1
|
Wang W, Chen J, Bao Y, Ma W, Xie Y, Wang W, Li M, Shen K. MicroRNA sequencing analysis in pediatric patients with influenza-associated acute necrotizing encephalopathy: Potential biomarkers for early diagnosis and therapy. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105734. [PMID: 40120635 DOI: 10.1016/j.meegid.2025.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Acute necrotizing encephalopathy (ANE) secondary to influenza infection is characterized by fulminant neurological deterioration and a high mortality rate. The underlying mechanisms remain unclear, and specific treatments are currently lacking. Therefore, understanding the pathogenesis and identifying diagnostic and therapeutic targets for influenza-induced ANE are crucial. Peripheral blood samples were collected from two groups: influenza-infected patients without ANE (mild) and influenza infection with ANE patients (severe). Differentially expressed genes (DEG) were identified through microRNA sequencing analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The expression levels of the four specific miRNAs were validated using qRT-PCR. In the severe group, 24 genes were up-regulated, and 67 genes were down-regulated compared to the mild group. The expression levels of hsa-miR-1290, hsa-miR-4657, has-miR-1231, and hsa-miR-342-3p were validated by qRT-PCR, and the levels of has-miR-4657 and hsamiR- 342-3p showed significant differences between severe and mild groups. GO analysis demonstrated that the DEGs were predominantly involved in the positive regulation of cellular processes, intracellular anatomical structure, and protein binding. KEGG pathway analysis revealed that DEGs were mainly enriched in calcium signaling pathway and axon guidance. The down-regulated hsa-miR-4657 and hsa-miR-342-3p might be associated with the development of ANE in pediatric patients with influenza by regulation of calcium pathways and axon guidance.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Influenza, Human/complications
- Influenza, Human/genetics
- Influenza, Human/virology
- Biomarkers/blood
- Child, Preschool
- Male
- Female
- Leukoencephalitis, Acute Hemorrhagic/diagnosis
- Leukoencephalitis, Acute Hemorrhagic/genetics
- Leukoencephalitis, Acute Hemorrhagic/etiology
- Leukoencephalitis, Acute Hemorrhagic/therapy
- Leukoencephalitis, Acute Hemorrhagic/virology
- Child
- Early Diagnosis
- Infant
- Gene Ontology
- Gene Expression Profiling
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Wei Wang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China; Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiehua Chen
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Weike Ma
- Department of Critical care medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Xie
- Department of Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenjian Wang
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Meng Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China.
| | - Kunling Shen
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, China.
| |
Collapse
|
2
|
Babicheva A, Elmadbouh I, Song S, Thompson MA, Powers R, Jain PP, Izadi A, Chen J, Yung L, Parmisano S, Paquin C, Wang WT, Chen Y, Wang T, Alotaibi M, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Prakash YS, Pabelick CM, Yuan JXJ. Store-operated Ca 2+ entry is involved in endothelium-to-mesenchymal transition in lung vascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L844-L857. [PMID: 40331589 DOI: 10.1152/ajplung.00400.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β1 (TGF-β1), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVECs). An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca2+ signaling is involved in EndMT. In this study, we tested the hypothesis that TGF-β1-induced EndMT in human LVEC is Ca2+-dependent. Treatment of LVEC with TGF-β1 for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1, and enhancement of store-operated Ca2+ entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca2+ with EGTA or BAPTA-AM, respectively, abolished EndMT in response to TGF-β1. Moreover, EGTA diminished TGF-β1-induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca2+ signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca2+ signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of precapillary pulmonary hypertension.NEW & NOTEWORTHY EndMT has been reported to contribute to the pathogenesis of PAH. In this study, we aimed to determine the role of Ca2+ signaling in the development of EndMT in human lung vascular endothelial cells. Our data suggest that TGF-β1 requires store-operated Ca2+ entry through STIM1/Orai channels to induce SNAI-mediated EndMT. For the first time, we demonstrated that TGF-β1-induced EndMT is a Ca2+-dependent event, whereas inhibition of STIM1/Orai interaction attenuated EndMT in response to TGF-β1.
Collapse
Affiliation(s)
- Aleksandra Babicheva
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States
- Lillehei Heart Institute, School of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Ibrahim Elmadbouh
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States
| | - Shanshan Song
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Ryan Powers
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Pritesh P Jain
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Amin Izadi
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Jiyuan Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Lauren Yung
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Sophia Parmisano
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Cole Paquin
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Wei-Ting Wang
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
- Center for Inflammation Science and Systems Medicine, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, United States
| | - Yuqin Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Ting Wang
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Mona Alotaibi
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | | | - Jian Wang
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
- Center for Inflammation Science and Systems Medicine, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, United States
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
- Center for Inflammation Science and Systems Medicine, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
- Center for Inflammation Science and Systems Medicine, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, United States
| |
Collapse
|
3
|
Gunn NA, Oo Y, Lee CWL, Heaney E, Tan NYT, Chan YZ, Wang SSY. Disseminated Intravascular Coagulopathy and Persistent Inflammation, Immunosuppression, and Catabolism Syndrome: Pathophysiology, shared pathways, and clinical implications. Thromb Res 2025; 250:109321. [PMID: 40286453 DOI: 10.1016/j.thromres.2025.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Disseminated Intravascular Coagulopathy (DIC) and Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) are critical care syndromes that frequently coexist in critically ill patients, but mechanisms underlying their shared pathways are not well understood. OBJECTIVE This review discusses the pathophysiology of DIC and PICS and explores the shared mechanisms behind DIC and PICS and their implications for clinical management. FINDINGS DIC and PICS share a common pathophysiological foundation of endothelial dysfunction, coagulation dysregulation, and inflammation, leading to a vicious cycle of microvascular injury and systemic inflammation, culminating in organ dysfunction. DIC has also been identified as an independent risk factor for PICS. Anticoagulation therapies such as antithrombin, recombinant human soluble thrombomodulin (rhTM), and heparin attenuates inflammation, a mechanism underlying both syndromes, thereby improving outcomes in PICS. CONCLUSION DIC and PICS share critical pathophysiological pathways that exacerbate outcomes in critically ill patients. Recognizing these interconnections is essential for developing targeted therapies. Standardizing PICS definitions and advancing research to clarify mechanisms, interplay, and causality between DIC and PICS are crucial next steps.
Collapse
Affiliation(s)
- Nicole Ann Gunn
- University of Queensland School of Medicine, Herston, QLD 4006, Australia
| | - Yukei Oo
- University of Queensland School of Medicine, Herston, QLD 4006, Australia
| | | | - Edward Heaney
- University of Queensland School of Medicine, Herston, QLD 4006, Australia
| | | | - Yan Zhi Chan
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Samuel Sherng Young Wang
- Duke-NUS Medical School, Singapore 169857, Singapore; Department of Internal Medicine, Singapore General Hospital, Singapore 169608, Singapore.
| |
Collapse
|
4
|
Wang M, Preckel B, Zuurbier CJ, Weber NC. Effects of SGLT2 inhibitors on ion channels in heart failure: focus on the endothelium. Basic Res Cardiol 2025:10.1007/s00395-025-01115-y. [PMID: 40366385 DOI: 10.1007/s00395-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Heart failure (HF) is a life-threatening cardiovascular disease associated with high mortality, diminished quality of life, and a significant economic burden on both patients and society. The pathogenesis of HF is closely related to the endothelium, where endothelial ion channels play an important role in regulating intracellular Ca2+ signals. These ion channels are essential to maintain vascular function, including endothelium-dependent vascular tone, inflammation response, and oxidative stress. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promising cardiovascular benefits in HF patients, reducing mortality risk and hospitalization in several large clinical trials. Clinical and preclinical studies indicate that the cardioprotective effects of SGLT2i in HF are mediated by endothelial nitric oxide (NO) pathways, as well as by reducing inflammation and reactive oxygen species in cardiac endothelial cells. Additionally, SGLT2i may confer endothelial protection by lowering intracellular Ca2+ level through the inhibition of sodium-hydrogen exchanger 1 (NHE1) and sodium-calcium exchanger (NCX) in endothelial cells. In this review, we discuss present knowledge regarding the expression and role of Ca2+-related ion channels in endothelial cells in HF, focusing on the effects of SGLT2i on endothelial NHE1, NCX as well as on vascular tone.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Nagi JS, Doiron AL. 20 nm nanoparticles trigger calcium influx to endothelial cells via a TRPV4 channel. Biomater Sci 2025; 13:2728-2743. [PMID: 40192740 DOI: 10.1039/d4bm01691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
While increased intracellular calcium (Ca2+) has been identified as a key effect of nanoparticles on endothelial cells, the mechanism has not been fully elucidated or examined under shear stress. Here, we show the effect of several types of 20 nm particles on Ca2+ in the presence of shear stress in human umbilical vein endothelial cells (HUVECs), human coronary artery endothelial cells (HCAECs), and human cardiac microvascular endothelial cells (HMVEC-Cs). Intracellular Ca2+ levels increased by nearly three-fold in these cell types upon exposure to 100 μg mL-1 20 nm Au particles, which was not seen in response to larger or smaller particles. An antagonist to the calcium channel - transient receptor potential vanilloid-type 4 (TRPV4) - drastically reduced the amount of calcium by 9.3-fold in HUVECs exposed to 0.6 Pa shear stress and 100 μg mL-1 20 nm gold particles, a trend upheld in both HCAECs and HMVEC-Cs. Cell alignment in the direction of fluid flow is a well-known phenomenon in endothelial cells, and interestingly, cells in the presence of 20 nm particles with fluid flow had a higher alignment index than cells in the fluid flow alone. When compared with previous works, these results indicated that 20 nm particles may be inducing endothelial permeability by activating the TRPV4 channel in vitro. The potential of nanoparticle delivery technologies hinges on an improved understanding of this effect toward improved delivery with limited toxicity.
Collapse
Affiliation(s)
- Jaspreet Singh Nagi
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA.
