1
|
Hassane AMA, Obiedallah M, Karimi J, Khattab SMR, Hussein HR, Abo-Dahab Y, Eltoukhy A, Abo-Dahab NF, Abouelela ME. Unravelling fungal genome editing revolution: pathological and biotechnological application aspects. Arch Microbiol 2025; 207:150. [PMID: 40402294 DOI: 10.1007/s00203-025-04360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Fungi represent a broad and evolutionarily unique group within the eukaryotic domain, characterized by extensive ecological adaptability and metabolic versatility. Their inherent biological intricacy is evident in the diverse and dynamic relationships they establish with various hosts and environmental niches. Notably, fungi are integral to disease processes and a wide array of biotechnological innovations, highlighting their significance in medical, agricultural, and industrial domains. Recent advances in genetic engineering have revolutionized fungal research, with CRISPR/Cas emerging as the most potent and versatile genome editing platform. This technology enables precise manipulation of fungal genomes, from silencing efflux pump genes in Candida albicans (enhancing antifungal susceptibility) to targeting virulence-associated sirtuins in Aspergillus fumigatus (attenuating pathogenicity). Its applications span gene overexpression, multiplexed mutagenesis, and secondary metabolite induction, proving transformative for disease management and biotechnological innovation. CRISPR/Cas9's advantages-unmatched precision, cost-effectiveness, and therapeutic potential-are tempered by challenges like off-target effects, ethical dilemmas, and regulatory gaps. Integrating nanoparticle delivery systems and multi-omics approaches may overcome technical barriers, but responsible innovation requires addressing these limitations. CRISPR-driven fungal genome editing promises to redefine solutions for drug-resistant infections, sustainable bioproduction, and beyond as the field evolves. In conclusion, genome editing technologies have enhanced our capacity to dissect fungal biology and expanded fungi's practical applications across various scientific and industrial domains. Continued innovation in this field promises to unlock the vast potential of fungal systems further, enabling more profound understanding and transformative biotechnological progress.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Marwa Obiedallah
- Department of Botany and Microbiology, Faculty of Science, University of Sohag, Sohag, 82524, Egypt
| | - Javad Karimi
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | - Sadat M R Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hussein R Hussein
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Youssef Abo-Dahab
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco 1700 Fourth St, San Francisco, CA, USA
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Nageh F Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Huang K, Bai H, Meng C, Kashif M, Wei Z, Tang Z, He S, Wu S, He S, Jiang C. Deciphering the ammonia transformation mechanism of a novel marine multi-stress-tolerant yeast, Pichia kudriavzevii HJ2, as revealed by integrated omics analysis. Appl Environ Microbiol 2025:e0221124. [PMID: 40338088 DOI: 10.1128/aem.02211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Ammonia nitrogen posed a significant threat to aquatic animals in aquaculture environments, and the substantial potential of microorganisms in removing ammonia nitrogen had garnered considerable attention. This study identified a marine yeast, Pichia kudriavzevii HJ2, which effectively removed ammonia nitrogen. By combining transcriptomics and metabolomics, the ammonia nitrogen transformation mechanism of HJ2 was elucidated. HJ2 achieved 100% ammonia nitrogen removal efficiency within 1 day of fermentation at 35°C with 300 mg/L ammonia nitrogen and 73.56% removal efficiency within 36 h with 600 mg/L ammonia nitrogen. Transcriptomics revealed that exposure to 600 mg/L ammonia nitrogen resulted in 541 up-regulated genes and 567 down-regulated genes in the HJ2 strain. Differentially expressed genes (DEGs) were primarily involved in the tricarboxylic acid (TCA) cycle and amino acid metabolism. Metabolomics revealed that HJ2 facilitated the production of 383 up-regulated metabolites and suppressed 137 down-regulated metabolites when exposed to 600 mg/L ammonia nitrogen. Integrating transcriptomics and metabolomics analyses showed that HJ2 removed ammonia nitrogen by sensing its presence in the extracellular environment, activating the TCA cycle, enhancing amino acid metabolism and nucleotide metabolism, and promoting its robust growth and reproduction. Amino acid metabolism played an important role in the ammonia transformation mechanism of HJ2. The result was confirmed by the increased activity of glutamate dehydrogenase (GDH) and aspartate aminotransferase (GOT). Up-regulated nitrogen metabolites such as L-glutamate, L-aspartic acid, spermidine, and trigonelline were produced. The results of enzyme activity tests, construction of overexpressing strains, and adding exogenous amino acid experiments demonstrated that HJ2 could utilize GDH and GOT ammonia assimilation pathways.IMPORTANCEAmmonia nitrogen removal ability was a universal characteristic among the ammonia-oxidizing bacteria or archaea. Recently, yeast strains from the genus Pichia were found to have ammonia nitrogen removal ability. However, the mechanism of ammonia nitrogen removal in Pichia had not been reported. In the study, the ammonia nitrogen removal efficiency of Pichia kudriavzevii HJ2 was identified, and the mechanisms by which HJ2 transformed ammonia nitrogen into non-toxic organic nitrogen were elucidated, offering potential solutions to pollution challenges in aquaculture and helping minimize resource waste. The study offered new insights into the transformation mechanism of microbial ammonia nitrogen removal and its environmentally friendly application.
Collapse
Affiliation(s)
- Kunmei Huang
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Huashan Bai
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Can Meng
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Muhammad Kashif
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Zhiling Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zaihang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shanguang Wu
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Sheng He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuangzu Autonomous Region, Nanning, China
| | - Chengjian Jiang
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
3
|
Mafe AN, Nkene IH, Ali ABM, Edo GI, Akpoghelie PO, Yousif E, Isoje EF, Igbuku UA, Ismael SA, Essaghah AEA, Ahmed DS, Umar H, Alamiery AA. Smart Probiotic Solutions for Mycotoxin Mitigation: Innovations in Food Safety and Sustainable Agriculture. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10569-4. [PMID: 40312537 DOI: 10.1007/s12602-025-10569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Mycotoxin contamination poses severe risks to food safety and agricultural sustainability. Probiotic-based interventions offer a promising strategy for mitigating these toxic compounds through adsorption, biodegradation, and gut microbiota modulation. This review examines the mechanisms by which specific probiotic strains inhibit mycotoxin biosynthesis, degrade existing toxins, and enhance host detoxification pathways. Emphasis is placed on strain-specific interactions, genetic and metabolic adaptations, and advancements in formulation technologies that improve probiotic efficacy in food matrices. Also, the review explores smart delivery systems, such as encapsulation techniques and biofilm applications, to enhance probiotic stability and functionality. Issues related to regulatory approval, strain viability, and large-scale implementation are also discussed. By integrating molecular insights, applied case studies, and innovative probiotic-based solutions, this review provides a roadmap for advancing safe and sustainable strategies to combat mycotoxin contamination in food and agricultural systems.
Collapse
Affiliation(s)
- Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Jalingo, Nigeria
| | - Istifanus Haruna Nkene
- Department of Microbiology, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Endurance Fegor Isoje
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Shams A Ismael
- Department of Medical Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- AUIQ, Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, Thi Qar, P.O. Box: 64004, An Nasiriyah, Iraq
| |
Collapse
|
4
|
Velasco-Aburto S, Llama-Palacios A, Sánchez MC, Ciudad MJ, Collado L. Nutritional Approach to Small Intestinal Bacterial Overgrowth: A Narrative Review. Nutrients 2025; 17:1410. [PMID: 40362719 PMCID: PMC12073203 DOI: 10.3390/nu17091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a functional digestive disorder whose incidence has been acknowledged by several medical associations, such as the American Gastroenterological Association. It is estimated that between 14% and 40% of patients diagnosed with irritable bowel syndrome also have SIBO, highlighting the importance of accurate diagnosis to enable effective treatment plans. Nutrition and diet therapy play a pivotal role in SIBO management, not only in alleviating symptoms but also in preventing relapses. The objective of this review is to gather updated information on dietary management for SIBO to define the role of the dietitian and determine the most suitable nutritional therapy based on scientific evidence. The review will encompass various strategies, ranging from specific diets to dietary supplements, as well as the potential contribution of dietary treatment to improving SIBO.
Collapse
Affiliation(s)
- Sol Velasco-Aburto
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - María Carmen Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - María José Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
5
|
Dezfouli KA, Darban M, Hemmati M, Zahir M, Kermanshahi MS, Abdolshahi A, Sadr H, Bagheri B. A Randomized, Controlled Study Evaluating Effects of Saccharomyces boulardii in Adult Patients with Asthma. Drug Res (Stuttg) 2025. [PMID: 40228543 DOI: 10.1055/a-2564-2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
To determine the potential benefit of adding Saccharomyces boulardii (S. boulardii) probiotic supplementation to conventional treatments in asthmatic patients.In this randomized, double-blinded, and placebo-controlled trial 50 asthmatic patients were enrolled. The eligible subjects received either S. boulardii (N=25) or placebo (N=25) added to conventional treatments for three months. Spirometry parameters (FEV1, FVC, FEV1/FVC, and FEF 25-75%) and blood test parameters (CBC, eosinophil percentage, IgE, IL-5, ESR and CRP) were measured and compared at baseline and after treatment completion.The mean age was 39.22±12.55 years. As compared to baseline values, a significant improvement was noted in FEV1 in patients who received S. boulardii (p=0.026). Although the changes in FEV1, FVC, FEV1/FVC, and FEF 25-75% were comparable between the study groups, the differences were not statistically significant (p ˃ 0.05). In addition, patients who received probiotic showed lower levels of IL-5 and IgE in comparison with patients who received placebo.Our findings showed that the addition of S. boulardii to conventional treatments partially improved the pulmonary function and was associated with reductions in IgE and IL-5 levels.
Collapse
Affiliation(s)
- Kavosh Ansari Dezfouli
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Department of Internal Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mazyar Zahir
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Anna Abdolshahi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hani Sadr
- Department of Internal Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
6
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2025; 17:763-780. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
7
|
Allahyari S, Pakbin B, Dibazar SP, Karami N, Hamidian G, Zolghadr L, Ovissipour R, Mahmoudi R. Probiotic Saccharomyces boulardii Against Cronobacter sakazakii Infection: In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10524-3. [PMID: 40113720 DOI: 10.1007/s12602-025-10524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Cronobacter sakazakii is an opportunistic foodborne pathogen causing intestinal and extra-intestinal diseases in humans, especially young children, and is regarded as one of the main concerns in public health. Saccharomyces boulardii is a well-known probiotic yeast widely used to treat and prevent antibiotic-associated diarrheal infections in infants and neonates. This study evaluated the preventive effects and potential of probiotic S. boulardii against C. sakazakii intestinal infections in humans. Viability, bacterial virulence factor, cellular pro-inflammatory gene expression, and nanomechanical properties of the cytoplasmic membrane of caco-2 cells were evaluated using MTT, real-time PCR, and AFM methods, respectively. Using histopathological analysis, S. boulardii treatment was evaluated on infected newborn C57 BL/6 mice. We found that S. boulardii inoculation significantly (P < 0.05) increased the viability and downregulated the cellular pro-inflammatory genes (IL-8 and NFkB) and bacterial virulence factor genes (ompA and hfq) in infected intestinal cells while also decreasing the morphological alterations. We also observed that S. boulardii treatment reduced the intestinal damage induced by C. sakazakii infection. In conclusion, our findings demonstrate that S. boulardii effectively protects against C. sakazakii infections. This probiotic yeast holds promise as a potential preventive and therapeutic agent for intestinal diseases associated with C. sakazakii.
