- Department
of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, 14152 Huddinge, Sweden
| | - Loïc Steiner
- Division
of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, 17164 405 Stockholm, Sweden
- Department
of Clinical Immunology and Transfusion Medicine, Center for Molecular
Medicine, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Gozde Gucluler
- Division
of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, 17164 405 Stockholm, Sweden
- Department
of Clinical Immunology and Transfusion Medicine, Center for Molecular
Medicine, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Ylva Huge
- Department
of Urology in Östergötland and Department of Biomedical
and Clinical Sciences, Linköping
University, 58225 Linköping, Sweden
| | - Farhood Alamdari
- Department
of Urology, Vastmanland Hospital, 72189 Västerås, Sweden
| | - Markus Johansson
- Departement
of Surgery and Urology, County Hospital
of Sundsvall-Härnösand, 85643 Sundsvall, Sweden
| | - Firas Aljabery
- Department
of Urology in Östergötland, and Department of Biomedical
and Clinical Sciences, Linköping
University, 58225 Linköping, Sweden
| | - Amir Sherif
- Department
of Diagnostics and Intervention, Umeå
University, 90187 Umeå, Sweden
| | - Susanne Gabrielsson
- Division
of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, 17164 405 Stockholm, Sweden
- Department
of Clinical Immunology and Transfusion Medicine, Center for Molecular
Medicine, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Samir El Andaloussi
- Division
of Biomolecular and Cellular Medicine, Department of Laboratory Medicine,
Karolinska ATMP Center, Karolinska Institutet, 14152 Huddinge, Sweden
- Department
of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, 14152 Huddinge, Sweden
| | - Erdinc Sezgin
- Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, Tomtebodavägen 23, 17165 Solna, Sweden
| |
Collapse
|
13
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
14
|
Thakur A, Rai D. Global requirements for manufacturing and validation of clinical grade extracellular vesicles. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100278. [PMID: 40027307 PMCID: PMC11863704 DOI: 10.1016/j.jlb.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 03/05/2025]
Abstract
Extracellular vesicles (EVs) are nanovesicles released from different cell types from biofluids such as blood, urine, and cerebrospinal fluid. They vary in size and biomarkers, and their biogenesis pathways allow them to be divided into three major types: exosomes, micro-vesicles, and apoptotic bodies. EVs have been studied in the context of diagnosis and therapeutic intervention of various pathological conditions such as cancer, neurodegenerative diseases, and pulmonary diseases. However, the production of EV-based therapeutics can be affected by the source, heterogeneity, or disease, raising questions about the manufacturing and validation of EVs of clinical grade and their scope regarding good manufacturing practice (GMP) in the industry. To address this, we have discussed the state-of-the-art requirements for EV production that must occur in a GMP-compliant environment with a reliable and traceable source. Additionally, EVs' homogeneity and the therapeutics' purity and stability must be analyzed and validated. Quality control measures must also be established to ensure the safety and efficacy of EVs. In conclusion, these considerations must be weighed carefully when manufacturing and validating EVs of clinical grade to ensure their safety and efficacy for therapeutic use.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Deepika Rai
- Smidt Heart Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| |
Collapse
|
15
|
Zhang H, Xia J, Wang X, Wang Y, Chen J, He L, Dai J. Recent Progress of Exosomes in Hematological Malignancies: Pathogenesis, Diagnosis, and Therapeutic Strategies. Int J Nanomedicine 2024; 19:11611-11631. [PMID: 39539968 PMCID: PMC11559222 DOI: 10.2147/ijn.s479697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Hematological malignancies originate from the hematopoietic system, including lymphoma, multiple myeloma, leukaemia, etc. They are highly malignant with a high incidence, a poor prognosis and a high mortality. Although the novel therapeutic strategies have partly improved the clinical efficacy of hematological malignancies, patients still face up with drug resistance, refractory disease and disease relapse. Many studies have shown that exosomes play an important role in hematological malignancies. Exosomes are nanoscale vesicles secreted by cells with a size ranging from 40 to 160 nm. They contain various intracellular components such as membrane proteins, lipids, and nucleic acids. These nanoscale vesicles transmit information between cells with the cargos. Thus, they participate in a variety of pathological processes such as angiogenesis, proliferation, metastasis, immunomodulation and drug resistance, which results in important role in the pathogenesis and progression of hematological malignancies. Furthermore, exosomes and the components carried in them can be used as potential biomarkers for the diagnosis, therapeutic sensitivity and prognosis in hematological malignancies. In the therapy of hematologic malignancies, certain exosome are potential to be used as therapeutic targets, meanwhile, exosomes are suitable drug carriers with lipid bilayer membrane and the nanostructure. Moreover, the tumor-derived exosomes of patients with hematologic malignancies can be developed into anti-tumor vaccines. The research and application of exosomes in hematological malignancies are summarized and discussed in this review.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jingyi Xia
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xueqing Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yifan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jie Chen
- Central Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lin He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jingying Dai
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| |
Collapse
|
16
|
Bafiti V, Thanou E, Ouzounis S, Kotsakis A, Georgoulias V, Lianidou E, Katsila T, Markou A. Profiling Plasma Extracellular Vesicle Metabotypes and miRNAs: An Unobserved Clue for Predicting Relapse in Patients with Early-Stage NSCLC. Cancers (Basel) 2024; 16:3729. [PMID: 39594687 PMCID: PMC11592109 DOI: 10.3390/cancers16223729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Lung cancer, the second most prevalent cancer globally, poses significant challenges in early detection and prognostic assessment. Despite advancements in targeted therapies and immunotherapy, the timely identification of relapse remains elusive. Blood-based liquid biopsy biomarkers, including circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating-free RNAs (cfRNAs), and extracellular vesicles (EVs)/exosomes, offer promise for non-invasive monitoring. METHODS We employ a comprehensive approach integrating miRNA/lncRNA/metabolomic datasets, following a mixed-methods content analysis, to identify candidate biomarkers in NSCLC. NSCLC-associated miRNA/gene/lncRNA associations were linked to in silico-derived molecular pathways. RESULTS For data validation, mass spectrometry-based untargeted metabolomics of plasma EVs highlighted miRNA/lncRNA/metabotypes, linking "glycerophospholipid metabolism" to lncRNA H19 and "alanine, aspartate and glutamate metabolism" to miR-29a-3p. Prognostic significance was established for miR-29a-3p, showing lower expression in NSCLC patients with disease progression compared to stable disease (p = 0.004). Kaplan-Meier survival analysis indicated that patients with miR-29a-3p under-expression had significantly shorter overall survival (OS) (p = 0.038). Despite the expression of lncRNA H19 in plasma EVs being undetected, its expression in plasma cfRNAs correlated significantly with disease progression (p = 0.035). CONCLUSIONS Herein, we showcase the potential of plasma EV-derived miR-29a-3p as a prognostic biomarker and underscore the intricate interplay of miRNAs, lncRNAs, and metabolites in NSCLC biology. Our findings offer new insights and avenues for further exploration, contributing to the ongoing quest for effective biomarkers in early-stage NSCLC.
