1
|
Mahmood M, Taufiq I, Mazhar S, Hafeez F, Malik K, Afzal S. Revolutionizing personalized cancer treatment: the synergy of next-generation sequencing and CRISPR/Cas9. Per Med 2024; 21:175-190. [PMID: 38708901 DOI: 10.1080/17410541.2024.2341610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
In the context of cancer heterogeneity, the synergistic action of next-generation sequencing (NGS) and CRISPR/Cas9 plays a promising role in the personalized treatment of cancer. NGS enables high-throughput genomic profiling of tumors and pinpoints specific mutations that primarily lead to cancer. Oncologists use this information obtained from NGS in the form of DNA profiling or RNA analysis to tailor precision strategies based on an individual's unique molecular signature. Furthermore, the CRISPR technique enables precise editing of cancer-specific mutations, allowing targeted gene modifications. Harnessing the potential insights of NGS and CRISPR/Cas9 heralds a remarkable frontier in cancer therapeutics with unprecedented precision, effectiveness and minimal off-target effects.
Collapse
Affiliation(s)
- Muniba Mahmood
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Izza Taufiq
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Sana Mazhar
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Faiqa Hafeez
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Samia Afzal
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| |
Collapse
|
2
|
Zhang Y, Wang LJ, Li QY, Yuan Z, Zhang DC, Xu H, Yang L, Gu XH, Xu ZK. Prognostic value of preoperative immune-nutritional scoring systems in remnant gastric cancer patients undergoing surgery. World J Gastrointest Surg 2023; 15:211-221. [PMID: 36896300 PMCID: PMC9988643 DOI: 10.4240/wjgs.v15.i2.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 01/01/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Remnant gastric cancer (GC) is defined as GC that occurs five years or more after gastrectomy. Systematically evaluating the preoperative immune and nutritional status of patients and analyzing its prognostic impact on postoperative remnant gastric cancer (RGC) patients are crucial. A simple scoring system that combines multiple immune or nutritional indicators to identify nutritional or immune status before surgery is necessary.
AIM To evaluate the value of preoperative immune-nutritional scoring systems in predicting the prognosis of patients with RGC.
METHODS The clinical data of 54 patients with RGC were collected and analyzed retrospectively. Prognostic nutritional index (PNI), controlled nutritional status (CONUT), and Naples prognostic score (NPS) were calculated by preoperative blood indicators, including absolute lymphocyte count, lymphocyte to monocyte ratio, neutrophil to lymphocyte ratio, serum albumin, and serum total cholesterol. Patients with RGC were divided into groups according to the immune-nutritional risk. The relationship between the three preoperative immune-nutritional scores and clinical characteristics was analyzed. Cox regression and Kaplan–Meier analysis was performed to analyze the difference in overall survival (OS) rate between various immune-nutritional score groups.
RESULTS The median age of this cohort was 70.5 years (ranging from 39 to 87 years). No significant correlation was found between most pathological features and immune-nutritional status (P > 0.05). Patients with a PNI score < 45, CONUT score or NPS score ≥ 3 were considered to be at high immune-nutritional risk. The areas under the receiver operating characteristic curves of PNI, CONUT, and NPS systems for predicting postoperative survival were 0.611 [95% confidence interval (CI): 0.460–0.763; P = 0.161], 0.635 (95%CI: 0.485–0.784; P = 0.090), and 0.707 (95%CI: 0.566–0.848; P = 0.009), respectively. Cox regression analysis showed that the three immune-nutritional scoring systems were significantly correlated with OS (PNI: P = 0.002; CONUT: P = 0.039; NPS: P < 0.001). Survival analysis revealed a significant difference in OS between different immune-nutritional groups (PNI: 75 mo vs 42 mo, P = 0.001; CONUT: 69 mo vs 48 mo, P = 0.033; NPS: 77 mo vs 40 mo, P < 0.001).
