1
|
Sen I, Trzaskalski NA, Hsiao YT, Liu PP, Shimizu I, Derumeaux GA. Aging at the Crossroads of Organ Interactions: Implications for the Heart. Circ Res 2025; 136:1286-1305. [PMID: 40403108 DOI: 10.1161/circresaha.125.325637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/24/2025]
Abstract
Aging processes underlie common chronic cardiometabolic diseases such as heart failure and diabetes. Cross-organ/tissue interactions can accelerate aging through cellular senescence, tissue wasting, accelerated atherosclerosis, increased vascular stiffness, and reduction in blood flow, leading to organ remodeling and premature failure. This interorgan/tissue crosstalk can accelerate aging-related dysfunction through inflammation, senescence-associated secretome, and metabolic and mitochondrial changes resulting in increased oxidative stress, microvascular dysfunction, cellular reprogramming, and tissue fibrosis. This may also underscore the rising incidence and co-occurrence of multiorgan dysfunction in cardiometabolic aging in the population. Examples include interactions between the heart and the lungs, kidneys, liver, muscles, and brain, among others. However, this phenomenon can also present new translational opportunities for identifying diagnostic biomarkers to define early risks of multiorgan dysfunction, gain mechanistic insights, and help to design precision-directed therapeutic interventions. Indeed, this opens new opportunities for therapeutic development in targeting multiple organs simultaneously to disrupt the crosstalk-driven process of mutual disease acceleration. New therapeutic targets could provide synergistic benefits across multiple organ systems in the same at-risk patient. Ultimately, these approaches may together slow the aging process itself throughout the body. In the future, with patient-centered multisystem coordinated approaches, we can initiate a new paradigm of multiorgan early risk prediction and tailored intervention. With emerging tools including artificial intelligence-assisted risk profiling and novel preventive strategies (eg, RNA-based therapeutics), we may be able to mitigate multiorgan cardiometabolic dysfunction much earlier and, perhaps, even slow the aging process itself.
Collapse
Affiliation(s)
- Ilke Sen
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| | - Natasha A Trzaskalski
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Yung-Ting Hsiao
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
| | - Peter P Liu
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Ippei Shimizu
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (I. Shimizu)
| | - Geneviève A Derumeaux
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| |
Collapse
|
2
|
Rahaman SN, Lishadevi M, Anandasadagopan SK. Unraveling the Molecular Mechanisms of Osteoarthritis: The Potential of Polyphenols as Therapeutic Agents. Phytother Res 2025; 39:2038-2071. [PMID: 40044420 DOI: 10.1002/ptr.8455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 05/21/2025]
Abstract
The complex nature of osteoarthritis (OA), driven by the intricate interplay of genetic, environmental, and lifestyle factors, necessitates the development of a single treatment method, which is highly challenging. The long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids often leads to adverse side effects like kidney damage and stomach ulcers. Major health threats like obesity and aging create a milieu of chronic low-grade inflammation and increased mechanical stress on the joints resulting in cartilage deterioration. Additionally, postmenopausal women with lower circulating 17β-estradiol levels experience accelerated joint deterioration due to increased immune activity resulting in the increased production of pro-inflammatory cytokines, with elevated MMP expression and decreased type II collagen synthesis. Polyphenols are nature's gifted magic molecules, which possess diverse biological properties like anti-oxidant, anti-bacterial, anti-inflammatory, estrogenic, and insulin-sensitizing effects, which can manage and treat all the multi-factorial contributing factors of OA effectively. Certain polyphenols can act as phytoestrogens and mimic the effects of natural estrogen by binding to ERα and ERβ and can act as SERMs and prevent degradation of the articular cartilage thereby alleviating osteoarthritic conditions. These molecules downregulate the expression of various pro-inflammatory cytokines, apoptotic genes, and matrix-degrading proteases (MMPs) while upregulating major ECM proteins like type II collagen, aggrecan, and proteoglycans in various osteoarthritic animal models. This review provides a comprehensive overview of the molecular mechanisms involved in OA development and also explores the therapeutic potential of different polyphenols in mitigating joint inflammation and their protective effect in inhibiting the degradation of cartilage extracellular matrix (ECM) and enhancing joint homeostasis.
Collapse
Affiliation(s)
- Syed Nasar Rahaman
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Murugesan Lishadevi
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Kumar Anandasadagopan
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Lecoutre S, Rebière C, Maqdasy S, Lambert M, Dussaud S, Abatan JB, Dugail I, Gautier EL, Clément K, Marcelin G. Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health. Nat Rev Endocrinol 2025; 21:272-288. [PMID: 39757324 DOI: 10.1038/s41574-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Adipose tissue demonstrates considerable plasticity and heterogeneity, enabling metabolic, cellular and structural adaptations to environmental signals. This adaptability is key for maintaining metabolic homeostasis. Impaired adipose tissue plasticity can lead to abnormal adipose tissue responses to metabolic cues, which contributes to the development of cardiometabolic diseases. In chronic obesity, white adipose tissue undergoes pathological remodelling marked by adipocyte hypertrophy, chronic inflammation and fibrosis, which are linked to local and systemic insulin resistance. Research data suggest that the capacity for healthy or unhealthy white adipose tissue remodelling might depend on the intrinsic diversity of adipose progenitor cells (APCs), which sense and respond to metabolic cues. This Review highlights studies on APCs as key determinants of adipose tissue plasticity, discussing differences between subcutaneous and visceral adipose tissue depots during development, growth and obesity. Modulating APC functions could improve strategies for treating adipose tissue dysfunction and metabolic diseases in obesity.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| | - Clémentine Rebière
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine, Karolinska Institutet Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Institut National de la Santé et de la Recherche Médicale, Bobigny, France
- Labex Inflamex, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Bobigny, France
| | - Sébastien Dussaud
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Emmanuel L Gautier
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
- Department of Nutrition, Pitie-Salpêtriere Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| |
Collapse
|
4
|
Fallone F, Rebeaud M, Bouche C, Fontaine J, Arellano C, Ducoux-Petit M, Orgerit L, Deudon R, Nicolle R, Franchet C, Estève D, Mouton-Barbosa E, Dauvillier S, Moutahir M, Burlet-Schiltz O, Bouloumié A, Vaysse C, Muller C. Lack of fibro-inflammatory response in human mammary adipose tissue in obesity. Int J Obes (Lond) 2025; 49:809-818. [PMID: 39738492 DOI: 10.1038/s41366-024-01705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Understanding how obesity impacts human mammary adipose tissue (MAT) biology is crucial for deciphering its role in mammary epithelium during both physiological and pathophysiological processes, including breast cancer. Hypertrophic mammary adipocytes and Crown-Like Structures are present in MAT of patients with obesity but whether these changes initiate a fibro-inflammatory response at the tissue level remains insufficiently explored. OBJECTIVE We investigated the markers of adipose tissue dysfunction (immune cell infiltration, secretion pattern and fibrosis) in tumor-free MAT of patients with obesity versus patients who are lean. METHODS Tumor-free MAT were obtained from 96 women with (n = 43) or without (n = 53) obesity who underwent mastectomy for breast cancer risk reduction or treatment. Immune and non-immune cell infiltration were determined using flow cytometry. Bulk transcriptomic was used to characterize the phenotype of CD206+ macrophages whose infiltration is increased in patients with obesity. Conditioned-medium were prepared from MAT to characterize their secretome and dose adipokines and cytokines by ELISA assay. The extra-cellular matrix (ECM) deposition was evaluated by Masson trichrome staining on cross-stained sections, 3D imaging of red picrosirius-stained tissues and measure of hydroxyproline content. RESULTS We observed an increase of CD206+/HLA-DR+ macrophages in the stromal vascular fraction of MAT from patients with obesity compared to patients who are lean. Other immune cell infiltration and endothelial or adipose progenitor cell numbers were similar between groups. Bulk transcriptomics on CD206+ macrophages revealed a significant decrease in ECM component expression and processing in obesity. In addition, no heightened secretion of pro-inflammatory cytokines, TGF-β1 or MCP-1 was observed in the samples from patients with obesity. ECM characterization revealed an absence of fibrosis, with MAT of patients with obesity showing even a slightly reduced collagen secretion and deposition compared with their lean counterparts. CONCLUSIONS Obesity is not associated with inflammation nor fibrosis in MAT, highlighting its unique behavior.
Collapse
Affiliation(s)
- Frédérique Fallone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France.
| | - Marie Rebeaud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Caroline Bouche
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Carlo Arellano
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Manuelle Ducoux-Petit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Lucyle Orgerit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Rémi Deudon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
| | - Camille Franchet
- Département d'Anatomo-Pathologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - David Estève
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Stéphanie Dauvillier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Mohamed Moutahir
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Anne Bouloumié
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Charlotte Vaysse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
5
|
Accacha S, Barillas-Cerritos J, Srivastava A, Ross F, Drewes W, Gulkarov S, De Leon J, Reiss AB. From Childhood Obesity to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Hyperlipidemia Through Oxidative Stress During Childhood. Metabolites 2025; 15:287. [PMID: 40422865 DOI: 10.3390/metabo15050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is rapidly becoming the most prevalent form of chronic liver disease in both pediatric and adult populations. It encompasses a wide spectrum of liver abnormalities, ranging from simple fat accumulation to severe conditions such as inflammation, fibrosis, cirrhosis, and liver cancer. Major risk factors for MASLD include obesity, insulin resistance, type 2 diabetes, and hypertriglyceridemia. METHODS This narrative review employed a comprehensive search of recent literature to identify the latest studies on the relationship between MAFLD and obesity, the health consequences and the latest treatment options to prevent long-term damage to the liver and other organs. Additionally, the article presents perspectives on diagnostic biomarkers. RESULTS Childhood obesity is linked to a multitude of comorbid conditions and remains a primary risk factor for adult obesity. This abnormal fat accumulation is known to have long-term detrimental effects into adulthood. Scientific evidence unequivocally demonstrates the role of obesity-related conditions, such as insulin resistance, dyslipidemia, and hyperglycemia, in the development and progression of MASLD. Oxidative stress, stemming from mitochondrial dysfunction, is a leading factor in MASLD. This review discusses the interconnections between oxidative stress, obesity, dyslipidemia, and MASLD. CONCLUSIONS Atherogenic dyslipidemia, oxidative stress, inflammation, insulin resistance, endothelial dysfunction, and cytokines collectively contribute to the development of MASLD. Potential treatment targets for MASLD are focused on prevention and the use of drugs to address obesity and elevated blood lipid levels.