Collapse
Affiliation(s)
- Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.)
| | - Eleni Thanou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.T.); (E.L.)
| | - Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.)
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Larissa, Greece;
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, 15562 Cholargos, Greece;
| | - Evi Lianidou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.T.); (E.L.)
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.)
| | - Athina Markou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.T.); (E.L.)
| |
Collapse
|
17
|
Mir R, Baba SK, Elfaki I, Algehainy N, Alanazi MA, Altemani FH, Tayeb FJ, Barnawi J, Husain E, Bedaiwi RI, Albalawi IA, Alhujaily M, Mir MM, Almotairi R, Alatwi HE, Albalawi AD. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. J Cancer 2024; 15:6383-6415. [PMID: 39513123 PMCID: PMC11540496 DOI: 10.7150/jca.98426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vehicles (EVs) are gaining increasing recognition as central contributors to the intricate landscape of the tumor microenvironment (TME). This manuscript provides an extensive examination of the multifaceted roles played by EVs in shaping the TME, with a particular emphasis on their involvement in metastasis, drug resistance, and immune evasion. Metastasis, the process by which cancer cells disseminate to distant sites, remains a formidable challenge in cancer management. EVs, encompassing exosomes and microvesicles, have emerged as critical participants in this cascade of events. They facilitate the epithelial-to-mesenchymal transition (EMT), foster pre-metastatic niche establishment, and enhance the invasive potential of cancer cells. This manuscript delves into the intricate molecular mechanisms underpinning these processes, underscoring the therapeutic potential of targeting EVs to impede metastasis. Drug resistance represents a persistent impediment to successful cancer treatment. EVs are instrumental in intrinsic and acquired drug resistance, acting as mediators of intercellular communication. They ferry molecules like miRNAs and proteins, which confer resistance to conventional chemotherapy and targeted therapies. This manuscript scrutinizes the diverse strategies employed by EVs in propagating drug resistance while also considering innovative approaches involving EV-based drug delivery systems to counteract this phenomenon. Immune evasion is a hallmark of cancer, and EVs are central in sculpting the immunosuppressive milieu of the TME. Tumor-derived EVs thwart immune responses through various mechanisms, including T cell dysfunction induction, the expansion of regulatory T cells (Tregs), and polarization of macrophages towards an immunosuppressive phenotype. In addition, the manuscript explores the diagnostic potential of EVs as biomarkers and their role as therapeutic agents in immune checkpoint blockade therapies. This manuscript provides a comprehensive overview of EV's pivotal role in mediating intricate interactions within the TME, ultimately influencing cancer progression and therapeutic outcomes. A profound understanding of EV-mediated processes in metastasis, drug resistance, and immune evasion opens up promising avenues for developing innovative therapeutic strategies and identifying valuable biomarkers in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadaf Khursheed Baba
- Watson Crick Center for Molecular Medicine, Islamic University of Science and Technology, J & K, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faris Jamal Tayeb
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Eram Husain
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan E. Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
18
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
19
|
Meng X, Pang X, Liu X, Luo S, Zhang X, Dong H. Ultrasensitive Electrochemiluminescence Biosensor Based on DNA-Bio-Bar-Code and Hybridization Chain Reaction Dual Signal Amplification for Exosomes Detection. Anal Chem 2024; 96:13299-13307. [PMID: 39090799 DOI: 10.1021/acs.analchem.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Exosomes have received considerable attention as potent reference markers for the diagnosis of various neoplasms due to their close and direct relationship with the proliferation, adhesion, and migration of tumor. The ultrasensitive detection of cancer-derived low-abundance exosomes is imperative, but still a great challenge. Herein, we report an electrochemiluminescence (ECL) biosensor based on the DNA-bio-bar-code and hybridization chain reaction (HCR)-mediated dual signal amplification for the ultrasensitive detection of cancer-derived exosomes. In this system, two types of aptamers were modified on the magnetic nanoprobe (MNPs) and gold nanoparticles (AuNPs) with numerous bio-bar-code DNA, respectively, which formed "sandwich" structures in the presence of specific target exosomes. The "sandwich" structures were separated under magnetic field, and the numerous bio-bar-code DNA were released by dissolving AuNPs. The released bio-bar-code DNA triggered the HCR procedure to produce a good deal of long DNA duplex structure for embedding in hemin, which generated strong ECL signal in the presence of coreactors for ultrasensitive detection of exosomes. Under the optimal conditions, it exhibited a good linearly of exosomes ranging from 10 to 104 exosomes particle μL-1 with limit of detection down to 5.01 exosome particle μL-1. Furthermore, the high ratio of ECL signal and minor change of ECL intensity indicated the good specificity, stability, and repeatability of this ECL biosensor. Given the good performance for exosome analysis, this ultrasensitive ECL biosensor has a promising application in the clinical diagnosis of early cancers.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
| | - Xiangyu Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Shuiyou Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
20
|
Yamaoka B, Nagasaki-Maeoka E, Uekusa S, Muto-Fujita E, Abe N, Fujiwara K, Koshinaga T, Uehara S. NRP1 knockdown inhibits the invasion and migration of rhabdoid tumor of the kidney cells. Pediatr Surg Int 2024; 40:221. [PMID: 39133317 PMCID: PMC11319361 DOI: 10.1007/s00383-024-05808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE The aim of this study was to detect candidate oncogenes of rhabdoid tumor of the kidney (RTK) and evaluate their roles in RTK in vitro. METHODS An integrated analysis of messenger RNA (mRNA) and microRNA (miRNA) sequencing was performed to determine the expression profile of exosome-derived miRNAs and mRNAs in human RTK-derived cell lines and a human embryonic renal cell line. A Gene Ontology enrichment analysis was performed to analyze the functional characteristics of differentially expressed mRNAs in RTK cells. Matrigel invasion and wound-healing assays were performed to evaluate the cell invasion and migration abilities. RESULTS Forty mRNAs were highly expressed in RTK cells targeted by exosomal miRNAs, the expression of which was lower in RTK cells than in the controls. These mRNAs were primarily related to cell adhesion. Of these mRNAs, we selected neuropilin 1 (NRP1) as a candidate oncogene because its upregulated expression is associated with a poor prognosis of several types of tumors. RTK cells in which NRP1 had been knocked down exhibited decreased invasive and migratory abilities. CONCLUSION Our study indicates that NRP1 acts as an oncogene by promoting the invasion and migration of RTK cells and that it could serve as a therapeutic target.
Collapse
Affiliation(s)
- Bin Yamaoka
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Eri Nagasaki-Maeoka
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan.