CONCLUSION These preoperative immune-nutritional scores are reliable multidimensional prognostic scoring systems for predicting the prognosis of patients with RGC, in which the NPS system has relatively effective predictive performance.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou 215000, Jiangsu Province, China
| | - Lin-Jun Wang
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Qin-Ya Li
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou 215000, Jiangsu Province, China
| | - Dian-Cai Zhang
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Xin-Hua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou 215000, Jiangsu Province, China
| | - Ze-Kuan Xu
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| |
Collapse
|
3
|
Sentiment Analysis to Understand the Perception and Requirements of a Plant-Based Food App for Cancer Patients. HUMAN BEHAVIOR AND EMERGING TECHNOLOGIES 2023. [DOI: 10.1155/2023/8005764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Understanding human perception and requirements on food for cancer prevention and condition management is important so that food applications can be catered to cancer patients. In this paper, web scraping was conducted to understand the public’s perception, attitude, and requirements related to a plant-based diet as a recommended diet for cancer prevention and condition management. Text and sentiment analyses were carried out on results gathered from 82 social sites to determine whether noncancer and cancer patients use plant-based diets, how they have been consumed, their benefits in the prevention and condition management of cancers, the existing myths/fake news about cancer, and what do cancer patients need in a food app. The results of the text analysis highlighted gaps in existing apps, including a lack of credibility as there were a lot of fake news and myths about cancer and endorsement by professionals. Future food apps should provide personalized diets to include both plant-based diets as well as meat, symptom management, good user experience, credibility, and emotional and mental health support.
Collapse
|
4
|
Gascón-Ruiz M, Casas-Deza D, Marti-Pi M, Torres-Ramón I, Zapata-García M, Sesma A, Lambea J, Álvarez-Alejandro M, Quilez E, Isla D, Arbonés-Mainar JM. Diagnosis of Malnutrition According to GLIM Criteria Predicts Complications and 6-Month Survival in Cancer Outpatients. Biomedicines 2022; 10:biomedicines10092201. [PMID: 36140301 PMCID: PMC9496397 DOI: 10.3390/biomedicines10092201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims: Malnutrition is a condition that has a great impact on oncology patients. Poor nutritional status is often associated with increased morbidity and mortality, increased toxicity, and reduced tolerance to chemotherapy, among other complications. The recently developed GLIM criteria for malnutrition aim to homogenize its diagnosis, considering the baseline disease status. We aimed to evaluate the performance of these new criteria for the prediction of complications and mortality in patients with cancer. Methods: This work is a prospective, single-center study. All outpatients under active treatment for head and neck, upper gastrointestinal, and colorectal tumors between February and October 2020 were recruited. These patients were followed up for 6 months, assessing the occurrence of complications and survival based on GLIM diagnoses of malnutrition. Results: We enrolled 165 outpatients, 46.66% of whom were malnourished. During the 6-month follow-ups, patients with malnutrition (46.7%, according to GLIM criteria) had a ~3-fold increased risk of hospital admission (p < 0.001) and occurrence of severe infection (considered as those requiring hospitalization, intravenous antibiotics, and/or drainage by interventional procedures) (p = 0.002). Similarly, malnourished patients had a 3.5-fold increased risk of poor pain control and a 4.4-fold increased need for higher doses of opioids (both p < 0.001). They also had a 2.6-fold increased risk of toxicity (p = 0.044) and a 2.5-fold increased likelihood of needing a dose decrease or discontinuation of cancer treatment (p = 0.011). The 6-month survival of malnourished patients was significantly lower (p = 0.023) than in non-malnourished patients. Conclusions: Diagnoses of malnutrition according to the GLIM criteria in oncology patients undergoing active treatment predict increased complications and worse survival at 6-month follow-ups, making them a useful tool for assessing the nutritional status of oncology patients.