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
6
|
Wang S, Xu D, Wang Y, Zhou Y, Xiao L, Li F, Tu J, Qin W, Tian S, Zheng B, Wang Y, Yuan XL, Liu Y, Liu B. A Bifunctional Antibody Targeting PD-1 and TGF-β Signaling Has Antitumor Activity in Combination with Radiotherapy and Attenuates Radiation-Induced Lung Injury. Cancer Immunol Res 2025; 13:767-784. [PMID: 39878763 PMCID: PMC12046334 DOI: 10.1158/2326-6066.cir-23-0903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Radio-immunotherapy has antitumor activity but also causes toxicity, which limits its clinical application. JS-201 is a dual antibody targeting PD-1 and TGF-β signaling. We investigated the antitumor effect of JS-201 combined with radiotherapy (RT) and the effect on radiation-induced lung injury (RILI). Different tumor models were established to detect the antitumor effects of the combination of JS-201 and RT, and RILI models were established to observe the effects of JS-201. Transcriptome sequencing showed that JS-201 optimized the tumor microenvironment by inhibiting extracellular matrix formation and angiogenesis. Combining JS-201 with RT further increased the inflammatory response and immune infiltration and showed great abscopal effects in Lewis lung cancer luciferase-positive models. Single-cell sequencing demonstrated that JS-201 reduced fibroblast proliferation by inhibiting the TGF-β/Smad pathway and the release of neutrophil extracellular traps mediated by ROS, thereby relieving radiation-induced pulmonary fibrosis. In conclusion, the JS-201 and RT combination enhances antitumor effects while mitigating acute and chronic RILI, and it may have potential for translational investigation as a cancer treatment strategy.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuehua Zhou
- Top Alliance Biosciences Inc., Suzhou, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bolong Zheng
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Xiang-lin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
He S, Yu B, Yu T, Jiang T, Yang D, Peng H. Morinda officinalis Oligosaccharides Protect Against LPS-Induced Uterine Damage and Endometrial Inflammation in Mice and Bovine Endometrial Epithelial Cells. Animals (Basel) 2025; 15:1286. [PMID: 40362100 PMCID: PMC12071045 DOI: 10.3390/ani15091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Endometritis poses a significant challenge to the dairy industry, impairing bovine reproductive performance and causing substantial economic losses. Although Morinda officinalis oligosaccharides (MOO) exhibit anti-inflammatory properties, their therapeutic potential against endometritis remains unclear. This study investigated MOO's protective effects against LPS-induced uterine injury in mice and inflammation in bovine endometrial epithelial cells (BENDs), and explored the underlying mechanisms. In mice, MOO attenuated uterine inflammation by improving histopathology, reducing pro-inflammatory cytokines and decreasing oxidative stress. In BEND cells, MOO alleviated LPS-induced inflammation, oxidative stress, and apoptosis via downregulating pro-inflammatory mediators (IL-1β, IL-6, TNF-α, IL-8, TLR4, RELA), restoring antioxidant enzymes (HMOX1, NQO1, Nrf2, NOX4), and modulating apoptosis markers (BAX, cleaved CASP3, CASP9, BCL2). MOO reduced ROS accumulation, preserved mitochondrial membrane potential, and inhibited calcium influx. Critically, the calcium channel agonist Bay K 8644 reversed MOO's protective effects, confirming calcium signaling modulation as a key mechanism. This study provides the first evidence that MOO mitigates LPS-induced uterine damage and BENDs inflammation through calcium signaling regulation, suggesting its potential for treating inflammation-related reproductive disorders in livestock.
Collapse
Affiliation(s)
- Shiwen He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Beibei Yu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Tingting Yu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning 530025, China
| | - Tingting Jiang
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning 530025, China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Xue M, Lin Z, Wen Y, Fan S, Li Y, Qu HQ, Hu Q, Guo Q, Su L, Yang Q, Chen J, Jiang C, Huang H, Zheng P, Li N, Yuan Q, Zhang M, Zhao X, Wu Q, Hu F, Li L, Wang X, Liu P, Hakonarson H, Deng Z, Wang H, Tang X, Sun B. VCL/ICAM-1 pathway is associated with lung inflammatory damage in SARS-CoV-2 Omicron infection. Nat Commun 2025; 16:3801. [PMID: 40268929 PMCID: PMC12019401 DOI: 10.1038/s41467-025-59145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
SARS-CoV-2 variants present diverse clinical manifestations, necessitating deeper insights into their pathogenic effects. This study employs multi-omics approaches to investigate the molecular mechanisms underlying SARS-CoV-2 infection, focusing on vascular damage. Plasma proteomic analysis of unvaccinated participants infected with Omicron BA.2.76 or ancestral variants identifies key signaling pathways associated with endothelial dysfunction, with the vinculin (VCL) pathway emerging as a hallmark of Omicron infections, contributing to lung exudation. Metabolomic analysis of plasma samples from the same cohort reveals disruptions in immune function, cell membrane integrity, and metabolic processes, including altered tricarboxylic acid cycle and glycolysis pathways. An integrated analysis of proteomic and metabolomic data underscores the role of VCL in inflammation and extravasation, highlighting its interactions with adhesion molecules and inflammatory metabolites. A validation cohort of plasma samples from Omicron-infected participants confirms this association by replicating proteomic analysis, showing elevated VCL levels correlated with inflammatory markers. Functional studies in a male rat model of lung injury demonstrate that anti-VCL intervention reduces plasma VCL levels, mitigates alveolar edema, and restores alveolar-capillary barrier integrity, as assessed by histological staining and electron microscopy, thereby illustrating VCL modulation's impact on vascular leakage and extravasation. These findings establish VCL as a potential therapeutic target for mitigating vascular complications in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Mingshan Xue
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
- Institute of Infectious Diseases, Guangzhou Eighth Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong, 510005, China
| | - Zhiwei Lin
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Youli Wen
- Zigong First People's Hospital, Sichuan, 643000, China
| | - Shaohui Fan
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100, China
| | - Youxia Li
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100, China
| | - Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qiurong Hu
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qian Guo
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Lijun Su
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qianyue Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jiahong Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chuci Jiang
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Ning Li
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Quan Yuan
- Zigong First People's Hospital, Sichuan, 643000, China
| | - Meixia Zhang
- Zigong First People's Hospital, Sichuan, 643000, China
| | - Xin Zhao
- Zigong First People's Hospital, Sichuan, 643000, China
| | - Qunhua Wu
- Zigong First People's Hospital, Sichuan, 643000, China
| | - Fengyu Hu
- Institute of Infectious Diseases, Guangzhou Eighth Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Lu Li
- Institute of Infectious Diseases, Guangzhou Eighth Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Xiaowen Wang
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100, China
| | - Peixin Liu
- Zhuhai People's Hospital, Zhuhai, Guangdong, 519100, China
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Division of Pulmonary Medicine, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Zhiping Deng
- Zigong First People's Hospital, Sichuan, 643000, China
| | - Hongman Wang
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100, China
| | - Xiaoping Tang
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- Institute of Infectious Diseases, Guangzhou Eighth Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong, 510005, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine / National Clinical Research Center for Respiratory Disease / Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China.
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong, 510005, China.
| |
Collapse
|
9
|
Zhao S, Zhao Q, Xu Y, Zheng S, Dai H, Rui H, Liu B. The association between albumin corrected calcium levels and mortality in ICU patients undergoing maintenance hemodialysis. Sci Rep 2025; 15:12086. [PMID: 40204886 PMCID: PMC11982323 DOI: 10.1038/s41598-025-96454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
While the relationship between albumin corrected calcium (ACC) levels and unfavourable outcomes has been previously investigated, existing studies have been limited in their specific application to patients undergoing maintenance hemodialysis (MHD) in intensive care unit (ICU). This retrospective cohort study aimed to explore the association between baseline ACC and 28-day in-hospital mortality in ICU patients undergoing MHD. Logistic regression model, smooth curve fitting, piecewise linear regression, subgroup analyses, and a series of sensitivity analyses were employed. Of the 2114 patients with a median age of 64 years, 290 (13.72%) died within 28 days after ICU admission. Multivariate regression analysis revealed that, in comparison with the lowest tertile, the highest tertile of ACC was associated with a higher mortality rate (OR 1.69, 95% CI 1.09-1.53, P = 0.0032). When the ACC levels were < 8.04 mg/dL, the mortality rate decreased with an adjusted OR of 0.44 (95% CI 0.20-0.98, P = 0.0438) for every 1 mg/dL increase in the ACC levels. When the ACC levels were ≥ 8.04 mg/dl, the mortality rate increased with an adjusted OR of 1.36 (95% CI 1.13-1.64, P = 0.0011) for every 1 mg/dl increase in the ACC levels. Non-linear relationship between ACC and 28-day in-hospital mortality were identified in patients undergoing MHD in the ICU. However, the findings of this study need to be confirmed through prospective studies.
Collapse
Affiliation(s)
- Shili Zhao
- Center of Nephrology and Rheumatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qihan Zhao
- Center of Nephrology and Rheumatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yue Xu
- Department of Nephrology, Yanqing Hospital of Beijing Chinese Medicine Hospital, Beijing, 102100, China
| | - Shijing Zheng
- Department of Nephrology, Yanqing Hospital of Beijing Chinese Medicine Hospital, Beijing, 102100, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, 100310, China
| | - Hongliang Rui
- Center of Nephrology and Rheumatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Baoli Liu
- Center of Nephrology and Rheumatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Schaid TR, Mitra S, Stafford P, DeBot M, Thielen O, Hallas W, Cralley A, Gallagher L, Jeffrey D, Hansen KC, D'Alessandro A, Silliman CC, Dabertrand F, Cohen MJ. Endothelial Cell Calcium Influx Mediates Trauma-induced Endothelial Permeability. Ann Surg 2025; 281:671-681. [PMID: 38073572 PMCID: PMC11164825 DOI: 10.1097/sla.0000000000006164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2024]
Abstract
OBJECTIVE To investigate whether ex vivo plasma from injured patients causes endothelial calcium (Ca 2+ ) influx as a mechanism of trauma-induced endothelial permeability. BACKGROUND Endothelial permeability after trauma contributes to postinjury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca 2+ signaling may play a role. METHODS Ex vivo plasma from injured patients with "low injury/low shock" (injury severity score <15, base excess ≥-6 mEq/L) and "high injury/high shock" (injury severity score ≥15, base excess <-6 mEq/L) were used to treat endothelial cells. Experimental conditions included Ca 2+ removal from the extracellular buffer, cyclopiazonic acid pretreatment to deplete intracellular Ca 2+ stores, and GSK2193874 pretreatment to block the transient receptor potential vanilloid 4 (TRPV4) Ca 2+ channel. Live cell fluorescence microscopy and electrical cell-substrate impedance sensing were used to assess cytosolic Ca 2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain phosphorylation and actomyosin contraction. RESULTS Compared with low injury/low shock plasma, high injury/high shock induced greater cytosolic Ca 2+ increase. Cytosolic Ca 2+ increase, myosin light chain phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca 2+ present. High injury/high shock plasma did not induce endothelial permeability without extracellular Ca 2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca 2+ influx and permeability. CONCLUSIONS This study illuminates a novel mechanism of postinjury endotheliopathy involving Ca 2+ influx through the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca 2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca 2+ -targeted therapies and interventions in the care of severely injured patients.