- Department of Pediatric Surgery, Jichi Medical University, Saitama Medical Center, 1-847, Amanumacho, Omiya, Saitama, 330-8503, Japan.
| | - Shota Uekusa
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Eri Muto-Fujita
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Naoko Abe
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Kyoko Fujiwara
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo, 173-0032, Japan
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Shuichiro Uehara
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan.
| |
Collapse
|
21
|
Chung J, Xiao S, Gao Y, Soung YH. Recent Technologies towards Diagnostic and Therapeutic Applications of Circulating Nucleic Acids in Colorectal Cancers. Int J Mol Sci 2024; 25:8703. [PMID: 39201393 PMCID: PMC11354501 DOI: 10.3390/ijms25168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer (CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifically circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent advancements in molecular technologies have enabled sensitive and specific detection of tumor-derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR, next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA analysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detection primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential in early CRC detection, treatment response monitoring, minimal residual disease assessment, and tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing detection limits, and establishing clinical utility across disease stages. This review summarizes current circulating nucleic acid detection technologies, their CRC applications, and discusses future directions for clinical implementation.
Collapse
Affiliation(s)
| | | | | | - Young Hwa Soung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.C.); (S.X.); (Y.G.)
| |
Collapse
|
22
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
23
|
Min L, Bu F, Meng J, Liu X, Guo Q, Zhao L, Li Z, Li X, Zhu S, Zhang S. Circulating small extracellular vesicle RNA profiling for the detection of T1a stage colorectal cancer and precancerous advanced adenoma. eLife 2024; 12:RP88675. [PMID: 39121006 PMCID: PMC11315448 DOI: 10.7554/elife.88675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Jingxin Meng
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | | | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | | | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking UniversityBeijingChina
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| |
Collapse
|
24
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
25
|
Fan Q, Sun XH, Wu N, Wang YH, Wang JH, Yang T. An extracellular vesicle microRNA-initiated 3D DNAzyme motor for colorectal cancer diagnosis. Analyst 2024; 149:3910-3919. [PMID: 38910520 DOI: 10.1039/d4an00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
MicroRNA is regarded as a significant biomarker for cancer diagnosis, disease process evaluation and therapeutic guidance, and dual-parameter measurement may contribute to a more accurate and realistic assessment. To meet the urgent need for simultaneous detection of multiple biomarkers, we combined three-dimensional DNAzyme motors with single molecule imaging technique to construct a convenient, intuitive, and sensitive approach for the simultaneous detection of dual miRNAs in the free state or in extracellular vesicles. Quantification of target miRNAs can be realized through the detection of amplified fluorescence signals generated by the target miRNA-initiated cleavage of fluorescent substrate strands by the DNAzyme motors. The practicability was systematically validated with microRNA-21-5p and microRNA-10b-5p as targets, acquiring a satisfactory sensitivity sufficient to detect low abundance targets at 0.5 or 1 pM to 100 pM. Besides, the extracellular vesicular miRNAs can be conveniently detected without extraction. The clinical applicability was verified with a series of extracellular vesicles from clinical samples, which exhibited good distinguishability between colorectal cancer patients and healthy donors. In addition to the advantages of good specificity and high sensitivity, the system has potential to be easily adapted by minor alteration of the DNA sequences and fluorophore sets for detection of multiple miRNAs and even other types of biomarkers such as proteins. Therefore, it shows promise to be widely applied in various fields such as early diagnosis of cancer and its prognostic assessment.
Collapse
Affiliation(s)
- Qian Fan
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xu-Hong Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Na Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
- Institute of Precision Medicine, Fujian Medical University, Fujian 350004, China
| | - Yuan-He Wang
- Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
26
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
27
|
Zhao B, Wang M, Cong Y, Song A, Lu J, Xie K, Dai H, Gu L. Urinary exosomal mRNAs as biomarkers for predicting the therapeutic effect of renin-angiotensin system inhibitors in IgA nephropathy patients. Clin Chim Acta 2024; 561:119750. [PMID: 38885756 DOI: 10.1016/j.cca.2024.119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Renin-angiotensin system inhibitors (RASi) treatment is the basic therapy for IgA nephropathy (IgAN) patients. However, there is few of biomarker that can predict the efficacy of RASi. This study aimed to find urinary exosomal mRNAs related to the therapeutic effect of RASi in the treatment of proteinuria in IgAN patients. METHODS We divided IgAN patients in screening cohort into A1 (proteinuria increase at 3 months), B1 (proteinuria decrease less than 50 % at 3 months), C1 (proteinuria decrease more than 50 % at 3 months) groups according to changes of proteinuria after treatment. The urinary exosomes were collected before biopsy, RNAs were extracted and analyzed with the microarray assay. The candidate genes were screened by differentially expressed genes (DEGs) analysis and then validated by quantitative real-time polymerase chain reaction (qPCR) in a validation cohort. A receiver operating characteristic (ROC) curve was used to evaluate gene performance in predicting therapeutic effect on RASi reducing proteinuria in IgAN patients. RESULTS ECE1 and PDE1A mRNAs were significantly different among the three groups, and were gradually decreased among A1, B1 and C1 groups. In the validation cohort, the level of urinary exosomal ECE1 and PDE1A mRNAs were also significantly lower in A2 group compared with C2 group(ECE1, P < 0.001;PDE1A, P < 0.01). Besides, the level of ECE1 mRNA was also lower in B2 group compared with C2 group (P < 0.01). The ROC curve verified that urinary exosomal ECE1 and PDE1A gene level predicted RASi efficacy in IgAN patients with area under curve (AUC) 0.68 and 0.63 respectively. CONCLUSION Urinary exosomal ECE1 and PDE1A mRNAs expression can serve as potential biomarkers for predicting the RASi efficacy to reduce proteinuria in IgAN patients.