Collapse
Affiliation(s)
- Siham Accacha
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Julia Barillas-Cerritos
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Ankita Srivastava
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Frances Ross
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Wendy Drewes
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Shelly Gulkarov
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Allison B Reiss
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
6
|
Kim S, Choi C, Son Y, Lee J, Joo S, Lee YH. BNIP3-mediated mitophagy in macrophages regulates obesity-induced adipose tissue metaflammation. Autophagy 2025:1-19. [PMID: 40195021 DOI: 10.1080/15548627.2025.2487035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Adipose tissue macrophages (ATMs) are key cellular components that respond to nutritional excess, contributing to obesity-induced inflammation and insulin resistance. However, the mechanisms underlying macrophage polarization and recruitment in adipose tissue during obesity remain unclear. In this study, we investigated mitophagy-dependent metabolic reprogramming in ATMs and identified a crucial role of the mitophagy receptor BNIP3 in regulating macrophage polarization in response to obesity. Mitophagic flux in ATMs increased following 12 weeks of high-fat diet (HFD) feeding, with Bnip3 levels upregulated in a HIF1A dependent manner, without affecting other mitophagy receptors. Macrophage-specific bnip3 knockout reduced HFD-induced adipose tissue inflammation and improved glucose tolerance and insulin sensitivity. Mechanistically, hypoxic conditions in vitro induced HIF1A-BNIP3-mediated mitophagy and glycolytic shift in macrophages. Furthermore, HIF1A-BNIP3 signaling-enhanced lipopolysaccharide-induced pro-inflammatory activation in macrophages. These findings demonstrate that BNIP3-mediated mitophagy regulates the glycolytic shift and pro-inflammatory polarization in macrophages and suggest that BNIP3 could be a therapeutical target for obesity-related metabolic diseases.Abbreviation: 2-DG: 2-deoxyglucose; ACADM/MCAD: acyl-CoA dehydrogenase medium chain; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATMs: adipose tissue macrophages; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CLS: crown-like structure; CoCl2: cobalt(II) chloride; COX4/COXIV: cytochrome c oxidase subunit 4; ECAR: extracellular acidification rate; ECM: extraceullular matrix; gWAT: gonadal white adipose tissue; HFD: high-fat diet; HIF1A/HIF-1 α: hypoxia inducible factor 1 subunit alpha; IL1B/IL-1β: interleukin 1 beta; ITGAM/CD11B: integrin subunit alpha M; KO: knockout; LAMs: lipid-associated macrophages; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MRC1/CD206: mannose receptor C-type 1; mtDNA: mitochondrial DNA; NCD: normal chow diet; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PTPRC/CD45: protein tyrosine phosphatase receptor type C; SVFs: stromal vascular fractions; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester; TOMM20: Translocase of outer mitochondrial membrane 20; TREM2: triggering receptor expressed on myeloid cells 2; WT: wild-type.
Collapse
Affiliation(s)
- Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junhyuck Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungug Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Mujkić R, Šnajder Mujkić D, Rožac K, Matić A, Kovač Lukić T, Divković D, Selthofer-Relatić K. Converted Macrophage Polarization and Expression of COL6α3-Early Predictors of Remodeling Processes in Adipose Tissue of Male Children. Biomedicines 2025; 13:935. [PMID: 40299533 PMCID: PMC12025005 DOI: 10.3390/biomedicines13040935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Overweight and obesity in early childhood is a serious public health problem as in most cases it persists into adulthood and significantly affects the quality of life. The aim of this study was to investigate the mechanisms that trigger extracellular matrix (ECM) remodeling in the subcutaneous (SAT) and visceral (VAT) adipose tissue of male children in relation to their body weight. Methods: During elective abdominal surgery, SAT and VAT were acquired from 75 male subjects undergoing hernia repair (inguinal herniorrhaphy by Ferguson) or orchidopexy. Based on their Z-score, subjects were separated into two groups. The morphometry of both adipose tissue compartments was assessed after hematoxylin and eosin histological staining, immunohistochemistry to quantify CD163+ cells and the number of crown-like structures (CLSs), and real-time polymerase chain reaction to assess the relative gene expression for collagen VI subtype alpha 3 (COL6α3). Results: Obese and overweight individuals were found to have higher numbers of CD163+ cells, greater numbers of CLSs in VAT and SAT, and a higher expression of COL6α3 in both compartments. Conclusions: Obesity in childhood may lead to increased COL6α3 gene expression and promote the activation of macrophage polarization, compromise the structural integrity of the ECM, and thus influence the development of inflammatory processes.
Collapse
Affiliation(s)
- Robert Mujkić
- Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia; (K.R.); (T.K.L.)
| | - Darija Šnajder Mujkić
- Department of Anatomy and Neuroscience, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Karla Rožac
- Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia; (K.R.); (T.K.L.)
| | - Anita Matić
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia;
| | - Tanja Kovač Lukić
- Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia; (K.R.); (T.K.L.)
| | - Dalibor Divković
- Department of Pediatric Surgery, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
- Department of Surgery, Urology, Orthopedics and Physical and Rehabilitation Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Department of Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
- Department of Pathophysiology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 3100 Osijek, Croatia
| |
Collapse
|
8
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
9
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Wang Y, Zhang Y, Leung VH, Seradj SH, Sonmez U, Servin-Vences MR, Xiao S, Ren X, Wang L, Mishkanian SA, Kini SA, Long JZ, Lipomi DJ, Ye L, Patapoutian A. A key role of PIEZO2 mechanosensitive ion channel in adipose sensory innervation. Cell Metab 2025; 37:1001-1011.e7. [PMID: 40054462 DOI: 10.1016/j.cmet.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/14/2024] [Accepted: 02/06/2025] [Indexed: 03/12/2025]
Abstract
Compared with the well-established functions of sympathetic innervation, the role of sensory afferents in adipose tissues remains less understood. Recent work has revealed the anatomical and physiological significance of adipose sensory innervation; however, its molecular underpinning remains unclear. Here, using organ-targeted single-cell RNA sequencing, we identified the mechanoreceptor PIEZO2 as one of the most prevalent receptors in fat-innervating dorsal root ganglia (DRG) neurons. PIEZO2 deletion in fat-innervating neurons induced transcriptional programs in adipose tissue resembling sympathetic activation, mirroring DRG ablation. Conversely, a gain-of-function PIEZO2 mutant shifted the adipose phenotypes in the opposite direction. These results indicate that PIEZO2 plays a major role in the sensory regulation of adipose tissues. This discovery opens new avenues for exploring mechanosensation in organs not traditionally considered mechanically active, such as adipose tissues, and therefore sheds light on the broader significance of mechanosensation in regulating organ function and homeostasis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Verina H Leung
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Saba Heydari Seradj
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utku Sonmez
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xiangyu Ren
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leon Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sassan A Mishkanian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sejal A Kini
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Darren J Lipomi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Li Ye
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Reinisch I, Enzenhofer S, Prokesch A. Mechanisms of Lipid-Associated Macrophage Accrual in Metabolically Stressed Adipose Tissue. Bioessays 2025; 47:e202400203. [PMID: 39828607 PMCID: PMC11931678 DOI: 10.1002/bies.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Adipose tissue (AT) inflammation, a hallmark of the metabolic syndrome, is triggered by overburdened adipocytes sending out immune cell recruitment signals during obesity development. An AT immune landscape persistent throughout weight loss and regain constitutes an immune-obesogenic memory that hinders long-term weight loss management. Lipid-associated macrophages (LAMs) are emerging as major players in diseased, inflamed metabolic tissues and may be key contributors to an obesogenic memory in AT. Our previous study found that LAM abundance increases with weight loss via intermittent fasting (IF) in obese mice, which is driven by adipocyte p53 signalling. However, the specific signals causing LAM accumulation in AT under IF remain unknown. In this piece, we hypothesise on a range of adipocyte-secreted signals that can harbor immune-attractive features upon fasting/refeeding cycles. We highlight possible mechanisms including cell death signalling, matrikines, and other damage-associated molecular patterns (DAMPs), as well as adipo(-cyto)kines, lipid mediators, metabolites, extracellular vesicles, and epigenetic rewiring. Finally, we consider how advances in mechanisms of AT LAM recruitment gleaned from preclinical models might be translatable to long-term weight management in humans. Thus, we provide vantage points to study signals driving monocyte recruitment, polarisation towards LAMs, and LAM retention, to harness the therapeutic potential of modulating AT LAM levels by impacting the immune-obesogenic memory in metabolic disease.