Collapse
Affiliation(s)
- Samaneh Allahyari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Pakbin
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Neda Karami
- Department of Medicine Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
8
|
Yu H, Nyasae L, Lee R, Lu W, So E, Feng H, Yang Z. Development of a Dihydrofolate Reductase Selection System for Saccharomyces boulardii. Int J Mol Sci 2025; 26:2073. [PMID: 40076696 PMCID: PMC11899850 DOI: 10.3390/ijms26052073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Saccharomyces boulardii, the only commercially available probiotic yeast, has gained attention as a recombinant live biotherapeutic product (rLBP) empowered with the expression of heterologous therapeutic proteins for treating gastrointestinal diseases. However, the genetic modification of S. boulardii intended for clinical use is hindered by regulatory and technical challenges. In this study, we developed a dihydrofolate reductase (DHFR)-based selection system as an innovative alternative to traditional auxotrophic selection strategies for engineering S. boulardii. The DHFR selection system overcame inherent resistance of the yeast to methotrexate (MTX) by incorporating sulfanilamide, a dihydrofolate synthesis inhibitor, to enhance selection efficiency. The system demonstrated robust functionality, enabling the efficient screening of high-expression clones and tunable expression of therapeutic proteins, such as cytokines and antibodies, by modulating MTX concentrations. Furthermore, the yeast's endogenous DHFR homolog, DFR1, was shown to be a viable selection marker, providing greater host compatibility while maintaining functionality compared to DHFR. This selection system avoids reliance on foreign antibiotic selection markers and the construction of auxotrophic strains, thus simplifying engineering and allowing for a tunable protein expression. These advancements establish the DHFR/DFR1 selection system as a robust and versatile platform for developing S. boulardii-based live biotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Yang
- Fzata Inc., 1450 S. Rolling Rd, Halethorpe, MD 21227, USA
| |
Collapse
|
9
|
Yang CC, Zhang S, Zhang R, Zhao YN, Yang DW, Yang MY, Huang LJ. Application of Saccharomyces boulardii in combination with sulfasalazine in ulcerative colitis patients demonstrates significant effectiveness. World J Gastrointest Surg 2025; 17:102342. [DOI: 10.4240/wjgs.v17.i2.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a complex inflammatory bowel disease, and its etiology and pathogenesis remain incompletely elucidated.
AIM To analyze the effects of Saccharomyces boulardii in combination with sulfasalazine on intestinal microbiota and intestinal barrier function in patients with UC.
METHODS A retrospective analysis of clinical data from 127 UC patients admitted to our hospital between January 2021 and January 2023 was conducted. All patients met complete inclusion and exclusion criteria. Based on the treatment interventions received, they were divided into a control group (n = 63) and an observation group (n = 64). Both groups of patients received routine treatment upon admission. The control group received sulfasalazine in addition to routine interventions, while the observation group received a combination of Saccharomyces boulardii on the basis of the control group’s treatment. The clinical efficacy, improvement in symptoms, modified Baron endoscopic scores, quality of life “inflammatory bowel disease questionnaire (IBDQ)”, levels of intestinal microbial indicators (such as Lactobacillus, Bifidobacterium, Enterococcus, and Escherichia coli), intestinal mucosal barrier function indicators [diamine oxidase (DAO), lipopolysaccharide (LPS), D-lactic acid (D-LA)], and adverse reaction occurrences were compared between the two groups.
RESULTS (1) Clinical efficacy: The total effective rate in the control group was 79.37%, while in the observation group, it was 93.75%, significantly higher than that of the control group (P < 0.05); (2) Improvement in symptoms: The observation group showed significantly lower relief time for abdominal pain, diarrhea, rectal bleeding, fever symptoms, and mucosal healing time compared to the control group (P < 0.05); (3) Baron endoscopic scores and IBDQ scores: Before treatment, there was no significant difference in Baron endoscopic scores and IBDQ scores between the two groups (P > 0.05). However, after treatment, the observation group showed significantly lower Baron endoscopic scores and higher IBDQ scores compared to the control group (P < 0.05); (4) Levels of intestinal microbial indicators: Before treatment, there was no significant difference in the levels of Lactobacillus, Bifidobacterium, Enterococcus, and Escherichia coli between the two groups (P > 0.05). After treatment, the levels of Lactobacillus and Bifidobacterium in the observation group were significantly higher than those in the control group, while the levels of Enterococcus and Escherichia coli were significantly lower than those in the control group (P < 0.05); (5) Levels of intestinal mucosal barrier function indicators: Before treatment, there was no significant difference in the levels of DAO, LPS, and D-LA between the two groups (P > 0.05). However, after treatment, the levels of DAO, LPS, and D-LA in the observation group were significantly lower than those in the control group (P < 0.05); and (6) Occurrence of adverse reactions: The incidence of adverse reactions in the control group was 9.52%, while in the observation group, it was 10.94%. There was no significant difference in the occurrence of adverse reactions between the two groups (P > 0.05).
CONCLUSION The application of Saccharomyces boulardii in combination with sulfasalazine in UC patients demonstrates significant effectiveness. Compared to sole sulfasalazine intervention, the combined application of Saccharomyces boulardii further promotes the relief of relevant symptoms in patients, alleviates intestinal mucosal inflammation, and improves the quality of life. Its action may be related to rectifying the imbalance in intestinal microbiota and improving intestinal mucosal barrier function. Moreover, the combined use of Saccharomyces boulardii does not increase the risk of adverse reactions in patients, indicating a higher level of medication safety and advocating for its clinical promotion and application.
Collapse
Affiliation(s)
- Chun-Chun Yang
- Department of Gastroenterology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Sui Zhang
- Department of Hepatic, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Rui Zhang
- Department of Gastroenterology Center, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ya-Nan Zhao
- Department of Gastroenterology Center, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Da-Wei Yang
- Department of Hepatic, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ming-Yue Yang
- Department of Gastroenterology Center, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Li-Jing Huang
- Department of Rheumatology and Immunology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
10
|
Li M, Xie Y. Efficacy and safety of Saccharomyces boulardii as an adjuvant therapy for the eradication of Helicobacter pylori: a meta-analysis. Front Cell Infect Microbiol 2025; 15:1441185. [PMID: 40012609 PMCID: PMC11860874 DOI: 10.3389/fcimb.2025.1441185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Background Helicobacter pylori (H. pylori) is highly prevalent worldwide and is closely associated with many gastric conditions. Current methods for eradicating H. pylori include triple or quadruple therapy, including antibiotics, proton pump inhibitors, and bismuth agents; however, with antibiotic abuse and increased drug resistance rates, the effectiveness of traditional methods is gradually decreasing, with many adverse effects such as abdominal pain, diarrhea, and intolerance. In recent years, there has been controversy regarding whether adding Saccharomyces boulardii (S. boulardii) to traditional therapies is beneficial for eradicating H. pylori. Aim To evaluate the efficacy and safety of S. boulardii as an adjuvant therapy for the eradication of H. pylori. Methods We systematically searched the PubMed and Web of Science databases from January 2002 to January 2023. The primary outcome was the H. pylori eradication rate. The secondary outcomes included total adverse effects, abdominal pain, diarrhea, bloating, constipation, nausea, vomiting, taste disorders, and other adverse reactions. We evaluated the included studies for publication bias and heterogeneity. Fixed- and random-effects models were used for studies without and with heterogeneity, respectively, to calculate the risk ratios (RRs) and conduct sensitivity and subgroup analyses. Results Nineteen studies comprising 5,036 cases of H. pylori infection were included in this meta-analysis. The addition of S. boulardii to traditional therapy significantly improved the H. pylori eradication rate [RR=1.11, 95% confidence interval (CI): 1.08-1.15] and reduced the incidence of total adverse effects (RR=0.49, 95% CI: 0.37-0.66), diarrhea (RR=0.36, 95% CI: 0.26-0.48), abdominal distension (RR=0.49, 95% CI: 0.33-0.72), constipation (RR=0.38, 95% CI: 0.26-0.57), and nausea (RR=0.50, 95% CI: 0.37-0.68). However, it did not reduce the occurrence of abdominal pain, vomiting, or taste disorders. Conclusions S. boulardii supplementation in traditional eradication therapy significantly improves the H. pylori eradication rate and reduces the total adverse effects and incidence of diarrhea, bloating, constipation, and nausea. Systematic review registration Prospero, identifier CRD42024549780.
Collapse
Affiliation(s)
| | - Ying Xie
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Bustos AY, Taranto MP, Gerez CL, Agriopoulou S, Smaoui S, Varzakas T, Enshasy HAE. Recent Advances in the Understanding of Stress Resistance Mechanisms in Probiotics: Relevance for the Design of Functional Food Systems. Probiotics Antimicrob Proteins 2025; 17:138-158. [PMID: 38829565 PMCID: PMC11832585 DOI: 10.1007/s12602-024-10273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
Collapse
Affiliation(s)
- Ana Yanina Bustos
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL/UNSE-CONICET), RN 9-Km 1125, (4206), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA), Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, (4200), Santiago del Estero, Argentina
- Facultad de Humanidades, Ciencias Sociales y de La Salud (FHU), Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, (4200), Santiago del Estero, Argentina
| | - María Pía Taranto
- Centro de Referencia Para Lactobacilos (CONICET-CERELA), Chacabuco 145, (4000), San Miguel de Tucumán, Argentina
| | - Carla Luciana Gerez
- Centro de Referencia Para Lactobacilos (CONICET-CERELA), Chacabuco 145, (4000), San Miguel de Tucumán, Argentina
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100, Antikalamos Messinia, Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100, Antikalamos Messinia, Kalamata, Greece.