Collapse
Affiliation(s)
- Bingru Zhao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China
| | - Minzhou Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China
| | - Yue Cong
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China; Department of Emergency Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ahui Song
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China
| | - Jiayue Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China
| | - Kewei Xie
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China
| | - Huili Dai
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
28
|
Wang X, Zhang Y, Wu Y, Wang C, Li S, Yuan Y, Lv X, Liu Y, Chen F, Chen S, Zhang F, Guo X, Ning Y, Zhao H. Integration of miRNA in exosomes and single-cell RNA-seq profiles in endemic osteoarthritis, Kashin-Beck disease. Biofactors 2024; 50:725-737. [PMID: 38156801 DOI: 10.1002/biof.2033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Kashin-Beck disease (KBD) is an endemic, chronic degenerative joint disease in China. Exosomes miRNAs, as signaling molecules in intercellular communication, can transfer specific biological martials into target cell to regulate their function and might participate in the pathogenesis of KBD. We isolated serum and chondrocytes-derived exosomes, miRNA sequencing revealed exosomes miRNA profiles and differentially expressed miRNAs (DE-miRNAs) were identified. The target genes were predicted of known and novel DE-miRNAs with TargetScan 5.0 and miRanda 3.3a database. Single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in KBD. And we performed comparative analysis between the serum and chondrocytes-derived exosomes DE-miRNA target genes and differentially expressed genes of each cell clusters. A total of 20 DE-miRNAs were identified in serum-derived exosomes. In the miRNA expression of chondrocytes-derived exosomes, 53 DE-miRNAs were identified. 16,063 predicted targets were identified as the target genes in the serum-derived exosomes, 57,316 predicted targets were identified as the target genes in the chondrocytes-derived exosomes. Seven clusters were labeled by cell type according to the expression of previously described markers. Three hundred fifteen common genes were found among serum/chondrocytes-derived exosomes DE-miRNA target genes and DEGs identified by scRNA-seq analysis. We firstly integratly analyzed the serum and chondrocytes exosomes miRNA with single-cell RNA sequencing (scRNA-seq) data of KBD chondrocyte, the results showed that DE-miRNAs in exosomes might play a potential role in regulating genes expression in different KBD chondrocytes clusters by exosomes mediating cell-cell communications functions, which could improve the new diagnosis and treatment methods for KBD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
29
|
Zhang H, Tang Y, Zhou Y, Wang Y, Si H, Li L, Tang B. DNAzyme-RCA-based colorimetric and lateral flow dipstick assays for the point-of-care testing of exosomal m5C-miRNA-21. Chem Sci 2024; 15:9345-9352. [PMID: 38903234 PMCID: PMC11186332 DOI: 10.1039/d4sc02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024] Open
Abstract
Methylation of microRNAs (miRNAs) is a post-transcriptional modification that affects miRNA activity by altering the specificity of miRNAs to target mRNAs. Abnormal methylation of miRNAs in cancer suggests their potential as a tumor marker. However, the traditional methylated miRNA detection mainly includes mass spectrometry, sequencing and others; complex procedures and reliance on large instruments greatly limit their application in point-of-care testing (POCT). Based on this, we developed DNAzyme-RCA-based gold nanoparticle (AuNP) colorimetric and lateral flow dipstick (LFD) assays to achieve convenient detection of exosomal 5-methylcytosine miRNA-21 (m5C-miRNA-21) for the first time. The two assays achieved specific recognition and linear amplification of m5C-miRNA-21 through the DNAzyme triggered RCA reaction and color output with low background interference through AuNP aggregation induced by base complementary pairing. The lowest concentration of m5C-miRNA-21 visible to the naked eye of the two assays can reach 1 pM and 0.1 pM, respectively. Detection of exosomal m5C-miRNA-21 in clinical blood samples showed that the expression level of m5C-miRNA-21 in colorectal cancer patients was significantly higher than that in healthy individuals. This approach not only demonstrates a new strategy for the detection of colorectal cancer but also provides a reference for the development of novel diagnostic tools for other miRNA methylation-related diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University Jinan 250014 P. R. China
| | - Yingshun Zhou
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yiguo Wang
- First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Jinan 250014 P. R. China
| | - Haibin Si
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Lu Li
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
- Laoshan Laboratory Qingdao 266237 P. R. China
| |
Collapse
|
30
|
Stawarska A, Bamburowicz-Klimkowska M, Runden-Pran E, Dusinska M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int J Mol Sci 2024; 25:6533. [PMID: 38928240 PMCID: PMC11204223 DOI: 10.3390/ijms25126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Mihaela Roxana Cimpan
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ivan Rios-Mondragon
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ireneusz P. Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| |
Collapse
|
31
|
Afridi S, Sharma P, Choudhary F, Rizwan A, Nizam A, Parvez A, Farooqi H. Extracellular Vesicles: A New Approach to Study the Brain's Neural System and Its Diseases. Cell Biochem Biophys 2024; 82:521-534. [PMID: 38727784 DOI: 10.1007/s12013-024-01271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
In normal and pathophysiological conditions our cells secrete vesicular bodies known as extracellular particles. Extracellular vesicles are lipid-bound extracellular particles. A majority of these extracellular vesicles are linked to cell-to-cell communication. Brain consists of tightly packed neural cells. Neural cell releases extracellular vesicles in cerebrospinal fluid. Extracellular vesicle mediated crosstalk maintains neural homeostasis in the central nervous system via transferring cargos between neural cells. In neurodegenerative diseases, small extracellular vesicle transfer misfolded proteins to healthy cells in the neural microenvironment. They can also cross blood-brain barrier (BBB) and stimulate peripheral immune response inside central nervous system. In today's world different approaches employ extracellular vesicle in various therapeutics. This review gives a brief knowledge about the biological relevance of extracellular vesicles in the central nervous system and relevant advances in the translational application of EV in brain disorders.
Collapse
Affiliation(s)
- Shahid Afridi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Amber Rizwan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Anam Nizam
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
32
|
Chen X, Luo Y, Zhu Q, Zhang J, Huang H, Kan Y, Li D, Xu M, Liu S, Li J, Pan J, Zhang L, Guo Y, Wang B, Qi G, Zhou Z, Zhang CY, Fang L, Wang Y, Chen X. Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. NATURE AGING 2024; 4:814-838. [PMID: 38627524 PMCID: PMC11186790 DOI: 10.1038/s43587-024-00612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2024] [Indexed: 05/31/2024]
Abstract
Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xiaorui Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Luo
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing Zhu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansheng Kan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Dian Li
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Xu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuohan Liu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianxiao Li
- Institute of Systems, Molecular and Integrative Biology, School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Jinmeng Pan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Binghao Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Guantong Qi
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Zhou
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Yanbo Wang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Xi Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| |
Collapse
|
33
|
Liang C, Zhang Y, Wang S, Jiao W, Guo J, Zhang N, Liu X. Nanomaterials in modulating tumor-associated macrophages and enhancing immunotherapy. J Mater Chem B 2024; 12:4809-4823. [PMID: 38695349 DOI: 10.1039/d4tb00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Tumor-associated macrophages (TAMs) are predominantly present in the tumor microenvironment (TME) and play a crucial role in shaping the efficacy of tumor immunotherapy. These TAMs primarily exhibit a tumor-promoting M2-like phenotype, which is associated with the suppression of immune responses and facilitation of tumor progression. Interestingly, recent research has highlighted the potential of repolarizing TAMs from an M2 to a pro-inflammatory M1 status-a shift that has shown promise in impeding tumor growth and enhancing immune responsiveness. This concept is particularly intriguing as it offers a new dimension to cancer therapy by targeting the tumor microenvironment, which is a significant departure from traditional approaches that focus solely on tumor cells. However, the clinical application of TAM-modulating agents is often challenged by issues such as insufficient tumor accumulation and off-target effects, limiting their effectiveness and safety. In this regard, nanomaterials have emerged as a novel solution. They serve a dual role: as delivery vehicles that can enhance the accumulation of therapeutic agents in the tumor site and as TAM-modulators. This dual functionality of nanomaterials is a significant advancement as it addresses the key limitations of current TAM-modulating strategies and opens up new avenues for more efficient and targeted therapies. This review provides a comprehensive overview of the latest mechanisms and strategies involving nanomaterials in modulating macrophage polarization within the TME. It delves into the intricate interactions between nanomaterials and macrophages, elucidating how these interactions can be exploited to drive macrophage polarization towards a phenotype that is more conducive to anti-tumor immunity. Additionally, the review explores the burgeoning field of TAM-associated nanomedicines in combination with tumor immunotherapy. This combination approach is particularly promising as it leverages the strengths of both nanomedicine and immunotherapy, potentially leading to synergistic effects in combating cancer.