Collapse
Affiliation(s)
- Terry R Schaid
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Sanchayita Mitra
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Preston Stafford
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Margot DeBot
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Otto Thielen
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - William Hallas
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Alexis Cralley
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Lauren Gallagher
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Danielle Jeffrey
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Christopher C Silliman
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO
- Vitalant Research Institute, Vitalant Mountain Division, Denver, CO, CO
| | - Fabrice Dabertrand
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Mitchell J Cohen
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| |
Collapse
|
11
|
Skovgaard AC, Nejad AM, Beck HC, Tan Q, Soerensen M. Epigenomics and transcriptomics association study of blood pressure and incident diagnosis of hypertension in twins. Hypertens Res 2025; 48:1599-1612. [PMID: 39972178 PMCID: PMC11972964 DOI: 10.1038/s41440-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Hypertension is the most frequent health-related condition worldwide and is a primary risk factor for renal and cardiovascular diseases. However, the underlying molecular mechanisms are still poorly understood. To uncover these mechanisms, multi-omics studies have significant potential, but such studies are challenged by genetic and environmental confounding - an issue that can be effectively reduced by studying intra-pair differences in twins. Here, we coupled data on hypertension diagnoses from the nationwide Danish Patient Registry to a study population of 740 twins for whom genome-wide DNA methylation and gene expression data were available together with measurements of systolic and diastolic blood pressure. We investigated five phenotypes: incident hypertension cases, systolic blood pressure, diastolic blood pressure, hypertension (140/90 mmHg), and hypertension (130/80 mmHg). Statistical analyses were performed using Cox (incident cases) or linear (remaining) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) at both levels and in both types of biological data were investigated by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. Overall, most of the identified pathways related to the immune system, particularly inflammation, and biology of vascular smooth muscle cell. Of specific genes, lysine methyltransferase 2 A (KMT2A) was found to be central for incident hypertension, ataxia-telangiectasia mutated (ATM) for systolic blood pressure, and beta-actin (ACTB) for diastolic blood pressure. Noteworthy, lysine methyltransferase 2A (KMT2A) was also identified in the systolic and diastolic blood pressure analyses. Here, we present novel biomarkers for hypertension. This study design is surprisingly rare in the field of hypertension. We identified biological pathways related to vascular smooth muscle cells and the immune system, particular inflammation, to be associated with hypertension and blood pressure. Of specific genes, we identified KMT2A (lysine methyltransferase 2A) to be central for blood pressure and hypertension development. ACTB beta-actin, ATM ataxiatelangiectasia mutated, BP blood pressure, EWAS epigenome-wide association studies, KMT2A lysine methyltransferase 2A, LMER linear mixed effect regression, LR linear regression, TWAS transcriptome-wide association studies.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Afsaneh M Nejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
12
|
Wang H, Huang N, Tan M, Zhang X, Chen J, Wei Q. Characteristics of cell adhesion molecules expression and environmental adaptation in yak lung tissue. Sci Rep 2025; 15:10914. [PMID: 40158021 PMCID: PMC11954989 DOI: 10.1038/s41598-025-95882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Cell Adhesion Molecules (CAMs) play a crucial role in regulating immune responses and repairing damage caused by hypoxia. However, the relationship between the expression characteristics of CAMs in yak lung tissues and their adaptation to the plateau environment remains unclear. To address this question, we compared lung tissues from yaks and cattle at the same altitude. After digesting the lung tissues with trypsin or Type I collagenase for varying durations, we observed that fewer cells were isolated from yak tissues compared to cattle. RNA sequencing (RNA-seq) analysis revealed that the Differentially Expressed Genes (DEGs) in lung tissues of yaks and cattle were significantly enriched in cell adhesion-related pathways. Quantitative real-time PCR (qRT-PCR) further identified changes in the expression levels of five distinct types of CAMs. Among these, the cadherin family (CDH1, CDH2, CDH11, PCDH12, CD34) exhibited significantly higher expression in yaks than in cattle. These cadherins play a critical role in regulating lung inflammation and maintaining the alveolar-capillary barrier, thereby ensuring the structural stability of the lungs. Immunohistochemical staining demonstrated that the expression patterns of cell adhesion-related proteins (CDH1, CDH11, ITGB6, SELP, CD44) were largely consistent with the qRT-PCR results. In conclusion, compared to cattle, the enhanced cell adhesion capacity of yak lung tissues contributes to their superior adaptation to the harsh plateau environment.
Collapse
Affiliation(s)
- Huizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Minglu Tan
- Livestock and Veterinary Station of Huangyuan County, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
13
|
Zhang J, Cao Y, Shu W, Dong S, Sun Y, Ma X. Neutrophil-derived heparin-binding protein increases endothelial permeability in acute lung injury by promoting TRIM21 and the ubiquitination of P65. Cell Biol Toxicol 2025; 41:55. [PMID: 40045003 PMCID: PMC11882632 DOI: 10.1007/s10565-025-10005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Acute lung injury (ALI), which poses a significant public health threat, is commonly caused by sepsis. ALI is associated with permeability and glycolysis changes in pulmonary microvascular endothelial cells. Our study demonstrates that heparin-binding protein (HBP), released from neutrophils during sepsis, exacerbates endothelial permeability and glycolysis, thereby triggering ALI. Through coimmunoprecipitation and mass spectrometry, TRIM21 was identified as a HBP interaction partner. Notably, HBP enhances the protein stability of TRIM21 by inhibiting K48 ubiquitination. TRIM21 binds to and promotes K63-linked ubiquitination of P65, facilitating its nuclear translocation. TRIM21 regulates HPMEC permeability and glycolysis in a manner dependent on P65 nuclear translocation. HBP stabilizes TRIM21 and enhances TRIM21 interactions with P65. Rescue experiments conducted in vivo and in vitro demonstrate that modulation of endothelial permeability and glycolysis by HBP is predominantly mediated through the TRIM21-P65 axis. Our results suggest that targeting the HBP/TRIM21/P65 axis is a novel therapeutic strategy to ameliorate ALI.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yong Cao
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wenqi Shu
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Senxiao Dong
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yini Sun
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
14
|
Charitos IA, Scacco S, Cotoia A, Castellaneta F, Castellana G, Pasqualotto F, Venneri M, Ferrulli A, Aliani M, Santacroce L, Carone M. Intestinal Microbiota Dysbiosis Role and Bacterial Translocation as a Factor for Septic Risk. Int J Mol Sci 2025; 26:2028. [PMID: 40076650 PMCID: PMC11900423 DOI: 10.3390/ijms26052028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The human immune system is closely linked to microbiota such as a complex symbiotic relationship during the coevolution of vertebrates and microorganisms. The transfer of microorganisms from the mother's microbiota to the newborn begins before birth during gestation and is considered the initial phase of the intestinal microbiota (IM). The gut is an important site where microorganisms can establish colonies. The IM contains polymicrobial communities, which show complex interactions with diet and host immunity. The tendency towards dysbiosis of the intestinal microbiota is influenced by local but also extra-intestinal factors such as inflammatory processes, infections, or a septic state that can aggravate it. Pathogens could trigger an immune response, such as proinflammatory responses. In addition, changes in the host immune system also influence the intestinal community and structure with additional translocation of pathogenic and non-pathogenic bacteria. Finally, local intestinal inflammation has been found to be an important factor in the growth of pathogenic microorganisms, particularly in its role in sepsis. The aim of this article is to be able to detect the current knowledge of the mechanisms that can lead to dysbiosis of the intestinal microbiota and that can cause bacterial translocation with a risk of infection or septic state and vice versa.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Doctoral School, Applied Neurosciences, University of Bari (UNIBA), 70124 Bari, Italy
| | - Salvatore Scacco
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Scuola di Medicina, Università Degli Studi di Bari, Aldo Moro, 70124 Bari, Italy;
- U.O. Medicina, Ospedale Mater Dei-CBH, 70125 Bari, Italy
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy
| | - Francesca Castellaneta
- U.O.C. Servizio di Immunoematologia e Medicina Trasfusionale—S.I.M.T. Ospedale Di Venere, 70131 Bari, Italy;
| | - Giorgio Castellana
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Federico Pasqualotto
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Department of Public Health and Infectious Diseases, Pulmonary Division, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Via del Policlinico 155, 00155 Rome, Italy
| | - Maria Venneri
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Angela Ferrulli
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Maria Aliani
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, The University of Bari, 70124 Bari, Italy;
| | - Mauro Carone
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| |
Collapse
|
15
|
Peralta M, Dupas A, Larnicol A, Lefebvre O, Goswami R, Stemmelen T, Molitor A, Carapito R, Girardo S, Osmani N, Goetz JG. Endothelial calcium firing mediates the extravasation of metastatic tumor cells. iScience 2025; 28:111690. [PMID: 39898056 PMCID: PMC11787530 DOI: 10.1016/j.isci.2024.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Metastatic dissemination is driven by genetic, biochemical, and biophysical cues that favor the distant colonization of organs and the formation of life-threatening secondary tumors. We have previously demonstrated that endothelial cells (ECs) actively remodel during extravasation by enwrapping arrested tumor cells (TCs) and extruding them from the vascular lumen while maintaining perfusion. In this work, we dissect the cellular and molecular mechanisms driving endothelial remodeling. Using high-resolution intravital imaging in zebrafish embryos, we demonstrate that the actomyosin network of ECs controls tissue remodeling and subsequent TC extravasation. Furthermore, we uncovered that this cytoskeletal remodeling is driven by altered endothelial-calcium (Ca2+) signaling caused by arrested TCs. Accordingly, we demonstrated that the inhibition of voltage-dependent calcium L-type channels impairs extravasation. Lastly, we identified P2X4, TRP, and Piezo1 mechano-gated Ca2+ channels as key mediators of the process. These results further highlight the central role of endothelial remodeling during the extravasation of TCs and open avenues for successful therapeutic targeting.