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Borg Al Arab, 21934, Egypt
| |
Collapse
|
12
|
Cong L, Zhou Y, Zhang Y, Mao S, Chen C, Wang L, Li X, Zhang Z, Zhu Z, Li Y. BTS1-knockout Saccharomyces cerevisiae with broad-spectrum antimicrobial activity through lactic acid accumulation. Front Cell Infect Microbiol 2025; 15:1494149. [PMID: 39958936 PMCID: PMC11825752 DOI: 10.3389/fcimb.2025.1494149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
Bacterial infections pose significant threats to human health, and prudent antibiotic use remains a key strategy for disease treatment and control. However, a global escalation of drug resistance among pathogenic bacteria presents a formidable challenge. Probiotics have emerged as a promising approach to combating pathogenic bacterial infections. In this study, we investigated the antibacterial activity of BTS1-knockout (BTS1-KO) Saccharomyces cerevisiae. Our findings demonstrate its effective inhibition of pathogen growth as evidenced by Minimum inhibitory concentration (MIC) assays, growth curves, bacteriostatic spectrum analyses and co-culture experiments. Additionally, it significantly impedes Escherichia coli and Staphylococcus aureus biofilm formation. Moreover, BTS1-KO S. cerevisiae exhibits low haemolytic activity, acid resistance, resistance to high bile salt concentrations, high auto-aggregation capacity and high co-aggregation capacities with pathogenic bacteria. Moreover, infected larvae treated with BTS1-KO S. cerevisiae in Galleria mellonella-E. coli (in vivo) and G. mellonella-S. aureus (in vivo) infection models showed significantly prolonged survival times. Mechanistic investigations revealed that BTS1-KO S. cerevisiae primarily produced lactic acid via metabolism, thereby lowering the environmental pH and inhibiting pathogenic bacterial growth. In summary, our study underscores the probiotic potential of BTS1-KO S. cerevisiae, offering broad-spectrum antibacterial activity in vitro and in vivo with low toxicity. This highlights BTS1-KO S. cerevisiae as a promising probiotic candidate for clinical prevention and control of bacterial infection.
Collapse
Affiliation(s)
- Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Zhou
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaoqun Chen
- Department of Clinical Laboratory, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Liying Wang
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuo Zhang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Hu D, Li X, Duan X, Yang L, Luo B, Wang L, Hu Z, Zhou Y, Qian P. Recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG: a candidate for an oral subunit vaccine against F4+ ETEC infection. Appl Environ Microbiol 2025; 91:e0181724. [PMID: 39601541 PMCID: PMC11784076 DOI: 10.1128/aem.01817-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Diarrheal diseases attributable to multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) are escalating in severity, posing significant risks to the health and safety of both humans and animals. This study used Saccharomyces cerevisiae EBY100 to display the FaeG subunit of F4 colonizing factor as an oral vaccine against F4+ ETEC infection. Mice were orally immunized twice with 108 CFU of EBY100/pYD1-FaeG, followed by a challenge with F4+ ETEC EC6 on day 7 post-immunization. The results showed that the recombinant strain EBY100/pYD1-FaeG orally enhanced the growth of the small intestine villi, significantly boosted the expression of tight junction proteins (ZO-1, Occludin, MUC2, and Claudin) (P < 0.05), and modulated the gut microbiota composition. Additionally, immunization with EBY100/pYD1-FaeG also upregulated the levels of IL-2, IL-4, and IFN-γ in the intestines of mice (P < 0.01), while serum IgG and fecal sIgA titer significantly increased (P < 0.05). These immune responses enhanced the capacity to fight against ETEC, leading to an increased survival rate of mice and relieved damage to tissues and organs of mice infection. In summary, the study suggested that the recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG could effectively stimulate the immune response and generate specific antibodies against F4+ ETEC, showing its potential to serve as a subunit oral vaccine candidate for preventing F4+ ETEC infection.IMPORTANCEThe multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) strains are the primary clinical pathogens responsible for post-weaning diarrhea in piglets, resulting in substantial economic losses in the pig farming industry. In the study, we developed an oral vaccine candidate, Saccharomyces cerevisiae EBY100/pYD1-FaeG, to prevent diarrhea caused by multidrug-resistant F4+ ETEC. Oral administration of EBY100/pYD1-FaeG significantly enhanced immune responses, improved intestinal health, and provided protection against F4+ ETEC infection in mice. This approach offers a potential application prospect for preventing F4+ ETEC infections that lead to post-weaning diarrhea in clinical settings and provides a promising solution for addressing the growing threat of antibiotic resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuyue Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baizhi Luo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zihui Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Martyniak A, Wójcicka M, Rogatko I, Piskorz T, Tomasik PJ. A Comprehensive Review of the Usefulness of Prebiotics, Probiotics, and Postbiotics in the Diagnosis and Treatment of Small Intestine Bacterial Overgrowth. Microorganisms 2025; 13:57. [PMID: 39858825 PMCID: PMC11768010 DOI: 10.3390/microorganisms13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a disorder characterized by the excessive growth of bacteria in the small intestine. Bacterial overgrowth disrupts the bacterial balance and can lead to abdominal pain, weight loss, and gastrointestinal symptoms, including bloating, diarrhea, and malabsorption. SIBO is widespread in the population. There are two main methods for diagnosing SIBO: breath tests and bacterial culture. The most commonly used method is a breath test, which enables the division of SIBO into the following three types: hydrogen-dominant (H-SIBO), methane-dominant (CH4-SIBO), and hydrogen/methane-dominant (H/CH4-SIBO). This comprehensive review aims to present the current knowledge on the use of prebiotics, probiotics, and postbiotics in the context of SIBO. For this purpose, medical databases such as MEDLINE (PubMed) and Scopus were analyzed using specific keywords and their combinations. This review is based on research studies no older than 10 years old and those using only human models. In summary, clinical studies have shown that the efficacy of SIBO therapy can be increased by combining antibiotics with probiotics, especially in vulnerable patients such as children and pregnant women. The further development of diagnostic methods, such as point of care testing (POCT) and portable devices, and a better understanding of the mechanisms of biotics action are needed to treat SIBO more effectively and improve the quality of life of patients.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Magdalena Wójcicka
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Iwona Rogatko
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Tomasz Piskorz
- Chair in Gynecology and Obstetrics, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Przemysław J. Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| |
Collapse
|
15
|
Zhang Z, Zhang Y, Yuan Q, Wang Z, Hu S, Yin P, He Z. A Meta-Analysis of the Human Gut Mycobiome Using Internal Transcribed Spacer Data. Microorganisms 2024; 12:2567. [PMID: 39770770 PMCID: PMC11678510 DOI: 10.3390/microorganisms12122567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The intestinal mycobiome is closely related to human health. There have been several reports investigating the association between the gut fungi and disease, but there is still a lack of overall assessment of the human gut mycobiome. Here, we performed a meta-analysis based on 2372 ITS (Internal Transcribed Spacer) data collected publicly online. We found that the mycobiome diversity of human gut fungi varies significantly across diseases by using EasyAmplicon, and these fungi are mainly composed of three genera, Saccharomyces, Candida, and Aspergillus. In addition, we performed the construction of disease prediction models based on ITS data by using the random forest model and verified the generalization ability of the models. We hope that our results will provide strong support for subsequent studies of the intestinal mycobiome.
Collapse
Affiliation(s)
- Zeming Zhang
- School of Engineering Medicine, Beihang University, Rd37, Xueyuan, Haidian, Beijing 100191, China; (Z.Z.); (Y.Z.); (Q.Y.); (Z.W.)
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing 100191, China
| | - Yining Zhang
- School of Engineering Medicine, Beihang University, Rd37, Xueyuan, Haidian, Beijing 100191, China; (Z.Z.); (Y.Z.); (Q.Y.); (Z.W.)
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing 100191, China
| | - Qixiang Yuan
- School of Engineering Medicine, Beihang University, Rd37, Xueyuan, Haidian, Beijing 100191, China; (Z.Z.); (Y.Z.); (Q.Y.); (Z.W.)
| | - Zuoyi Wang
- School of Engineering Medicine, Beihang University, Rd37, Xueyuan, Haidian, Beijing 100191, China; (Z.Z.); (Y.Z.); (Q.Y.); (Z.W.)
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100045, China;
| | - Peng Yin
- School of Engineering Medicine, Beihang University, Rd37, Xueyuan, Haidian, Beijing 100191, China; (Z.Z.); (Y.Z.); (Q.Y.); (Z.W.)
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing 100191, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Rd37, Xueyuan, Haidian, Beijing 100191, China; (Z.Z.); (Y.Z.); (Q.Y.); (Z.W.)
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing 100191, China
| |
Collapse
|
16
|
Guarner F, Bustos Fernandez L, Cruchet S, Damião A, Maruy Saito A, Riveros Lopez JP, Rodrigues Silva L, Valdovinos Diaz MA. Gut dysbiosis mediates the association between antibiotic exposure and chronic disease. Front Med (Lausanne) 2024; 11:1477882. [PMID: 39568738 PMCID: PMC11576192 DOI: 10.3389/fmed.2024.1477882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Antibiotics are safe, effective drugs and continue to save millions of lives and prevent long-term illness worldwide. A large body of epidemiological, interventional and experimental evidence shows that exposure to antibiotics has long-term negative effects on human health. We reviewed the literature data on the links between antibiotic exposure, gut dysbiosis, and chronic disease (notably with regard to the "developmental origins of health and disease" ("DOHaD") approach). Molecular biology studies show that the systemic administration of antibiotic to infants has a rapid onset but also often a long-lasting impact on the microbial composition of the gut. Along with other environmental factors (e.g., an unhealthy "Western" diet and sedentary behavior), antibiotics induce gut dysbiosis, which can be defined as the disruption of a previously stable, functionally complete microbiota. Gut dysbiosis many harmful long-term effects on health. Associations between early-life exposure to antibiotics have been reported for chronic diseases, including inflammatory bowel disease, celiac disease, some cancers, metabolic diseases (obesity and type 2 diabetes), allergic diseases, autoimmune disorders, atherosclerosis, arthritis, and neurodevelopmental, neurodegenerative and other neurological diseases. In mechanistic terms, gut dysbiosis influences chronic disease through direct effects on mucosal immune and inflammatory pathways, plus a wide array of direct or indirect effects of short-chain fatty acids, the enteric nervous system, peristaltic motility, the production of hormones and neurotransmitters, and the loss of intestinal barrier integrity (notably with leakage of the pro-inflammatory endotoxin lipopolysaccharide into the circulation). To mitigate dysbiosis, the administration of probiotics in patients with chronic disease is often (but not always) associated with positive effects on clinical markers (e.g., disease scores) and biomarkers of inflammation and immune activation. Meta-analyses are complicated by differences in probiotic composition, dose level, and treatment duration, and large, randomized, controlled clinical trials are lacking in many disease areas. In view of the critical importance of deciding whether or not to prescribe antibiotics (especially to children), we suggest that the DOHaD concept can be logically extended to "gastrointestinal origins of health and disease" ("GOHaD") or even "microbiotic origins of health and disease" ("MOHaD").