Collapse
Affiliation(s)
- Chen Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Siyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jingyi Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Nan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
34
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Chen J, Zheng M, Xiao Q, Wang H, Chi C, Lin T, Wang Y, Yi X, Zhu L. Recent Advances in Microfluidic-Based Extracellular Vesicle Analysis. MICROMACHINES 2024; 15:630. [PMID: 38793203 PMCID: PMC11122811 DOI: 10.3390/mi15050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Extracellular vesicles (EVs) serve as vital messengers, facilitating communication between cells, and exhibit tremendous potential in the diagnosis and treatment of diseases. However, conventional EV isolation methods are labor-intensive, and they harvest EVs with low purity and compromised recovery. In addition, the drawbacks, such as the limited sensitivity and specificity of traditional EV analysis methods, hinder the application of EVs in clinical use. Therefore, it is urgent to develop effective and standardized methods for isolating and detecting EVs. Microfluidics technology is a powerful and rapidly developing technology that has been introduced as a potential solution for the above bottlenecks. It holds the advantages of high integration, short analysis time, and low consumption of samples and reagents. In this review, we summarize the traditional techniques alongside microfluidic-based methodologies for the isolation and detection of EVs. We emphasize the distinct advantages of microfluidic technology in enhancing the capture efficiency and precise targeting of extracellular vesicles (EVs). We also explore its analytical role in targeted detection. Furthermore, this review highlights the transformative impact of microfluidic technology on EV analysis, with the potential to achieve automated and high-throughput EV detection in clinical samples.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Meiyu Zheng
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Qiaoling Xiao
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Hui Wang
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Caixing Chi
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Tahui Lin
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Yulin Wang
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Xue Yi
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Lin Zhu
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
36
|
Kong M, Hong DH, Paudel S, Yoon NE, Jung BH, Kim M, Kim TH, Jeong J, Choi D, Lee H. Metabolomics and miRNA profiling reveals feature of gallbladder cancer-derived biliary extracellular vesicles. Biochem Biophys Res Commun 2024; 705:149724. [PMID: 38432111 DOI: 10.1016/j.bbrc.2024.149724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Although there are several studies in the development of various human cancers, the role of exosomes is poorly understood in the progression of gallbladder cancer. This study aims to characterize the metabolic changes occurring in exosomes obtained from patients with gallbladder cancer compared with those from other gallbladder disease groups. METHODS Biliary exosomes were isolated from healthy donors (n = 3) and from patients with gallbladder cancer (n = 3), gallbladder polyps (n = 4), or cholecystitis (n = 3) using a validated exosome isolation kit. Afterward, we performed miRNA profiling and untargeted metabolomic analysis of the exosomes. The results were validated by integrating the results of the miRNA and metabolomic analyses. RESULTS The gallbladder cancer group exhibited a significant reduction in the levels of multiple unsaturated phosphatidylethanolamines and phosphatidylcholines compared to the normal group, which resulted in the loss of exosome membrane integrity. Additionally, the gallbladder cancer group demonstrated significant overexpression of miR-181c and palmitic acid, and decreased levels of conjugated deoxycholic acid, all of which are strongly associated with the activation of the PI3K/AKT pathway. CONCLUSIONS Our findings demonstrate that the contents of exosomes are disease-specific, particularly in gallbladder cancer, and that altered metabolites convey critical information regarding their phenotype. We believe that our metabolomic and miRNA profiling results may provide important insights into the development of gallbladder cancer.
Collapse
Affiliation(s)
- Mingyu Kong
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Da Hee Hong
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea; Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Sanjita Paudel
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Na Eun Yoon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Myounghoi Kim
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hun Kim
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaemin Jeong
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Dongho Choi
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea; Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
37
|
Tong Z, Yang D, Shen C, Li C, Xu X, Li Q, Wu Z, Ma H, Chen F, Mao H. Rapid automated extracellular vesicle isolation and miRNA preparation on a cost-effective digital microfluidic platform. Anal Chim Acta 2024; 1296:342337. [PMID: 38401929 DOI: 10.1016/j.aca.2024.342337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
As a prerequisite for extracellular vesicle (EV) -based studies and diagnosis, effective isolation, enrichment and retrieval of EV biomarkers are crucial to subsequent analyses, such as miRNA-based liquid biopsy for non-small-cell lung cancer (NSCLC). However, most conventional approaches for EV isolation suffer from lengthy procedure, high cost, and intense labor. Herein, we introduce the digital microfluidic (DMF) technology to EV pretreatment protocols and demonstrate a rapid and fully automated sample preparation platform for clinical tumor liquid biopsy. Combining a reusable DMF chip technique with a low-cost EV isolation and miRNA preparation protocol, the platform completes automated sample processing in 20-30 min, supporting immediate RT-qPCR analyses on EV-derived miRNAs (EV-miRNAs). The utility and reliability of the platform was validated via clinical sample processing for EV-miRNA detection. With 23 tumor and 20 non-tumor clinical plasma samples, we concluded that EV-miR-486-5p and miR-21-5p are effective biomarkers for NSCLC with a small sample volumn (20-40 μL). The result was consistent to that of a commercial exosome miRNA extraction kit. These results demonstrate the effectiveness of DMF in EV pretreatment for miRNA detection, providing a facile solution to EV isolation for liquid biopsy.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Zablon F, Desai P, Dellinger K, Aravamudhan S. Cellular and Exosomal MicroRNAs: Emerging Clinical Relevance as Targets for Breast Cancer Diagnosis and Prognosis. Adv Biol (Weinh) 2024; 8:e2300532. [PMID: 38258348 PMCID: PMC11198028 DOI: 10.1002/adbi.202300532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Breast cancer accounts for the highest cancer cases globally, with 12% of occurrences progressing to metastatic breast cancer with a low survival rate and limited effective early intervention strategies augmented by late diagnosis. Moreover, a low concentration of prognostic and predictive markers hinders disease monitoring. Circulating and exosomal microRNAs (miRNAs) have recently shown a considerable interplay in breast cancer, standing out as effective diagnostic and prognostic markers. The primary functions are as gene regulatory agents at the genetic and epigenetic levels. An array of dysregulated miRNAs stimulates cancer-promoting mechanisms, activating oncogenes and controlling tumor-suppressing genes and mechanisms. Exosomes are vastly studied extracellular vesicles, carrying, and transporting cargo, including noncoding RNAs with premier roles in oncogenesis. Translocation of miRNAs from the circulation to exosomes, with RNA-binding proteins in stress-induced conditions, has shown significant cooperation in function to promote breast cancer. This review examines cellular and exosomal miRNA biogenesis and loading, the clinical implications of their dysregulation, their function in diagnosis, prognosis, and prediction of breast cancer, and in regulating cancer signaling pathways. The influence of cellular and exosomal miRNAs presents clinical significance on breast cancer diagnosis, subtyping, staging, prediction, and disease monitoring during treatment, hence a potent marker for breast cancer.
