1
|
Verma M, Garg M, Yadav P, Khan AS, Rahman SS, Ali A, Kamthan M. Modulation of intestinal signal transduction pathways: Implications on gut health and disease. Eur J Pharmacol 2025; 998:177531. [PMID: 40118324 DOI: 10.1016/j.ejphar.2025.177531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The gastrointestinal (GI) tract is essential for nutrient absorption and protection against pathogens and toxins. Its epithelial lining undergoes continuous renewal every 3-5 days, driven by intestinal stem cells (ISCs). ISCs are primarily of two types: actively proliferating crypt base columnar cells (CBCs), marked by Lgr5 expression, and quiescent label-retaining cells (+4 LRCs), which act as reserves during stress or injury. Key signaling pathways, such as Wnt/β-catenin, Notch, bone morphogenetic proteins (BMPs), and epidermal growth factor (EGF), are crucial in maintaining epithelial homeostasis. These pathways regulate ISCs proliferation and their differentiation into specialized epithelial cells, including goblet cells, paneth cells, enteroendocrine cells, and enterocytes. Disruptions in ISCs signaling can arise from extrinsic factors (e.g., dietary additives, heavy metals, pathogens) or intrinsic factors (e.g., genetic mutations, metabolic changes). Such disruptions impair tight junction integrity, induce inflammation, and promote gut dysbiosis, often perpetuating a cycle of intestinal dysfunction. Chronic ISCs dysregulation is linked to severe intestinal disorders, including colorectal cancer (CRC) and inflammatory bowel disease (IBD). This review emphasizes the critical role of ISCs in maintaining epithelial renewal and how various factors disrupt their signaling pathways, jeopardizing intestinal health and contributing to diseases. It also underscores the importance of protecting ISCs function to mitigate the risk of inflammation-related disorders. It highlights how understanding these regulatory mechanisms could guide therapeutic strategies for preserving GI tract integrity and treating related conditions.
Collapse
Affiliation(s)
- Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
2
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of stem cells in ageing and age-related diseases. Mech Ageing Dev 2025; 225:112069. [PMID: 40324541 DOI: 10.1016/j.mad.2025.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Stem cell functions and ageing are deeply interconnected, continually influencing each other in multiple ways. Stem cells play a vital role in organ maintenance, regeneration, and homeostasis, all of which decline over time due to gradual reduction in their self-renewal, differentiation, and growth factor secretion potential. The functional decline is attributed to damaging extrinsic environmental factors and progressively worsening intrinsic genetic and biochemical processes. These ageing-associated deteriorative changes have been extensively documented, paving the way for the discovery of novel biomarkers of ageing for detection, diagnosis, and treatment of age-related diseases. Age-dependent changes in adult stem cells include numerical decline, loss of heterogeneity, and reduced self-renewal and differentiation, leading to a drastic reduction in regenerative potential and thereby driving the ageing process. Conversely, ageing also adversely alters the stem cell niche, disrupting the molecular pathways underlying stem cell homing, self-renewal, differentiation, and growth factor secretion, all of which are critical for tissue repair and regeneration. A holistic understanding of these molecular mechanisms, through empirical research and clinical trials, is essential for designing targeted therapies to modulate ageing and improve health parameters in older individuals.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Global Research Alliances, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Fu M, Wang QW, Liu YR, Chen SJ. The role of the three major intestinal barriers in ulcerative colitis in the elderly. Ageing Res Rev 2025; 108:102752. [PMID: 40210198 DOI: 10.1016/j.arr.2025.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
With the unprecedented pace of global population aging, there has been a parallel epidemiological shift marked by increasing incidence rates of ulcerative colitis (UC) in geriatric populations, imposing a substantial disease burden on healthcare systems globally. The etiopathogenesis of UC in the elderly remains poorly delineated, while current therapeutic strategies require further optimization to accommodate the unique pathophysiological characteristics of elderly patients. This review systematically elucidates the three barrier dysfunction - encompassing the gut microbiota ecosystem, mucosal epithelial integrity, and immunoregulatory network - that collectively drives UC pathogenesis during biological senescence. We emphasize the therapeutic potential of barrier-targeted interventions, particularly highlighting emerging modalities including fecal microbiota transplantation, intestinal organoid regeneration techniques, mesenchymal stem cell-mediated immunomodulation, and precision-engineered Chimeric Antigen Receptor T-cell therapies. Through this multidimensional analysis, we propose a paradigm-shifting approach to UC management in the elderly, advocating for the development of tailored and evidence-based therapeutic interventions that address the complex interplay between age-related biological changes and intestinal barrier homeostasis in elderly patients.
Collapse
Affiliation(s)
- Min Fu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qi-Wen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ya-Ru Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shu-Jie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
4
|
Azkanaz M, Laskaris D, van Rheenen J. Stemness in flux: Dissecting intestinal crypt organization with multimodal approaches. Dev Cell 2025; 60:1275-1276. [PMID: 40328226 DOI: 10.1016/j.devcel.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025]
Abstract
In this issue of Developmental Cell, Banjac et al. integrate lineage tracing, single-cell RNA sequencing, and mathematical modeling to reveal that stem cells at the crypt base drive the decision between secretory and absorptive lineage commitment. Their findings highlight the central role of crypt-bottom Lgr5+ cells in maintaining intestinal epithelium homeostasis.
Collapse
Affiliation(s)
- Maria Azkanaz
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dimitrios Laskaris
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Zhang G, Lian Y, Li Q, Zhou S, Zhang L, Chen L, Tang J, Liu H, Li N, Pan Q, Gu Y, Lin N, Wang H, Wang X, Guo J, Zhang W, Jin Z, Xu B, Su X, Lin M, Han Q, Qin J. Vagal pathway activation links chronic stress to decline in intestinal stem cell function. Cell Stem Cell 2025; 32:778-794.e10. [PMID: 40120585 DOI: 10.1016/j.stem.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/11/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Chronic stress adversely affects intestinal health, but the specific neural pathways linking the brain to intestinal tissue are not fully understood. Here, we show that chronic stress-induced activation of the central amygdala-dorsal motor nucleus of the vagus (CeA-DMV) pathway accelerates premature aging and impairs the stemness of intestinal stem cells (ISCs). This pathway influences ISC function independently of the microbiota, the hypothalamic-pituitary-adrenal (HPA) axis, the immune response, and the sympathetic nervous system (SNS). Under chronic stress, DMV-mediated vagal activation prompts cholinergic enteric neurons to release acetylcholine (ACh), which engages ISCs via the M3 muscarinic acetylcholine receptor (CHRM3). This interaction activates the p38 mitogen-activated protein kinase (MAPK) pathway, triggering growth arrest and mitochondrial fragmentation, thereby accelerating an aging-like decline in ISCs. Together, our findings provide insights into an alternative neural mechanism that links stress to intestinal dysfunction. Strategies targeting the DMV-associated vagal pathway represent potential therapeutic approaches for stress-induced intestinal diseases.