Collapse
Affiliation(s)
- Marina Peralta
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Annabel Larnicol
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tristan Stemmelen
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Raphael Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jacky G. Goetz
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
16
|
Zhai Z, Yang C, Yin W, Liu Y, Li S, Ye Z, Xie M, Song X. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. ACS Biomater Sci Eng 2025; 11:784-805. [PMID: 39884780 DOI: 10.1021/acsbiomaterials.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation. This review first summarizes the effects of key regulatory factors of engineered biomaterials (including bioactive molecules, conductivity, and some microenvironmental factors) on macrophage behavior, then explores specific methods for inducing macrophage behavior through tissue engineering materials to promote myocardial repair, and summarizes the role of macrophage-host cell crosstalk in regulating inflammation, vascularization, and tissue remodeling. Finally, we propose some future challenges in regulating macrophage-material interactions and tailoring personalized biomaterials to guide macrophage phenotypes.
Collapse
Affiliation(s)
- Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
17
|
Man C, An Y, Wang GX, Mao EQ, Ma L. Recent Advances in Pathogenesis and Anticoagulation Treatment of Sepsis-Induced Coagulopathy. J Inflamm Res 2025; 18:737-750. [PMID: 39845020 PMCID: PMC11752821 DOI: 10.2147/jir.s495223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Coagulopathy in sepsis is common and is associated with high mortality. Although immunothrombosis is necessary for infection control, excessive thrombus formation can trigger a systemic thrombo-inflammatory response. Immunothrombosis plays a core role in sepsis-induced coagulopathy, and research has revealed a complex interplay between inflammation and coagulation. Different mechanisms underlying sepsis-related coagulopathy are discussed, including factors contributing to the imbalance of pro- and anticoagulation relevant to endothelial cells. The potential therapeutic implications of anticoagulants on these mechanisms are discussed. This review contributes to our understanding of the pathogenesis of coagulopathy in patients with sepsis. Recent studies suggest that endothelial cells play an important role in immunoregulation and hemostasis. Meanwhile, the non-anticoagulation effects of anticoagulants, especially heparin, which act in the pathogenesis of coagulopathy in septic patients, have been partially revealed. We believe that further insights into the pathogenesis of sepsis-induced coagulopathy will help physicians evaluate patient conditions effectively, leading to advanced early recognition and better decision-making in the treatment of sepsis.
Collapse
Affiliation(s)
- Chit Man
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Yuan An
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Guo-Xin Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Li Ma
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
18
|
Worakajit N, Satitsri S, Kitiyakara T, Muanprasat C. Myosin light chain kinase-mediated epithelial barrier dysfunction as a potential pathogenic mechanism of afatinib-induced diarrheas: A study in human colonoid model. Eur J Pharmacol 2025; 987:177174. [PMID: 39637932 DOI: 10.1016/j.ejphar.2024.177174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Diarrheas are an important adverse effect of afatinib, a tyrosine kinase inhibitor (TKI) anti-cancer drug, leading to mortality and morbidity in cancer patients with their pathophysiological mechanisms related to intestinal barrier dysfunctions being poorly understood. This study aimed to investigate the effect of afatinib on intestinal epithelial barrier integrity using a human colon-derived organoid model (colonoids). Afatinib (0.5 μM) significantly decreased the transepithelial electrical resistance (TEER) by ∼60% and increased apical-to-basolateral dextran flux by > 20 folds without causing apparent cytotoxicity in human colonoids. The delocalization of zonula occludens-1 (ZO-1) and a decrease in mRNA and protein expression of claudin-4 and ZO-1 were also observed in the afatinib-treated human colonoids. Afatinib induced nuclear translocation of nuclear factor kappa B (NF-κB) as well as mRNA and protein expression of NF-κB targets including tumor necrosis factor (TNF)-alpha, interleukin-8 (IL-8), and inducible nitric oxide synthase (iNOS) indicating the initiation of the NF-κB-mediated epithelial inflammatory responses. Interestingly, afatinib induced mRNA and protein expression of myosin light chain (MLC) kinase (MLCK) and MLC phosphorylation, a known inducer of intestinal epithelial barrier disruption. Treatment with iNOS inhibitor (1400W) or MLCK inhibitor (ML-7) reversed the effect of afatinib on mRNA expressions of ZO-1 and claudin-4, and TEER. Collectively, our results indicate that afatinib induces intestinal epithelial barrier dysfunction via mechanisms involving NF-κB-iNOS-MLCK pathways. This finding may pave the way for developing therapeutic strategies to reduce adverse effects and enhance efficacy of TKI in cancer patients.
Collapse
Affiliation(s)
- Nichakorn Worakajit
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand
| | - Taya Kitiyakara
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand.
| |
Collapse
|
19
|
Lin J, Qiao C, Jiang H, Liu Z, Hu Y, Liu W, Yong Y, Li F. Reversible Ca 2+ signaling and enhanced paracellular transport in endothelial monolayer induced by acoustic bubbles and targeted microbeads. ULTRASONICS SONOCHEMISTRY 2025; 112:107181. [PMID: 39638739 PMCID: PMC11743859 DOI: 10.1016/j.ultsonch.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Ultrasound and microbubble mediated blood brain barrier opening is a non-invasive and effective technique for drug delivery to targeted brain region. However, the exact mechanisms are not fully resolved. The influences of Ca2+ signaling on sonoporation and endothelial tight junctional regulation affect the efficiency and biosafety of the technique. Therefore, an improved understanding of how ultrasound evokes Ca2+ signaling in the brain endothelial monolayer, and its correlation to endothelial permeability change is necessary. Here, we examined the effects of SonoVue microbubbles or integrin-targeted microbeads on ultrasound induced bioeffects in brain microvascular endothelial monolayer using an acoustically-coupled microscopy system, where focused ultrasound exposure and real-time recording of Ca2+ signaling and membrane perforation were performed. Microbubbles induced robust Ca2+ responses, often accompanied by cell poration, while ultrasound with microbeads elicited reversible Ca2+ response without membrane poration. At the conditions evoking reversible Ca2+ signaling, intracellular Ca2+ release and reactive oxygen species played key roles for microbubbles induced Ca2+ signaling while activation of mechanosensitive ion channels was essential for the case of microbeads. Trans-well diffusion analysis revealed significantly higher trans-endothelial transport of 70 kDa FITC-dextran for both integrin-targeted microbeads and microbubbles compared to the control group. Further immunofluorescence staining showed disruption of cell junctions with microbubble stimulation and reversible remodeling of many cell junctions by ultrasound with integrin-targeted microbeads. This investigation provides new insights for ultrasound induced Ca2+ signaling and its influence on endothelial permeability, which may help develop new strategies for safe and efficient drug/gene delivery in the vascular system.
Collapse
Affiliation(s)
- Jiawei Lin
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chaofeng Qiao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hao Jiang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhihui Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yaxin Hu
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Wei Liu
- School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Yu Yong
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fenfang Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
20
|
Gutierrez-Huerta CA, Quiroz-Delfi G, Faleel FDM, Beyer AM. Impaired endothelial function contributes to cardiac dysfunction: role of mitochondrial dynamics. Am J Physiol Heart Circ Physiol 2025; 328:H29-H36. [PMID: 39560973 DOI: 10.1152/ajpheart.00531.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The endothelial microvasculature is essential for the regulation of vasodilation and vasoconstriction, and improved functioning of the endothelium is linked to improved outcomes for individuals with coronary artery disease (CAD). People with endothelial dysfunction exhibit a loss of nitric oxide (NO)-mediated vasodilation, achieving vasodilation instead through mitochondria-derived H2O2. Mitochondrial dynamics is an important autoregulatory mechanism that contributes to mitochondrial and endothelial homeostasis and plays a role in the formation of reactive oxygen species (ROS), including H2O2. Dysregulation of mitochondrial dynamics leads to increased ROS production, decreased ATP production, impaired metabolism, activation of pathological signal transduction, impaired calcium sensing, and inflammation. We hypothesize that dysregulation of endothelial mitochondrial dynamics plays a crucial role in the endothelial microvascular dysfunction seen in individuals with CAD. Therefore, proper regulation of endothelial mitochondrial dynamics may be a suitable treatment for individuals with endothelial microvascular dysfunction, and we furthermore postulate that improving this microvascular dysfunction will directly improve outcomes for those with CAD.
Collapse
Affiliation(s)
- Cristhian A Gutierrez-Huerta
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Giovanni Quiroz-Delfi
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | | | - Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cancer Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
21
|
Patidar K, Versypt ANF. Logic-Based Modeling of Inflammatory Macrophage Crosstalk with Glomerular Endothelial Cells in Diabetic Kidney Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.04.535594. [PMID: 37066138 PMCID: PMC10104015 DOI: 10.1101/2023.04.04.535594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Diabetic kidney disease is a complication in one out of three patients with diabetes. Aberrant glucose metabolism in diabetes leads to structural and functional damage in glomerular tissue and a systemic inflammatory immune response. Complex cellular signaling is at the core of metabolic and functional derangement. Unfortunately, the mechanism underlying the role of inflammation in glomerular endothelial cell dysfunction during diabetic kidney disease is not fully understood. Mathematical models in systems biology allow the integration of experimental evidence and cellular signaling networks to understand mechanisms involved in disease progression. This study developed a logic-based ordinary differential equations model to study inflammatory crosstalk between macrophages and glomerular endothelial cells during diabetic kidney disease progression using a protein signaling network stimulated with glucose and lipopolysaccharide. This modeling approach reduced the biological parameters needed to study signaling networks. The model was fitted to and validated against available biochemical data from \textit{in vitro} experiments. The model identified mechanisms for dysregulated signaling in macrophages and glomerular endothelial cells during diabetic kidney disease. In addition, the influence of signaling interactions on glomerular endothelial cell morphology through selective knockdown and downregulation was investigated. Simulation results showed that partial knockdown of VEGF receptor 1, PLC-γ, adherens junction proteins, and calcium partially recovered the intercellular gap width between glomerular endothelial cells. These findings contribute to understanding signaling and molecular perturbations that affect the glomerular endothelial cells in the early stage of diabetic kidney disease.