Collapse
Affiliation(s)
| | - Luis Bustos Fernandez
- Centro Medico Bustos Fernandez, Instituto de Gastroenterologia, Buenos Aires, Argentina
| | - Sylvia Cruchet
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Adérson Damião
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aldo Maruy Saito
- Catedra de Pediatria, Hospital Cayetano Heredia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
17
|
Moonsamy G, Roets-Dlamini Y, Langa CN, Ramchuran SO. Advances in Yeast Probiotic Production and Formulation for Preventative Health. Microorganisms 2024; 12:2233. [PMID: 39597622 PMCID: PMC11596959 DOI: 10.3390/microorganisms12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The use of probiotics has been gaining popularity in terms of inclusion into human diets over recent years. Based on properties exerted by these organisms, several benefits have been elucidated and conferred to the host. Bacteria have been more commonly used in probiotic preparations compared to yeast candidates; however, yeast exhibit several beneficial properties, such as the prevention and treatment of diarrhea, the production of antimicrobial agents, the prevention of pathogen adherence to intestinal sites, the maintenance of microbial balance, the modulation of the immune system, antibiotic resistance, amongst others. Saccharomyces boulardii is by far the most studied strain; however, the potential for the use of other yeast candidates, such as Kluyveromyces lactis and Debaryomyces hansenii, amongst others, have also been evaluated in this review. Furthermore, a special focus has been made regarding the production considerations for yeast-based probiotics and their formulation into different delivery formats. When drafting this review, evidence suggests that the use of yeasts, both wild-type and genetically modified candidates, can extend beyond gut health to support skin, the respiratory system, and overall immune health. Hence, this review explores the potential of yeast probiotics as a safe, effective strategy for preventative health in humans, highlighting their mechanisms of action, clinical applications, and production considerations.
Collapse
Affiliation(s)
- Ghaneshree Moonsamy
- Council for Scientific and Industrial Research (CSIR) Future Production Chemicals, Meiring Naude Drive, Pretoria 0081, South Africa; (Y.R.-D.); (C.N.L.); (S.O.R.)
| | | | | | | |
Collapse
|
18
|
Yaghmaei H, Bahanesteh A, Soltanipur M, Takaloo S, Rezaei M, Siadat SD. The Role of Gut Microbiota Modification in Nonalcoholic Fatty Liver Disease Treatment Strategies. Int J Hepatol 2024; 2024:4183880. [PMID: 39444759 PMCID: PMC11498984 DOI: 10.1155/2024/4183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/25/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most common chronic liver diseases is nonalcoholic fatty liver disease (NAFLD), which affects many people around the world. Gut microbiota (GM) dysbiosis seems to be an influential factor in the pathophysiology of NAFLD because changes in GM lead to fundamental changes in host metabolism. Therefore, the study of the effect of dysbiosis on the pathogenicity of NAFLD is important. European clinical guidelines state that the best advice for people with NAFLD is to lose weight and improve their lifestyle, but only 40% of people can achieve this goal. Accordingly, it is necessary to provide new treatment approaches for prevention and treatment. In addition to dietary interventions and lifestyle modifications, GM modification-based therapies are of interest. These therapies include probiotics, synbiotics, fecal microbiota transplantation (FMT), and next-generation probiotics. All of these treatments have had promising results in animal studies, and it can be imagined that acceptable results will be obtained in human studies as well. However, further investigations are required to generalize the outcomes of animal studies to humans.
Collapse
Affiliation(s)
- Hessam Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Masood Soltanipur
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Takaloo
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | - Mahdi Rezaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Huang Y, Wang Y, Huang X, Yu X. Unveiling the overlooked fungi: the vital of gut fungi in inflammatory bowel disease and colorectal cancer. Gut Pathog 2024; 16:59. [PMID: 39407244 PMCID: PMC11481806 DOI: 10.1186/s13099-024-00651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The fungi of the human microbiota play important roles in the nutritional metabolism and immunological balance of the host. Recently, research has increasingly emphasised the role of fungi in modulating inflammation in intestinal diseases and maintaining health in this environment. It is therefore necessary to understand more clearly the interactions and mechanisms of the microbiota/pathogen/host relationship and the resulting inflammatory processes, as well as to offer new insights into the prevention, diagnosis and treatment of inflammatory bowel disease (IBD), colorectal cancer (CRC) and other intestinal pathologies. In this review, we comprehensively elucidate the fungal-associated pathogenic mechanisms of intestinal inflammation in IBD and related CRC, with an emphasis on three main aspects: the direct effects of fungi and their metabolites on the host, the indirect effects mediated by interactions with other intestinal microorganisms and the immune regulation of the host. Understanding these mechanisms will enable the development of innovative approaches based on the use of fungi from the resident human microbiota such as dietary interventions, fungal probiotics and faecal microbiota transplantation in the prevention, diagnosis and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Yilin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yang Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
20
|
张 苏, 智 娴, 王 梦, 沈 栋. [A prospective randomized controlled study on probiotics for the prevention of antibiotic-associated diarrhea in infants and young children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1108-1114. [PMID: 39467682 PMCID: PMC11527406 DOI: 10.7499/j.issn.1008-8830.2401129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/02/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES To evaluate the preventive effects of Saccharomyces boulardii powder and tetragenous viable Bifidobacterium tablets on antibiotic-associated diarrhea (AAD) in infants and young children. METHODS Children under three years old admitted to the Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University due to non-gastrointestinal infections and requiring antibiotic treatment from July to December 2023 were enrolled. The children were randomly divided into a control group (n=47), a Saccharomyces boulardii group (n=70), and a Bifidobacterium group (n=65) using a random number table method. The control group received antibiotics and symptomatic supportive treatment according to relevant clinical guidelines. In addition to the treatment given to the control group, the Saccharomyces boulardii group and the Bifidobacterium group were respectively administered with Saccharomyces boulardii powder and tetragenous viable Bifidobacterium tablets. Based on the duration of probiotic use (7 days, 14 days, and 21 days), the Saccharomyces boulardii group was further divided into 7 d, 14 d, and 21 d subgroups, and similarly for the Bifidobacterium group. The incidence of AAD and ratio of cocci to bacilli in feces were compared among the groups after treatment. RESULTS The incidence rate of AAD in both the Saccharomyces boulardii group and the Bifidobacterium group was lower than that in the control group (P<0.017). The duration of AAD and the length of hospital stay were shorter in the Saccharomyces boulardii and Bifidobacterium groups compared to the control group (P<0.05). In the control group, the ratio of cocci to bacilli in feces on days 7, 14, and 21 was higher than on day 1 (P<0.05). Within-group comparisons showed that the ratio of cocci to bacilli in feces on day 14 in the Bifidobacterium 14 d and 21 d groups were lower than on day 1 (P<0.05); and the ratios on day 14 in the control group, Saccharomyces boulardii 14 d group, Saccharomyces boulardii 21 d group, Bifidobacterium 14 d group, and Bifidobacterium 21 d group were lower than on day 7 (P<0.05). The ratios on day 21 in the control group and the Saccharomyces boulardii 21 d group were lower than on days 7 and 14 (P<0.05). Between-group comparisons indicated that on day 7, the ratios of cocci to bacilli in feces in the Saccharomyces boulardii 7 d, 14 d, 21 d groups, and Bifidobacterium 7 d, 14 d, 21 d groups were all lower than in the control group (P<0.05); on day 14, the ratios of cocci to bacilli in feces 14 d and 21 d groups were lower than in the control group and the Bifidobacterium 7 d group (P<0.05). CONCLUSIONS Both Saccharomyces boulardii and tetragenous viable Bifidobacterium can effectively improve gut microbiota and prevent the occurrence of AAD in infants and young children. Compared to short-term treatment, appropriately extending the duration of probiotic therapy can further improve the structure of gut microbiota.
Collapse
|
21
|
Józefczuk P, Biliński J, Minkowska A, Łaguna P. Gut microbiome in children undergoing hematopoietic stem cell transplantation. Best Pract Res Clin Gastroenterol 2024; 72:101955. [PMID: 39645282 DOI: 10.1016/j.bpg.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) is used in children as a treatment for various cancers, e.g. acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), or other diseases, e.g. severe congenital immunodeficiency, metabolic disorders, hence the patient population is quite diverse. There is an increasing interest on the role of the microbiome in peri-transplant period. In this review, concepts of HSCT with the focus on the importance of microbiome composition, its changes during treatment and possible microbiota oriented interventions will be discussed. This paper analyzes data in pediatric population, but in view of interesting results and absence of analogous data for pediatric patients, it also looks at studies performed on adult population and pre-clinical trials on animals discussing possible translation to children.
Collapse
Affiliation(s)
- Paweł Józefczuk
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland.
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland; Human Biome Institute, Gdansk, Warsaw, Poland
| | - Aleksandra Minkowska
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| | - Paweł Łaguna
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| |
Collapse
|
22
|
de Carvalho BT, Subotić A, Vandecruys P, Deleu S, Vermeire S, Thevelein JM. Enhancing probiotic impact: engineering Saccharomyces boulardii for optimal acetic acid production and gastric passage tolerance. Appl Environ Microbiol 2024; 90:e0032524. [PMID: 38752748 PMCID: PMC11218656 DOI: 10.1128/aem.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 06/19/2024] Open
Abstract
Saccharomyces boulardii has been a subject of growing interest due to its potential as a probiotic microorganism with applications in gastrointestinal health, but the molecular cause for its probiotic potency has remained elusive. The recent discovery that S. boulardii contains unique mutations causing high acetic acid accumulation and inhibition of bacterial growth provides a possible clue. The natural S. boulardii isolates Sb.P and Sb.A are homozygous for the recessive mutation whi2S270* and accumulate unusually high amounts of acetic acid, which strongly inhibit bacterial growth. However, the homozygous whi2S270* mutation also leads to acetic acid sensitivity and acid sensitivity in general. In the present study, we have constructed a new S. boulardii strain, derived from the widely therapeutically used CMCN I-745 strain (isolated from the pharmaceutical product Enterol), producing even higher levels of acetic acid while keeping the same tolerance toward low pH as the parent Enterol (ENT) strain. This newly engineered strain, named ENT3, has a homozygous deletion of ACH1 and strong overexpression of ALD4. It is also able to accumulate much higher acetic acid concentrations when growing on low glucose levels, in contrast to the ENT wild-type and Sb.P strains. Moreover, we show the antimicrobial capacity of ENT3 against gut pathogens in vitro and observed that higher acetic acid production might correlate with better persistence in the gut in healthy mice. These findings underscore the possible role of the unique acetic acid production and its potential for improvement of the probiotic action of S. boulardii.IMPORTANCESuperior variants of the probiotic yeast Saccharomyces boulardii produce high levels of acetic acid, which inhibit the growth of bacterial pathogens. However, these strains also show increased acid sensitivity, which can compromise the viability of the cells during their passage through the stomach. In this work, we have developed by genetic engineering a variant of Saccharomyces boulardii that produces even higher levels of acetic acid and does not show enhanced acid sensitivity. We also show that the S. boulardii yeasts with higher acetic acid production persist longer in the gut, in agreement with a previous work indicating competition between probiotic yeast and bacteria for residence in the gut.