Collapse
Affiliation(s)
- Isabel Reinisch
- Department of Health Sciences and Technology, Institute of Food Nutrition and HealthEidgenössische Technische Hochschule Zürich (ETH)SchwerzenbachSwitzerland
| | - Sarah Enzenhofer
- Gottfried Schatz Research Center for Cell SignalingMetabolism and Aging, Division of Cell Biology, Histology and EmbryologyMedical University of GrazGrazAustria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell SignalingMetabolism and Aging, Division of Cell Biology, Histology and EmbryologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| |
Collapse
|
12
|
Huo F, Liu C, Wang X, Li J, Wang Z, Liu D, Lan W, Zhu X, Lan J. SDCCAG3 inhibits adipocyte hypertrophy and improves obesity-related metabolic disorders via SDCCAG3/SMURF1/PPARγ axis. J Lipid Res 2025; 66:100772. [PMID: 40058593 PMCID: PMC12002885 DOI: 10.1016/j.jlr.2025.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/06/2025] Open
Abstract
Obesity is a prevalent global disease associated with various metabolic disorders. The expansion of white adipose tissue plays a pivotal role in regulating obesity-related metabolic dysfunctions. This study identified serum-defined colon cancer antigen 3 (SDCCAG3) as a novel key modulator of adipocyte metabolism. In adipose-specific SDCCAG3 knockout mice fed a high-fat diet, pathological expansion of adipose tissue, impaired glucose tolerance, insulin resistance, increased inflammatory markers, and augmented hepatic lipid accumulation were observed. Conversely, obesity models by specific overexpression of SDCCAG3 in adipose tissue confirmed that SDCCAG3 alleviated pathological expansion of adipose tissue, improved obesity-related metabolic disorders, with no observed changes in adipose tissue development under normal dietary conditions. Mechanistically, SDCCAG3 enhanced the stability of peroxisome proliferator-activated receptor gamma (PPARγ) by preventing its degradation via the ubiquitin-proteasome system through the SMAD specific E3 ubiquitin protein ligase 1 (SMURF1). Additionally, SDCCAG3 was subjected to negative transcriptional regulation by PPARγ, forming a SDCCAG3-PPARγ-SDCCAG3 loop that enhanced adipocyte lipid metabolism. Collectively, these findings demonstrated that SDCCAG3 functioned as a beneficial positive regulator of adipose tissue expansion and metabolic homeostasis, indicating its potential as a therapeutic target for metabolic diseases associated with nutrient excess.
Collapse
Affiliation(s)
- Fenglei Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Chenghang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xi Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jinzheng Li
- College of Traditional Chinese Medicine, University of Traditional Chinese Medicine, Jinan, China
| | - Zhifeng Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Duanqin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Weipeng Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xingyan Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
13
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. eLife 2025; 13:RP93373. [PMID: 40126547 PMCID: PMC11932693 DOI: 10.7554/elife.93373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Leandro M Velez
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcus M Seldin
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
14
|
Cheng Y, Zhang K, Liu J, Liu G. Is orbital adipose tissue obesity-privileged? The relationship between small adipocyte size and metabolically healthy state from the view of orbital fat. J Endocrinol Invest 2025:10.1007/s40618-025-02568-7. [PMID: 40120074 DOI: 10.1007/s40618-025-02568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE White adipose tissue (WAT) expands by increasing adipocyte size (hypertrophy) and/or number (hyperplasia) to handle excess energy and plays a key homeostatic role in lipid metabolism. Hypertrophic adipocytes have many impaired biological functions. In contrast, hyperplastic adipocytes can reduce the negative metabolic effects of obesity. Thus, understanding the mechanisms of adaptive WAT expansion is essential for optimizing lipid storage and preventing the adverse metabolic consequences of obesity. Hedgehog (Hh) signaling has been shown to improve adipose health and can be a pharmacological target to ameliorate obesity-induced metabolic abnormalities. Clinically, we found that the size of adipocytes in orbital fat (OF) is less affected by obesity, and we hypothesized that OF possesses a relatively metabolically healthy profile. METHODS To verify our hypothesis, we identified multiple hallmarks of healthy adipose tissue in OF using a combination of bioinformatics-based transcriptomics analyses and experimental methods. RESULTS Our results revealed that compared with abdominal subcutaneous fat (SF), OF had a smaller cell size, more dynamic ability to remodel the adipose extracellular matrix (ECM), higher vascular supply, and less macrophage infiltration. OF also showed promising adipogenic and proliferative capabilities and a healthy adipocytokine secretion pattern. Moreover, the Hh signaling was activated in OF and may influence depot-specific adipose health. CONCLUSION These findings collectively support that OF is generally in a naturally metabolically healthy state with high expandability and obesity-free privilege, providing new therapeutic ideas for obesity-related metabolic dysfunctions.
Collapse
Affiliation(s)
- Y Cheng
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - K Zhang
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - J Liu
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu, Bengbu, Anhui, China.
| | - G Liu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Yu L, Yang YX, Gong Z, Wan Q, Du Y, Zhou Q, Xiao Y, Zahr T, Wang Z, Yu Z, Yang K, Geng J, Fried SK, Li J, Haeusler RA, Leong KW, Bai L, Wu Y, Sun L, Wang P, Zhu BT, Wang L, Qiang L. FcRn-dependent IgG accumulation in adipose tissue unmasks obesity pathophysiology. Cell Metab 2025; 37:656-672.e7. [PMID: 39674176 PMCID: PMC11885036 DOI: 10.1016/j.cmet.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 12/16/2024]
Abstract
Immunoglobulin G (IgG) is traditionally recognized as a plasma protein that neutralizes antigens for immune defense. However, our research demonstrates that IgG predominantly accumulates in adipose tissue during obesity development, triggering insulin resistance and macrophage infiltration. This accumulation is governed by neonatal Fc receptor (FcRn)-dependent recycling, orchestrated in adipose progenitor cells and macrophages during the early and late stages of diet-induced obesity (DIO), respectively. Targeting FcRn abolished IgG accumulation and rectified insulin resistance and metabolic degeneration in DIO. By integrating artificial intelligence (AI) modeling with in vivo and in vitro experimental models, we unexpectedly uncovered an interaction between IgG's Fc-CH3 domain and the insulin receptor's ectodomain. This interaction hinders insulin binding, consequently obstructing insulin signaling and adipocyte functions. These findings unveil adipose IgG accumulation as a driving force in obesity pathophysiology, providing a novel therapeutic strategy to tackle metabolic dysfunctions.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yong Xiao Yang
- Research Center for Endocrine and Metabolic Diseases, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Qianfen Wan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yifei Du
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Tarik Zahr
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Zhaobin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhewei Yu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Kangkang Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Jinyang Geng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Susan K Fried
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingjie Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Pan Wang
- Research Center for Endocrine and Metabolic Diseases, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao Ting Zhu
- Research Center for Endocrine and Metabolic Diseases, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Liheng Wang
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Li Qiang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
16
|
Ion G, Bostan M, Hardman WE, Putt McFarland M, Bleotu C, Radu N, Diaconu CC, Mihaila M, Caramihai MD, Hotnog CM. Nutrients Lowering Obesity-Linked Chemokines Blamable for Metastasis. Int J Mol Sci 2025; 26:2275. [PMID: 40076892 PMCID: PMC11899810 DOI: 10.3390/ijms26052275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Food intake is an essential contributor to both health and disease. Nutrients contribute to a beneficial metabolic equilibrium at the cellular level, preventing or delaying disease onset. Dietary intake contributes to obesity, and obesity supports further cancer and metastasis. Metastasis, a multifactorial and multistep process, is supported by the systemic inflammation of obesity. Spreading of the cancer cells requires the presence of a plethora of recruiter and regulator molecules. Molecules such as chemokines are provided at high levels by obesity-associated fat depots. Chemokine up-regulation in adipose tissue of obese individuals has been associated with different types of cancers such as breast, prostate, colon, liver, and stomach. Chemokines support all metastasis steps from invasion/migration to intravasation, circulation, extravasation, and ending with colonization. The obesity pool of chemokines supporting these processes includes CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL18, CCL19, CCL20, CXCL1, CXCL5, CXCL 8, CXCL10, and CXCL12. Keeping obesity under control can be beneficial in reducing the levels of pro-inflammatory chemokines and the risk of poor cancer outcome. Nutrients can help, support, and boost cancer treatment effects or jeopardize the treatment. Constituents with anti-inflammatory and anti-obesity properties such as polyphenols, organosulfur components, fatty acids, curcumin, and vitamin E have a proven beneficial effect in lowering obesity and its contribution to metastasis.
Collapse
Affiliation(s)
- Gabriela Ion
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Wanda Elaine Hardman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (M.P.M.)
| | - Margaret Putt McFarland
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (M.P.M.)
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (C.C.D.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Mihai Dan Caramihai
- Faculty of Automatic Control and Computer Science, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Camelia Mia Hotnog
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Department of Biochemistry and Biophysics, Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
17
|
Hu S, Kang H, Bae M, Kim MB, Jang H, Corvino O, Pham TX, Lee Y, Smyth JA, Park YK, Lee JY. Histone Deacetylase 9 Deletion Inhibits Hepatic Steatosis and Adipose Tissue Inflammation in Male Diet-Induced Obese Mice. J Gastroenterol Hepatol 2025; 40:741-749. [PMID: 39730208 PMCID: PMC11875955 DOI: 10.1111/jgh.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
AIM The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions. METHODS We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks. RESULTS Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females. Consistently, hepatic expression of genes crucial for de novo lipogenesis was markedly suppressed only in male, but not female, Hdac9 KO mice. However, Hdac9 deletion had a minimal effect on hepatic inflammation and fibrosis. In WAT, Hdac9 KO showed less adipocyte hypertrophy, inflammation, and fibrosis in male mice compared with WT. In addition, indirect calorimetry demonstrated that male Hdac9 KO mice had significantly higher metabolic rates, respiratory exchange ratios, and energy expenditure without altering physical activities than WT, which was not observed in female mice. CONCLUSIONS Our findings indicate that global deletion of Hdac9 prevented the development of obesity, hepatic steatosis, and WAT inflammation and fibrosis in male mice with diet-induced obesity and MASH, suggesting that a sex-dependent role of HDAC9 may exist in the pathways mentioned above.