Collapse
|
22
|
Babicheva A, Elmadbouh I, Song S, Thompson M, Powers R, Jain PP, Izadi A, Chen J, Yung L, Parmisano S, Paquin C, Wang WT, Chen Y, Wang T, Alotaibi M, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Prakash YS, Pabelick CM, Yuan JXJ. Store-operated Ca 2+ entry is involved in endothelium-to-mesenchymal transition in lung vascular endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627034. [PMID: 39677696 PMCID: PMC11643270 DOI: 10.1101/2024.12.06.627034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β 1 (TGF-β 1 ), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC). An increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] cyt ) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca 2+ signaling is involved in EndMT. In this study we tested the hypothesis that TGF-β 1 -induced EndMT in human LVEC is Ca 2+ -dependent. Treatment of LVEC with TGF-β 1 for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1 and enhancement of store-operated Ca 2+ entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca 2+ with EGTA or BAPTA-AM respectively abolished EndMT in response to TGF-β 1 . Moreover, EGTA diminished TGF-β 1 -induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT, but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca 2+ signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca 2+ signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of pre-capillary pulmonary hypertension. New & Noteworthy EndMT has been reported to contribute to the pathogenesis of PH. In this study we aimed to determine the role of Ca 2+ signaling in the development of EndMT in human lung vascular endothelial cells. Our data suggest that TGF-β 1 requires store-operated Ca 2+ entry through STIM1/Orai channels to induce SNAI-mediated EndMT. For the first time we demonstrated that TGF-β 1 -induced EndMT is Ca 2+ -dependent event while inhibition of STIM1/Orai interaction attenuated EndMT in response to TGF-β 1 .
Collapse
|
23
|
Owokoniran OH, Honda A, Ichinose T, Ishikawa R, Nagao M, Miyasaka N, Wang Z, Takai S, Omori I, Zhang K, Liu W, Higaki Y, Kameda T, Matsuda T, Fujiwara T, Okuda T, Takano H. Co-exposure of ferruginous components of subway particles with lipopolysaccharide impairs vascular function: A comparative study with ambient particulate matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117356. [PMID: 39579445 DOI: 10.1016/j.ecoenv.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Several empirical studies have linked subway and ambient particle exposure to toxicity, pro-inflammatory responses, and vascular dysfunction. However, the health effects of pollutants generated from varying sources, particularly when combined with lipopolysaccharide (LPS), are still unexplored. Therefore, the aim of this study was to investigate the characteristic health effects of iron oxide particles (the main components of subway particles) in comparison with urban aerosols (UA) and vehicle exhaust particles (VEP), alone and in combination with LPS. This study revealed that iron oxides caused a more significant reduction in human umbilical vein endothelial cell viability, increased lactate dehydrogenase release, and decreased the production of plasminogen activator inhibitor-1, a fibrinolytic modulator, and endothelin-1, a vasoconstrictor, compared to those by VEP and UA at marginally toxic and toxic concentrations. While VEP and UA induced an increase in interleukin (IL)-6 production, iron oxides, particularly Fe3O4, increased IL-8 production at slightly toxic and non-cytotoxic concentrations. In addition, co-exposure of all particles and LPS at non-cytotoxic concentrations promoted pro-inflammatory cytokine (IL-6 and IL-8) production relative to exposure to the particles alone. Interestingly, the tendency towards either coagulation or fibrinolytic conditions was dependent on the concentration of exposed particles at the same LPS concentration. Furthermore, increases in inflammation, neutrophil and lymphocyte recruitment around blood vessels, and edema were observed in murine lungs exposed to a combination of iron oxides and LPS compared to those in mice exposed to iron oxide alone. Thus, iron oxide-rich subway particulate poses more health risks than outdoor ambient particles since they can significantly impair endothelial function, particularly through gross cellular and vascular homeostatic protein damage, and induce exacerbated inflammatory responses during co-exposure. These findings provide novel empirical evidence for epidemiological studies seeking mechanisms responsible for the observed health impact of transport- and occupational-related exposures on vascular dysfunction.
Collapse
Affiliation(s)
| | - Akiko Honda
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Takamichi Ichinose
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Raga Ishikawa
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Megumi Nagao
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Natsuko Miyasaka
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Zaoshi Wang
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Satsuki Takai
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Issei Omori
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kerui Zhang
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wei Liu
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuya Higaki
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takayuki Kameda
- Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Tomonari Matsuda
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Taku Fujiwara
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tomoaki Okuda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirohisa Takano
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan; Research Institute for Coexistence and Health Science, Kyoto University of Advanced Science, Kyoto, Japan
| |
Collapse
|
24
|
Martín-Aragón Baudel M, Nieves-Cintrón M, Navedo MF. Rap1 Brings the A Game to Control Lung Endothelium. Arterioscler Thromb Vasc Biol 2024; 44:2288-2290. [PMID: 39441913 PMCID: PMC11498902 DOI: 10.1161/atvbaha.124.321812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
|
25
|
Zhang S, Li S, Xie S, Cui L, Gao Y, Wang Y. The Role of Ca 2+/PI3K/Akt/eNOS/NO Pathway in Astragaloside IV-Induced Inhibition of Endothelial Inflammation Triggered by Angiotensin II. Mediators Inflamm 2024; 2024:3193950. [PMID: 39512364 PMCID: PMC11540887 DOI: 10.1155/2024/3193950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Inflammation induced by angiotensin II (Ang II) is a key event in the progression of numerous cardiovascular diseases. Astragaloside IV (AS-IV), a glycoside extracted from Astragalus membranaceus Bunge, has been shown to inhibit Ang II-induced inflammatory responses in vivo. However, the mechanisms underlying the beneficial effects are still unclear. This study investigated whether AS-IV attenuates endothelial inflammation induced by Ang II via the activation of endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. Human umbilical vein endothelial cells (HUVECs) were cultured in the presence of AS-IV with or without the specific inhibitor of NOS or Ca2+- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent cascade prior to Ang II exposure. Incubation of HUVECs with AS-IV enhanced NO production and eNOSser1177 phosphorylation. These responses were abrogated by the inhibition of NOS or Ca2+- and PI3K/Akt-dependent pathway. In addition, preincubation of HUVECs with AS-IV inhibited Ang II-induced cytokine and chemokine production, adhesion molecule expression, monocyte adhesion, and nuclear factor kappa B (NF-κB) activation as evidenced by the attenuation of inhibitor of kappa B alpha phosphorylation and subsequent NF-κB DNA binding. These effects of AS-IV were abolished by the suppression of NOS or Ca2+- and PI3K/Akt-dependent cascade. Our findings indicate that AS-IV attenuates inflammatory responses triggered by Ang II possibly via the activation of Ca2+/PI3K/Akt/eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shiyang Xie
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Yuan Gao
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
26
|
Noone D, Preston RJS, Rehill AM. The Role of Myeloid Cells in Thromboinflammatory Disease. Semin Thromb Hemost 2024; 50:998-1011. [PMID: 38547918 DOI: 10.1055/s-0044-1782660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.
Collapse
Affiliation(s)
- David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
27
|
Chen L, Bai H, Zhao J, Zhang P, Zhang X, Kong D, Dong C, Zhang W. Lipid emulsion attenuates vasodilation by decreasing intracellular calcium and nitric oxide in vascular endothelial cells. Heliyon 2024; 10:e37353. [PMID: 39296045 PMCID: PMC11408769 DOI: 10.1016/j.heliyon.2024.e37353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Lipid emulsion (LE), a widely used parenteral nutrition, exhibits a well-documented ability to reverse the vasodilatory effects induced by acetylcholine in blood vessels. However, the specific mechanisms underlying this action are not yet fully understood. This study aimed to elucidate the mechanism by which LE reverses vasodilation in vitro through dose-response curve experiments, calcium imaging, and fluorescence assays. The results revealed a significant attenuation of acetylcholine (Ach)-induced vasodilation in rat thoracic aortic rings following LE exposure. In human aortic endothelial cells, pretreatment with LE significantly suppressed ATP-induced calcium elevation. This suppression persisted even after elimination of extracellular calcium with a calcium chelator. Moreover, LE pre-exposure reduced the intracellular calcium concentration ([Ca2+]i) elevation in endothelial cells following cyclopiazonic acid (CPA) treatment, suggesting enhanced endoplasmic reticulum (ER) calcium reuptake. Additionally, nitric oxide (NO) fluorescence assays showed a decrease in NO production upon ATP stimulation post-LE pretreatment of endothelial cells. Taken together, these results indicate that the reversal of vasodilation by LE may involve enhanced ER calcium uptake, leading to a reduction in intracellular calcium concentration and suppression of NO (key vasodilatory agent) synthesis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
- Nursing Department, The Fourth Hospital of Hebei Medical University, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, China
| | - Jing Zhao
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Panpan Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Xinhua Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Dezhi Kong
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Changzheng Dong
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei Province, 050000, China
| | - Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| |
Collapse
|
28
|
Moztarzadeh S, Vargas-Robles H, Schnoor M, Radeva MY, Waschke J, Garcia-Ponce A. Erk1/2 is not required for endothelial barrier establishment despite its requirement for cAMP-dependent Rac1 activation in heart endothelium. Tissue Barriers 2024:2398875. [PMID: 39230159 DOI: 10.1080/21688370.2024.2398875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
The contribution of Erk1/2 to endothelial barrier regulation is convoluted and differs depending on the vascular bed. We explored the effects of Erk1/2 inhibition on endothelial barrier maintenance and its relationship with cAMP-dependent barrier strengthening. Thus, myocardial endothelial cells (MyEnd) were isolated and protein expression, localization and activity of structural and signaling molecules involved in maintenance of endothelial function were investigated by Western blot, immunostainings and G-LISA, respectively. The transendothelial electrical resistance (TEER) from confluent MyEnd monolayers was measured and used as a direct indicator of barrier integrity in vitro. Miles assay was performed to evaluate vascular permeability in vivo. Erk1/2 inhibition with U0126 affected neither the structural organization of adherens or tight junctions nor the protein level of their components, However, TEER drop significantly upon U0126 application, but the effect was transitory as the barrier function recovered 30 min after treatment. Erk1/2 inhibition delayed cAMP-mediated barrier strengthening but did not prevent barrier fortification despite diminishing Rac1 activation. Moreover, Erk1/2 inhibition, induced vascular leakage that could be prevented by local cAMP elevation in vivo. Our data demonstrate that Erk1/2 is required to prevent vascular permeability but is not critical for cAMP-mediated barrier enhancement.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Alexander Garcia-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
29
|
Ning S, Guo X, Zhu Y, Li C, Li R, Meng Y, Luo W, Lu D, Yin Y. The mechanism of NRF2 regulating cell proliferation and mesenchymal transformation in pulmonary hypertension. Int J Biol Macromol 2024; 275:133514. [PMID: 38944076 DOI: 10.1016/j.ijbiomac.2024.133514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pulmonary hypertension (PH) is a fatal disease with no existing curative drugs. NF-E2-related factor 2 (NRF2) a pivotal molecular in cellular protection, was investigated in PH models to elucidate its role in regulating abnormal phenotypes in pulmonary artery cells. We examined the expression of NRF2 in PH models and explored the role of NRF2 in regulating abnormal phenotypes in pulmonary artery cells. We determined the expression level of NRF2 in lung tissues of PH model decreased significantly. We found that NRF2 was reduced in rat pulmonary artery endothelial cells (rPAEC) under hypoxia, while it was overexpressed in rat pulmonary artery smooth muscle cells (rPASMC) under hypoxia. Next, the results showed that knockdown NRF2 in rPAEC promoted endothelial-mesenchymal transformation and upregulated reactive oxygen species level. After the rPASMC was treated with siRNA or activator, we found that NRF2 could accelerate cell migration by affecting MMP2/3/7, and promote cell proliferation by regulating PDGFR/ERK1/2 and mTOR/P70S6K pathways. Therefore, the study has shown that the clinical application of NRF2 activator in the treatment of pulmonary hypertension may cause side effects of promoting the proliferation and migration of rPASMC. Attention should be paid to the combination of NRF2 activators.