Collapse
Affiliation(s)
| | - Ana Subotić
- NovelYeast bv, Bio-Incubator BIO4, Leuven-Heverlee, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Sara Deleu
- Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Johan M. Thevelein
- NovelYeast bv, Bio-Incubator BIO4, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| |
Collapse
|
23
|
Liu D, Hu L, Yang Y, Wang Y, Li Y, Su J, Wang G, Gong S. Saccharomyces boulardii alleviates allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner. Immunol Lett 2024; 267:106853. [PMID: 38513836 DOI: 10.1016/j.imlet.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Allergic asthma is a heterogeneous disease and new strategies are needed to prevent or treat this disease. Studies have shown that probiotic interventions are effective in preventing asthma. Here, we investigated the impact of Saccharomyces boulardii (S. boulardii) on ovalbumin (OVA)-induced allergic asthma in mice, as well as the underlying mechanisms. METHODS First, we constructed a mouse asthma model using OVA and given S. boulardii intervention. Next, we measured N6-methyladenosine (m6A) levels in lung injury tissues. 16 s rRNA was employed to identify different gut microbiota in fecal samples. The analysis of differential metabolites in feces was performed by non-targeted metabolomics. Pearson correlation coefficient was utilized to analyze correlation between gut microbiota, metabolites and methyltransferase-like 3 (METTL3). Finally, we collected mouse feces treated by OVA and S. boulardii intervention for fecal microbiota transplantation (FMT) and interfered with METTL3. RESULTS S. boulardii improved inflammation and oxidative stress and alleviated lung damage in asthmatic mice. In addition, S. boulardii regulated m6A modification levels in asthmatic mice. 16 s rRNA sequencing showed that S. boulardii remodeled gut microbiota homeostasis in asthmatic mice. Non-targeted metabolomics analysis showed S. boulardii restored metabolic homeostasis in asthmatic mice. There was a correlation between gut microbiota, differential metabolites, and METTL3 analyzed by Pearson correlation. Additionally, through FMT and interference of METTL3, we found that gut microbiota mediated the up-regulation of METTL3 by S. boulardii improved inflammation and oxidative stress in asthmatic mice, and alleviated lung injury. CONCLUSIONS S. boulardii alleviated allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner.
Collapse
Affiliation(s)
- Da Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China
| | - Lang Hu
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yue Yang
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yayong Li
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Su
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Guyi Wang
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
24
|
Kulig K, Kowalik K, Surowiec M, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. Isolation and Characteristics of Extracellular Vesicles Produced by Probiotics: Yeast Saccharomyces boulardii CNCM I-745 and Bacterium Streptococcus salivarius K12. Probiotics Antimicrob Proteins 2024; 16:936-948. [PMID: 37209320 PMCID: PMC11126510 DOI: 10.1007/s12602-023-10085-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Numerous probiotic microorganisms have repeatedly been shown to produce nanometer-sized structures named extracellular vesicles (EVs). Recently, it has been suggested that similarly to whole microbial cells, EVs produced by probiotics may also demonstrate health benefits to the host, while their application does not involve the risk of infection caused by live microorganisms. In this work, we isolated EVs from two probiotic species originating from different taxonomic domains - yeast Saccharomyces boulardii CNCM I-745 and bacterium Streptococcus salivarius K12. The diameters of S. boulardii EVs were about 142 nm and for S. salivarius EVs about 123 nm. For S. boulardii EVs, 1641 proteins and for S. salivarius EVs, 466 proteins were identified with a liquid chromatography-coupled tandem mass spectrometry and then functionally classified. In both microbial species, metabolic proteins significantly contributed to the cargo of EVs comprising 25% and 26% of all identified vesicular proteins for fungi and bacteria, respectively. Moreover, enzymes associated with cell wall rearrangement, including enzymatically active glucanases, were also identified in EVs. Furthermore, probiotic EVs were shown to influence host cells and stimulate the production of IL-1β and IL-8 by the human monocytic cell line THP-1, and, at the same time, did not cause any remarkable reduction in the survival rate of Galleria mellonella larvae in this invertebrate model commonly used to evaluate microbial EV toxicity. These observations suggest that the EVs produced by the investigated probiotic microorganisms may be promising structures for future use in pro-health applications.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Kowalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
25
|
Chen Y, Teng T, Su Y, Chen WZ. The effect of supplementing with Saccharomyces boulardii on bismuth quadruple therapy for eradicating Helicobacter pylori: a systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2024; 11:1344702. [PMID: 38695028 PMCID: PMC11061494 DOI: 10.3389/fmed.2024.1344702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Background and objective It remains uncertain if the addition of Saccharomyces boulardii (S. boulardii) to bismuth quadruple therapy (BQT) recommended in the current guidelines can enhance the Helicobacter pylori (H. pylori) eradication rate and decrease the incidence of adverse events. We therefore conducted a meta-analysis of randomized controlled trials (RCTs) to address this issue. Methods We performed comprehensive searches in PubMed, Embase, Web of Science, and Cochrane library databases from the inception of the databases through to November 1, 2023. A meta-analysis was conducted to determine the pooled relative risk (RR) with 95% confidence intervals (CI) using a random-effects model. We utilized the revised Cochrane Risk of Bias Tool to assess the risk of bias of included studies. Results A total of six RCTs (1,404 patients) included in this meta-analysis. The results of the intention-to-treat analysis showed that the combination of S. boulardii with BQT had a higher eradication rate than BQT alone (87.0% versus 83.3%), with a pooled RR of 1.05 (95% CI: 1.00-1.10, p = 0.03). In the per-protocol analysis, however, there was no statistical significance between the two groups in the eradication rate (93.7% versus 91.0%, RR = 1.03, 95% CI: 1.00-1.06, p = 0.07). The combination of S. boulardii and BQT had a significantly lower rate of overall adverse events (22% vs. 39%, RR = 0.56, 95% CI: 0.44-0.70, p < 0.00001), diarrhea (7.9% vs. 25.7%, RR = 0.29, 95% CI: 0.17-0.48, p < 0.00001), constipation (2.9% vs. 8.4%, RR = 0.35, 95% CI: 0.14-0.88, p = 0.03) and abdominal distention (4.9% vs. 12.7%, RR = 0.41, 95% CI: 0.23-0.72, p = 0.002) than BQT alone. For the assessment of risk of bias, five studies were deemed to have some concerns, while one study was judged to have a low risk. Conclusion Current evidence suggests that supplementation with S. boulardii in BQT may not have a major effect on the H. pylori eradication rate, but significantly reduces the incidence of overall adverse events, diarrhea, abdominal distention and constipation. Combining S. Boulardii with BQT can help alleviate symptoms, potentially improving patient adherence. Systematic review registration https://osf.io/n9z7c.
Collapse
Affiliation(s)
| | | | | | - Wen-Zhong Chen
- Department of Gastroenterology, Tongren People’s Hospital, Tongren, Guizhou Province, China
| |
Collapse
|
26
|
Szóstak N, Handschuh L, Samelak-Czajka A, Tomela K, Pietrzak B, Schmidt M, Galus Ł, Mackiewicz J, Mackiewicz A, Kozlowski P, Philips A. Gut Mycobiota Dysbiosis Is Associated with Melanoma and Response to Anti-PD-1 Therapy. Cancer Immunol Res 2024; 12:427-439. [PMID: 38315788 PMCID: PMC10985481 DOI: 10.1158/2326-6066.cir-23-0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Recent research indicates that gut microbiota may be vital in the advancement of melanoma. In this study, we found that melanoma patients exhibited a distinct gut mycobiota structure compared with healthy participants. Candida albicans, Candida dubliniensis, and Neurospora crassa were more abundant in samples from patients with melanoma, whereas Saccharomyces cerevisiae and Debaryomyces hansenii were less abundant. During anti-PD-1 treatment, the relative amount of Malassezia restricta and C. albicans increased. A higher level of Saccharomyces paradoxus was associated with a positive response to anti-PD-1 treatment, whereas a higher level of Tetrapisispora blattae was associated with a lack of clinical benefits. High levels of M. restricta and C. albicans, elevated serum lactate dehydrogenase, and being overweight were linked to increased risk of melanoma progression and poorer response to anti-PD-1 treatment. Thus, this study has revealed melanoma-associated mycobiome dysbiosis, characterized by altered fungal composition and fungi species associated with a higher risk of melanoma progression, identifying a role for the gut mycobiome in melanoma progression.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Tomela
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Marcin Schmidt
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
27
|
Waitzberg D, Guarner F, Hojsak I, Ianiro G, Polk DB, Sokol H. Can the Evidence-Based Use of Probiotics (Notably Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG) Mitigate the Clinical Effects of Antibiotic-Associated Dysbiosis? Adv Ther 2024; 41:901-914. [PMID: 38286962 PMCID: PMC10879266 DOI: 10.1007/s12325-024-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Dysbiosis corresponds to the disruption of a formerly stable, functionally complete microbiota. In the gut, this imbalance can lead to adverse health outcomes in both the short and long terms, with a potential increase in the lifetime risks of various noncommunicable diseases and disorders such as atopy (like asthma), inflammatory bowel disease, neurological disorders, and even behavioural and psychological disorders. Although antibiotics are highly effective in reducing morbidity and mortality in infectious diseases, antibiotic-associated diarrhoea is a common, non-negligible clinical sign of gut dysbiosis (and the only visible one). Re-establishment of a normal (functional) gut microbiota is promoted by completion of the clinically indicated course of antibiotics, the removal of any other perturbing external factors, the passage of time (i.e. recovery through the microbiota's natural resilience), appropriate nutritional support, and-in selected cases-the addition of probiotics. Systematic reviews and meta-analyses of clinical trials have confirmed the strain-specific efficacy of some probiotics (notably the yeast Saccharomyces boulardii CNCM I-745 and the bacterium Lactobacillus rhamnosus GG) in the treatment and/or prevention of antibiotic-associated diarrhoea in children and in adults. Unusually for a probiotic, S. boulardii is a eukaryote and is not therefore directly affected by antibiotics-making it suitable for administration in cases of antibiotic-associated diarrhoea. A robust body of evidence from clinical trials and meta-analyses shows that the timely administration of an adequately dosed probiotic (upon initiation of antibiotic treatment or within 48 h) can help to prevent or resolve the consequences of antibiotic-associated dysbiosis (such as diarrhoea) and promote the resilience of the gut microbiota and a return to the pre-antibiotic state. A focus on the prescription of evidence-based, adequately dosed probiotics should help to limit unjustified and potentially ineffective self-medication.
Collapse
Affiliation(s)
- Dan Waitzberg
- Department of Gastroenterology, LIM-35, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Iva Hojsak
- Referral Centre for Pediatric Gastroenterology and Nutrition, School of Medicine, University of Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, San Diego, and Rady Children's Hospital, University of California, San Diego, CA, USA
| | - Harry Sokol
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France.