Collapse
Affiliation(s)
- Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai 200032, China
| | - Shudi Zhou
- Department of Endocrinology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Lili Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liting Chen
- Department of Emergency and Critical Disease, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junzhe Tang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai 200032, China
| | - Hailong Liu
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Naiheng Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zige Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Beitao Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiao Su
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qi Han
- Department of Emergency and Critical Disease, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
6
|
Khan Y, Bisht AS, Ashique S, Khan G, Hussain MS. Innovative anti-aging strategies targeting WNT pathway epigenetics for gut function. HUMAN GENE 2025; 44:201397. [DOI: 10.1016/j.humgen.2025.201397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
7
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
8
|
Quan H, Lu Y, Lin Y, Xue P, Zhang Y, Wang Y, Yu W, Lin X, Yang W, Lv C, Zhang Y, Ren F, Guo H. Alternate Day Fasting Enhances Intestinal Epithelial Function During Aging by Regulating Mitochondrial Metabolism. Aging Cell 2025:e70052. [PMID: 40168185 DOI: 10.1111/acel.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
With advancing age, the decline in intestinal stem cell (ISC) function can lead to a series of degenerative changes in the intestinal epithelium, a critical factor that increases the risk of intestinal diseases in the elderly. Consequently, there is an urgent imperative to devise effective dietary intervention strategies that target the alterations in senescent ISCs to alleviate senescence-related intestinal dysfunction. The 28-month-old naturally aging mouse model was utilized to discover that the primary factor contributing to the compromised barrier function and digestive absorption of the small intestine was a decrease in both the number and regenerative capacity of ISCs. The underlying mechanism involves the degeneration of mitochondrial function in ISCs, resulting in insufficient energy supply and decreased metabolic capacity. Additionally, our findings indicate that fasting-refeeding can influence the mitochondrial metabolism of ISCs, and that alternate day fasting (ADF) can facilitate the restoration of both the quantity and regenerative capabilities of ISCs, thereby exhibiting a notable antiaging effect on the small intestine. In conclusion, this study provides new insights into the potential beneficial role of ADF in ameliorating intestinal aging, thereby establishing a foundation for future investigations into dietary interventions aimed at addressing age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Heng Quan
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yingying Lin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng Xue
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuqi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weiru Yu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiaoya Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wuqi Yang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Cong Lv
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yafei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Luo T, Zhao L, Feng C, Yan J, Yuan Y, Chen H. Asparagine prevents intestinal stem cell aging via the autophagy-lysosomal pathway. Aging Cell 2025; 24:e14423. [PMID: 39587832 PMCID: PMC11984690 DOI: 10.1111/acel.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The age-associated decline in intestinal stem cell (ISC) function is a key factor in intestinal aging in organisms, resulting in impaired intestinal function and increased susceptibility to age-related diseases. Consequently, it is imperative to develop effective therapeutic strategies to prevent ISC aging and functional decline. In this study, we utilized an aging Drosophila model screening of amino acids and found that asparagine (Asn), a nonessential amino acid in vivo, exhibits its profound anti-aging properties on ISCs. Asn inhibits the hyperproliferation of aging ISCs in Drosophila, maintains intestinal homeostasis, and extends the lifespan of aging flies. Complementarily, Asn promotes the growth and branching of elderly murine intestinal organoids, indicating its anti-aging capacity to enhance ISC function. Mechanistic analyses have revealed that Asn exerts its effects via the activation of the autophagic signaling pathway. In summary, this study has preliminarily explored the potential supportive role of Asn in ameliorating intestinal aging, providing a foundation for further research into therapeutic interventions targeting age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liusha Zhao
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chenxi Feng
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jinhua Yan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Yuan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Nakajima-Koyama M, Kabata M, Lee J, Sogabe Y, Sakurai S, Hirota A, Kimura M, Nakamura T, Imoto Y, Kometani K, Hamazaki Y, Hiraoka Y, Saitou M, Nishida E, Yamamoto T. The balance between IFN-γ and ERK/MAPK signaling activities ensures lifelong maintenance of intestinal stem cells. Cell Rep 2025; 44:115286. [PMID: 39952238 DOI: 10.1016/j.celrep.2025.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
While the intestinal epithelium has the highest cellular turnover rates in the mammalian body, it is also considered one of the tissues most resilient to aging-related disorders. Here, we reveal an innate protective mechanism that safeguards intestinal stem cells (ISCs) from environmental conditions in the aged intestine. Using in vivo phenotypic analysis, transcriptomics, and in vitro intestinal organoid studies, we show that age-dependent activation of interferon-γ (IFN-γ) signaling and inactivation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling are responsible for establishing an equilibrium of Lgr5+ ISCs-between active and quiescent states-to preserve the ISC pool during aging. Furthermore, we show that differentiated cells have different sensitivities to each of the two signaling pathways, which may induce aging-related, functional, and metabolic changes in the body. Thus, our findings reveal an exquisitely balanced, age-dependent signaling mechanism that preserves stem cells at the expense of differentiated cells.
Collapse
Affiliation(s)
- May Nakajima-Koyama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Mio Kabata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Joonseong Lee
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuko Sogabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoko Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Hirota
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mizuki Kimura
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Imoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Kometani
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoko Hamazaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuaki Hiraoka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; RIKEN Center for Biosystems Dynamics Research (BDR), Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan.
| |
Collapse
|
11
|
Verstegen MMA, Coppes RP, Beghin A, De Coppi P, Gerli MFM, de Graeff N, Pan Q, Saito Y, Shi S, Zadpoor AA, van der Laan LJW. Clinical applications of human organoids. Nat Med 2025; 31:409-421. [PMID: 39901045 DOI: 10.1038/s41591-024-03489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025]
Abstract
Organoids are innovative three-dimensional and self-organizing cell cultures of various lineages that can be used to study diverse tissues and organs. Human organoids have dramatically increased our understanding of developmental and disease biology. They provide a patient-specific model to study known diseases, with advantages over animal models, and can also provide insights into emerging and future health threats related to climate change, zoonotic infections, environmental pollutants or even microgravity during space exploration. Furthermore, organoids show potential for regenerative cell therapies and organ transplantation. Still, several challenges for broad clinical application remain, including inefficiencies in initiation and expansion, increasing model complexity and difficulties with upscaling clinical-grade cultures and developing more organ-specific human tissue microenvironments. To achieve the full potential of organoid technology, interdisciplinary efforts are needed, integrating advances from biology, bioengineering, computational science, ethics and clinical research. In this Review, we showcase pivotal achievements in epithelial organoid research and technologies and provide an outlook for the future of organoids in advancing human health and medicine.
Collapse
Affiliation(s)
- Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Rob P Coppes
- Departments of Biomedical Sciences and Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne Beghin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Research and Engineering in Space Technology, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mattia F M Gerli
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, UK
| | - Nienke de Graeff
- Department of Medical Ethics and Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Shaojun Shi
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, the Netherlands
| |
Collapse
|
12
|
Vorobjova T, Metsküla K, Salumäe L, Uibo O, Heilman K, Uibo R. Immunohistochemical evaluation of LGR5, CD71, CD138 and CXCR3 markers in the small bowel mucosa of participants with celiac disease and persons with normal bowel mucosa. J Mol Histol 2025; 56:64. [PMID: 39747719 DOI: 10.1007/s10735-024-10340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Celiac disease (CD) is a chronic autoimmune disease of the small bowel mucosa that develops because of the altered immune response to gluten, which leads to intestinal epithelium damage and villous atrophy. However, studies on regeneration of the damaged small bowel mucosa and density of intestinal stem cells (ISC) in CD persons are still scarce. We aimed to evaluate the number of small bowel mucosa cells positive for LGR5, CD138/Syndecan-1, CD71 and CXCR3 in CD and in controls with normal bowel mucosa; to find relationship between these markers and degree of small intestinal atrophy and to compare these results with our previous data about the number of CD103 + , IDO + DCs, FOXP3 + Tregs, enterovirus (EV) density and serum zonulin level. The paraffin sections of the small bowel biopsies were obtained from 26 children with CD (median age 6.5 years), and from 20 controls with normal intestinal mucosa (median age 14.2 years) and from the tissue bank of the Department of Pathology of Tartu University Hospital (from 18 participants with CD including 14 children (median age 13.2 years) and from 11subjects with normal small bowel mucosa, including one child aged 4.8 years. The number of LGR5 + , CD71 + , CD138 + , and CXCR3 + cells was evaluated using immunohistochemistry. The median number of CD138 + and CXCR3 + cells was significantly higher in the small bowel mucosa in CD compared with normal mucosa (p = 0.0002 for CD138 and p = 0.006 for CXCR3). The median number of CD71 + cells was significantly higher in normal small bowel mucosa (p = 0.005). The number of LGR5 + cells did not differ between persons with CD and those with normal small bowel mucosa (p = 0.7). A markedly increased number of CD138 + and CXCR3 + cells in the small bowel mucosa of participants with CD confirms their role in the pathogenesis of this disease. There was no expected marked difference in the density of any of the studied markers between lower or higher grade of small bowel atrophy and level of tTG-IgA in CD.