Collapse
Affiliation(s)
- Shasha Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xinyue Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Chenghui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ruixue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yinan Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Weiwei Luo
- Military Mental Cognition, Strategic Support Force Medical Center, No. 9 Anxiangbeili, Chaoyang District, Beijing 100101, China.
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
30
|
Liu R, Collier JM, Abdul-Rahman NH, Capuk O, Zhang Z, Begum G. Dysregulation of Ion Channels and Transporters and Blood-Brain Barrier Dysfunction in Alzheimer's Disease and Vascular Dementia. Aging Dis 2024; 15:1748-1770. [PMID: 38300642 PMCID: PMC11272208 DOI: 10.14336/ad.2023.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in maintaining ion and fluid homeostasis, essential for brain metabolism and neuronal function. Regulation of nutrient, water, and ion transport across the BBB is tightly controlled by specialized ion transporters and channels located within its unique cellular components. These dynamic transport processes not only influence the BBB's structure but also impact vital signaling mechanisms, essential for its optimal function. Disruption in ion, pH, and fluid balance at the BBB is associated with brain pathology and has been implicated in various neurological conditions, including stroke, epilepsy, trauma, and neurodegenerative diseases such as Alzheimer's disease (AD). However, knowledge gaps exist regarding the impact of ion transport dysregulation on BBB function in neurodegenerative dementias. Several factors contribute to this gap: the complex nature of these conditions, historical research focus on neuronal mechanisms and technical challenges in studying the ion transport mechanisms in in vivo models and the lack of efficient in vitro BBB dementia models. This review provides an overview of current research on the roles of ion transporters and channels at the BBB and poses specific research questions: 1) How are the expression and activity of key ion transporters altered in AD and vascular dementia (VaD); 2) Do these changes contribute to BBB dysfunction and disease progression; and 3) Can restoring ion transport function mitigate BBB dysfunction and improve clinical outcomes. Addressing these gaps will provide a greater insight into the vascular pathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jenelle M Collier
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Okan Capuk
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Martus D, Williams SK, Pichi K, Mannebach-Götz S, Kaiser N, Wardas B, Fecher-Trost C, Meyer MR, Schmitz F, Beck A, Fairless R, Diem R, Flockerzi V, Belkacemi A. Cavβ3 Contributes to the Maintenance of the Blood-Brain Barrier and Alleviates Symptoms of Experimental Autoimmune Encephalomyelitis. Arterioscler Thromb Vasc Biol 2024; 44:1833-1851. [PMID: 38957986 DOI: 10.1161/atvbaha.124.321141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tight control of cytoplasmic Ca2+ concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavβ3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS We investigated the function of Cavβ3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavβ3-/- (Cavβ3-deficient) mice as controls. RESULTS We identified Cavβ3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavβ3. After induction of experimental autoimmune encephalomyelitis, Cavβ3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavβ3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavβ3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavβ3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavβ3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS Independent of its function as a subunit of Cav channels, Cavβ3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ concentration and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavβ3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Blood-Brain Barrier/metabolism
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Channels/genetics
- Calcium Signaling
- Capillary Permeability
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Endothelial Cells/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Myosin Light Chains/metabolism
- Myosin-Light-Chain Kinase/metabolism
- Myosin-Light-Chain Kinase/genetics
- Phosphorylation
Collapse
Affiliation(s)
- Damian Martus
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Sarah K Williams
- Neurologische Klinik, Universitätsklinikum Heidelberg, Germany (S.K.W., K.P., R.F., R.D.)
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany (R.F., S.K.W.)
| | - Kira Pichi
- Neurologische Klinik, Universitätsklinikum Heidelberg, Germany (S.K.W., K.P., R.F., R.D.)
| | - Stefanie Mannebach-Götz
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Nicolas Kaiser
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Barbara Wardas
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Claudia Fecher-Trost
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Markus R Meyer
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Frank Schmitz
- Institut für Anatomie und Zellbiologie (F.S.), Universität des Saarlandes, Homburg, Germany
| | - Andreas Beck
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Richard Fairless
- Neurologische Klinik, Universitätsklinikum Heidelberg, Germany (S.K.W., K.P., R.F., R.D.)
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany (R.F., S.K.W.)
| | - Ricarda Diem
- Neurologische Klinik, Universitätsklinikum Heidelberg, Germany (S.K.W., K.P., R.F., R.D.)
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
| | - Anouar Belkacemi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung, PharmaScienceHub (D.M., S.M.-G., N.K., B.W., C.F.-T., M.R.M., A. Beck, V.F., A. Belkacemi), Universität des Saarlandes, Homburg, Germany
- Now with Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Germany (A. Belkacemi)
| |
Collapse
|
32
|
Cai Y, Li L, Shao C, Chen Y, Wang Z. Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics. J Cardiovasc Transl Res 2024; 17:816-827. [PMID: 38294628 DOI: 10.1007/s12265-024-10485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
With the in-depth investigation of various diseases, angiogenesis has gained increasing attention. Among the contributing factors to angiogenesis research, endothelial epigenetics has emerged as an influential player. Endothelial epigenetic therapy exerts its regulatory effects on endothelial cells by controlling gene expression, RNA, and histone modification within these cells, which subsequently promotes or inhibits angiogenesis. As a result, this therapeutic approach offers potential strategies for disease treatment. The purpose of this review is to outline the pertinent mechanisms of endothelial cell epigenetics, encompassing glycolysis, lactation, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, and their connections to specific diseases and clinical applications. We firmly believe that endothelial cell epigenetics has the potential to become an integral component of precision medicine therapy, unveiling novel therapeutic targets and providing new directions and opportunities for disease treatment.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Yiliu Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China.
| |
Collapse
|
33
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Puthumana EA, Muhamad L, Young LA, Chu XP. TRPA1, TRPV1, and Caffeine: Pain and Analgesia. Int J Mol Sci 2024; 25:7903. [PMID: 39063144 PMCID: PMC11276833 DOI: 10.3390/ijms25147903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is a naturally occurring methylxanthine that acts as a potent central nervous system stimulant found in more than 60 different plants and fruits. Although caffeinated beverages are widely and casually consumed, the application of caffeine beyond dietary levels as pharmacologic therapy has been recognized since the beginning of its recorded use. The analgesic and vasoactive properties of caffeine are well known, but the extent of their molecular basis remains an area of active research. There is existing evidence in the literature as to caffeine's effect on TRP channels, the role of caffeine in pain management and analgesia, as well as the role of TRP in pain and analgesia; however, there has yet to be a review focused on the interaction between caffeine and TRP channels. Although the influence of caffeine on TRP has been demonstrated in the lab and in animal models, there is a scarcity of data collected on a large scale as to the clinical utility of caffeine as a regulator of TRP. This review aims to prompt further molecular research to elucidate the specific ligand-host interaction between caffeine and TRP by validating caffeine as a regulator of transient receptor potential (TRP) channels-focusing on the transient receptor potential vanilloid 1 (TRPV1) receptor and transient receptor potential ankyrin 1 (TRPA1) receptor subtypes-and its application in areas of pain.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Departments of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (E.A.P.); (L.M.); (L.A.Y.)
| |
Collapse
|
35
|
Burboa PC, Corrêa-Velloso JC, Arriagada C, Thomas AP, Durán WN, Lillo MA. Impact of Matrix Gel Variations on Primary Culture of Microvascular Endothelial Cell Function. Microcirculation 2024; 31:e12859. [PMID: 38818977 PMCID: PMC11227414 DOI: 10.1111/micc.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques. METHODS Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology. RESULTS Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident. Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca2+ elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs. CONCLUSIONS Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Juliana C. Corrêa-Velloso
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Cecilia Arriagada
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago, Chile
| | - Andrew P. Thomas
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Walter N. Durán
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Mauricio A. Lillo
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| |
Collapse
|
36
|
Wang XJ, Xuan XC, Sun ZC, Shen S, Yu F, Li NN, Chu XC, Yin H, Hu YL. Risk factors associated with intraoperative persistent hypotension in pancreaticoduodenectomy. World J Gastrointest Surg 2024; 16:1582-1591. [PMID: 38983354 PMCID: PMC11230017 DOI: 10.4240/wjgs.v16.i6.1582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Intraoperative persistent hypotension (IPH) during pancreaticoduodenectomy (PD) is linked to adverse postoperative outcomes, yet its risk factors remain unclear. AIM To clarify the risk factors associated with IPH during PD, ensuring patient safety in the perioperative period. METHODS A retrospective analysis of patient records from January 2018 to December 2022 at the First Affiliated Hospital of Nanjing Medical University identified factors associated with IPH in PD. These factors included age, gender, body mass index, American Society of Anesthesiologists classification, comorbidities, medication history, operation duration, fluid balance, blood loss, urine output, and blood gas parameters. IPH was defined as sustained mean arterial pressure < 65 mmHg, requiring prolonged deoxyepinephrine infusion for > 30 min despite additional deoxyepinephrine and fluid treatments. RESULTS Among 1596 PD patients, 661 (41.42%) experienced IPH. Multivariate logistic regression identified key risk factors: increased age [odds ratio (OR): 1.20 per decade, 95% confidence interval (CI): 1.08-1.33] (P < 0.001), longer surgery duration (OR: 1.15 per additional hour, 95%CI: 1.05-1.26) (P < 0.01), and greater blood loss (OR: 1.18 per 250-mL increment, 95%CI: 1.06-1.32) (P < 0.01). A novel finding was the association of arterial blood Ca2+ < 1.05 mmol/L with IPH (OR: 2.03, 95%CI: 1.65-2.50) (P < 0.001). CONCLUSION IPH during PD is independently associated with older age, prolonged surgery, increased blood loss, and lower plasma Ca2+.