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
28
|
Wei Y, Han Z, Mao X. Injectable Living Probiotic Dressing Built by Droplet-Based Microfluidics and Photo-Cross-Linking to Prevent Pathogenic Infection and Promote Wound Repair. Adv Healthc Mater 2024; 13:e2302423. [PMID: 37843361 DOI: 10.1002/adhm.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The treatment of infected wounds faces great challenges due to the emergence of antibiotic resistance and the lack of persistence in drug release. Here, a living probiotic dressing is constructed by integrating droplet-shearing and photo-cross-linking. Saccharomyces boulardii (S. boulardii), the only probiotic used clinically, is encapsulated and attached to a wound under light irradiation. A double-layer hydrogel provides a protective barrier for cell growth and proliferation while preventing the escape of S. boulardii. The living probiotic dressing shows superior biosafety with fibroblast cells. Strikingly, in vitro and in vivo experiments indicate that the living probiotic dressing not only inhibits bacterial survival and colonization, but also alleviates inflammation and accelerates wound closure. More significantly, the living probiotic dressing promotes collagen deposition and neovascularization, which accelerates wound healing. This work can provide new ideas for clinical wound treatment and widen the application of probiotics in tissue engineering.
Collapse
Affiliation(s)
- Yunyun Wei
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Ziqiang Han
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xiaolong Mao
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| |
Collapse
|
29
|
Hinojosa-Avila CR, García-Gamboa R, Chedraui-Urrea JJT, García-Cayuela T. Exploring the potential of probiotic-enriched beer: Microorganisms, fermentation strategies, sensory attributes, and health implications. Food Res Int 2024; 175:113717. [PMID: 38129037 DOI: 10.1016/j.foodres.2023.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Probiotic-enriched beers have emerged as an innovative solution for delivering beneficial microorganisms, particularly appealing to consumers seeking non-dairy options. However, navigating the complex beer environment presents challenges in effectively cultivating specific probiotic strains. This review aims to promote innovation and distinctiveness within the brewing industry by providing insights into current research on the integration of probiotic microorganisms into beer production, thereby creating a functional beverage. The review explores the effects of probiotic incorporation on the functional, technological, and sensory attributes of beer, distinguishing contributions from bacterial and yeast, as well as potential health benefits. Probiotic microorganisms encounter hurdles during beer production, including ethanol, hops, CO2 levels, pH, oxygen, and nutrients. Ethanol tolerance mechanisms vary among bacteria and yeasts, with specific lactic acid bacteria showing resistance to hop compounds. Hops, crucial for beer categorization, exert a timing-dependent impact on probiotics-early isomerization impedes growth, while late additions yield non-isomerized antibacterial properties. Effective probiotic integration necessitates precise post-fermentation addition stages to ensure viability and flavor. The sensory impact and consumer reception of probiotic-enriched beers require further exploration. Probiotics must endure storage conditions to qualify as functional beer, while limited research investigates health advantages, urging enhanced production techniques, sensory optimization, and clinical validation.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Ricardo García-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
30
|
Kaźmierczak-Siedlecka K, Bulman N, Ulasiński P, Sobocki BK, Połom K, Marano L, Kalinowski L, Skonieczna-Żydecka K. Pharmacomicrobiomics of cell-cycle specific anti-cancer drugs - is it a new perspective for personalized treatment of cancer patients? Gut Microbes 2023; 15:2281017. [PMID: 37985748 PMCID: PMC10730203 DOI: 10.1080/19490976.2023.2281017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Intestinal bacteria are equipped with an enzyme apparatus that is involved in the active biotransformation of xenobiotics, including drugs. Pharmacomicrobiomics, a new area of pharmacology, analyses interactions between bacteria and xenobiotics. However, there is another side to the coin. Pharmacotherapeutic agents can significantly modify the microbiota, which consequently affects their efficacy. In this review, we comprehensively gathered scientific evidence on the interplay between anticancer therapies and gut microbes. We also underlined how such interactions might impact the host response to a given therapy. We discuss the possibility of modulating the gut microbiota to increase the effectiveness/decrease the incidence of adverse events during tumor therapy. The anticipation of the future brings new evidence that gut microbiota is a target of interest to increase the efficacy of therapy.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Nikola Bulman
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Paweł Ulasiński
- Unit of Surgery with Unit of Oncological Surgery in Koscierzyna, Kościerzyna, Poland
| | - Bartosz Kamil Sobocki
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdańsk, Poland
| | - Karol Połom
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Luigi Marano
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
31
|
Maturana M, Castillejos L, Martin-Orue SM, Minel A, Chetty O, Felix AP, Adib Lesaux A. Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: a review. Front Vet Sci 2023; 10:1279506. [PMID: 37954670 PMCID: PMC10634211 DOI: 10.3389/fvets.2023.1279506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Yeast Saccharomyces and its derivatives have been largely used in livestock and poultry nutrition for their potential positive impact on growth, performance, and general health. Originally included in animal diets as a source of protein, yeasts can also offer a wide range of by-products with interesting bioactive compounds that would confer uses beyond nutrition. Although its supplementation in livestock, poultry and even in humans is well documented, the available body of literature on the use of yeast and its derivatives in companion animals' food, mainly dogs and cats' diets, is still developing. Despite this, gut microbiota modulation, immune system enhancement or decreasing of potentially pathogenic microorganisms have been reported in pets when using these products, highlighting their possible role as probiotics, prebiotics, and postbiotics. This review attempts to provide the reader with a comprehensive on the effects of Saccharomyces and its derivatives in pets and the possible mechanisms that confer their functional properties.
Collapse
Affiliation(s)
- Marta Maturana
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Susana M. Martin-Orue
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anaelle Minel
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| | - Olivia Chetty
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| | - Ananda P. Felix
- Department of Animal Science, Federal University of Paraná, Curitiba, Brazil
| | - Achraf Adib Lesaux
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| |
Collapse
|
32
|
Gopalan S, Ganapathy S, Mitra M, Neha, Kumar Joshi D, Veligandla KC, Rathod R, Kotak BP. Unique Properties of Yeast Probiotic Saccharomyces boulardii CNCM I-745: A Narrative Review. Cureus 2023; 15:e46314. [PMID: 37927652 PMCID: PMC10621882 DOI: 10.7759/cureus.46314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
Probiotics, both bacterial and yeast, have long been associated with a beneficial health history and human well-being. Among yeasts, Saccharomyces is a genus that is efficacious in rendering better human health, with Saccharomyces boulardii (S. boulardii) CNCM I-745 being classified as a probiotic agent. The present review highlights the unique properties of S. boulardii and its rolein the prevention of antibiotic-associated diarrhea (AAD) and pediatric acute gastroenteritis (PAGE) in comparison to bacterial probiotics. Its unique properties,such as viability over a wide pH range, inability to acquire antibiotic resistance genes, and property to achieve a steady state rapidly, have given S. boulardii an edge over bacterial probiotics. In AAD patients, prophylactic use of S. boulardii has shown a significantly lower risk of AAD (in comparison to controls) and restored the diversity of gut microbiota. Among Indian children with PAGE, S. boulardii CNCM I-745 was found superior to Lactobacillus rhamnosus GG and four strains of Bacillus clausii in shortening the duration of diarrhea and reducing the length of hospital stay. S. boulardii CNCM I-745 being considered a safe probiotic for use in children and adults also finds recommendations in several international guidelines for the management of acute diarrhea. The current review discusses evidence for the proven efficacy and safety of S. boulardii CNCM I-745 as a probiotic for preventing gastrointestinal disorders.
Collapse
Affiliation(s)
- Sarath Gopalan
- Pediatrics, Madhukar Rainbow Children's Hospital, New Delhi, IND
| | | | - Monjori Mitra
- Pediatrics, Institute of Child Health (ICH), Kolkata, IND
| | - Neha
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | | | | | - Rahul Rathod
- Ideation and Clinical Research/Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | - Bhavesh P Kotak
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| |
Collapse
|
33
|
Ivashkin VT, Lyashenko OS, Drapkina OM, Alexeeva OP, Alekseenko SA, Andreev DN, Baranovsky AY, Goloshchapov OV, Zheleznova NV, Zolnikova OY, Kliaritskaia IL, Korochanskaya NV, Lapina TL, Maev IV, Maslennikov RV, Myazin RG, Pavlov PV, Perekalina MV, Pisarenko NA, Povtoreyko AV, Poluektova EA, Sekretareva LA, Tkachev AV, Troshkina YM, Trukhmanov AS, Ulyanin AI, Filatova SG, Tsukanov VV, Shifrin OS. Clinical Practice Guidelines of the Scientific Society for the Clinical Study of Human Microbiome, of the Russian Gastroenterological Association and the Russian Society for the Prevention of Noncommunicable Diseases on the Diagnosis and Treatment of <i>Clostridioides difficile</i> (<i>C. difficile</i>)-associated Disease in Adults. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:85-119. [DOI: 10.22416/1382-4376-2023-33-3-85-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Аim: the clinical practice guidelines intended for gastroenterologists, internal medicine specialists, infectious disease specialists, general practitioners (family doctors), coloproctologists, surgeons and endoscopists present modern methods of diagnosis, prevention and treatment of C. difficile-associated disease.Key points. C. difficile-associated disease is a disease that develops when the diversity of the intestinal microbiota decreases and C. difficile excessively colonizes the colon, the toxins of which damage the intestinal muco-epithelial barrier, followed by the development of inflammation in the colon wall, with diarrhea being a characteristic clinical manifestation. The clinical presentation of the disease can vary from asymptomatic carriage, mild to moderate diarrhea that resolves on its own, to profuse watery diarrhea and pseudomembranous colitis with development of life-threatening complications. The diagnosis of C. difficile-associated disease is based on an assessment of the clinical presentation, medical history, an objective examination of the patient and laboratory stool tests. The disease severity is determined by clinical symptoms and laboratory findings. Additional diagnostic methods that are used according to indications and contribute to the assessment of severity include endoscopy of the colon and abdominal cavity imaging methods. Treatment should be initiated in cases of characteristic clinical presentation of C. difficile-associated disease and positive laboratory stool testing. The choice of drug and treatment regimen depends on the severity of the episode, the presence of complications, and whether the episode is initial, recurrent, or reinfection.Conclusion. Determination of target groups of patients for the diagnosis of clostridial infection is important in preventing overdiagnosis and subsequent unnecessary treatment. Timely diagnosis and treatment of C. difficile-associated disease help avoiding the development of life-threatening complications and improve the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - O. S. Lyashenko
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | | | | | - D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | | | - T. L. Lapina
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | - P. V. Pavlov
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | | | | | - E. A. Poluektova
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | | | | | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | - V. V. Tsukanov
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State University (Sechenov University)
| |
Collapse
|
34
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
35
|
Alcántara C, Perez M, Huedo P, Altadill T, Espadaler-Mazo J, Arqués JL, Zúñiga M, Monedero V. Study of the biosynthesis and functionality of polyphosphate in Bifidobacterium longum KABP042. Sci Rep 2023; 13:11076. [PMID: 37422465 PMCID: PMC10329679 DOI: 10.1038/s41598-023-38082-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Polyphosphate (poly-P) biosynthesis in bacteria has been linked to many physiological processes and has been characterized as an interesting functional molecule involved in intestinal homeostasis. We determined the capacity for poly-P production of 18 probiotic strains mainly belonging to Bifidobacterium and former Lactobacillus genera, showing that poly-P synthesis varied widely between strains and is dependent on the availability of phosphate and the growth phase. Bifidobacteria were especially capable of poly-P synthesis and poly-P kinase (ppk) genes were identified in their genomes together with a repertoire of genes involved in phosphate transport and metabolism. In Bifidobacterium longum KABP042, the strain we found with highest poly-P production, variations in ppk expression were linked to growth conditions and presence of phosphate in the medium. Moreover, the strain produced poly-P in presence of breast milk and lacto-N-tetraose increased the amount of poly-P synthesized. Compared to KABP042 supernatants low in poly-P, exposure of Caco-2 cells to KABP042 supernatants rich in poly-P resulted in decreased epithelial permeability and increased barrier resistance, induction of epithelial protecting factors such as HSP27 and enhanced expression of tight junction protein genes. These results highlight the role of bifidobacteria-derived poly-P as a strain-dependent functional factor acting on epithelial integrity.