Collapse
Affiliation(s)
- Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyungryun Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Olivia Corvino
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Joan A Smyth
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
18
|
Aiassa V, Ferreira MDR, Ingaramo P, D'Alessandro ME. Salvia hispanica L. (chia) seed have beneficial effects upon visceral adipose tissues extracellular matrix disorders and inflammation developed in a sucrose-rich diet-induced adiposity rodent model. Mol Cell Endocrinol 2025; 597:112438. [PMID: 39638143 DOI: 10.1016/j.mce.2024.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
We have previously demonstrated that dietary Salvia hispanica L. (chia) seed, rich in α-linolenic acid (ALA), was able to reduce visceral adiposity and improves insulin sensitivity in a rodent experimental model of adiposity induced by the administration of a sucrose-rich diet (SRD). The evidence suggests that the pathological expansion of visceral adipose tissue (VAT) is accompanied by changes in the extracellular matrix (ECM) components, which can lead to fibrosis, and/or a greater expression of pro-inflammatory adipokines. The aim of the present work was to evaluate the effect of chia seed administration upon key components and modulators of ECM remodeling and inflammation in different white adipose tissues (WAT) (epididymal-eWAT- and retroperitoneal-rWAT-) in a SRD-induced adiposity rodent model. The results showed that chia seed reduced the increased hydroxyproline levels observed in SRD-fed group and this was accompanied by changes in the activity/expression of matrix metalloproteinases MMP-2 and MMP-9. No changes were observed in transforming growth factor β (TGF-β) expression levels. In addition, this nutritional intervention was able to reduce the levels of PAI-1 and MCP-1, and to increase the levels of adiponectin in both VAT. An increase in the ratio of n-3/n-6 polyunsaturated fatty acids in the membrane phospholipids of both VAT was also observed. The present study demonstrated that chia seed have anti-fibrotic and anti-inflammatory actions in the VAT which could play a key role in the amelioration of visceral adiposity and whole-body insulin insensitivity developed in SRD-fed rats.
Collapse
Affiliation(s)
- Victoria Aiassa
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL- CONICET), Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
19
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.01.565163. [PMID: 37961647 PMCID: PMC10635050 DOI: 10.1101/2023.11.01.565163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologous in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Huynh PM, Wang F, An YA. Hypoxia signaling in the adipose tissue. J Mol Cell Biol 2025; 16:mjae039. [PMID: 39363240 PMCID: PMC11892559 DOI: 10.1093/jmcb/mjae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in humans and rodent models with obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.
Collapse
Affiliation(s)
- Phu M Huynh
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fenfen Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
21
|
Ivatt L, Paul M, Miguelez-Crespo A, Hadoke PWF, Bailey MA, Morgan RA, Nixon M. Obesity-induced mesenteric PVAT remodelling is sexually dimorphic, but not driven by ovarian hormones : Short title: Obesity induces sex-specific responses in mesenteric PVAT. Cardiovasc Diabetol 2025; 24:39. [PMID: 39856754 PMCID: PMC11762466 DOI: 10.1186/s12933-025-02596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Obesity, a major risk factor for cardiovascular disease (CVD), is associated with hypertension and vascular dysfunction. Perivascular adipose tissue (PVAT), a metabolically active tissue surrounding blood vessels, plays a key role in regulating vascular tone. In obesity, PVAT becomes dysregulated which may contribute to vascular dysfunction; how sex impacts the remodelling of PVAT and thus the altered vascular contractility during obesity is unclear. OBJECTIVE To investigate sex-specific PVAT dysregulation in the setting of obesity as a potential driver of sex differences in vascular pathologies and CVD risk. METHODS Adult male and female C57Bl/6J mice were fed an obesogenic high-fat diet (HFD) or regular chow for 16 weeks. Mesenteric PVAT (mPVAT) was isolated for RNA-sequencing and histological analysis, and mesenteric arteries were isolated for assessment of vascular function by wire myography. In a separate study, female mice were subjected to bilateral ovariectomy prior to dietary intervention to determine the contribution of ovarian hormones to PVAT dysregulation. RESULTS Transcriptomic analysis of mPVAT revealed sexually dimorphic responses to HFD, with upregulation of extracellular matrix (ECM) remodelling pathways in male but not female mice. Histological and RT-qPCR approaches demonstrated increased collagen deposition and ECM remodelling in mPVAT from obese male compared with obese female mice. Assessment of vascular function in mesenteric arteries -/+ PVAT revealed that in obesity, mPVAT impaired endothelium-mediated vasodilation in male but not female mice. Ovariectomy of female mice prior to HFD administration did not alter ECM transcript expression or collagen deposition in mPVAT compared to sham-operated female mice. CONCLUSIONS Obesity induces sex-specific molecular remodelling in mPVAT, with male mice exhibiting unique upregulation of ECM pathways and increased collagen deposition compared to females. Moreover, the relative protection of female mice from obesity-induced mPVAT dysregulation is not mediated by ovarian hormones. These data highlight a potential sex-specific mechanistic link between mPVAT and mesenteric artery dysfunction in obesity, and provides crucial insights for future development of treatment strategies that consider the unique cardiovascular risks in men and women.
Collapse
Affiliation(s)
- Lisa Ivatt
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mhairi Paul
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Patrick W F Hadoke
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Matthew A Bailey
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Mark Nixon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
22
|
Dong W, Xiao L, Luo Z, Yu H, Wang L, Gao Y, Li Z. Assessment of hypoxia status in a rat chronic liver disease model using IVIM and T1 mapping. Front Med (Lausanne) 2025; 11:1477685. [PMID: 39906347 PMCID: PMC11790595 DOI: 10.3389/fmed.2024.1477685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Objectives This study was aimed to assess the diagnostic performance of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and T1 mapping in detecting hypoxia status of chronic liver disease using a carbon tetrachloride (CCl4)-induced rat model. Materials and methods The hypoxia group of chronic liver disease consisted of eight rats induced by injection of CCl4 and the control group consisted of nine rats injected with pure olive oil. All 17 rats underwent MRI examination at week 13 after injection, using T1 mapping and IVIM. Liver specimens were subjected to immunohistochemical staining for the exogenous hypoxia marker pimonidazole and the endogenous hypoxia marker HIF-1α and scored semi-quantitatively. Differences in MRI multiparameters, pimonidazole H-scores, and HIF-1α were analyzed between the control and hypoxia groups. Correlations between MRI multiparameters and H-score, and MRI multiparameters and HIF-1α, were analyzed, and the diagnostic performance of multiparameter MRI was evaluated by receiver operating characteristic (ROC) curve analysis. Results There were significant differences between the control group and the hypoxia group in D* values (p = 0.01) and f values (p = 0.025) of IVIM parameters, T1 mapping (p = 0.003), HIF-1α (p < 0.001) and pimonidazole scores (p = 0.004). D* (r = 0.508, p = 0.037) and T1 mapping (r = 0.489, p = 0.046) values positively correlated with pimonidazole scores. D* (r = 0.556, p = 0.020) and T1 mapping (r = 0.505, p = 0.039) showed a positive correlation with HIF-1α. The optimal cut-off value of T1 mapping was 941.527, and the sensitivity, specificity, and AUC were 87.5, 77.8, and 0.889 (95% confidence interval [CI]: 0.734-1), respectively. Conclusion IVIM and T1 Mapping are promising methods for non-invasive detection of hypoxia status in chronic liver diseases.
Collapse
Affiliation(s)
- Wenlu Dong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Longyang Xiao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziwei Luo
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyang Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanxiang Gao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
He M, Zhu H, Dong J, Lin W, Li B, Li Y, Ta D. Low-intensity pulsed ultrasound improves metabolic dysregulation in obese mice by suppressing inflammation and extracellular matrix remodeling. ULTRASONICS 2025; 145:107488. [PMID: 39423698 DOI: 10.1016/j.ultras.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Chronic inflammation in white adipose tissue is crucial in obesity and related metabolic disorders. Low-intensity pulsed ultrasound (LIPUS) is renowned for its anti-inflammatory effects as a non-invasive treatment, yet its precise role in obesity has been uncertain. Our study investigates the therapeutic effect of LIPUS and its underlying mechanism on obesity in mice, thereby offering a novel approach for non-invasive treatment of obesity and associated metabolic disorders for human. Male C57BL/6J mice aged 10 weeks were fed a high-fat diet (HFD) for 8 weeks to establish obesity model, then underwent 8 weeks of LIPUS (frequency: 1.0 MHz, duty cycle: 20 %, Isata: 58-61 mW/cm2, 20 min per day) stimulation of the epididymal white adipose tissue. Fat and lean mass were measured using nuclear magnetic resonance (NMR), while energy homeostasis was evaluated using metabolic cages. Insulin resistance was assessed using glucose tolerance tests (GTT) and insulin tolerance tests (ITT). Regulatory mechanisms were explored using RNA sequencing. Results showed that LIPUS significantly reduced obesity markers in obese mice, including body and adipose tissue weight, and improved insulin resistance, without affecting food intake. RNA sequencing showed 250 up-regulated and 351 down-regulated genes between HFD-LIPUS group and HFD-Sham group, suggesting anti-inflammatory action. Quantitative PCR confirmed reduced pro-inflammatory gene expression and macrophage infiltration in eWAT. Gene set enrichment analysis showed decreased NF-κB signaling and extracellular matrix-receptor interactions in LIPUS-treated mice. Thus, LIPUS effectively mitigates metabolic dysregulation in HFD-induced obesity through inflammation suppression and extracellular matrix remodeling, which provides a potential physical therapy for metabolic syndrome in clinic.
Collapse
Affiliation(s)
- Min He
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Hong Zhu
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingsong Dong
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Wenzhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Boyi Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China.