Collapse
Affiliation(s)
- Xing-Jun Wang
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xi-Chen Xuan
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhao-Chu Sun
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shi Shen
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Fan Yu
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Na-Na Li
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xue-Chun Chu
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hui Yin
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - You-Li Hu
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
37
|
Bartkiewicz P, Kunachowicz D, Filipski M, Stebel A, Ligoda J, Rembiałkowska N. Hypercalcemia in Cancer: Causes, Effects, and Treatment Strategies. Cells 2024; 13:1051. [PMID: 38920679 PMCID: PMC11202131 DOI: 10.3390/cells13121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Calcium plays central roles in numerous biological processes, thereby, its levels in the blood are under strict control to maintain homeostatic balance and enable the proper functioning of living organisms. The regulatory mechanisms ensuring this balance can be affected by pathologies such as cancer, and as a result, hyper- or hypocalcemia can occur. These states, characterized by elevated or decreased calcium blood levels, respectively, have a significant effect on general homeostasis. This article focuses on a particular form of calcium metabolism disorder, which is hypercalcemia in neoplasms. It also constitutes a summary of the current knowledge regarding the diagnosis of hypercalcemia and its management. Hypercalcemia of malignancy is estimated to affect over 40% of cancer patients and can be associated with both solid and blood cancers. Elevated calcium levels can be an indicator of developing cancer. The main mechanism of hypercalcemia development in tumors appears to be excessive production of parathyroid hormone-related peptides. Among the known treatment methods, bisphosphonates, calcitonin, steroids, and denosumab should be mentioned, but ongoing research promotes progress in pharmacotherapy. Given the rising global cancer prevalence, the problem of hypercalcemia is of high importance and requires attention.
Collapse
Affiliation(s)
- Patrycja Bartkiewicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Agata Stebel
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Julia Ligoda
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
38
|
Lou S, Zhu W, Yu T, Zhang Q, Wang M, Jin L, Xiong Y, Xu J, Wang Q, Chen G, Liang G, Hu X, Luo W. Compound SJ-12 attenuates streptozocin-induced diabetic cardiomyopathy by stabilizing SERCA2a. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167140. [PMID: 38548092 DOI: 10.1016/j.bbadis.2024.167140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shuaijie Lou
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tianxiang Yu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Qianhui Zhang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Minxiu Wang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Leiming Jin
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongqiang Xiong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiachen Xu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinyan Wang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Gaozhi Chen
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Xiang Hu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
39
|
Dikalova A, Fehrenbach D, Mayorov V, Panov A, Ao M, Lantier L, Amarnath V, Lopez MG, Billings FT, Sack MN, Dikalov S. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension. Circ Res 2024; 134:1451-1464. [PMID: 38639088 PMCID: PMC11116043 DOI: 10.1161/circresaha.123.323596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins (mito2HOBA) normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Anna Dikalova
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Mingfang Ao
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
40
|
Evangelidis P, Evangelidis N, Kalmoukos P, Kourti M, Tragiannidis A, Gavriilaki E. Genetic Susceptibility in Endothelial Injury Syndromes after Hematopoietic Cell Transplantation and Other Cellular Therapies: Climbing a Steep Hill. Curr Issues Mol Biol 2024; 46:4787-4802. [PMID: 38785556 PMCID: PMC11119915 DOI: 10.3390/cimb46050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Nikolaos Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Maria Kourti
- 3rd Department of Pediatrics, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| |
Collapse
|
41
|
Niu L, Wang S, Xu Y, Zu X, You X, Zhang Q, Zhuang P, Jiang M, Gao J, Hou X, Zhang Y, Bai G, Deng J. Honokiol targeting ankyrin repeat domain of TRPV4 ameliorates endothelial permeability in mice inflammatory bowel disease induced by DSS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117825. [PMID: 38296175 DOI: 10.1016/j.jep.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic traditional Chinese medicine, Magnolia officinalis (M. officinalis) is widely used in digestive diseases. It has rich gastrointestinal activity including inflammatory bowel disease (IBD) treatment, but the mechanism is not clear. AIM OF THE STUDY In recent years, there has been a growing interest in investigating the regulatory effects of herbal compounds on transient receptor potential (TRP) channel proteins. Transient receptor potential vanilloid 4 (TRPV4), a subtype involved in endothelial permeability regulation, was discussed as the target of M. officinalis in the treatment of IBD in the study. Based on the targeting effect of TRPV4, this study investigated the active ingredients and mechanism of M. officinalis extract in treating IBD. MATERIALS AND METHODS To reveal the connection between the active ingredients in M. officinalis and TRPV4, a bioactivity-guided high performance liquid chromatography system coupled with mass spectrometry identification was utilized to screen for TRPV4 antagonists. TRPV4 siRNA knockdown experiment was employed to validate the significance of TRPV4 as a crucial target in regulating endothelial permeability by honokiol (HON). The interaction of the active ingredient representing HON with TRPV4 was confirmed by molecular docking, fluorescence-based thermal shift and live cell calcium imaging experiments. The potential binding sites and inhibitory mechanisms of HON in TRPV4 were analyzed by molecular dynamics simulation and microscale thermophoresis. The therapeutic effect of HON based on TRPV4 was discussed in DSS-IBD mice. RESULTS Our finding elucidated that the inhibitory activity of M. officinalis against TRPV4 is primarily attributed to HON analogues. The knockdown of TRPV4 expression significantly impaired the calcium regulation and permeability protection in endothelial cells. The mechanism study revealed that HON specifically targets the Q239 residue located in the ankyrin repeat domain of TRPV4, and competitively inhibits channel opening with adenosine triphosphate (ATP) binding. The immunofluorescence assay demonstrated that the administration of HON enhances the expression and location of VE-Cadherin to protect the endothelial barrier and attenuates immune cell infiltration. CONCLUSIONS The finding suggested that HON alleviates IBD by improving endothelial permeability through TRPV4. The discovery provides valuable insights into the potential therapeutic strategy of active natural products for alleviating IBD.
Collapse
Affiliation(s)
- Lin Niu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shilong Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yanyan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xinyu You
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyang Zhang
- Thompson Rivers University, Manna, British Columbia, Canada
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanjun Zhang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China; Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
42
|
Cogill SA, Lee JH, Jeon MT, Kim DG, Chang Y. Hopping the Hurdle: Strategies to Enhance the Molecular Delivery to the Brain through the Blood-Brain Barrier. Cells 2024; 13:789. [PMID: 38786013 PMCID: PMC11119906 DOI: 10.3390/cells13100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Modern medicine has allowed for many advances in neurological and neurodegenerative disease (ND). However, the number of patients suffering from brain diseases is ever increasing and the treatment of brain diseases remains an issue, as drug efficacy is dramatically reduced due to the existence of the unique vascular structure, namely the blood-brain barrier (BBB). Several approaches to enhance drug delivery to the brain have been investigated but many have proven to be unsuccessful due to limited transport or damage induced in the BBB. Alternative approaches to enhance molecular delivery to the brain have been revealed in recent studies through the existence of molecular delivery pathways that regulate the passage of peripheral molecules. In this review, we present recent advancements of the basic research for these delivery pathways as well as examples of promising ventures to overcome the molecular hurdles that will enhance therapeutic interventions in the brain and potentially save the lives of millions of patients.
Collapse
Affiliation(s)
- Sinnead Anne Cogill
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae-Hyeok Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Tae Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
43
|
Li L, Wang YW, Chang X, Chen JL, Wang M, Zhu JQ, Li JF, Ren LJ, Dai XY, Yan L, Fan XC, Song Q, Zhu JB, Chen JK, Xu SG. DNAJA1‑knockout alleviates heat stroke‑induced endothelial barrier disruption via improving thermal tolerance and suppressing the MLCK‑MLC signaling pathway. Mol Med Rep 2024; 29:87. [PMID: 38551163 PMCID: PMC10995657 DOI: 10.3892/mmr.2024.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Endothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1‑KO) is thought to be protective against HS based on a genome‑wide CRISPR‑Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1‑KO against HS in human umbilical vein endothelial cells. DNAJA1‑KO cells were infected using a lentivirus to investigate the role of DNAJA1‑KO in HS‑induced endothelial barrier disruption. It was shown that DNAJA1‑KO could ameliorate decreased cell viability and increased cell injury, according to the results of Cell Counting Kit‑8 and lactate dehydrogenase assays. Moreover, HS‑induced endothelial cell apoptosis was inhibited by DNAJA1‑KO, as indicated by Annexin V‑FITC/PI staining and cleaved‑caspase‑3 expression using flow cytometry and western blotting, respectively. Furthermore, the endothelial barrier function, as measured by transepithelial electrical resistance and FITC‑Dextran, was sustained during HS. DNAJA1‑KO was not found to have a significant effect on the expression and distribution of cell junction proteins under normal conditions without HS. However, DNAJA1‑KO could effectively protect the HS‑induced decrease in the expression and distribution of cell junction proteins, including zonula occludens‑1, claudin‑5, junctional adhesion molecule A and occludin. A total of 4,394 proteins were identified using proteomic analysis, of which 102 differentially expressed proteins (DEPs) were activated in HS‑induced wild‑type cells and inhibited by DNAJA1‑KO. DEPs were investigated by enrichment analysis, which demonstrated significant enrichment in the 'calcium signaling pathway' and associations with vascular‑barrier regulation. Furthermore, the 'myosin light‑chain kinase (MLCK)‑MLC signaling pathway' was proven to be activated by HS and inhibited by DNAJA1‑KO, as expected. Moreover, DNAJA1‑KO mice and a HS mouse model were established to demonstrate the protective effects on endothelial barrier in vivo. In conclusion, the results of the present study suggested that DNAJA1‑KO alleviates HS‑induced endothelial barrier disruption by improving thermal tolerance and suppressing the MLCK‑MLC signaling pathway.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
- Department of Emergency, The Second Naval Hospital of Southern Theater Command of The People's Liberation Army, Sanya, Hainan 572022, P.R. China
- Heatstroke Treatment and Research Center, Hainan Hospital, Chinese People's Liberation Army General Hospital, Sanya, Hainan 572022, P.R. China
| | - Ya-Wei Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
- Department of Orthopedics Trauma, Changhai Hospital, Shanghai 200433, P.R. China
| | - Xin Chang
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Jue-Lin Chen
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Man Wang
- Department of Rehabilitation, Changhai Hospital, Shanghai 200433, P.R. China
| | - Jia-Qi Zhu
- Department of Cardiology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, P.R. China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, P.R. China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, P.R. China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, P.R. China
| | - Xin-Chen Fan
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, P.R. China
| | - Qing Song
- Heatstroke Treatment and Research Center, Hainan Hospital, Chinese People's Liberation Army General Hospital, Sanya, Hainan 572022, P.R. China
- Department of Critical Care Medicine, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100039, P.R. China
- Department of Critical Care Medicine, Hainan Hospital, Chinese People's Liberation Army General Hospital, Sanya, Hainan 572022, P.R. China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, P.R. China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, P.R. China
| | - Shuo-Gui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
- Department of Orthopedics Trauma, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
44
|
Deepu V, Rai V, Agrawal DK. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:80-103. [PMID: 38784044 PMCID: PMC11113086 DOI: 10.26502/aimr.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The review delves into the methods for the quantitative assessment of intracellular effectors and cellular response of Receptor for Advanced Glycation End products (RAGE), a vital transmembrane receptor involved in a range of physiological and pathological processes. RAGE bind to Advanced Glycation End products (AGEs) and other ligands, which in turn activate diverse downstream signaling pathways that impact cellular responses such as inflammation, oxidative stress, and immune reactions. The review article discusses the intracellular signaling pathways activated by RAGE followed by differential activation of RAGE signaling across various diseases. This will ultimately guide researchers in developing targeted and effective interventions for diseases associated with RAGE activation. Further, we have discussed how PCR, western blotting, and microscopic examination of various molecules involved in downstream signaling can be leveraged to monitor, diagnose, and explore diseases involving proteins with unique post-translational modifications. This review article underscores the pressing need for advancements in molecular approaches for disease detection and management involving RAGE.