Collapse
Affiliation(s)
- Cristina Alcántara
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Marta Perez
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Tatiana Altadill
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Manuel Zúñiga
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain.
| |
Collapse
|
36
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
37
|
Fazio NA, Russo N, Foti P, Pino A, Caggia C, Randazzo CL. Inside Current Winemaking Challenges: Exploiting the Potential of Conventional and Unconventional Yeasts. Microorganisms 2023; 11:1338. [PMID: 37317312 DOI: 10.3390/microorganisms11051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Wine represents a complex matrix in which microbial interactions can strongly impact the quality of the final product. Numerous studies have focused on optimizing microbial approaches for addressing new challenges to enhance quality, typicity, and food safety. However, few studies have investigated yeasts of different genera as resources for obtaining wines with new, specific traits. Currently, based on the continuous changes in consumer demand, yeast selection within conventional Saccharomyces cerevisiae and unconventional non-Saccharomyces yeasts represents a suitable opportunity. Wine fermentation driven by indigenous yeasts, in the various stages, has achieved promising results in producing wines with desired characteristics, such as a reduced content of ethanol, SO2, and toxins, as well as an increased aromatic complexity. Therefore, the increasing interest in organic, biodynamic, natural, or clean wine represents a new challenge for the wine sector. This review aims at exploring the main features of different oenological yeasts to obtain wines reflecting the needs of current consumers in a sustainability context, providing an overview, and pointing out the role of microorganisms as valuable sources and biological approaches to explore potential and future research opportunities.
Collapse
Affiliation(s)
- Nunzio A Fazio
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
38
|
Ivashkin VT, Maev IV, Andreev DN, Goloshchapov OV, Derinov AA, Zolnikova OY, Ivashkin KV, Kiseleva OY, Kiryukhin AP, Lyashenko OS, Poluektova EA, Tertychnyy AS, Trukhmanov AS, Ulyanin AI, Sheptulin AA, Shifrin OS. Modern Approaches to the Diagnosis and treatment of <i>Clostridioides difficile (C. difficile)</i>-associated Disease in Adults (literature Review and Expert Council Resolution). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:19-33. [DOI: 10.22416/1382-4376-2023-33-2-19-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aim: to review the modern approaches to the diagnosis and treatment ofC. difficile-associated disease in adults and present the resolution of the Expert Council held on March 25, 2023 in Moscow.General provisions.C. difficileis the most important nosocomial pathogen which spores are also commonly found in the environment. Microbiota impairment, primarily due to the use of antibacterial drugs, is a key stage in the development ofC. difficile-associated disease. A search for an infection should be carried out only in patients with diarrhea, and it is advisable to use at least 2 laboratory methods. The drug of choice for first-line treatment is vancomycin. If drug treatment is ineffective or the patient has recurrent clostridial infection, fecal microbiota transplantation should be considered. The probiotic strainSaccharomyces boulardii CNCM I-745has a direct inhibitory effect onC. difficiletoxin A, promotes normalization of the intestinal microbiota composition, and decreases the inflammatory reaction in colonic mucosa colonized with a toxigenic strain ofC. difficile.Conclusions. Addition of the probiotic strainSaccharomyces boulardii CNCM I-745to antibacterial therapy promotes both primary and secondary prevention ofC. difficile-associated disease.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | - A. A. Derinov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Kiseleva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. P. Kiryukhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Lyashenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Tertychnyy
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
39
|
Hu Q, Yu L, Zhai Q, Zhao J, Tian F. Anti-Inflammatory, Barrier Maintenance, and Gut Microbiome Modulation Effects of Saccharomyces cerevisiae QHNLD8L1 on DSS-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2023; 24:ijms24076721. [PMID: 37047694 PMCID: PMC10094816 DOI: 10.3390/ijms24076721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The use of probiotics has been considered as a new therapy option for ulcerative colitis (UC), and yeast has recently received widespread recommendation for human health. In this study, the probiotic characteristics of four yeast strains, Saccharomyces boulardii CNCMI-745, Kluyveromyces marxianus QHBYC4L2, Saccharomyces cerevisiae QHNLD8L1, and Debaryomyces hansenii QSCLS6L3, were evaluated in vitro; their ability to ameliorate dextran sulfate sodium (DSS)-induced colitis was investigated. Among these, S. cerevisiae QHNLD8L1 protected against colitis, which was reflected by increased body weight, colon length, histological injury relief, decreased gut inflammation markers, and intestinal barrier restoration. The abundance of the pathogenic bacteria Escherichia–Shigella and Enterococcaceae in mice with colitis decreased after S. cerevisiae QHNLD8L1 treatment. Moreover, S. cerevisiae QHNLD8L1 enriched beneficial bacteria Lactobacillus, Faecalibaculum, and Butyricimonas, enhanced carbon metabolism and fatty acid biosynthesis function, and increased short chain fatty acid (SCFAs) production. Taken together, our results indicate the great potential of S. cerevisiae QHNLD8L1 supplementation for the prevention and alleviation of UC.
Collapse
Affiliation(s)
- Qianjue Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
40
|
Sicchieri JMF, Gracia BMC, Pagano AP, Schiavoni IL, Navarro AM. Nutrition Assessment and Management of Late-Onset Tay-Sachs Disease: A Clinical Case Report. J Acad Nutr Diet 2022; 123:871-875. [PMID: 36549564 DOI: 10.1016/j.jand.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Ana Paula Pagano
- Department of Health Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Isabela Laurencio Schiavoni
- Department of Internal Medicine, University Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anderson Marliere Navarro
- Department of Health Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Maslennikov R, Efremova I, Ivashkin V, Zharkova M, Poluektova E, Shirokova E, Ivashkin K. Effect of probiotics on hemodynamic changes and complications associated with cirrhosis: A pilot randomized controlled trial. World J Hepatol 2022; 14:1667-1677. [PMID: 36157871 PMCID: PMC9453455 DOI: 10.4254/wjh.v14.i8.1667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial translocation exacerbates the hyperdynamic circulation observed in cirrhosis and contributes to a more severe disease course. Probiotics may reduce bacterial translocation and may therefore be useful to redress the circulatory imbalance. AIM To investigate the effect of probiotics on hemodynamic parameters, systemic inflammation, and complications of cirrhosis in this randomized placebo-controlled trial. METHODS This single-blind randomized placebo-controlled study included 40 patients with Child-Pugh class B and C cirrhosis; 24 patients received probiotics (Saccharomyces boulardii) for 3 mo, and 16 patients received a placebo over the same period. Liver function and the systemic hemodynamic status were evaluated pre- and post-intervention. Echocardiography and simultaneous blood pressure and heart rate monitoring were performed to evaluate systemic hemodynamic indicators. Cardiac output and systemic vascular resistance were calculated. RESULTS Following a 3-mo course of probiotics in comparison to the control group, we observed amelioration of hyperdynamic circulation [a decrease in cardiac output (P = 0.026) and an increase in systemic vascular resistance (P = 0.026)] and systemic inflammation [a decrease in serum C-reactive protein levels (P = 0.044)], with improved liver function [an increase in serum albumin (P = 0.001) and a decrease in the value of Child-Pugh score (P = 0.001)] as well as a reduction in the severity of ascites (P = 0.022), hepatic encephalopathy (P = 0.048), and cholestasis [a decrease in serum alkaline phosphatase (P = 0.016) and serum gamma-glutamyl transpeptidase (P = 0.039) activity] and an increase in platelet counts (P < 0.001) and serum sodium level (P = 0.048). CONCLUSION Probiotic administration was associated with amelioration of hyperdynamic circulation and the associated complications of cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Consultative and Diagnostic Center No. 2 of Moscow Health Department , Moscow 107764, Russia.
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Konstantin Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
42
|
Gamal A, Elshaer M, Alabdely M, Kadry A, McCormick TS, Ghannoum M. The Mycobiome: Cancer Pathogenesis, Diagnosis, and Therapy. Cancers (Basel) 2022; 14:2875. [PMID: 35740541 PMCID: PMC9221014 DOI: 10.3390/cancers14122875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is among the leading causes of death globally. Despite advances in cancer research, a full understanding of the exact cause has not been established. Recent data have shown that the microbiome has an important relationship with cancer on various levels, including cancer pathogenesis, diagnosis and prognosis, and treatment. Since most studies have focused only on the role of bacteria in this process, in this article we review the role of fungi-another important group of the microbiome, the totality of which is referred to as the "mycobiome"-in the development of cancer and how it can impact responses to anticancer medications. Furthermore, we provide recent evidence that shows how the different microbial communities interact and affect each other at gastrointestinal and non-gastrointestinal sites, including the skin, thereby emphasizing the importance of investigating the microbiome beyond bacteria.
Collapse
Affiliation(s)
- Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
| | - Mohammed Elshaer
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mayyadah Alabdely
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Ahmed Kadry
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Dermatology and Venereology, Al-Azhar University, Cairo 11651, Egypt
| | - Thomas S. McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
| | - Mahmoud Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
43
|
Shruthi B, Deepa N, Somashekaraiah R, Adithi G, Divyashree S, Sreenivasa MY. Exploring biotechnological and functional characteristics of probiotic yeasts: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00716. [PMID: 35257004 PMCID: PMC8897636 DOI: 10.1016/j.btre.2022.e00716] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 01/17/2023]
Abstract
In this review, the probiotic attributes of yeasts other than Saccharomyces boulardii and the various applications of probiotic yeast in biotechnology have been explored. This review comprises of the probiotic attributes, antagonistic activity against pathogens, plant growth promoting attributes, industrial application and their biotherapeutic potentials. Advanced and additional studies on non-Saccharomyces yeasts are necessary prior to administer these yeasts as potential probiotics for health and wellbeing. Probiotics are vital and beneficial organisms which offers the health benefits to the host organisms. The fungal probiotic field is one of the developing fields nowadays. Yeast has an enormous and diverse group of microorganisms that is attracting and expanding the attention from researchers and industries. Saccharomyces boulardii, the only patented strain belonging to yeast genera for the human use, has been broadly evaluated for its probiotic effect. Yeasts belonging to the genera Debaryomyces, Pichia, Yarrowia, Meyerozyma, Kluyveromyces etc.., have attained more interest because of their beneficial and probable probiotic features. These yeast probiotics produce VOCs (Volatile organic compounds), mycocins and antimicrobials which shows the antagonistic effect against pathogenic fungi and bacteria. Additionally, those yeasts have been recorded as good plant growth promoting microorganisms. Yeast has an important role in environmental applications such as bioremediation and removal of metals like chromium, mercury, lead etc., from waste water. Probiotic yeasts with their promising antimicrobial, antioxidant, anticancer properties, cholesterol assimilation and immunomodulatory effects can also be utilized as biotherapeutics. In this review article we have made an attempt to address important yeast probiotic attributes.