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200438, China; The Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai China.
| |
Collapse
|
24
|
Ren ZT, Kang M, Zhu LY, Li P. Long-term survival and risk factors in esophageal squamous cell carcinoma: A Kaplan-Meier and cox regression study. World J Gastrointest Surg 2024; 16:3772-3779. [PMID: 39734461 PMCID: PMC11650227 DOI: 10.4240/wjgs.v16.i12.3772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The global incidence of esophageal cancer (EC) remains high. Despite advancements in medical technology and deeper research into the causes and treatment methods of EC, the effectiveness of treatment for EC is still unsatisfactory. Therefore, it is crucial to address the urgent problem of improving the long-term survival rate of EC patients and providing personalized treatment. AIM To analyze the survival prognosis and influencing factors of esophageal squamous cell carcinoma (ESCC). METHODS A retrospective analysis was conducted on the clinical data of 115 patients with pT3N0M0 ESCC who underwent radical surgery alone from January 1, 2013, to December 31, 2019. The Kaplan-Meier method was used to evaluate the 1-year, 3-year, and 5-year survival rates and median survival time of the patients. The Cox proportional hazards regression model was used to assess the hazard ratios (HRs) and 95% confidence intervals (95%CIs) of risk factors. RESULTS The 1-year, 3-year, and 5-year overall survival (OS) rates for the 115 EC patients analyzed were 85.22%, 50.43%, and 37.48%, respectively. The median OS was 37.00 (95%CI: 24.93-49.07) months, and the median disease-free survival was 21.00 (95%CI: 14.71-27.29) months. Both univariate and multivariate Cox regression analyses revealed that high body mass index (BMI; HR = 1.137, 95%CI: 1.054-1.226), positive perineural invasion (PNI; HR = 13.381, 95%CI: 4.899-36.547), and smoking (HR = 2.415, 95%CI: 1.388-4.203) were independent risk factors for a poor prognosis. In contrast, compared to the upper thoracic location of the tumor, middle thoracic (HR = 0.441, 95%CI: 0.240-0.810) and lower thoracic (HR = 0.328, 95%CI: 0.144-0.750) locations were protective factors. CONCLUSION BMI, tumor location, PNI, and smoking are associated with the prognosis of ESCC patients. This study highlights the prognostic risk factors for T3N0M0 ESCC patients and offers personalized insights for clinical treatment.
Collapse
Affiliation(s)
- Zheng-Ting Ren
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Mei Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Li-Yang Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
25
|
Bouzid T, Kim E, Riehl BD, Yang R, Saraswathi V, Kim JK, Lim JY. Mechanical Stretch Control of Adipocyte AKT Signaling and the Role of FAK and ROCK Mechanosensors. Bioengineering (Basel) 2024; 11:1279. [PMID: 39768098 PMCID: PMC11673816 DOI: 10.3390/bioengineering11121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades. We exposed differentiated 3T3-L1 adipocytes to mechanical stretching and assessed key markers of insulin signaling, AKT activation, and GLUT4 translocation, required for glucose uptake. We showed that cyclic stretch loading at 5% strain and 1 Hz frequency increases AKT phosphorylation and GLUT4 translocation to the plasma membrane by approximately two-fold increases compared to unstretched controls for both markers as assessed by immunoblotting (p < 0.05). These results indicate that cyclic stretching activates insulin signaling and GLUT4 trafficking in adipocytes. In the mechanosensing mechanism study, focal adhesion kinase (FAK) inhibitor (FAK14) and RhoA kinase (ROCK) inhibitor (Y-27632) impaired actin cytoskeleton structural formation and significantly suppressed the stretch induction of AKT phosphorylation in adipocytes (p < 0.001). This suggests the regulatory role of focal adhesion and cytoskeletal mechanosensing in adipocyte insulin signaling under stretch loading. Our finding on the impact of mechanical stretch loading on key insulin signaling effectors in differentiated adipocytes and the mediatory role of focal adhesion and cytoskeleton mechanosensors is the first of its kind to our knowledge. This may suggest a therapeutic potential of mechanical loading cue in improving conditions of obesity and T2D. For instance, cyclic mechanical stretch loading of adipose tissue could be explored as a tool to improve insulin sensitivity in patients with obesity and T2D, and the mediatory mechanosensors such as FAK and ROCK may be targeted to further invigorate stretch-induced insulin signaling activation.
Collapse
Affiliation(s)
- Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA;
| | - Jason K. Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
26
|
Aboudeya HM, Abdou AS, Attia MM, Shaker SA, Younis SA. Possible role of moderate exercise training in modulating gene expression of adipose tissue remodeling markers in obese male rats. SPORT SCIENCES FOR HEALTH 2024; 20:1291-1304. [DOI: 10.1007/s11332-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/03/2024] [Indexed: 01/05/2025]
|
27
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
28
|
Guo H, Sheng A, Qi X, Zhu L, Wang G, Zou Y, Guan Q, Lu Y, Tang H, Hou X. Depot-specific differences and heterogeneity of adipose-derived stem cells in diet-induced obesity. Obesity (Silver Spring) 2024; 32:2275-2285. [PMID: 39496515 DOI: 10.1002/oby.24149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 11/06/2024]
Abstract
OBJECTIVE Obesity is a global health concern. Studying the heterogeneity of adipose-derived stem cells (ADSCs) plays a pivotal role in understanding metabolic disorders, such as obesity. METHODS Mass cytometry was used to determine the depot-specific differences and heterogeneity of ADSCs and their alterations at the single-cell level in a diet-induced-obesity (DIO) model in which mice were treated with liraglutide. RESULTS We characterized the relationship among ADSC markers and found that CD26 and CD142 could identify the most representative heterogeneous ADSCs in subcutaneous adipose tissue and visceral adipose tissue. Specifically, CD26+CD142- and CD26+CD142+ ADSCs were exclusive to subcutaneous adipose tissue and visceral adipose tissue, respectively, whereas CD26-CD142+ ADSCs were present in both. RNA analysis explored the potential functions of these three subgroups. In the visceral adipose tissue of DIO mice, we observed a substantial downregulation of CD26+CD142+ ADSCs and upregulation of CD26-CD142+ ADSCs, both of which were mitigated by liraglutide treatment. CONCLUSIONS Our study highlights the depot-specific differences and heterogeneity of ADSCs and their alterations under DIO conditions, which can potentially be reversed by liraglutide treatment. This study provides new insights into the identification of more specific ADSC subgroups to explore the etiology of metabolism-related diseases.
Collapse
Affiliation(s)
- Honglin Guo
- Department of Pathology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
- Department of Center Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ailing Sheng
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiangyu Qi
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Zhu
- Department of Endocrinology, University Town hospital, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guanyu Wang
- Department of Internal Medicine, No. 2 People's Hospital of Lixia District, Jinan, China
| | - Yizhou Zou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuntao Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Stem Cell Clinical Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Tang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Stem Cell Clinical Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Hou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Stem Cell Clinical Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
29
|
Wang Y, Zhang Y, Leung V, Seradj SH, Sonmez U, Servin-Vences R, Lipomi D, Ye L, Patapoutian A. A key role of PIEZO2 mechanosensitive ion channel in adipose sensory innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624210. [PMID: 39605632 PMCID: PMC11601537 DOI: 10.1101/2024.11.18.624210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Compared to the well-established functions of sympathetic innervation, the role of sensory afferents in adipose tissues remains less understood. Recent work revealed the anatomical and physiological significance of adipose sensory innervation; however, its molecular underpinning remains unclear. Here, using organ-targeted single-cell RNA sequencing, we identified the mechanoreceptor PIEZO2 as one of the most prevalent receptors in fat-innervating dorsal root ganglia (DRG) neurons. We found that selective PIEZO2 deletion in fat-innervating neurons phenocopied the molecular alternations in adipose tissue caused by DRG ablation. Conversely, a gain-of-function PIEZO2 mutant shifted the adipose phenotypes in the opposite direction. These results indicate that PIEZO2 plays a major role in the sensory regulation of adipose tissues. This discovery opens new avenues for exploring mechanosensation in organs not traditionally considered mechanically active, such as the adipose tissues, and therefore sheds light on the broader significance of mechanosensation in regulating organ function and homeostasis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Verina Leung
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
| | - Saba Heydari Seradj
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
| | - Utku Sonmez
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Jacobs School of Engineering, UCSD, San Diego, United States
| | - Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Darren Lipomi
- Jacobs School of Engineering, UCSD, San Diego, United States
| | - Li Ye
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Lead contact
| |
Collapse
|
30
|
Pérez MÁ, Urrejola-Contreras G, Alvarez B, Steilen C, Latorre A, Torres-Banduc MA. Exploring the interplay between body mass index and passive muscle properties in relation to grip strength and jump performance in female university students. PeerJ 2024; 12:e18430. [PMID: 39553718 PMCID: PMC11568817 DOI: 10.7717/peerj.18430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Background Women typically have a higher body fat content than men. Fat accumulation is associated with muscle weakness and alterations in mechanical properties. This study aims to determine the relationship between BMI and weight status with the mechanical properties of muscle and tendon. It was hypothesized that the stiffness and tone of the forearm muscle and Achilles tendon would be correlated with weight status and BMI. Methods A cross-sectional study was conducted with 136 female university students. Grip strength was assessed using a dynamometer, body composition was analyzed through bioimpedance, and countermovement jump performance was evaluated with a force platform. Stiffness and tone were measured using the MyotonPro device. ANOVA was used to compare grip strength and countermovement jump performance according to body composition. The Pearson correlation coefficient was used to examine bivariate associations. Results Relative grip strength decreased with an increase in fat content, while forearm muscle stiffness and tone decreased with rising weight status and BMI. Stiffness of the Achilles tendon increased with an increase in fat content and showed a significant positive correlation with BMI. Multiple regression analysis revealed a weak correlation between BMI, body composition, and stiffness of the forearm muscles. Conclusion The results of this study support the notion that the stiffness of the forearm muscles and Achilles tendon is correlated with BMI in young adult women. Furthermore, an increase in body fat percentage is linked to a decrease in mechanical properties and poorer muscle function.