Collapse
Affiliation(s)
- Tamara Vorobjova
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia.
| | - Kaja Metsküla
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia
| | - Liis Salumäe
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Oivi Uibo
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- Centre of Clinical Nutrition, Tartu University Hospital, Tartu, Estonia
- Department of Paediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia
| |
Collapse
|
13
|
Wu S, Hu L, Fu Y, Chen Y, Hu Z, Li H, Liu Z. Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model. Mol Neurobiol 2024; 61:10006-10022. [PMID: 38066398 DOI: 10.1007/s12035-023-03807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2024]
Abstract
Intestinal microfold cells (M cells) play a critical role in the immune response of the intestinal mucosa by actively taking up antigens, facilitating antigen presentation to immune cells, and promoting the production of secretory immunoglobulin A by B cells. Despite their known important functions in the gut, the effect of M cells on the central nervous system remains unclear. We investigated the expression of M cell-related factor genes and protein levels in Peyer's patches (PPs) of 3-month-old and 9-month-old APP/PS1 mice, as well as the expression of intestinal barrier proteins in the ileum and colon of these mice. Furthermore, we employed intestinal M cell conditional ablation mice (i.e., RankΔIEC mice) to assess the influence of M cells on the intestinal barrier and Alzheimer's disease (AD)-like behavioral and pathological features. Our findings revealed that compared to wild-type mice, APP/PS1 mice showed altered M cell-related genes and disrupted intestinal barriers. In addition, there is a significant decrease in glycoprotein 2 (GP2) mRNA levels in the PPs of 3-month-old APP/PS1 mice, with the relative expression of GP2 mRNA tending to zero. Parameters related to the intestinal barrier (IgA, MUC2, Claudin-5, ZO-1) were significantly downregulated in both 3-month-old and 9-month-old APP/PS1 mice compared to wild-type controls, and the differences were more pronounced in the 9-month-old mice. Moreover, M cell ablation in APP/PS1 mice (i.e., APP/PS1ΔMC mice) resulted in more severe intestinal barrier destruction. Notably, we observed through water maze experiments that APP/PS1ΔMC mice at 6 months of age exhibited significantly poorer spatial learning memory compared to APP/PS1 mice. And the neuropathological alterations were also observed in APP/PS1ΔMC mice at 6 months of age that when intestinal M cells are damaged in APP/PS1 mice, brain microglia are activated, Tau phosphorylation is exacerbated, and the number of neurons is reduced. Our results suggest for the first time that the absence of intestinal M cells might further aggravate intestinal leakage, lead to neuropathological damage, and subsequently cause the impairment of learning memory ability in AD mice. Our research highlights the impact of intestinal M cells on the intestinal barrier and AD neuropathogenesis in AD mouse model.
Collapse
Affiliation(s)
- Shijing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiwei Fu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yating Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
14
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and epigenetic alterations in aging and rejuvenation of human. Mol Cells 2024; 47:100137. [PMID: 39433213 PMCID: PMC11625158 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
15
|
Dagbasi A, Fuller A, Hanyaloglu AC, Carroll B, McLaughlin J, Frost G, Holliday A. The role of nutrient sensing dysregulation in anorexia of ageing: The little we know and the much we don't. Appetite 2024; 203:107718. [PMID: 39423861 DOI: 10.1016/j.appet.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The age-related decline in appetite and food intake - termed "anorexia of ageing" - is implicated in undernutrition in later life and hence provides a public health challenge for our ageing population. Eating behaviour is controlled, in part, by homeostatic mechanisms which sense nutrient status and provide feedback to appetite control regions of the brain. Such feedback signals, propagated by episodic gut hormones, are dysregulated in some older adults. The secretory responses of appetite-related gut hormones to feeding are amplified, inducing a more anorexigenic signal which is associated with reduced appetite and food intake. Such an augmented response would indicate an increase in gut sensitivity to nutrients. Consequently, this review explores the role of gastrointestinal tract nutrient sensing in age-related appetite dysregulation. We review and synthesise evidence for age-related alterations in nutrient sensing which may explain the observed hormonal dysregulation. Drawing on what is known regarding elements of nutrient sensing pathways in animal models, in other tissues of the body, and in certain models of disease, we identify potential causal mechanisms including alterations in enteroendocrine cell number and distribution, dysregulation of cell signalling pathways, and changes in the gut milieu. From identified gaps in evidence, we highlight interesting and important avenues for future research.
Collapse
Affiliation(s)
- Aygul Dagbasi
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Amy Fuller
- Research Centre for Health and Life Sciences, Institute of Health and Wellbeing, Faculty of Health and Life Science, Coventry University, Coventry, CV1 5FB, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Bernadette Carroll
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS1 8TD, UK
| | - John McLaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Science, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
16
|
Fan S, Zhang Q, She J, Dai X. Agar oligosaccharides improve the intestinal health of induced-aging mice by maintaining intestinal homeostasis via balancing the ISCs proliferation and differentiation. Eur J Nutr 2024; 64:9. [PMID: 39546038 DOI: 10.1007/s00394-024-03512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE Aging is a process that accompanies a decline in the function of various tissues and organs, especially affecting intestinal health. Agarose oligosaccharide (AOS) can prolong the lifespan of organisms and protect the intestine in the previous study. It was examined to evaluate the effects of AOS on intestinal health, and the potential associations between intestinal homeostasis and health status were further validated. METHODS D-galactose-induced aging mice were used to investigate the role of AOS in promoting intestinal health by determining intestinal physiology, microbiota and stem cells. RESULTS AOS supplementation decreased the clinical frailty index of aging mice with increasing intestinal length and crypt depth; moreover, it decreased the average flatulence index and PCNA protein content in the intestine. Besides, AOS contributed to the diversity of the gut microbiota by increasing the relative abundance of Bacteroidetes and other bacteria that could produce short-chain fatty acids. Furthermore, AOS affected the expression of proinflammatory factors in aging mice, promoting the proliferative equilibrium of intestinal stem cells. CONCLUSION These findings confirmed that AOS could improve intestinal health in aging mice by maintaining intestinal homeostasis, which provides new insights into the potential application of AOS as a prebiotic.
Collapse
Affiliation(s)
- Shuhang Fan
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Qianyi Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jianyi She
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou, 310018, China.
| |
Collapse
|
17
|
Matteini F, Montserrat‐Vazquez S, Florian MC. Rejuvenating aged stem cells: therapeutic strategies to extend health and lifespan. FEBS Lett 2024; 598:2776-2787. [PMID: 38604982 PMCID: PMC11586596 DOI: 10.1002/1873-3468.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Aging is associated with a global decline in stem cell function. To date, several strategies have been proposed to rejuvenate aged stem cells: most of these result in functional improvement of the tissue where the stem cells reside, but the impact on the lifespan of the whole organism has been less clearly established. Here, we review some of the most recent work dealing with interventions that improve the regenerative capacity of aged somatic stem cells in mammals and that might have important translational possibilities. Overall, we underscore that somatic stem cell rejuvenation represents a strategy to improve tissue homeostasis upon aging and present some recent approaches with the potential to affect health span and lifespan of the whole organism.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - Sara Montserrat‐Vazquez
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- The Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
18
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
19
|
Vlajic K, Bie W, Gilic MB, Tyner AL. Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice. Cell Death Dis 2024; 15:777. [PMID: 39461944 PMCID: PMC11513114 DOI: 10.1038/s41419-024-07149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.