Collapse
Affiliation(s)
- Faith Zablon
- Joint School of Nanoscience and Nanoengineering, North Carolina, A & T State University, 2904 E. Gate City Blvd, Greensboro, NC-27401
| | - Parth Desai
- University of North Carolina, Greensboro, 2904 E. Gate City Blvd, Greensboro, NC-27401
| | - Kristen Dellinger
- Joint School of Nanoscience and Nanoengineering, North Carolina, A & T State University, 2904 E. Gate City Blvd, Greensboro, NC-27401
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina, A & T State University, 2904 E. Gate City Blvd, Greensboro, NC-27401
| |
Collapse
|
39
|
Zhang XW, Qi GX, Liu MX, Yang YF, Wang JH, Yu YL, Chen S. Deep Learning Promotes Profiling of Multiple miRNAs in Single Extracellular Vesicles for Cancer Diagnosis. ACS Sens 2024; 9:1555-1564. [PMID: 38442411 DOI: 10.1021/acssensors.3c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Extracellular vesicle microRNAs (EV miRNAs) are critical noninvasive biomarkers for early cancer diagnosis. However, accurate cancer diagnosis based on bulk analysis is hindered by the heterogeneity among EVs. Herein, we report an approach for profiling single-EV multi-miRNA signatures by combining total internal reflection fluorescence (TIRF) imaging with a deep learning (DL) algorithm for the first time. This innovative technique allows for the precise characterization of EV miRNAs at the single-vesicle level, overcoming the challenges posed by EV heterogeneity. TIRF with high resolution and a signal-to-noise ratio can simultaneously detect multi-miRNAs in situ in individual EVs. DL algorithm avoids complicated and inaccurate artificial feature extraction, achieving automated high-resolution image analysis. Using this approach, we reveal that the main variation of EVs from 5 cancer cells and normal plasma is the triple-positive EV subpopulation, and the classification accuracy of single triple-positive EVs from 6 sources can reach above 95%. In the clinical cohort, 20 patients (5 lung cancer, 5 breast cancer, 5 cervical cancer, and 5 colon cancer) and 5 healthy controls are predicted with an overall accuracy of 100%. This single-EV strategy provides new opportunities for exploring more specific EV biomarkers to achieve cancer diagnosis and classification.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Gong-Xiang Qi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yan-Fei Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
40
|
Kalele K, Nyahatkar S, Mirgh D, Muthuswamy R, Adhikari MD, Anand K. Exosomes: A Cutting-Edge Theranostics Tool for Oral Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1400-1415. [PMID: 38394624 DOI: 10.1021/acsabm.3c01243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) secreted by cells. In cancer, they are key cellular messengers during cancer development and progression. Tumor-derived exosomes (TEXs) promote cancer progression. In oral cancer, the major complication is oral squamous cell carcinoma (OSCC). Exosomes show strong participation in several OSCC-related activities such as uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and drug and therapeutic resistance. It is also a potential biomarker source for oral cancer. Some therapeutic exosome sources such as stem cells, plants (it is more effective compared to others), and engineered exosomes reduce oral cancer development. This therapeutic approach is effective because of its specificity, biocompatibility, and cell-free therapy (it reduced side effects in cancer treatment). This article highlights exosome-based theranostics signatures in oral cancer, clinical trials, challenges of exosome-based oral cancer research, and future improvements. In the future, exosomes may become an effective and affordable solution for oral cancer.
Collapse
Affiliation(s)
- Ketki Kalele
- Neuron Institute of Applied Research, Rajapeth-Irwin Square Flyover, Amravati, Maharashtra 444601, India
| | - Sidhanti Nyahatkar
- VYWS Dental College & Hospital, WQMV+7X6, Tapovan-Wadali Road, Camp Rd, SRPF Colony, Amravati, Maharashtra 444602, India
| | - Divya Mirgh
- Department of Infectious Diseases, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Raman Muthuswamy
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
41
|
Matejka N, Amarlou A, Neubauer J, Rudigkeit S, Reindl J. High-Resolution Microscopic Characterization of Tunneling Nanotubes in Living U87 MG and LN229 Glioblastoma Cells. Cells 2024; 13:464. [PMID: 38474428 PMCID: PMC10931022 DOI: 10.3390/cells13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Tunneling nanotubes (TNTs) are fine, nanometer-sized membrane connections between distant cells that provide an efficient communication tool for cellular organization. TNTs are thought to play a critical role in cellular behavior, particularly in cancer cells. The treatment of aggressive cancers such as glioblastoma remains challenging due to their high potential for developing therapy resistance, high infiltration rates, uncontrolled cell growth, and other aggressive features. A better understanding of the cellular organization via cellular communication through TNTs could help to find new therapeutic approaches. In this study, we investigate the properties of TNTs in two glioblastoma cell lines, U87 MG and LN229, including measurements of their diameter by high-resolution live-cell stimulated emission depletion (STED) microscopy and an analysis of their length, morphology, lifetime, and formation by live-cell confocal microscopy. In addition, we discuss how these fine compounds can ideally be studied microscopically. In particular, we show which membrane-labeling method is suitable for studying TNTs in glioblastoma cells and demonstrate that live-cell studies should be preferred to explore the role of TNTs in cellular behavior. Our observations on TNT formation in glioblastoma cells suggest that TNTs could be involved in cell migration and serve as guidance.