Collapse
Affiliation(s)
- Miguel Ángel Pérez
- Escuela de Ciencias de la Salud, Carrera de Kinesiología, Universidad Viña del Mar, Viña del Mar, Chile
| | - Gabriela Urrejola-Contreras
- Escuela de Ciencias de la Salud, Unidad de Ciencias Aplicadas, Universidad Viña del Mar, Viña del Mar, Chile
| | - Brian Alvarez
- Escuela de Ciencias de la Salud, Carrera de Kinesiología, Universidad Viña del Mar, Viña del Mar, Chile
| | - Camila Steilen
- Escuela de Ciencias de la Salud, Carrera de Kinesiología, Universidad Viña del Mar, Viña del Mar, Chile
| | | | | |
Collapse
|
31
|
Myers JW, Park WY, Eddie AM, Shinde AB, Prasad P, Murphy AC, Leonard MZ, Pinette JA, Rampy JJ, Montufar C, Shaikh Z, Hickman TT, Reynolds GN, Winn NC, Lantier L, Peck SH, Coate KC, Stein RW, Carrasco N, Calipari ES, McReynolds MR, Zaganjor E. Systemic inhibition of de novo purine biosynthesis prevents weight gain and improves metabolic health by increasing thermogenesis and decreasing food intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620705. [PMID: 39553975 PMCID: PMC11566042 DOI: 10.1101/2024.10.28.620705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Objective Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue. These metabolic changes are correlated with metabolic syndrome, but little is known about the physiological effects of targeting purine biosynthesis. Methods To determine the effects of purine biosynthesis on organismal health we treated mice with mizoribine, an inhibitor of inosine monophosphate dehydrogenase 1 and 2 (IMPDH1/2), key enzymes in this pathway. Mice were fed either a low-fat (LFD; 13.5% kcal from fat) or a high-fat (HFD; 60% kcal from fat) diet for 30 days during drug or vehicle treatment. We ascertained the effects of mizoribine on weight gain, body composition, food intake and absorption, energy expenditure, and overall metabolic health. Results Mizoribine treatment prevented mice on a HFD from gaining weight, but had no effect on mice on a LFD. Body composition analysis demonstrated that mizoribine significantly reduced fat mass but did not affect lean mass. Although mizoribine had no effect on lipid absorption, food intake was reduced. Furthermore, mizoribine treatment induced adaptive thermogenesis in skeletal muscle by upregulating sarcolipin, a regulator of muscle thermogenesis. While mizoribine-treated mice exhibited less adipose tissue than controls, we did not observe lipotoxicity. Rather, mizoribine-treated mice displayed improved glucose tolerance and reduced ectopic lipid accumulation. Conclusions Inhibiting purine biosynthesis prevents mice on a HFD from gaining weight, and improves their metabolic health, to a significant degree. We also demonstrated that the purine biosynthesis pathway plays a previously unknown role in skeletal muscle thermogenesis. A deeper mechanistic understanding of how purine biosynthesis promotes thermogenesis and decreases food intake may pave the way to new anti-obesity therapies. Crucially, given that many purine inhibitors have been FDA-approved for use in treating various conditions, our results indicate that they may benefit overweight or obese patients.
Collapse
Affiliation(s)
- Jacob W. Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander M. Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abhijit B. Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael Z. Leonard
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Julia A. Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jessica J. Rampy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tara T. Hickman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Garrett N. Reynolds
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Sun H. Peck
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Katie C. Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nancy Carrasco
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Balcerczyk A, Eljaafari A, Pirola L. Adipose stem cells drive T cell infiltration in obesity. Trends Endocrinol Metab 2024; 35:931-933. [PMID: 38945796 DOI: 10.1016/j.tem.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Obesity is often associated with adipose tissue (AT) inflammation and immune cell infiltration. Writing recently in Cell Reports, Liao et al. investigated the mechanisms of T cell infiltration of AT using single cell (sc)RNA-sequencing (RNA-seq), transplantation studies, in vitro co-cultures, and knock-out mice. They highlighted the crucial role of C-C motif chemokine ligand 5 (CCL5)-secreting adipose stem cells (ASCs), offering insights for potential therapies.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Assia Eljaafari
- Carmen (Cardiometabolism and Nutrition) Laboratory, INSERM Unit 1060, Claude Bernard Lyon-1 University, 165 Chemin du Grand Revoyet, BP12, 69310, Pierre Bénite, France; Hospices Civils of Lyon, Department of Medical Research, Lyon South Hospital, 69310, Pierre Bénite, France
| | - Luciano Pirola
- Carmen (Cardiometabolism and Nutrition) Laboratory, INSERM Unit 1060, Claude Bernard Lyon-1 University, 165 Chemin du Grand Revoyet, BP12, 69310, Pierre Bénite, France.
| |
Collapse
|
33
|
Nah J, Yun N, Yoo H, Park S, Pae M. Time-Restricted Feeding Attenuates Adipose Tissue Inflammation and Fibrosis in Mice Under Chronic Light Exposure. Int J Mol Sci 2024; 25:11524. [PMID: 39519077 PMCID: PMC11546375 DOI: 10.3390/ijms252111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Time-restricted feeding (TRF) has emerged as a promising dietary approach for improving metabolic parameters associated with obesity. However, it remains largely unclear whether TRF offers benefits for obesity related to exposure to light at night. This study examined whether lean and obese mice under chronic light exposure could benefit from TRF intervention. Six-week-old C57BL/6 male mice were fed either a low-fat diet or a high-fat diet under a 12 h light/12 h dark cycle for 6 weeks. They were then divided into three subgroups: control light, chronic 24 h light, and chronic light with a daily 10 h TRF. Chronic light exposure led to increased weight gain and higher expression of inflammatory and fibrotic markers in the adipose tissue of both lean and obese mice. It also increased hepatic triglyceride content in mice, regardless of their weight status. TRF protected both lean and obese mice from weight gain, normalized inflammatory and fibrotic gene expression, and reduced adipose tissue collagen and liver triglyceride accumulation caused by light exposure alone or in combination with obesity. These results suggest that TRF could have clinical implications for preventing obesity associated with night shift work, regardless of current weight status.
Collapse
Affiliation(s)
| | | | | | | | - Munkyong Pae
- Department of Food and Nutrition, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea; (J.N.); (N.Y.); (H.Y.); (S.P.)
| |
Collapse
|
34
|
Bahn YJ, Wang Y, Dagur P, Scott N, Cero C, Long KT, Nguyen N, Cypess AM, Rane SG. TGF-β antagonism synergizes with PPARγ agonism to reduce fibrosis and enhance beige adipogenesis. Mol Metab 2024; 90:102054. [PMID: 39461664 PMCID: PMC11570741 DOI: 10.1016/j.molmet.2024.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVES Adipose tissue depots vary markedly in their ability to store and metabolize triglycerides, undergo beige adipogenesis and susceptibility to metabolic disease. The molecular mechanisms that underlie such heterogeneity are not entirely clear. Previously, we showed that TGF-β signaling suppresses beige adipogenesis via repressing the recruitment of dedicated beige progenitors. Here, we find that TGF-β signals dynamically regulate the balance between adipose tissue fibrosis and beige adipogenesis. METHODS We investigated adipose tissue depot-specific differences in activation of TGF-β signaling in response to dietary challenge. RNA-seq and fluorescence activated cell sorting was performed to identify and characterize cells responding to changes in TGF-β signaling status. Mouse models, pharmacological strategies and human adipose tissue analyses were performed to further define the influence of TGF-β signaling on fibrosis and functional beige adipogenesis. RESULTS Elevated basal and high-fat diet inducible activation of TGF-β/Smad3 signaling was observed in the visceral adipose tissue depot. Activation of TGF-β/Smad3 signaling was associated with increased adipose tissue fibrosis. RNA-seq combined with fluorescence-activated cell sorting of stromal vascular fraction of epididymal white adipose tissue depot resulted in identification of TGF-β/Smad3 regulated ITGA5+ fibrogenic progenitors. TGF-β/Smad3 signal inhibition, genetically or pharmacologically, reduced fibrosis and increased functional beige adipogenesis. TGF-β/Smad3 antagonized the beneficial effects of PPARγ whereas TGF-β receptor 1 inhibition synergized with actions of rosiglitazone, a PPARγ agonist, to dampen fibrosis and promote beige adipogenesis. Positive correlation between TGF-β activation and ITGA5 was observed in human adipose tissue, with visceral adipose tissue depots exhibiting higher fibrosis potential than subcutaneous or brown adipose tissue depots. CONCLUSIONS Basal and high-fat diet inducible activation of TGF-β underlies the heterogeneity of adipose tissue depots. TGF-β/Smad3 activation promotes adipose tissue fibrosis and suppresses beige progenitors. Together, these dual mechanisms preclude functional beige adipogenesis. Controlled inhibition of TβRI signaling and concomitant PPARγ stimulation can suppress adipose tissue fibrosis and promote beige adipogenesis to improve metabolism.
Collapse
Affiliation(s)
- Young Jae Bahn
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Yanling Wang
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Pradeep Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Nicholas Scott
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Cheryl Cero
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Kelly T Long
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Nhuquynh Nguyen
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Sushil G Rane
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
35
|
Iona A, Yao P, Pozarickij A, Kartsonaki C, Said S, Wright N, Lin K, Millwood I, Fry H, Mazidi M, Wang B, Chen Y, Du H, Yang L, Avery D, Schmidt D, Sun D, Pei P, Lv J, Yu C, Hill M, Chen J, Bragg F, Bennett D, Walters R, Li L, Clarke R, Chen Z. Proteo-genomic analyses in relatively lean Chinese adults identify proteins and pathways that affect general and central adiposity levels. Commun Biol 2024; 7:1327. [PMID: 39406990 PMCID: PMC11480319 DOI: 10.1038/s42003-024-06984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Adiposity is an established risk factor for multiple diseases, but the causal relationships of different adiposity types with circulating protein biomarkers have not been systematically investigated. We examine the causal associations of general and central adiposity with 2923 plasma proteins among 3977 Chinese adults (mean BMI = 23.9 kg/m²). Genetically-predicted body mass index (BMI), body fat percentage (BF%), waist circumference (WC), and waist-to-hip ratio (WHR) are significantly (FDR < 0.05) associated with 399, 239, 436, and 283 proteins, respectively, with 80 proteins associated with all four and 275 with only one adiposity trait. WHR is associated with the most proteins (n = 90) after adjusting for other adiposity traits. These associations are largely replicated in Europeans (mean BMI = 27.4 kg/m²). Two-sample Mendelian randomisation (MR) analyses in East Asians using cis-protein quantitative trait locus (cis-pQTLs) identified in GWAS find 30/2 proteins significantly affect levels of BMI/WC, respectively, with 10 showing evidence of colocalisation, and seven (inter-alpha-trypsin inhibitor heavy chain H3, complement factor B, EGF-containing fibulin-like extracellular matrix protein 1, thioredoxin domain-containing protein 15, alpha-2-antiplasmin, fibronectin, mimecan) are replicated in separate MR using different cis-pQTLs identified in Europeans. These findings identified potential novel mechanisms and targets, to our knowledge, for improved treatment and prevention of obesity and associated diseases.