Collapse
|
44
|
Lacotte PA, Simons A, Bouttier S, Malet-Villemagne J, Nicolas V, Janoir C. Inhibition of In Vitro Clostridioides difficile Biofilm Formation by the Probiotic Yeast Saccharomyces boulardii CNCM I-745 through Modification of the Extracellular Matrix Composition. Microorganisms 2022; 10:microorganisms10061082. [PMID: 35744599 PMCID: PMC9227484 DOI: 10.3390/microorganisms10061082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile is responsible for post-antibiotic diarrhea and most of the pseudomembranous colitis cases. Multiple recurrences, one of the major challenges faced in C. difficile infection (CDI) management, can be considered as chronic infections, and the role of biofilm formation in CDI recurrences is now widely considered. Therefore, we explored if the probiotic yeast Saccharomyces boulardii CNCM I-745 could impact the in vitro formation of C. difficile biofilm. Biomass staining and viable bacterial cell quantification showed that live S. boulardii exerts an antagonistic effect on the biofilm formation for the three C. difficile strains tested. Confocal laser scanning microscopy observation revealed a weakening and an average thickness reduction of the biofilm structure when C. difficile is co-incubated with S. boulardii, compared to the single-species bacterial biofilm structure. These effects, that were not detected with another genetically close yeast, S. cerevisiae, seemed to require direct contact between the probiotic yeast and the bacterium. Quantification of the extrapolymeric matrix components, as well as results obtained after DNase treatment, revealed a significant decrease of eDNA, an essential structural component of the C. difficile biofilm matrix, in the dual-species biofilm. This modification could explain the reduced cohesion and robustness of C. difficile biofilms formed in the presence of S. boulardii CNCM I-745 and be involved in S. boulardii clinical preventive effect against CDI recurrences.
Collapse
Affiliation(s)
- Pierre-Alexandre Lacotte
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
| | - Alexis Simons
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
- Laboratoire Eau, Environnement et Systèmes Urbains (Leesu), Université Paris-Est Créteil, École des Ponts ParisTech, 94010 Créteil, France
| | - Sylvie Bouttier
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
| | - Jeanne Malet-Villemagne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
| | - Valérie Nicolas
- Ingénierie et Plateformes au Service de l’Innovation (IPSIT), UMS IPSIT Université Paris-Saclay-US 31 INSERM-UAR 3679 CNRS, Plateforme d’Imagerie Cellulaire MIPSIT, 92290 Châtenay-Malabry, France;
| | - Claire Janoir
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
- Correspondence:
| |
Collapse
|
45
|
Effect of Probiotic-Assisted Eradication of cagA+/vacA s1m1 Helicobacter pylori on Intestinal Flora. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8607671. [PMID: 35528160 PMCID: PMC9076325 DOI: 10.1155/2022/8607671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
Objective. We attempted to evaluate the effects of probiotic-assisted eradication of cytotoxin-associated gene A (cagA)+/vacuolating cytotoxin A (vacA) s1m1 Helicobacter pylori (H. pylori) on the intestinal flora, inflammatory factors, and clinical outcomes. Methods. A total of 180 patients with cagA+/vacA s1m1 H. pylori were randomly divided into two groups. Group A was treated with bismuth quadruple therapy (BQT). Group B was treated with S. boulardii in addition to BQT. The distribution of intestinal flora, serum interleukin-8 (IL-8), IL-17, tumor necrosis factor-α (TNF-α) levels, recovery time of clinical symptoms, total effective rate of clinical symptoms, H. pylori eradication rate, and adverse reactions were observed. Results. 2 weeks after treatment, the contents of Bifidobacterium, Bacteroides, and Lactobacillus in the intestinal tract of Group A decreased, while the amounts of Enterococcus and Enterobacter increased. In Group B, the contents of Bifidobacterium, Bacteroides, and Lactobacillus increased, while the amounts of Enterococcus and Enterobacter did not change significantly. Moreover, the trend of this flora change was still present at 4 weeks after treatment. Compared with Group A, Group B had lower IL-8, IL-17, and TNF-α levels, shorter recovery time of clinical symptoms, higher overall efficiency of clinical symptoms, and lower occurrence of adverse reactions. The eradication rate did not differ significantly between the two groups. Conclusion. BQT can lead to intestinal flora disorders in cagA+/vacA s1m1 H. pylori patients. S. boulardii can improve the distribution of intestinal flora, downregulate immune-inflammatory mediators, and modify clinical symptoms in patients.
Collapse
|
46
|
Vizcaino‐Almeida CR, Guajardo‐Flores D, Caroca‐Cáceres R, Serna‐Saldívar SO, Briones‐García M, Lazo‐Vélez MA. Non‐conventional fermentation at laboratory scale of cocoa beans: Using probiotic microorganisms and substitution of mucilage by fruit pulps. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Camila R. Vizcaino‐Almeida
- Grupos Estratégicos de investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA‐UDA) Universidad del Azuay Av. 24 de mayo 7‐77 y Hernán Malo Apartado 01.01.981 Cuenca Ecuador
| | - Daniel Guajardo‐Flores
- Tecnológico de Monterrey Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias Av. Eugenio Garza Sada 2501 Sur C.P. 64849 Monterrey NL México
| | - Rodrigo Caroca‐Cáceres
- Grupos Estratégicos de investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA‐UDA) Universidad del Azuay Av. 24 de mayo 7‐77 y Hernán Malo Apartado 01.01.981 Cuenca Ecuador
| | - Sergio O. Serna‐Saldívar
- Tecnológico de Monterrey Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias Av. Eugenio Garza Sada 2501 Sur C.P. 64849 Monterrey NL México
| | - Miriam Briones‐García
- Grupos Estratégicos de investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA‐UDA) Universidad del Azuay Av. 24 de mayo 7‐77 y Hernán Malo Apartado 01.01.981 Cuenca Ecuador
| | - Marco A. Lazo‐Vélez
- Grupos Estratégicos de investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA‐UDA) Universidad del Azuay Av. 24 de mayo 7‐77 y Hernán Malo Apartado 01.01.981 Cuenca Ecuador
| |
Collapse
|
47
|
Abid R, Waseem H, Ali J, Ghazanfar S, Muhammad Ali G, Elasbali AM, Alharethi SH. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J Fungi (Basel) 2022; 8:444. [PMID: 35628700 PMCID: PMC9147304 DOI: 10.3390/jof8050444] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Saccharomyces cerevisiae var. boulardii is best known for its treatment efficacy against different gastrointestinal diseases. This probiotic yeast can significantly protect the normal microbiota of the human gut and inhibit the pathogenicity of different diarrheal infections. Several clinical investigations have declared S. cerevisiae var. boulardii a biotherapeutic agent due to its antibacterial, antiviral, anti-carcinogenic, antioxidant, anti-inflammatory and immune-modulatory properties. Oral or intramuscular administration of S. cerevisiae var. boulardii can remarkably induce health-promoting effects in the host body. Different intrinsic and extrinsic factors are responsible for its efficacy against acute and chronic gut-associated diseases. This review will discuss the clinical and beneficial effects of S. cerevisiae var. boulardii in the treatment and prevention of different metabolic diseases and highlight some of its health-promising properties. This review article will provide fundamental insights for new avenues in the fields of biotherapeutics, antimicrobial resistance and one health.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- National Agriculture Research Center, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Islamabad 44100, Pakistan;
| | - Hassan Waseem
- Department of Biological Sciences, Muslim Youth University, Islamabad 44100, Pakistan;
| | - Jafar Ali
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- Department of Biological Sciences, Muslim Youth University, Islamabad 44100, Pakistan;
| | - Shakira Ghazanfar
- National Agriculture Research Center, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Islamabad 44100, Pakistan;
| | - Ghulam Muhammad Ali
- Pakistan Agricultural Research Council (PARC) 20, Ataturk Avenue, G-5/1, Islamabad 44000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Al-Jouf P.O. Box 2014, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran 66262, Saudi Arabia;
| |
Collapse
|
48
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. Green tea fermentation with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031172. [PMID: 35162195 PMCID: PMC8835093 DOI: 10.3390/ijerph19031172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 evolution depends on immunological capacity. The global hospital mortality rate is 15–20%, but in México it is 46%. There are several therapeutic protocols, however, integral nutrition is not considered. In this study, a Nutritional Support System (NSS) was employed to increase survival and reduce mortality in patients with stage III COVID-19. A randomized, blinded, controlled clinical trial was performed. Eighty patients (aged 30 to 75 years, both sexes) were assigned to (1) “Control Group” (CG) hospital diet and medical treatment or (2) “Intervention Group” (IG) hospital diet, medical treatment, and the NSS (vitamins, minerals, fiber, omega-3, amino acids, B-complex, and probiotics). IG significantly increased survival and reduced mortality compared to CG (p = 0.027). IG decreased progression to Mechanical Ventilation Assistance (MVA) by 10%, reduced the intubation period by 15 days, and increased survival in intubated patients by 38% compared to CG. IG showed improvement compared to CG in decrease in supplemental oxygen (p = 0.014), the qSOFA test (p = 0.040), constipation (p = 0.014), the PHQ-9 test (p = 0.003), and in the follow-up, saturation with oxygen (p = 0.030). The NSS increases survival and decreases mortality in patients with stage III COVID-19.
Collapse
|
50
|
Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer? Pharmacol Res 2021; 175:106022. [PMID: 34883213 DOI: 10.1016/j.phrs.2021.106022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Saccharomyces boulardii (S. boulardii) is a probiotic yeast that has been elucidated to be efficacious in fighting various gastrointestinal diseases in preclinical as well as clinical studies. Its general mechanisms of probiotic action in the treatment of gastrointestinal conditions cover multifaceted aspects, including immune regulation, production of antimicrobial substances, pathogen competitive elimination, gut barrier integrity maintenance, intestinal trophic effect and antioxidant potency. In this review, basic knowledge with regard to the gut-liver axis, available probiotics remedies and mechanistic insights of S. boulardii as probiotics will be elucidated. In addition, we summarize the therapeutic potential of S. boulardii in several liver diseases evident from both bench and bedside information, such as acute liver injury/failure, fibrosis, hepatic damages due to metabolic disturbance or infection and obstructive jaundice. Future prospects in relation to medicinal effects of S. boulardii are also exploited and discussed on the basis of novel and attractive therapeutic concept in the latest scientific literature.
Collapse
|