Collapse
Affiliation(s)
- Katarina Vlajic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- University of Washington, Seattle, WA, USA
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Milica B Gilic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- St Jude Children's Hospital, Memphis, TN, USA
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
20
|
Gorelov R, Hochedlinger K. A cellular identity crisis? Plasticity changes during aging and rejuvenation. Genes Dev 2024; 38:823-842. [PMID: 39293862 PMCID: PMC11535162 DOI: 10.1101/gad.351728.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Baidoo N, Sanger GJ. Age-related decline in goblet cell numbers and mucin content of the human colon: Implications for lower bowel functions in the elderly. Exp Mol Pathol 2024; 139:104923. [PMID: 39154390 DOI: 10.1016/j.yexmp.2024.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND & AIMS Older people experience a greater incidence of lower bowel disorders, including constipation. Causes can include factors associated with growing older, such as use of medications or disease, but compounded by degenerative changes within the bowel wall. It has been suggested that the latter is exacerbated by loss of an effective mucosal barrier to luminal contents. In human colon, little is known about the impact of ageing on key components of this barrier, namely the goblet cells and mucin content. METHODS Changes in the number of goblet cells and density of mucin content were investigated in macroscopically normal human ascending (AC; n = 13) and descending (DC; n = 14) colon from elderly (≥ 67 years) and younger adults (60 years and below). Samples were serially sectioned and stained for haematoxylin and eosin to assess tissue morphology, and alcian blue periodic acid Schiff (ABPAS) and MUC-2 antibody to identify goblet cells producing mucins. New procedures in visualization and identification of goblet cells and mucin contents were employed to ensure unbiased counting and densitometric analysis. RESULTS Compared with the younger adults, the numbers of goblet cells per crypt were significantly lower in the elderly AC (72 ± 1.2 vs 51 ± 0.5) and DC (75 ± 2.6 vs. 54 ± 1.9), although this reduction did not reach statistical significance when assessed per mucosal area (AC: P = 0.068; DC: P = 0.096). In both regions from the elderly, numerous empty vesicles (normally containing mucins) were observed, and some areas of epithelium were devoid of goblet cells. Thus, the density of mucin content per unit mucosal area were significantly reduced with age. CONCLUSIONS Ageing could result in a reduced number of goblet cells and development of degenerative changes in mucin production. Together, these have implications for the mucus barrier function in the colon of elderly individuals.
Collapse
Affiliation(s)
- Nicholas Baidoo
- University of Westminster, School of Life Sciences. New Cavendish Street, UK; Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Jiang L, Tian J, Yang J, Luo R, Zhang Y, Shao C, Guo B, Wu X, Dan J, Luo Y. p21 Regulates Wnt-Notch balance via DREAM/MMB/Rb-E2F1 and maintains intestinal stem cell homeostasis. Cell Death Discov 2024; 10:413. [PMID: 39341834 PMCID: PMC11438959 DOI: 10.1038/s41420-024-02192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The crosstalk and balance regulation of Wnt-Notch have been known to be essential for cell fate decision and tissue regeneration, however, how this balance is maintained and how the Wnt-Notch pathways are connected with cell cycle regulation is still not clear. By analyzing the molecular alterations in mouse model with accelerated aging phenotypes due to loss of p21 function in a Werner syndrome background, we observed that Wnt3 and β-Catenin were down-regulated, while Notch1 and Hes1 were up-regulated. This disruption in Wnt-Notch signaling was accompanied by the loss of intestinal stem cell compartment, increase in Bmi1 positive cells, loss of Olfm4/Lgr5 positive cells, and reduced secretory Paneth cells and goblet cells in the intestinal crypts of p21TKO mice. BrdU incorporation, cleaved caspase 3, and Tunel assay results revealed the fast turnover of intestinal epithelia, which may result in abnormal stem cell mobilization and exhaustion of the stem cell reservoir in the intestinal crypts. We further identified shift of DREAM complex towards MMB complex due to the loss of p21 as the cause for faster turnover of intestinal epithelia. Importantly, we identified the E2F1 as the transcriptional regulator for Notch1, which linked the p21-DREAM/MMB/Rb-E2F1 pathway with Wnt-Notch pathway. The overexpression of p21 rescued the DREAM pathway, as well as the imbalance of Wnt-Notch pathway. In summary, our data identify p21 as an important factor in maintaining sequential mobilization, proliferation, and homeostasis of intestinal stem cells.
Collapse
Affiliation(s)
- Liangxia Jiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun Yang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ronggang Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yongjin Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chihao Shao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Bing Guo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
23
|
Hua X, Zhao C, Tian J, Wang J, Miao X, Zheng G, Wu M, Ye M, Liu Y, Zhou Y. A Ctnnb1 enhancer transcriptionally regulates Wnt signaling dosage to balance homeostasis and tumorigenesis of intestinal epithelia. eLife 2024; 13:RP98238. [PMID: 39320349 PMCID: PMC11424096 DOI: 10.7554/elife.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 - the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.
Collapse
Affiliation(s)
- Xiaojiao Hua
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Tomita-Naito S, Sulekh S, Yoo SK. Insidious chromatin change with a propensity to exhaust intestinal stem cells during aging. iScience 2024; 27:110793. [PMID: 39371074 PMCID: PMC11452737 DOI: 10.1016/j.isci.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
During aging, tissue stem cells can demonstrate two opposing phenotypes of tissue homeostasis disruption: proliferation and exhaustion. Stem cells can exhaust as a result of excessive cell proliferation or independently of cell proliferation. There are many silent changes in chromatin structures and gene expression that are not necessarily reflected in manifested phenotypes during aging. Here through analyses of chromatin accessibility and gene expression in intestinal progenitor cells during aging, we discovered changes of chromatin accessibility and gene expression that have a propensity to exhaust intestinal stem cells (ISCs). During aging, Trithorax-like (Trl) target genes, ced-6 and ci, close their chromatin structures and decrease their expression in intestinal progenitor cells. Inhibition of Trl, ced-6, or ci exhausts ISCs. This study provides new insight into changes of chromatin accessibility and gene expression that have a potential to exhaust ISCs during aging.
Collapse
Affiliation(s)
- Saki Tomita-Naito
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shivakshi Sulekh
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| | - Sa Kan Yoo
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
| |
Collapse
|
25
|
Reynolds CA, Pelka S, Gjergjova F, Tasset I, Khawaja RR, Lindenau K, Krause GJ, Gavathiotis E, Cuervo AM, Macian F. Restoration of LAMP2A expression in old mice leads to changes in the T cell compartment that support improved immune function. Proc Natl Acad Sci U S A 2024; 121:e2322929121. [PMID: 39259591 PMCID: PMC11420204 DOI: 10.1073/pnas.2322929121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Chaperone-mediated autophagy (CMA) is a selective form of autophagy that contributes to the maintenance of cellular homeostasis. CMA activity declines with age in most tissues and systems, including the immune system, due to a reduction in levels of lysosome-associated membrane protein type 2A (LAMP2A), an essential CMA component. In this study, we show that overexpressing a copy of hLAMP2A within T cells since middle-age can prevent some of their age-associated loss of function. Our data support the idea that preserving LAMP2A expression with age through genetic means leads to enhanced proliferative responses, decreased number of regulatory T cell populations, and down-regulated expression of inhibitory receptors by T cells. During aging, elevated numbers of these immunosuppressive T cell populations significantly contribute to the age-associated downregulation of T cell responses. Using comparative proteomics, we confirm that preservation of CMA activity in old mice prevents age-related changes in both the resting and the activated T cell proteome. We also explore the effect of using first-in-class small molecule activators of CMA and demonstrate improved T cell response upon their administration to old mice. We conclude that sustaining CMA activity constitutes a potentially viable therapeutic approach to improving T cell function with age.