Collapse
Affiliation(s)
- Andri Iona
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pang Yao
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alfred Pozarickij
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Saredo Said
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Neil Wright
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kuang Lin
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Millwood
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hannah Fry
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mohsen Mazidi
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Baihan Wang
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Dan Schmidt
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Dianjianyi Sun
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Jun Lv
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Canqing Yu
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Michael Hill
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fiona Bragg
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Health Data Research UK Oxford, University of Oxford, Oxford, UK
| | - Derrick Bennett
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin Walters
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Robert Clarke
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
37
|
Zhang W, Wang S, Liu Z, Qian P, Li Y, Wu J. Legumain-deficient macrophages regulate inflammation and lipid metabolism in adipose tissues to protect against diet-induced obesity. Mol Cell Endocrinol 2024; 592:112283. [PMID: 38815795 DOI: 10.1016/j.mce.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Adipose tissue macrophages (ATMs) are key players in the development of obesity and associated metabolic inflammation, which contributes to systemic metabolic dysfunction, and understanding the interaction between macrophages and adipocytes is crucial for developing novel macrophage-based strategies against obesity. Here, we found that Legumain (Lgmn), a well-known lysosomal cysteine protease, is expressed mainly in the ATMs of obese mice. To further define the potential role of Lgmn-expressing macrophages in the generation of an aberrant metabolic state, LgmnF/F; LysMCre mice, which do not express Lgmn in macrophages, were maintained on a high-fat diet (HFD), and metabolic parameters were assessed. Macrophage-specific Lgmn deficiency protects mice against HFD-induced obesity, diminishes the quantity of proinflammatory macrophages in obese adipose tissues, and alleviates hepatic steatosis and insulin resistance. By analysing the transcriptome and proteome of murine visceral white adipose tissue (vWAT) after HFD feeding, we determined that macrophage Lgmn deficiency causes changes in lipid metabolism and the inflammatory response. Furthermore, the reciprocity of macrophage-derived Lgmn with integrin α5β1 in adipocytes was tested via colocalization analyses. It is further demonstrated in macrophage and adipocyte coculture system that macrophage derived Lgmn bound to integrin α5β1 in adipocytes, therefore attenuating PKA activation, downregulating lipolysis-related proteins and eventually exacerbating obesity development. Overall, our study identified Lgmn as a previously unrecognized regulator involved in the interaction between ATMs and adipocytes contributing to diet-induced obesity and suggested that Lgmn is a potential target for treating metabolic disorders.
Collapse
Affiliation(s)
- Wanyu Zhang
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ping Qian
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Yuanyuan Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Ke S, Hu Q, Zhu G, Li L, Sun X, Cheng H, Li L, Yao Y, Li H. Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytother Res 2024; 38:4904-4922. [PMID: 36786412 DOI: 10.1002/ptr.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.
Collapse
Affiliation(s)
- Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qingyuan Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Guanyao Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xuechao Sun
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Hongbin Cheng
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Lingqiao Li
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Yuanfa Yao
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
39
|
Lee S, Cho YK, Kim H, Choi C, Kim S, Lee YH. miR-10a regulates cell death and inflammation in adipose tissue of male mice with diet-induced obesity. Mol Metab 2024; 90:102039. [PMID: 39342992 PMCID: PMC11513492 DOI: 10.1016/j.molmet.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE Adipose tissue remodeling plays a critical role in obesity-induced metabolic dysfunction, but the underlying molecular mechanisms remain incompletely understood. This study investigates the role of miR-10a-5p in adipose tissue inflammation and metabolic dysfunction induced by a high-fat diet (HFD). METHODS Male miR-10a knockout (KO) mice were fed a HFD to induce obesity for up to 16 weeks. RNA sequencing (RNA-seq) analysis was performed to profile mRNA expression and assess the effects of miR-10a-5p KO in gonadal white adipose tissue (gWAT). Additional analyses included immunoblotting, qPCR, histological examination, and validation of the miR-10a-5p target sequence using a dual-luciferase reporter assay. RESULTS miR-10a-5p was highly expressed in gWAT but decreased after 8 weeks of HFD feeding. Over the 16-week HFD period, miR-10a KO mice exhibited greater weight gain and reduced energy expenditure compared to wild-type (WT) controls. gWAT of miR-10a KO mice on a HFD showed an increased population of proinflammatory macrophages, elevated inflammation, and increased cell death, characterized by upregulated apoptosis and necrosis markers. This was also associated with increased triglyceride accumulation in liver. Mechanistically, the proapoptotic gene Bcl2l11 was identified as a direct target of miR-10a-5p. Loss of miR-10a-5p led to BIM-mediated adipocyte death and inflammation, contributing to mitochondrial metabolic dysregulation, increased fibrosis marker expression, and the onset of inflammation in adipose tissue. CONCLUSIONS This study demonstrates the significant role of miR-10a-5p and its downstream target BIM in regulating adipocyte death during diet-induced obesity. This signaling pathway presents a potential therapeutic target for modulating obesity-induced inflammation and cell death in adipose tissue.
Collapse
Affiliation(s)
- Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Heeseong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
41
|
Ma J, Ding L, Zang X, Wei R, Yang Y, Zhang W, Su H, Li X, Li M, Sun J, Zhang Z, Wang Z, Zhao D, Li X, Zhao L, Tong X. Licoricesaponin G2 ameliorates bleomycin-induced pulmonary fibrosis via targeting TNF-α signaling pathway and inhibiting the epithelial-mesenchymal transition. Front Pharmacol 2024; 15:1437231. [PMID: 39301567 PMCID: PMC11412005 DOI: 10.3389/fphar.2024.1437231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Background Pulmonary fibrosis (PF) emerges as a significant pulmonary sequelae in the convalescent phase of coronavirus disease 2019 (COVID-19), with current strategies neither specifically preventive nor therapeutic. Licoricesaponin G2 (LG2) displays a spectrum of natural activities, including antibacterial, anti-inflammatory, and antioxidant properties, and has been effectively used in treating various respiratory conditions. However, the potential protective effects of LG2 against PF remain underexplored. Methods Network analysis and molecular docking were conducted in combination to identify the core targets and pathways through which LG2 acts against PF. In the model of bleomycin (BLM)-induced C57 mice and transforming growth factor-β1 (TGF-β1)-induced A549 and MRC5 cells, techniques such as western blot (WB), quantitative Real-Time PCR (qPCR), Immunohistochemistry (IHC), Immunofluorescence (IF), and Transwell migration assays were utilized to analyze the expression of Epithelial-mesenchymal transition (EMT) and inflammation proteins. Based on the analysis above, we identified targets and potential mechanisms underlying LG2's effects against PF. Results Network analysis has suggested that the mechanism by which LG2 combats PF may involve the TNF-α pathway. Molecular docking studies have demonstrated a high binding affinity of LG2 to TNF-α and MMP9. Observations from the study indicated that LG2 may mitigate PF by modulating EMT and extracellular matrix (ECM) remodeling. It is proposed that the therapeutic effect is likely arises from the inhibition of inflammatory expression through regulation of the TNF-α pathway. Conclusion LG2 mitigates PF by suppressing TNF-α signaling pathway activation, modulating EMT, and remodeling the ECM. These results provide compelling evidence supporting the use of LG2 as a potential natural therapeutic agent for PF in clinical trials.
Collapse
Affiliation(s)
- Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ruonan Wei
- Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Yingying Yang
- China-Japan Friendship Hospital, National Center for Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Zhang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jun Sun
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Ahn C, Zhang T, Yang G, Rode T, Varshney P, Ghayur SJ, Chugh OK, Jiang H, Horowitz JF. Years of endurance exercise training remodel abdominal subcutaneous adipose tissue in adults with overweight or obesity. Nat Metab 2024; 6:1819-1836. [PMID: 39256590 DOI: 10.1038/s42255-024-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024]
Abstract
Abnormalities in the structure and metabolic function of abdominal subcutaneous adipose tissue (aSAT) underlie many obesity-related health complications. Endurance exercise improves cardiometabolic health in adults with overweight or obesity, but the effects of endurance training on aSAT are unclear. We included male and female participants who were regular exercisers with overweight or obesity who exercised for >2 years, and cross-sectionally compared them with well-matched non-exercisers with overweight or obesity. Here we show aSAT from exercisers has a higher capillary density, lower Col6a abundance and fewer macrophages compared with non-exercisers. This is accompanied by a greater abundance of angiogenic, ribosomal, mitochondrial and lipogenic proteins. The abundance of phosphoproteins involved in protein translation, lipogenesis and direct regulation of transcripts is also greater in aSAT collected from exercisers. Exploratory ex vivo experiments demonstrate greater angiogenic capacity and higher lipid-storage capacity in samples cultured from aSAT collected from exercisers versus non-exercisers. Regular exercise may play a role in remodelling aSAT structure and proteomic profile in ways that may contribute to preserved cardiometabolic health.