Collapse
Affiliation(s)
- Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
45
|
Chen W, Wang Q, Tao H, Lu L, Zhou J, Wang Q, Huang W, Yang X. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues. Acta Biochim Biophys Sin (Shanghai) 2024; 56:499-512. [PMID: 38439665 DOI: 10.3724/abbs.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiang Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
46
|
Patidar K, Deng JH, Mitchell CS, Ford Versypt AN. Cross-Domain Text Mining of Pathophysiological Processes Associated with Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4503. [PMID: 38674089 PMCID: PMC11050166 DOI: 10.3390/ijms25084503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. This study's goal was to identify the signaling drivers and pathways that modulate glomerular endothelial dysfunction in DKD via artificial intelligence-enabled literature-based discovery. Cross-domain text mining of 33+ million PubMed articles was performed with SemNet 2.0 to identify and rank multi-scalar and multi-factorial pathophysiological concepts related to DKD. A set of identified relevant genes and proteins that regulate different pathological events associated with DKD were analyzed and ranked using normalized mean HeteSim scores. High-ranking genes and proteins intersected three domains-DKD, the immune response, and glomerular endothelial cells. The top 10% of ranked concepts were mapped to the following biological functions: angiogenesis, apoptotic processes, cell adhesion, chemotaxis, growth factor signaling, vascular permeability, the nitric oxide response, oxidative stress, the cytokine response, macrophage signaling, NFκB factor activity, the TLR pathway, glucose metabolism, the inflammatory response, the ERK/MAPK signaling response, the JAK/STAT pathway, the T-cell-mediated response, the WNT/β-catenin pathway, the renin-angiotensin system, and NADPH oxidase activity. High-ranking genes and proteins were used to generate a protein-protein interaction network. The study results prioritized interactions or molecules involved in dysregulated signaling in DKD, which can be further assessed through biochemical network models or experiments.
Collapse
Affiliation(s)
- Krutika Patidar
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jennifer H. Deng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
47
|
Pearson AC, Shrestha K, Curry TE, Duffy DM. Neurotensin modulates ovarian vascular permeability via adherens junctions. FASEB J 2024; 38:e23602. [PMID: 38581236 PMCID: PMC11034770 DOI: 10.1096/fj.202302652rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.
Collapse
Affiliation(s)
- Andrew C. Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| |
Collapse
|
48
|
He R, Wang Y, Shuang C, Xu C, Li X, Cao Y. Single-cell transcriptomics reveals activation of endothelial cell and identifies LHPP as a potential target in ulcerative colitis. Heliyon 2024; 10:e29163. [PMID: 38601522 PMCID: PMC11004881 DOI: 10.1016/j.heliyon.2024.e29163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
This study delves into Ulcerative colitis (UC), a persistent gastrointestinal disorder marked by inflammation and ulcers, significantly elevating colorectal cancer risk. The emergence of single-cell RNA sequencing (scRNA-seq) technology has opened new avenues for dissecting the intricate cellular dynamics and molecular mechanisms at play in UC pathology. By analyzing scRNA-seq data from individuals with UC, our study has revealed a consistent enhancement of inflammatory response pathways throughout the course of the disease, alongside detailing the characteristics of endothelial cell damage within colitis environments. A noteworthy finding is the downregulation of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP), which exhibited a inversely correlate with STAT3 expression levels. The markedly reduced expression of LHPP in both the tissues and plasma of UC patients positions LHPP as a compelling target for therapeutic intervention. Our findings highlight the pivotal role LHPP could play in moderating inflammation, spotlighting its potential as a crucial molecular target in the quest to understand and treat UC.
Collapse
Affiliation(s)
- Ruoyu He
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou Zhejiang, 310005, Zhejiang Province, China
| | - Yanfei Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou Zhejiang, 310005, Zhejiang Province, China
| | - Chen Shuang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou, 310005, Zhejiang Province, China
| | - Chan Xu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou, 310005, Zhejiang Province, China
| | - Xiaoling Li
- Elder Medicine Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou, 310005, Zhejiang Province, China
| | - Yanfei Cao
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou Zhejiang, 310005, Zhejiang Province, China
| |
Collapse
|
49
|
Yan Z, Niu L, Wang S, Gao C, Pan S. Intestinal Piezo1 aggravates intestinal barrier dysfunction during sepsis by mediating Ca 2+ influx. J Transl Med 2024; 22:332. [PMID: 38575957 PMCID: PMC10996241 DOI: 10.1186/s12967-024-05076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Intestinal barrier dysfunction is a pivotal factor in sepsis progression. The mechanosensitive ion channel Piezo1 is associated with barrier function; however, its role in sepsis-induced intestinal barrier dysfunction remains poorly understood. METHODS The application of cecal ligation and puncture (CLP) modeling was performed on both mice of the wild-type (WT) variety and those with Villin-Piezo1flox/flox genetic makeup to assess the barrier function using in vivo FITC-dextran permeability measurements and immunofluorescence microscopy analysis of tight junctions (TJs) and apoptosis levels. In vitro, Caco-2 monolayers were subjected to TNF-α incubation. Moreover, to modulate Piezo1 activation, GsMTx4 was applied to inhibit Piezo1 activation. The barrier function, intracellular calcium levels, and mitochondrial function were monitored using calcium imaging and immunofluorescence techniques. RESULTS In the intestinal tissues of CLP-induced septic mice, Piezo1 protein levels were notably elevated compared with those in normal mice. Piezo1 has been implicated in the sepsis-mediated disruption of TJs, apoptosis of intestinal epithelial cells, elevated intestinal mucosal permeability, and systemic inflammation in WT mice, whereas these effects were absent in Villin-Piezo1flox/flox CLP mice. In Caco-2 cells, TNF-α prompted calcium influx, an effect reversed by GsMTx4 treatment. Elevated calcium concentrations are correlated with increased accumulation of reactive oxygen species, diminished mitochondrial membrane potential, and TJ disruption. CONCLUSIONS Thus, Piezo1 is a potential contributor to sepsis-induced intestinal barrier dysfunction, influencing apoptosis and TJ modification through calcium influx-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zimeng Yan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Lei Niu
- Department of Emergency, Shanghai Jiahui International Hospital, No. 689, Guiping Rd., Shanghai, China
| | - Shangyuan Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| |
Collapse
|
50
|
George M, Allerkamp HH, Koshenov Z, Oflaz FE, Tam-Amersdorfer C, Kolesnik T, Rittchen S, Lang M, Fröhlich E, Graier W, Strobl H, Wadsack C. Liver X receptor activation mitigates oxysterol-induced dysfunction in fetoplacental endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159466. [PMID: 38369253 DOI: 10.1016/j.bbalip.2024.159466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Maintaining the homeostasis of the placental vasculature is of paramount importance for ensuring normal fetal growth and development. Any disruption in this balance can lead to perinatal morbidity. Several studies have uncovered an association between high levels of oxidized cholesterol (oxysterols), and complications during pregnancy, including gestational diabetes mellitus (GDM) and preeclampsia (PE). These complications often coincide with disturbances in placental vascular function. Here, we investigate the role of two oxysterols (7-ketocholesterol, 7β-hydroxycholesterol) in (dys)function of primary fetoplacental endothelial cells (fpEC). Our findings reveal that oxysterols exert a disruptive influence on fpEC function by elevating the production of reactive oxygen species (ROS) and interfering with mitochondrial transmembrane potential, leading to its depolarization. Moreover, oxysterol-treated fpEC exhibited alterations in intracellular calcium (Ca2+) levels, resulting in the reorganization of cell junctions and a corresponding increase in membrane stiffness and vascular permeability. Additionally, we observed an enhanced adhesion of THP-1 monocytes to fpEC following oxysterol treatment. We explored the influence of activating the Liver X Receptor (LXR) with the synthetic agonist T0901317 (TO) on oxysterol-induced endothelial dysfunction in fpEC. Our results demonstrate that LXR activation effectively reversed oxysterol-induced ROS generation, monocyte adhesion, and cell junction permeability in fpEC. Although the effects on mitochondrial depolarization and calcium mobilization did not reach statistical significance, a strong trend towards stabilization of calcium mobilization was evident in LXR-activated cells. Taken together, our results suggest that high levels of systemic oxysterols link to placental vascular dysfunction and LXR agonists may alleviate their impact on fetoplacental vasculature.
Collapse
Affiliation(s)
- Meekha George
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Zhanat Koshenov
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Department of Biochemistry, Weill Cornell Medicine, New York, USA
| | - Furkan E Oflaz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | - Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria; Department of Pharmacology, Medical University of Graz, Austria
| | - Magdalena Lang
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | - Wolfgang Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; BioTech-Med, 8010 Graz, Austria.
| |
Collapse
|