Collapse
Affiliation(s)
- Cara A. Reynolds
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
| | - Sandra Pelka
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Floralba Gjergjova
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Inmaculada Tasset
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Biochemistry and Molecular Biology, University of Cordoba, Spain14071
| | - Rabia R. Khawaja
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Kristen Lindenau
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Gregory J. Krause
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Evripidis Gavathiotis
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Ana Maria Cuervo
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY10461
| |
Collapse
|
26
|
Ye J, Yan L, Yuan Y, Fu F, Yuan L, Fan X, Zhou J, Zhu Y, Liu X, Ren G, Chen H. Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling. LIFE MEDICINE 2024; 3:lnae025. [PMID: 39871890 PMCID: PMC11749787 DOI: 10.1093/lifemedi/lnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/26/2024] [Indexed: 01/29/2025]
Abstract
The decline in intestinal stem cell (ISC) function is a hallmark of aging, contributing to compromised intestinal regeneration and increased incidence of age-associated diseases. Novel therapeutic agents that can rejuvenate aged ISCs are of paramount importance for extending healthspan. Here, we report on the discovery of Chrysosplenosides I and A (CAs 1 & 2), flavonol glycosides from the Xizang medicinal plant Chrysosplenium axillare Maxim., which exhibit potent anti-aging effects on ISCs. Our research, using Drosophila models, reveals that CAs 1 & 2 treatments not only restrain excessive ISC proliferation, thereby preserving intestinal homeostasis, but also extend the lifespan of aging Drosophila. In aged mouse intestinal organoids, CAs 1 & 2 enhance the growth and budding of intestinal organoids, indicating improved regenerative capacity. Mechanistic investigations show that CAs 1 & 2 exert their effects by activating the peroxisome proliferator-activated receptor-gamma (PPARγ) and concurrently inhibiting the epidermal growth factor receptor (EGFR) signaling pathways. Our findings position CAs 1 & 2 as promising candidates for ameliorating ISC aging and suggest that targeting PPARγ, in particular, may offer a therapeutic strategy to counteract age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Jinbao Ye
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - La Yan
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Yuan
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Fu
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yuan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinxin Fan
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juanyu Zhou
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuedan Zhu
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingzhu Liu
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Ren
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Haiyang Chen
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Wang Q, Xu J, Luo M, Jiang Y, Gu Y, Wang Q, He J, Sun Y, Lin Y, Feng L, Chen S, Hou T. Fasting mimicking diet extends lifespan and improves intestinal and cognitive health. Food Funct 2024; 15:4503-4514. [PMID: 38567489 DOI: 10.1039/d4fo00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Caloric restriction is an effective means of extending a healthy lifespan. Fasting mimicking diet (FMD) is a growing pattern of caloric restriction. We found that FMD significantly prolonged the lifespan of prematurely aging mice. In naturally aging mice, FMD improved cognitive and intestinal health. Through a series of behavioral experiments, we found that FMD relieved anxiety and enhanced cognition in aged mice. In the intestine, the FMD cycles enhanced the barrier function, reduced senescence markers, and maintained T cell naïve-memory balance in the lamina propria mucosa. To further explore the causes of immune alterations, we examined changes in the stool microbiota using 16S rRNA sequencing. We found that FMD remodeled gut bacterial composition and significantly expanded the abundance of Lactobacillus johnsonii. Our research revealed that FMD has in-depth investigative value as an anti-aging intervention for extending longevity and improving cognition, intestinal function, and gut microbiota composition.
Collapse
Affiliation(s)
- Qingyi Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Man Luo
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yao Jiang
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yanrou Gu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Sun
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lijun Feng
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
28
|
Kang EJ, Kim JH, Kim YE, Lee H, Jung KB, Chang DH, Lee Y, Park S, Lee EY, Lee EJ, Kang HB, Rhyoo MY, Seo S, Park S, Huh Y, Go J, Choi JH, Choi YK, Lee IB, Choi DH, Seo YJ, Noh JR, Kim KS, Hwang JH, Jeong JS, Kwon HJ, Yoo HM, Son MY, Kim YG, Lee DH, Kim TY, Kwon HJ, Kim MH, Kim BC, Kim YH, Kang D, Lee CH. The secreted protein Amuc_1409 from Akkermansia muciniphila improves gut health through intestinal stem cell regulation. Nat Commun 2024; 15:2983. [PMID: 38582860 PMCID: PMC10998920 DOI: 10.1038/s41467-024-47275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/β-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/β-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.
Collapse
Affiliation(s)
- Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Livestock Products Analysis Division, Division of Animal health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon, 34146, Republic of Korea
| | - Young Eun Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hana Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ho Bum Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Moon-Young Rhyoo
- Laboratory Animal Resource Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sohee Park
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yubin Huh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung Hyeon Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Ji-Seon Jeong
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Applied Biological Engineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- HealthBiome Inc., Daejeon, 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| | - Dukjin Kang
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
29
|
Fang YX, Lu EQ, Cheng YJ, Xu E, Zhu M, Chen X. Glutamine Promotes Porcine Intestinal Epithelial Cell Proliferation through the Wnt/β-Catenin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7155-7166. [PMID: 38526961 DOI: 10.1021/acs.jafc.3c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Glutamine (Gln) is a critical nutrient required by neonatal mammals for intestinal growth, especially for newborn piglets. However, the mechanisms underlying the role of Gln in porcine intestinal epithelium development are not fully understood. The objective of the current study was to explore the possible signaling pathway involved in the promotion of porcine intestinal epithelial cell (IPEC-J2) proliferation by Gln. The results showed that 1 mM Gln promoted IPEC-J2 cell proliferation, and tandem mass tag proteomics revealed 973 differentially expressed proteins in Gln-treated IPEC-J2 cells, 824 of which were upregulated and 149 of which were downregulated. Moreover, gene set enrichment analysis indicated that the Wnt signaling pathway is activated by Gln treatment. Western blotting analysis further confirmed that Gln activated the Wnt/β-catenin signaling pathway. In addition, Gln increased not only cytosolic β-catenin but also nuclear β-catenin protein expression. LF3 (a β-catenin/TCF4 interaction inhibitor) assay and β-catenin knockdown demonstrated that Gln-mediated promotion of Wnt/β-catenin signaling and cell proliferation were blocked. Furthermore, the inhibition of TCF4 expression suppressed Gln-induced cell proliferation. These findings further confirmed that Wnt/β-catenin signaling is involved in the promotion of IPEC-J2 cell proliferation by Gln. Collectively, these findings demonstrated that Gln positively regulated IPEC-J2 cell proliferation through the Wnt/β-catenin pathway. These data greatly enhance the current understanding of the mechanism by which Gln regulates intestinal development.
Collapse
Affiliation(s)
- Yong-Xia Fang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
30
|
Yin JT, Zhang MR, Zhang S, Yang SH, Li JP, Liu Y, Duan JA, Guo JM. Astragalus membranaceus Polysaccharide Regulates Small Intestinal Microbes and Activates IL-22 Signal Pathway to Promote Intestinal Stem Cell Regeneration in Aging Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:513-539. [PMID: 38533568 DOI: 10.1142/s0192415x24500228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Jia-Ting Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ming-Ruo Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shu-Hui Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jian-Ping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM, Formulae Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
31
|
Eskiocak O, Chowdhury S, Shah V, Nnuji-John E, Chung C, Boyer JA, Harris AS, Habel J, Sadelain M, Beyaz S, Amor C. Senolytic CAR T cells reverse aging-associated defects in intestinal regeneration and fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585779. [PMID: 38529506 PMCID: PMC10962734 DOI: 10.1101/2024.03.19.585779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Intestinal stem cells (ISCs) drive the rapid regeneration of the gut epithelium to maintain organismal homeostasis. Aging, however, significantly reduces intestinal regenerative capacity. While cellular senescence is a key feature of the aging process, little is known about the in vivo effects of senescent cells on intestinal fitness. Here, we identify the accumulation of senescent cells in the aging gut and, by harnessing senolytic CAR T cells to eliminate them, we uncover their detrimental impact on epithelial integrity and overall intestinal homeostasis in natural aging, injury and colitis. Ablation of intestinal senescent cells with senolytic CAR T cells in vivo or in vitro is sufficient to promote the regenerative potential of aged ISCs. This intervention improves epithelial integrity and mucosal immune function. Overall, these results highlight the ability of senolytic CAR T cells to rejuvenate the intestinal niche and demonstrate the potential of targeted cell therapies to promote tissue regeneration in aging organisms.