Collapse
Affiliation(s)
- Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gayoung Yang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pallavi Varshney
- Human Bioenergetics Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Sophia J Ghayur
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Luca T, Pezzino S, Puleo S, Castorina S. Lesson on obesity and anatomy of adipose tissue: new models of study in the era of clinical and translational research. J Transl Med 2024; 22:764. [PMID: 39143643 PMCID: PMC11323604 DOI: 10.1186/s12967-024-05547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Obesity is a serious global illness that is frequently associated with metabolic syndrome. Adipocytes are the typical cells of adipose organ, which is composed of at least two different tissues, white and brown adipose tissue. They functionally cooperate, interconverting each other under physiological conditions, but differ in their anatomy, physiology, and endocrine functions. Different cellular models have been proposed to study adipose tissue in vitro. They are also useful for elucidating the mechanisms that are responsible for a pathological condition, such as obesity, and for testing therapeutic strategies. Each cell model has its own characteristics, culture conditions, advantages and disadvantages. The choice of one model rather than another depends on the specific study the researcher is conducting. In recent decades, three-dimensional cultures, such as adipose spheroids, have become very attractive because they more closely resemble the phenotype of freshly isolated cells. The use of such models has developed in parallel with the evolution of translational research, an interdisciplinary branch of the biomedical field, which aims to learn a scientific translational approach to improve human health and longevity. The focus of the present review is on the growing body of data linking the use of new cell models and the spread of translational research. Also, we discuss the possibility, for the future, to employ new three-dimensional adipose tissue cell models to promote the transition from benchside to bedsite and vice versa, allowing translational research to become routine, with the final goal of obtaining clinical benefits in the prevention and treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy.
| | | | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
44
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
45
|
Webb GM, Sauter KA, Takahashi D, Kirigiti M, Bader L, Lindsley SR, Blomenkamp H, Zaro C, Shallman M, McGuire C, Hofmeister H, Avila U, Pessoa C, Hwang JM, McCullen A, Humkey M, Reed J, Gao L, Winchester L, Fletcher CV, Varlamov O, Brown TT, Sacha JB, Kievit P, Roberts CT. Effect of metabolic status on response to SIV infection and antiretroviral therapy in nonhuman primates. JCI Insight 2024; 9:e181968. [PMID: 39115937 PMCID: PMC11457846 DOI: 10.1172/jci.insight.181968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Current antiretroviral therapy (ART) regimens efficiently limit HIV replication, thereby improving the life expectancy of people living with HIV; however, they also cause metabolic side effects. The ongoing obesity epidemic has resulted in more people with metabolic comorbidities at the time of HIV infection, yet the effect of preexisting metabolic dysregulation on infection sequelae and response to ART is unclear. Here, to investigate the impact of preexisting obesity and insulin resistance on acute infection and subsequent long-term ART, we infected a cohort of lean and obese adult male macaques with SIV and administered ART. The responses of lean and obese macaques to SIV and ART were similar with respect to plasma and cell-associated viral loads, ART drug levels in plasma and tissues, SIV-specific immune responses, adipose tissue and islet morphology, and colon inflammation, with baseline differences between lean and obese groups largely maintained. Both groups exhibited a striking depletion of CD4+ T cells from adipose tissue that did not recover with ART. However, differential responses to SIV and ART were observed for body weight, omental adipocyte size, and the adiponectin/leptin ratio, a marker of cardiometabolic risk. Thus, obesity and insulin resistance had limited effects on multiple responses to acute SIV infection and ART, while several factors that underlie long-term metabolic comorbidities were influenced by prior obesity and insulin resistance. These studies provide the foundation for future investigations into the efficacy of adjunct therapies such as metformin and glucagon-like peptide-1 receptor agonists in the prevention of metabolic comorbidities in people living with HIV.
Collapse
Affiliation(s)
| | - Kristin A. Sauter
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Diana Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Lindsay Bader
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Hannah Blomenkamp
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Cicely Zaro
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Molly Shallman
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Casey McGuire
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Heather Hofmeister
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Uriel Avila
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | | | | | | | | | - Jason Reed
- Division of Pathobiology and Immunology, and
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Oleg Varlamov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Todd T. Brown
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Charles T. Roberts
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| |
Collapse
|
46
|
Mashayekhi M, Sheng Q, Bailin SS, Massier L, Zhong J, Shi M, Wanjalla CN, Wang TJ, Ikizler TA, Niswender KD, Gabriel CL, Palacios J, Turgeon-Jones R, Reynolds CF, Luther JM, Brown NJ, Das S, Dahlman I, Mosley JD, Koethe JR, Rydén M, Bachmann KN, Shah RV. The subcutaneous adipose transcriptome identifies a molecular signature of insulin resistance shared with visceral adipose. Obesity (Silver Spring) 2024; 32:1526-1540. [PMID: 38967296 PMCID: PMC11269023 DOI: 10.1002/oby.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE The objective of this study was to identify the transcriptional landscape of insulin resistance (IR) in subcutaneous adipose tissue (SAT) in humans across the spectrum of obesity. METHODS We used SAT RNA sequencing in 220 individuals with metabolic phenotyping. RESULTS We identified a 35-gene signature with high predictive accuracy for homeostatic model of IR that was expressed across a variety of non-immune cell populations. We observed primarily "protective" IR associations for adipocyte transcripts and "deleterious" associations for macrophage transcripts, as well as a high concordance between SAT and visceral adipose tissue (VAT). Multiple SAT genes exhibited dynamic expression 5 years after weight loss surgery and with insulin stimulation. Using available expression quantitative trait loci in SAT and/or VAT, we demonstrated similar genetic effect sizes of SAT and VAT on type 2 diabetes and BMI. CONCLUSIONS SAT is conventionally viewed as a metabolic buffer for lipid deposition during positive energy balance, whereas VAT is viewed as a dominant contributor to and prime mediator of IR and cardiometabolic disease risk. Our results implicate a dynamic transcriptional architecture of IR that resides in both immune and non-immune populations in SAT and is shared with VAT, nuancing the current VAT-centric concept of IR in humans.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Quanhu Sheng
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, Tennessee, USA
| | - Samuel S. Bailin
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
| | - Lucas Massier
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Jiawei Zhong
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Celestine N. Wanjalla
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
| | - Thomas J. Wang
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, USA
| | - T. Alp Ikizler
- Vanderbilt University Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kevin D. Niswender
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Curtis L. Gabriel
- Vanderbilt University Medical Center, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Nashville, Tennessee, USA
| | - Julia Palacios
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Rachel Turgeon-Jones
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Cassandra F. Reynolds
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Department of Medicine, Cardiology Division, Nashville, Tennessee, USA
| | - James M. Luther
- Vanderbilt University Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan D. Mosley
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R. Koethe
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Katherine N. Bachmann
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Ravi V. Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Department of Medicine, Cardiology Division, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Wu Y, Sun Y, Song Y, Wang J, Han Y, Yang N, Lin H, Yin Y, Han X. PPA1 promotes adipogenesis by regulating the stability of C/EBPs. Cell Death Differ 2024; 31:1044-1056. [PMID: 38762596 PMCID: PMC11303681 DOI: 10.1038/s41418-024-01309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024] Open
Abstract
Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinβ and δ (C/EBPβ and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Sun
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqing Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiateng Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
49
|
DeBari MK, Johnston EK, Scott JV, Ilzuka E, Sun W, Webster-Wood VA, Abbott RD. A Preliminary Study on Factors That Drive Patient Variability in Human Subcutaneous Adipose Tissues. Cells 2024; 13:1240. [PMID: 39120271 PMCID: PMC11311805 DOI: 10.3390/cells13151240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue is a dynamic regulatory organ that has profound effects on the overall health of patients. Unfortunately, inconsistencies in human adipose tissues are extensive and multifactorial, including large variability in cellular sizes, lipid content, inflammation, extracellular matrix components, mechanics, and cytokines secreted. Given the high human variability, and since much of what is known about adipose tissue is from animal models, we sought to establish correlations and patterns between biological, mechanical, and epidemiological properties of human adipose tissues. To do this, twenty-six independent variables were cataloged for twenty patients, which included patient demographics and factors that drive health, obesity, and fibrosis. A factorial analysis for mixed data (FAMD) was used to analyze patterns in the dataset (with BMI > 25), and a correlation matrix was used to identify interactions between quantitative variables. Vascular endothelial growth factor A (VEGFA) and actin alpha 2, smooth muscle (ACTA2) gene expression were the highest loadings in the first two dimensions of the FAMD. The number of adipocytes was also a key driver of patient-related differences, where a decrease in the density of adipocytes was associated with aging. Aging was also correlated with a decrease in overall lipid percentage of subcutaneous tissue, with lipid deposition being favored extracellularly, an increase in transforming growth factor-β1 (TGFβ1), and an increase in M1 macrophage polarization. An important finding was that self-identified race contributed to variance between patients in this study, where Black patients had significantly lower gene expression levels of TGFβ1 and ACTA2. This finding supports the urgent need to account for patient ancestry in biomedical research to develop better therapeutic strategies for all patients. Another important finding was that TGFβ induced factor homeobox 1 (TGIF1), an understudied signaling molecule, which is highly correlated with leptin signaling, was correlated with metabolic inflammation. Furthermore, this study draws attention to what we define as "extracellular lipid droplets", which were consistently found in collagen-rich regions of the obese adipose tissues evaluated here. Reduced levels of TGIF1 were correlated with higher numbers of extracellular lipid droplets and an inability to suppress fibrotic changes in adipose tissue. Finally, this study indicated that M1 and M2 macrophage markers were correlated with each other and leptin in patients with a BMI > 25. This finding supports growing evidence that macrophage polarization in obesity involves a complex, interconnecting network system rather than a full switch in activation patterns from M2 to M1 with increasing body mass. Overall, this study reinforces key findings in animal studies and identifies important areas for future research, where human and animal studies are divergent. Understanding key drivers of human patient variability is required to unravel the complex metabolic health of unique patients.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Elizabeth K. Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Jacqueline V. Scott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Erica Ilzuka
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Wenhuan Sun
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Victoria A. Webster-Wood
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| |
Collapse
|
50
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|