Collapse
Affiliation(s)
- Nicole Matejka
- Institute for Applied Physics and Measurement Technology, University of the Bundeswehr Munich, 85577 Neubiberg, Germany; (A.A.); (J.N.); (S.R.); (J.R.)
| | | | | | | | | |
Collapse
|
42
|
Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, Latifi N, Jahromi AM. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep 2024; 37:101644. [PMID: 38298209 PMCID: PMC10827597 DOI: 10.1016/j.bbrep.2024.101644] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Exosomes are a type of extracellular vesicle that contains bioactive molecules that can be secreted by most cells. Nevertheless, the content of these cells differs depending on the cell from which they originate. The exosome plays a crucial role in modulating intercellular communication by conveying molecular messages to neighboring or distant cells. Cancer-derived exosomes can transfer several types of molecules into the tumor microenvironment, including high levels of microRNA (miRNA). These miRNAs significantly affect cell proliferation, angiogenesis, apoptosis resistance, metastasis, and immune evasion. Increasing evidence indicates that exosomal miRNAs (exomiRs) are crucial to regulating cancer resistance to apoptosis. In cancer cells, exomiRs orchestrate communication channels between them and their surrounding microenvironment, modulating gene expression and controlling apoptosis signaling pathways. This review presents an outline of present-day knowledge of the mechanisms that affect target cells and drive cancer resistance to apoptosis. Also, our study looks at the regulatory role of exomiRs in mediating intercellular communication between tumor cells and surrounding microenvironmental cells, specifically stromal and immune cells, to evade therapy-induced apoptosis.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Daniyal Arab
- Department of Human Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naghme Safaeian
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Ashuori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Amir Moein Jahromi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Luo Y, Feng Q, Ma D, Wang B, Chi C, Ding CF, Yan Y. Highly sensitive quantitative detection of glycans on exosomes in renal disease serums using fluorescence signal amplification strategies. Talanta 2024; 269:125467. [PMID: 38042140 DOI: 10.1016/j.talanta.2023.125467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Exosomal glycoproteins play a significant role in many physiological and pathological processes. However, the detection of exosome surface glycans is currently challenged by the complexity of biological samples or the sensitivity of the methods. Herein, we prepared a novel fluorescent probe of biotin-functionalized nanocrystals (denoted as CdTe@cys-biotin) and applied it for the first time for the detection of the expression of exosomal surface glycans using a fluorescence amplification strategy. First, the dual affinity of TiO2 and CD63 aptamers of Fe3O4@TiO2-CD63 was utilized to rapidly and efficiently capture exosomes within 25 min. In this design, interference from other vesicles and soluble impurities can be avoided due to the dual recognition strategy. The chemical oxidation of NaIO4 oxidized the hydroxyl sites of exosomal surface glycans to aldehydes, which were then labeled with aniline-catalyzed biotin hydrazide. Using the high affinity between streptavidin and biotin, streptavidin-FITC and probes were successively anchored to the glycans on the exosomes. The fluorescent probe achieved the dual function of specific recognition and fluorescent labeling by modifying biotin on the surface of nanocrystals. This method showed excellent specificity and sensitivity for exosomes at concentrations ranging from 3.30 × 102 to 3.30 × 106 particles/mL, with a detection limit of 121.48 particles/mL. The fluorescent probe not only quantified exosomal surface glycans but also distinguished with high accuracy between serum exosomes from normal individuals and patients with kidney disease. In general, this method provides a powerful platform for sensitive detection of exosomes in cancer diagnosis.
Collapse
Affiliation(s)
- Yiting Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Dumei Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chaoxian Chi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
44
|
Chen J, Hu F, Lin S, Song Z, Duan Z, Zhang L, Jiang M. Hybridization chain reaction assisted terahertz metamaterial biosensor for highly sensitive detection of microRNAs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123646. [PMID: 37980831 DOI: 10.1016/j.saa.2023.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
MicroRNA (miRNA) is closely related to the occurrence and development of cancer. Accurate determination of the miRNA concentration is of great significance for early cancer diagnosis. However, due to the short sequence and low concentration of miRNA, it is still a challenge to achieve low-concentration detection. In this work, we proposed a method for the highly sensitive detection of miRNA-21 using a terahertz (THz) metamaterial sensor combined with a Hybridization chain reaction (HCR). First, a capture hairpin probe was combined with gold nanoparticles (AuNPs), which were then modified to the surface of the sensor for specific binding of miRNA-21. Then the signal amplification technique of HCR is used to amplify the trace amount of miRNA, and the super-long dendritic DNA macromolecules are formed on the surface of the sensor. This changes the dielectric environment of the sensor surface, and the resonance frequency of the sensor is shifted. The method has good specificity and sensitivity, and the concentration of miRNA-21 in the range of 100 aM to 10 nM shows excellent linear relationship with frequency shift. Most importantly, it paves the way for low-cost, easy-to-operate and marker-free miRNA detection.
Collapse
Affiliation(s)
- Jie Chen
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fangrong Hu
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Shangjun Lin
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zihang Song
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhitao Duan
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Longhui Zhang
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Mingzhu Jiang
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
45
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Guo S, Xie H, Zhao X, He H, Feng X, Li Y, Liu BF, Chen P. All-in-one detection of breast cancer-derived exosomal miRNA on a pen-based paper chip. Analyst 2024; 149:1250-1261. [PMID: 38225883 DOI: 10.1039/d3an02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Exosomal microRNAs (miRNAs) play a pivotal role in intercellular communication, regulating gene expression in target cells, and hold significant promise as cancer biomarkers for early detection and screening. However, achieving precise and viable detection of exosomal miRNAs remains a challenge. This paper proposes an all-in-one detection strategy for breast cancer-derived exosomal miRNA-21 on a pen-based paper chip (PPC). The PPC is constructed using a modified automatic pen and lateral flow assay (LFA), which results in a cost-effective fabrication process. The user only needs to add the sample and trigger the top of the self-contained PPC after a period of time to complete the entire detection process. To enhance the sensitivity of exosomal miRNA testing, an enzyme-free catalyzed hairpin assembly (CHA) is further introduced, enabling highly sensitive detection of miRNA-21 with a limit of detection (LOD) of 25 fmol. Additionally, the detection of miRNAs in differentially-expressed cells and clinical samples has also been successfully achieved with high specificity. Overall, the proposed PPC provides an effective tool for detecting early cancer, monitoring diseases, and establishing point of care testing (POCT).