Collapse
Affiliation(s)
- Onur Eskiocak
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- Graduate Program in Genetics, Stony Brook University; NY, USA
| | | | - Vyom Shah
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Emmanuella Nnuji-John
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Charlie Chung
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Jacob A. Boyer
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University; Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
| | | | - Jill Habel
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Corina Amor
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| |
Collapse
|
32
|
Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol 2024; 12:1359585. [PMID: 38572486 PMCID: PMC10987781 DOI: 10.3389/fcell.2024.1359585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Adult stem cells play a critical role in maintaining tissue homeostasis and promoting longevity. The intricate organization and presence of common markers among adult epithelial stem cells in the intestine, lung, and skin serve as hallmarks of these cells. The specific location pattern of these cells within their respective organs highlights the significance of the niche in which they reside. The extracellular matrix (ECM) not only provides physical support but also acts as a reservoir for various biochemical and biophysical signals. We will consider differences in proliferation, repair, and regenerative capacities of the three epithelia and review how environmental cues emerging from the niche regulate cell fate. These cues are transduced via mechanosignaling, regulating gene expression, and bring us to the concept of the fate scaffold. Understanding both the analogies and discrepancies in the mechanisms that govern stem cell fate in various organs can offer valuable insights for rejuvenation therapy and tissue engineering.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| | | | - Chloé C. Féral
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
33
|
Forsyth CB, Shaikh M, Engen PA, Preuss F, Naqib A, Palmen BA, Green SJ, Zhang L, Bogin ZR, Lawrence K, Sharma D, Swanson GR, Bishehsari F, Voigt RM, Keshavarzian A. Evidence that the loss of colonic anti-microbial peptides may promote dysbiotic Gram-negative inflammaging-associated bacteria in aging mice. FRONTIERS IN AGING 2024; 5:1352299. [PMID: 38501032 PMCID: PMC10945560 DOI: 10.3389/fragi.2024.1352299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Introduction: Aging studies in humans and mice have played a key role in understanding the intestinal microbiome and an increased abundance of "inflammaging" Gram-negative (Gn) bacteria. The mechanisms underlying this inflammatory profile in the aging microbiome are unknown. We tested the hypothesis that an aging-related decrease in colonic crypt epithelial cell anti-microbial peptide (AMP) gene expression could promote colonic microbiome inflammatory Gn dysbiosis and inflammaging. Methods: As a model of aging, C57BL/6J mice fecal (colonic) microbiota (16S) and isolated colonic crypt epithelial cell gene expression (RNA-seq) were assessed at 2 months (mth) (human: 18 years old; yo), 15 mth (human: 50 yo), and 25 mth (human: 84 yo). Informatics examined aging-related microbial compositions, differential colonic crypt epithelial cell gene expressions, and correlations between colonic bacteria and colonic crypt epithelial cell gene expressions. Results: Fecal microbiota exhibited significantly increased relative abundances of pro-inflammatory Gn bacteria with aging. Colonic crypt epithelial cell gene expression analysis showed significant age-related downregulation of key AMP genes that repress the growth of Gn bacteria. The aging-related decrease in AMP gene expressions is significantly correlated with an increased abundance in Gn bacteria (dysbiosis), loss of colonic barrier gene expression, and senescence- and inflammation-related gene expression. Conclusion: This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Breanna A. Palmen
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Stefan J. Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Zlata R. Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Kristi Lawrence
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Garth R. Swanson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Faraz Bishehsari
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
34
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
35
|
Choi J, Augenlicht LH. Intestinal stem cells: guardians of homeostasis in health and aging amid environmental challenges. Exp Mol Med 2024; 56:495-500. [PMID: 38424189 PMCID: PMC10985084 DOI: 10.1038/s12276-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Abstract
The intestinal epithelium is the first line of defense and acts as an interface between the vast microbial world within the gastrointestinal tract and the body's internal milieu. The intestinal epithelium not only facilitates nutrient absorption but also plays a key role in defending against pathogens and regulating the immune system. Central to maintaining a healthy epithelium are intestinal stem cells (ISCs), which are essential for replenishing the intestinal epithelium throughout an individual's lifespan. Recent research has unveiled the intricate interplay between ISCs and their niche, which includes various cell types, extracellular components, and signaling molecules. In this review, we delve into the most recent advances in ISC research, with a focus on the roles of ISCs in maintaining mucosal homeostasis and how ISC functionality is influenced by the niche environment. In this review, we explored the regulatory mechanisms that govern ISC behavior, emphasizing the dynamic adaptability of the intestinal epithelium in the face of various challenges. Understanding the intricate regulation of ISCs and the impact of aging and environmental factors is crucial for advancing our knowledge and developing translational approaches. Future studies should investigate the interactive effects of different risk factors on intestinal function and develop strategies for improving the regenerative capacity of the gut.
Collapse
Affiliation(s)
- Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
36
|
Chemerinski A, Garcia de Paredes J, Blackledge K, Douglas NC, Morelli SS. Mechanisms of endometrial aging: lessons from natural conceptions and assisted reproductive technology cycles. Front Physiol 2024; 15:1332946. [PMID: 38482194 PMCID: PMC10933110 DOI: 10.3389/fphys.2024.1332946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 01/02/2025] Open
Abstract
Until recently, the study of age-related decline in fertility has focused primarily on the ovary; depletion of the finite pool of oocytes and increases in meiotic errors leading to oocyte aneuploidy are well-established mechanisms by which fertility declines with advancing age. Comparatively little is known about the impact of age on endometrial function. The endometrium is a complex tissue comprised of many cell types, including epithelial, stromal, vascular, immune and stem cells. The capacity of this tissue for rapid, cyclic regeneration is unique to this tissue, undergoing repeated cycles of growth and shedding (in the absence of an embryo) in response to ovarian hormones. Furthermore, the endometrium has been shown to be capable of supporting pregnancies beyond the established boundaries of the reproductive lifespan. Despite its longevity, molecular studies have established age-related changes in individual cell populations within the endometrium. Human clinical studies have attempted to isolate the effect of aging on the endometrium by analyzing pregnancies conceived with euploid, high quality embryos. In this review, we explore the existing literature on endometrial aging and its impact on pregnancy outcomes. We begin with an overview of the principles of endometrial physiology and function. We then explore the mechanisms behind endometrial aging in its individual cellular compartments. Finally, we highlight lessons about endometrial aging gleaned from rodent and human clinical studies and propose opportunities for future study to better understand the contribution of the endometrium to age-related decline in fertility.
Collapse
Affiliation(s)
- Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | | | | | | |
Collapse
|
37
|
Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem 2024; 300:105615. [PMID: 38159850 PMCID: PMC10831167 DOI: 10.1016/j.jbc.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.
Collapse
Affiliation(s)
- Zachary M Nelson
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
38
|
Yonemoto Y, Nemoto Y, Morikawa R, Shibayama N, Oshima S, Nagaishi T, Mizutani T, Ito G, Fujii S, Okamoto R. Single cell analysis revealed that two distinct, unique CD4 + T cell subsets were increased in the small intestinal intraepithelial lymphocytes of aged mice. Front Immunol 2024; 15:1340048. [PMID: 38327516 PMCID: PMC10848332 DOI: 10.3389/fimmu.2024.1340048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Recent advances in research suggest that aging has a controllable chronic inflammatory disease aspect. Aging systemic T cells, which secrete pro-inflammatory factors, affect surrounding somatic cells, and accelerate the aging process through chronic inflammation, have attracted attention as potential therapeutic targets in aging. On the other hand, there are few reports on the aging of the intestinal immune system, which differs from the systemic immune system in many ways. In the current study, we investigated the age-related changes in the intestinal immune system, particularly in T cells. The most significant changes were observed in the CD4+ T cells in the small intestinal IEL, with a marked increase in this fraction in old mice and reduced expression of CD27 and CD28, which are characteristic of aging systemic T cells. The proliferative capacity of aging IEL CD4+ T cells was significantly more reduced than that of aging systemic T cells. Transcriptome analysis showed that the expression of inflammatory cytokines was not upregulated, whereas Cd8α, NK receptors, and Granzymes were upregulated in aging IEL CD4+ T cells. Functional analysis showed that aging IEL T cells had a higher cytotoxic function against intestinal tumor organoids in vitro than young IEL T cells. scRNAseq revealed that splenic T cells show a transition from naïve to memory T cells, whereas intestinal T cells show the emergence of a CD8αα+CD4+ T cell fraction in aged mice, which is rarely seen in young cells. Further analysis of the aging IEL CD4+ T cells showed that two unique subsets are increased that are distinct from the systemic CD4+ T cells. Subset 1 has a pro-inflammatory component, with expression of IFNγ and upregulation of NFkB signaling pathways. Subset 2 does not express IFNγ, but upregulates inhibitory molecules and nIEL markers. Expression of granzymes and Cd8a was common to both. These fractions were in opposite positions in the clustering by UMAP and had different TCR repertoires. They may be involved in the suppression of intestinal aging and longevity through anti-tumor immunity, elimination of senescent cells and stressed cells in the aging environment. This finding could be a breakthrough in aging research.