Collapse
Affiliation(s)
- Song Guo
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
47
|
Zhang L, Gao Y. ICOSLG acts as an oncogene to promote glycolysis, proliferation, migration, and invasion in gastric cancer cells. Arch Biochem Biophys 2024; 752:109841. [PMID: 38081339 DOI: 10.1016/j.abb.2023.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) has emerged as one of the most common malignancies in gastrointestinal system. Inducible T-cell costimulator ligand (ICOSLG) was found to be highly expressed in various cancers, which contributes to disease progression. This study aims to investigate the role of ICOSLG and its potential mechanism of action in dictating the aggressiveness of GC cell. ICOSLG and miR-331-3p expression patterns in cancerous and para-cancerous tissues from GC patients were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The miRNAs targeting ICOSLG were predicted by "miRDB", "starBase," and "TargetScan" databases. The interplay of ICOSLG and miR-331-3p in dictating the aggressiveness and glycolysis of GC cells was investigated by CCK-8 proliferation assay and Transwell migration/invasion assays, as well as the detection of glucose uptake, lactate production and ATP levels. The tumorigenesis of GC cells after ICOSLG silencing was examined in the nude mice. ICOSLG was highly expressed in GC tissues, and GC patients with high ICOSLG expression showed a poorer prognosis than the low-expression group. Further, high ICOSLG level was correlated with more advanced TNM stages, more lymph-node metastases, and poorer tumor differentiation. ICOSLG knockdown inhibited the proliferation, migration, invasion and tumor formation of GC cells, which was concomitant with reduced glucose consumption, lactate production, and ATP levels. In contrast, ICOSLG overexpression enhanced the aggressiveness of GC cells, and this effect was abrogated after the treatment with glycolysis inhibitor. We further found that miR-331-3p was a negative regulator of ICOSLG4, and miR-331-3p overexpression reduced ICOSLG4 expression and suppressed the aggressive phenotype induced by ICOSLG4 in GC cells. Together, these findings indicate that ICOSLG4, as an oncogene, is upregulated to promote glycolysis and the malignant phenotype in GC cells. miR-331-3p, which is downregulated in GC tissues, functions as a negative regulator of ICOSLG4. Targeting miR-331-3p/ICOSLG4 axis could potentially suppress GC progression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oncology, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, 100101, China
| | - Yunge Gao
- Department of Oncology, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, 100101, China.
| |
Collapse
|
48
|
Xiao Q, Yan X, Sun Y, Tang Y, Hou R, Pan X, Zhu X. Brain-Derived Exosomal miRNA Profiles upon Experimental SAE Rats and Their Comparison with Peripheral Exosomes. Mol Neurobiol 2024; 61:772-782. [PMID: 37659038 DOI: 10.1007/s12035-023-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction secondary to body infection without overt central nervous system infection. Dysregulation of miRNA expression in the transcriptome can spread through RNA transfer in exosomes, providing an early signal of impending neuropathological changes in the brain. Here, we comprehensively analyzed brain-derived exosomal miRNA profiles in SAE rats (n = 3) and controls (n = 3). We further verified the differential expression and correlation of brain tissue, cerebrospinal fluid, and plasma exosomal miRNAs in SAE rats. High-throughput sequencing of brain-derived exosomal miRNAs identified 101 differentially expressed miRNAs, of which 16 were downregulated and 85 were upregulated. Four exosomal miRNAs (miR-127-3p, miR-423-3p, mR-378b, and miR-106-3p) were differentially expressed and correlated in the brain tissue, cerebrospinal fluid, and plasma, revealing the potential use of miRNAs as SAE liquid brain biopsies. Understanding exosomal miRNA profiles in SAE brain tissue and exploring the correlation with peripheral exosomal miRNA can contribute to a comprehensive understanding of miRNA changes in the SAE pathological process and provide the possibility of establishing early diagnostic assays.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoqian Yan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
49
|
Wang X, Wang L, Lin H, Zhu Y, Huang D, Lai M, Xi X, Huang J, Zhang W, Zhong T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol 2024; 14:1303335. [PMID: 38333685 PMCID: PMC10850354 DOI: 10.3389/fonc.2024.1303335] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vehicles (EVs) have received significant attention in recent times as emerging biomarkers and subjects of transformational studies. The three main branches of liquid biopsy have evolved from the three primary tumor liquid biopsy detection targets-CTC, ctDNA, and EVs-each with distinct benefits. CTCs are derived from circulating cancer cells from the original tumor or metastases and may display global features of the tumor. ctDNA has been extensively analyzed and has been used to aid in the diagnosis, treatment, and prognosis of neoplastic diseases. EVs contain tumor-derived material such as DNA, RNA, proteins, lipids, sugar structures, and metabolites. The three provide different detection contents but have strong complementarity to a certain extent. Even though they have already been employed in several clinical trials, the clinical utility of three biomarkers is still being studied, with promising initial findings. This review thoroughly overviews established and emerging technologies for the isolation, characterization, and content detection of CTC, ctDNA, and EVs. Also discussed were the most recent developments in the study of potential liquid biopsy biomarkers for cancer diagnosis, therapeutic monitoring, and prognosis prediction. These included CTC, ctDNA, and EVs. Finally, the potential and challenges of employing liquid biopsy based on CTC, ctDNA, and EVs for precision medicine were evaluated.
Collapse
Affiliation(s)
- Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Lijuan Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Haihong Lin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yifan Zhu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
50
|
Li Y, Cao Y, Liu W, Chen F, Zhang H, Zhou H, Zhao A, Luo N, Liu J, Wu L. Candidate biomarkers of EV-microRNA in detecting REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis 2024; 10:18. [PMID: 38200052 PMCID: PMC10781790 DOI: 10.1038/s41531-023-00628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) lacks reliable, non-invasive biomarker tests for early intervention and management. Thus, a minimally invasive test for the early detection and monitoring of PD and REM sleep behavior disorder (iRBD) is a highly unmet need for developing drugs and planning patient care. Extracellular vehicles (EVs) are found in a wide variety of biofluids, including plasma. EV-mediated functional transfer of microRNAs (miRNAs) may be viable candidates as biomarkers for PD and iRBD. Next-generation sequencing (NGS) of EV-derived small RNAs was performed in 60 normal controls, 56 iRBD patients and 53 PD patients to profile small non-coding RNAs (sncRNAs). Moreover, prospective follow-up was performed for these 56 iRBD patients for an average of 3.3 years. Full-scale miRNA profiles of plasma EVs were evaluated by machine-learning methods. After optimizing the library construction method for low RNA inputs (named EVsmall-seq), we built a machine learning algorithm that identified diagnostic miRNA signatures for distinguishing iRBD patients (AUC 0.969) and PD patients (AUC 0.916) from healthy individuals; and PD patients (AUC 0.929) from iRBD patients. We illustrated all the possible expression patterns across healthy-iRBD-PD hierarchy. We also showed 20 examples of miRNAs with consistently increasing or decreasing expression levels from controls to iRBD to PD. In addition, four miRNAs were found to be correlated with iRBD conversion. Distinct characteristics of the miRNA profiles among normal, iRBD and PD samples were discovered, which provides a panel of promising biomarkers for the identification of PD patients and those in the prodromal stage iRBD.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Cao
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Wei Liu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Fangzheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongdao Zhang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haisheng Zhou
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Aonan Zhao
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ningdi Luo
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ligang Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|