Collapse
Affiliation(s)
- Yuki Yonemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Morikawa
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nana Shibayama
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nagaishi
- Department of Advanced Therapeutics for Gastrointestinal Diseases, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoru Fujii
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
39
|
Yang L, Ruan Z, Lin X, Wang H, Xin Y, Tang H, Hu Z, Zhou Y, Wu Y, Wang J, Qin D, Lu G, Loomes KM, Chan WY, Liu X. NAD + dependent UPR mt activation underlies intestinal aging caused by mitochondrial DNA mutations. Nat Commun 2024; 15:546. [PMID: 38228611 PMCID: PMC10791663 DOI: 10.1038/s41467-024-44808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Aging in mammals is accompanied by an imbalance of intestinal homeostasis and accumulation of mitochondrial DNA (mtDNA) mutations. However, little is known about how accumulated mtDNA mutations modulate intestinal homeostasis. We observe the accumulation of mtDNA mutations in the small intestine of aged male mice, suggesting an association with physiological intestinal aging. Using polymerase gamma (POLG) mutator mice and wild-type mice, we generate male mice with progressive mtDNA mutation burdens. Investigation utilizing organoid technology and in vivo intestinal stem cell labeling reveals decreased colony formation efficiency of intestinal crypts and LGR5-expressing intestinal stem cells in response to a threshold mtDNA mutation burden. Mechanistically, increased mtDNA mutation burden exacerbates the aging phenotype of the small intestine through ATF5 dependent mitochondrial unfolded protein response (UPRmt) activation. This aging phenotype is reversed by supplementation with the NAD+ precursor, NMN. Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations that regulates the intestinal aging.
Collapse
Affiliation(s)
- Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zifeng Ruan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Lin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanmin Xin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haite Tang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhijuan Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kerry M Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, Auckland, 1010, New Zealand
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
40
|
Tang D, Qiu R, Qiu X, Sun M, Su M, Tao Z, Zhang L, Tao S. Dietary restriction rescues 5-fluorouracil-induced lethal intestinal toxicity in old mice by blocking translocation of opportunistic pathogens. Gut Microbes 2024; 16:2355693. [PMID: 38780487 PMCID: PMC11123560 DOI: 10.1080/19490976.2024.2355693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.
Collapse
Affiliation(s)
- Duozhuang Tang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
41
|
Funk MC, Gleixner JG, Heigwer F, Vonficht D, Valentini E, Aydin Z, Tonin E, Del Prete S, Mahara S, Throm Y, Hetzer J, Heide D, Stegle O, Odom DT, Feldmann A, Haas S, Heikenwalder M, Boutros M. Aged intestinal stem cells propagate cell-intrinsic sources of inflammaging in mice. Dev Cell 2023; 58:2914-2929.e7. [PMID: 38113852 DOI: 10.1016/j.devcel.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/03/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Low-grade chronic inflammation is a hallmark of ageing, associated with impaired tissue function and disease development. However, how cell-intrinsic and -extrinsic factors collectively establish this phenotype, termed inflammaging, remains poorly understood. We addressed this question in the mouse intestinal epithelium, using mouse organoid cultures to dissect stem cell-intrinsic and -extrinsic sources of inflammaging. At the single-cell level, we found that inflammaging is established differently along the crypt-villus axis, with aged intestinal stem cells (ISCs) strongly upregulating major histocompatibility complex class II (MHC-II) genes. Importantly, the inflammaging phenotype was stably propagated by aged ISCs in organoid cultures and associated with increased chromatin accessibility at inflammation-associated loci in vivo and ex vivo, indicating cell-intrinsic inflammatory memory. Mechanistically, we show that the expression of inflammatory genes is dependent on STAT1 signaling. Together, our data identify that intestinal inflammaging in mice is promoted by a cell-intrinsic mechanism, stably propagated by ISCs, and associated with a disbalance in immune homeostasis.
Collapse
Affiliation(s)
- Maja C Funk
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Jan G Gleixner
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, 69120 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany; Department of Life Sciences and Engineering, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Dominik Vonficht
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine, (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Zeynep Aydin
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Elena Tonin
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Stefania Del Prete
- German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Sylvia Mahara
- German Cancer Research Center (DKFZ), Junior Research Group Mechanisms of Genome Control, 69120 Heidelberg, Germany
| | - Yannick Throm
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany
| | - Oliver Stegle
- German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, 69120 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Angelika Feldmann
- German Cancer Research Center (DKFZ), Junior Research Group Mechanisms of Genome Control, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany; M3 Research Center, Medical Faculty Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
44
|
Qi Y, He J, Zhang Y, Ge Q, Wang Q, Chen L, Xu J, Wang L, Chen X, Jia D, Lin Y, Xu C, Zhang Y, Hou T, Si J, Chen S, Wang L. Heat-inactivated Bifidobacterium adolescentis ameliorates colon senescence through Paneth-like-cell-mediated stem cell activation. Nat Commun 2023; 14:6121. [PMID: 37777508 PMCID: PMC10542354 DOI: 10.1038/s41467-023-41827-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
Declined numbers and weakened functions of intestinal stem cells (ISCs) impair the integrity of the intestinal epithelium during aging. However, the impact of intestinal microbiota on ISCs in this process is unclear. Here, using premature aging mice (telomerase RNA component knockout, Terc-/-), natural aging mice, and in vitro colonoid models, we explore how heat-inactivated Bifidobacterium adolescentis (B. adolescentis) affects colon senescence. We find that B. adolescentis could mitigate colonic senescence-related changes by enhancing intestinal integrity and stimulating the regeneration of Lgr5+ ISCs via Wnt/β-catenin signaling. Furthermore, we uncover the involvement of Paneth-like cells (PLCs) within the colonic stem-cell-supporting niche in the B. adolescentis-induced ISC regeneration. In addition, we identify soluble polysaccharides (SPS) as potential effective components of B. adolescentis. Overall, our findings reveal the role of heat-inactivated B. adolescentis in maintaining the ISCs regeneration and intestinal barrier, and propose a microbiota target for ameliorating colon senescence.
Collapse
Affiliation(s)
- Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwei Ge
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyi Chen
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dingjiacheng Jia
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaochao Xu
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Liangjing Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Omrani O, Krepelova A, Rasa SMM, Sirvinskas D, Lu J, Annunziata F, Garside G, Bajwa S, Reinhardt S, Adam L, Käppel S, Ducano N, Donna D, Ori A, Oliviero S, Rudolph KL, Neri F. IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration. Nat Commun 2023; 14:6109. [PMID: 37777550 PMCID: PMC10542816 DOI: 10.1038/s41467-023-41683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
The influence of aging on intestinal stem cells and their niche can explain underlying causes for perturbation in their function observed during aging. Molecular mechanisms for such a decrease in the functionality of intestinal stem cells during aging remain largely undetermined. Using transcriptome-wide approaches, our study demonstrates that aging intestinal stem cells strongly upregulate antigen presenting pathway genes and over-express secretory lineage marker genes resulting in lineage skewed differentiation into the secretory lineage and strong upregulation of MHC class II antigens in the aged intestinal epithelium. Mechanistically, we identified an increase in proinflammatory cells in the lamina propria as the main source of elevated interferon gamma (IFNγ) in the aged intestine, that leads to the induction of Stat1 activity in intestinal stem cells thus priming the aberrant differentiation and elevated antigen presentation in epithelial cells. Of note, systemic inhibition of IFNγ-signaling completely reverses these aging phenotypes and reinstalls regenerative capacity of the aged intestinal epithelium.
Collapse
Affiliation(s)
- Omid Omrani
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | | | - Dovydas Sirvinskas
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jing Lu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - George Garside
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Seerat Bajwa
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Susanne Reinhardt
- Dresden-concept Genome Center, c/o Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Lisa Adam
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sandra Käppel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadia Ducano
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Daniela Donna
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | | | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center, University of Turin, Torino, Italy.
| |
Collapse
|
46
|
Zhang L, Yan J, Zhang C, Feng S, Zhan Z, Bao Y, Zhang S, Chao G. Improving intestinal inflammaging to delay aging? A new perspective. Mech Ageing Dev 2023; 214:111841. [PMID: 37393959 DOI: 10.1016/j.mad.2023.111841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Greying population is becoming an increasingly critical issue for social development. In advanced aging context, organismal multiple tissues and organs experience a progressive deterioration, initially presenting with functional decline, followed by structural disruption and eventually organ failure. The aging of the gut is one of the key links. Decreased gut function leads to reduced nutrient absorption and can perturb systemic metabolic rates. The degeneration of the intestinal structure causes the migration of harmful components such as pathogens and toxins, inducing pathophysiological changes in other organs through the "brain-gut axis" and "liver-gut axis". There is no accepted singular underlying mechanism of aged gut. While the inflamm-aging theory was first proposed in 2000, the mutual promotion of chronic inflammation and aging has attracted much attention. Numerous studies have established that gut microbiome composition, gut immune function, and gut barrier integrity are involved in the formation of inflammaging in the aging gut. Remarkably, inflammaging additionally drives the development of aging-like phenotypes, such as microbiota dysbiosis and impaired intestinal barrier, via a broad array of inflammatory mediators. Here we demonstrate the mechanisms of inflammaging in the gut and explore whether aging-like phenotypes in the gut can be negated by improving gut inflammaging.
Collapse
Affiliation(s)
- Lan Zhang
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, The Xin Hua Hospital of Zhejiang Province, Hangzhou 310000, China
| | - Chi Zhang
- Endoscopic Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Zheli Zhan
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yang Bao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, The Xin Hua Hospital of Zhejiang Province, Hangzhou 310000, China.
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
47
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
48
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
Miura M, Igarashi M, Isotani R, Nakagawa-Nagahama Y, Kuranami S, Naruse K, Kadowaki T, Yamauchi T. SIRT1 Controls Enteroendocrine Progenitor Cell Proliferation in High-Fat Diet-Fed Mice. Cell Mol Gastroenterol Hepatol 2023; 16:1040-1057. [PMID: 37598893 PMCID: PMC10685171 DOI: 10.1016/j.jcmgh.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND & AIMS We aimed to investigate how sirtuin 1 (SIRT1), a conserved mammalian Nicotinamide adenine dinucleotide+-dependent protein deacetylase, regulates the number of enteroendocrine cells (EECs). EECs benefit metabolism, and their increase potentially could treat type 2 diabetes and obesity. METHODS We used mice with specific Sirt1 disruption in the intestinal epithelium (VilKO, villin-Cre+, and Sirt1flox/flox mice) or enteroendocrine progenitor cells (EEPCs) (NgnKO, neurogenin 3-Cre+, Sirt1flox/flox mice) and mice with increased SIRT1 activity owing to overexpression (Sir2d mice) or 24-hour fasting. Mice were fed a high-fat diet (HFD), and blood glucagon-like peptide 1 (GLP-1) and glucose levels were measured. Intestinal tissues, EECs, and formed organoids were analyzed using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. RESULTS In HFD-fed VilKO and NgnKO mice, an increase in EECs (42.3% and 37.2%), GLP-1- or GLP-2-producing L cells (93.0% and 61.4%), and GLP-1 (85.7% and 109.6%) was observed after glucose loading, explaining the improved metabolic phenotype of HFD-VilKO mice. These increases were associated with up-regulated expression of neurogenin 3 (EEPC marker) in crypts of HFD-VilKO and HFD-NgnKO mice, respectively. Conversely, Sir2d or 24-hour fasted mice showed a decrease in EECs (21.6%), L cells (41.6%), and proliferative progenitor cells. SIRT1 overexpression- or knockdown-mediated change in the progenitor cell proliferation was associated with Wnt/β-catenin activity changes. Notably, Wnt/β-catenin inhibitor completely suppressed EEC and L-cell increases in HFD-VilKO mice or organoids from HFD-VilKO and HFD-NgnKO mice. CONCLUSIONS Intestinal SIRT1 in EECs modulates the EEPC cycle by regulating β-catenin activity and can control the number of EECs in HFD-fed mice, which is a previously unknown role.
Collapse
Affiliation(s)
- Masaomi Miura
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Igarashi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Biology, Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Ryosuke Isotani
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Nakagawa-Nagahama
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kuranami
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Naruse
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
50
|
Liu Y, Ji Y, Jiang R, Fang C, Shi G, Cheng L, Zuo Y, Ye Y, Su X, Li J, Wang H, Wang Y, Lin Y, Dai L, Zhang S, Deng H. Reduced smooth muscle-fibroblasts transformation potentially decreases intestinal wound healing and colitis-associated cancer in ageing mice. Signal Transduct Target Ther 2023; 8:294. [PMID: 37553378 PMCID: PMC10409725 DOI: 10.1038/s41392-023-01554-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/24/2023] [Accepted: 06/24/2023] [Indexed: 08/10/2023] Open
Abstract
Cancer and impaired tissue wound healing with ageing are closely related to the quality of life of the elderly population. Given the increased incidence of cancer and the population ageing trend globally, it is very important to explore how ageing impairs tissue wound healing and spontaneous cancer. In a murine model of DSS-induced acute colitis and AOM/DSS-induced colitis-associated cancer (CAC), we found ageing significantly decreases intestinal wound healing and simultaneous CAC initiation, although ageing does not affect the incidence of AOM-induced, sporadic non-inflammatory CRC. Mechanistically, reduced fibroblasts were observed in the colitis microenvironment of ageing mice. Through conditional lineage tracing, an important source of fibroblasts potentially derived from intestinal smooth muscle cells (ISMCs) was identified orchestrating intestinal wound healing and CAC initiation in young mice. However, the number of transformed fibroblasts from ISMCs significantly decreased in ageing mice, accompanied by decreased intestinal wound healing and decreased CAC initiation. ISMCs-fibroblasts transformation in young mice and reduction of this transformation in ageing mice were also confirmed by ex-vivo intestinal muscular layer culture experiments. We further found that activation of YAP/TAZ in ISMCs is required for the transformation of ISMCs into fibroblasts. Meanwhile, the reduction of YAP/TAZ activation in ISMCs during intestinal wound healing was observed in ageing mice. Conditional knockdown of YAP/TAZ in ISMCs of young mice results in reduced fibroblasts in the colitis microenvironment, decreased intestinal wound healing and decreased CAC initiation, similar to the phenotype of ageing mice. In addition, the data from intestine samples derived from inflammatory bowel disease (IBD) patients show that activation of YAP/TAZ also occurs in ISMCs from these patients. Collectively, our work reveals an important role of the ageing stromal microenvironment in intestinal wound healing and CAC initiation. Furthermore, our work also identified a potential source of fibroblasts involved in colitis and CAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Ruiyi Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lin Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yinan Zuo
- Respiratory Microbiome Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yuan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yi Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|