Collapse
Affiliation(s)
- Marta Gascón-Ruiz
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Diego Casas-Deza
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
- Gastroenterology and Hepatology Department, University Hospital Miguel Servet, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-610913521
| | - Maria Marti-Pi
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - María Zapata-García
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Julio Lambea
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - María Álvarez-Alejandro
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Elisa Quilez
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, Av San Juan Bosco 15, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Jose Miguel Arbonés-Mainar
- Instituto de Investigación Sanitaria (IIS) de Aragón, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
- Translational Research Unit, University Hospital Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
- Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERon), Health Institute Carlos III (ISCIII), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| |
Collapse
|
5
|
Ghooi RB. Ayurveda research-are we on the right track? J Ayurveda Integr Med 2022; 13:100564. [PMID: 36027805 PMCID: PMC9424569 DOI: 10.1016/j.jaim.2022.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022] Open
|
6
|
Selvakumar SC, Preethi KA, Ross K, Tusubira D, Khan MWA, Mani P, Rao TN, Sekar D. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol Cancer 2022; 21:83. [PMID: 35331236 PMCID: PMC8944095 DOI: 10.1186/s12943-022-01565-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer is caused by a combination of genetic and epigenetic abnormalities. Current cancer therapies are limited due to the complexity of their mechanism, underlining the need for alternative therapeutic approaches. Interestingly, combining the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system with next-generation sequencing (NGS) has the potential to speed up the identification, validation, and targeting of high-value targets. MAIN TEXT Personalized or precision medicine combines genetic information with phenotypic and environmental characteristics to produce healthcare tailored to the individual and eliminates the constraints of "one-size-fits-all" therapy. Precision medicine is now possible thanks to cancer genome sequencing. Having advantages over limited sample requirements and the recent development of biomarkers have made the use of NGS a major leap in personalized medicine. Tumor and cell-free DNA profiling using NGS, proteome and RNA analyses, and a better understanding of immunological systems, are all helping to improve cancer treatment choices. Finally, direct targeting of tumor genes in cancer cells with CRISPR/Cas9 may be achievable, allowing for eliminating genetic changes that lead to tumor growth and metastatic capability. CONCLUSION With NGS and CRISPR/Cas9, the goal is no longer to match the treatment for the diagnosed tumor but rather to build a treatment method that fits the tumor exactly. Hence, in this review, we have discussed the potential role of CRISPR/Cas9 and NGS in advancing personalized medicine.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077 India
| | - K. Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077 India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, 2440 Saudi Arabia
| | - Panagal Mani
- Department of Biotechnology, Annai College of Arts and Science, Kumbakonam, Tamilnadu, India
| | - Tentu Nageswara Rao
- Department of Chemistry, Krishna University, Machilipatnam, Andhra Pradesh 521001 India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077 India
| |
Collapse
|
7
|
Bonosi L, Ferini G, Giammalva GR, Benigno UE, Porzio M, Giovannini EA, Musso S, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Graziano F, Scalia G, Umana GE, Di Bonaventura R, Sturiale CL, Iacopino DG, Maugeri R. Liquid Biopsy in Diagnosis and Prognosis of High-Grade Gliomas; State-of-the-Art and Literature Review. Life (Basel) 2022; 12:life12030407. [PMID: 35330158 PMCID: PMC8950809 DOI: 10.3390/life12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Gliomas, particularly high-grade gliomas, represent the most common and aggressive tumors of the CNS and are still burdened by high mortality and a very poor prognosis, regardless of the type of therapy. Their diagnosis and monitoring rely on imaging techniques and direct biopsy of the pathological tissue; however, both procedures have inherent limitations. To address these limitations, liquid biopsies have been proposed in this field. They could represent an innovative tool that could help clinicians in the early diagnosis, monitoring, and prognosis of these tumors. Furthermore, the rapid development of next-generation sequencing (NGS) technologies has led to a significant reduction in sequencing cost, with improved accuracy, providing a molecular profile of cancer and leading to better survival results and less disease burden. This paper focuses on the current clinical application of liquid biopsy in the early diagnosis and prognosis of cancer, introduces NGS-related methods, reviews recent progress, and summarizes challenges and future perspectives.
Collapse
Affiliation(s)
- Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95125 Catania, Italy;
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Evier Andrea Giovannini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Gianluca Scalia
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95125 Catania, Italy;
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
8
|
Hauser AS. Personalized Medicine Through GPCR Pharmacogenomics. COMPREHENSIVE PHARMACOLOGY 2022:191-219. [DOI: 10.1016/b978-0-12-820472-6.00100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Soofiyani SR, Hosseini K, Forouhandeh H, Ghasemnejad T, Tarhriz V, Asgharian P, Reiner Ž, Sharifi-Rad J, Cho WC. Quercetin as a Novel Therapeutic Approach for Lymphoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3157867. [PMID: 34381559 PMCID: PMC8352693 DOI: 10.1155/2021/3157867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
Lymphoma is a name for malignant diseases of the lymphatic system including Hodgkin's lymphoma and non-Hodgkin's lymphoma. Although several approaches are used for the treatment of these diseases, some of them are not successful and have serious adverse effects. Therefore, other effective treatment methods might be interesting. Studies have indicated that plant ingredients play a key role in treating several diseases. Some plants have already shown a potential therapeutic effect on many malignant diseases. Quercetin is a flavonoid found in different plants and could be useful in the treatment of different malignant diseases. Quercetin has its antimalignant effects through targeting main survival pathways activated in tumor cells. In vitro/in vivo experimental studies have demonstrated that quercetin possesses a cytotoxic effect on lymphoid cancer cells. Regardless of the optimum results that have been obtained from both in vitro/in vivo studies, few clinical studies have analyzed the antitumor effects of quercetin in lymphoid cancers. Thus, it seems that more clinical studies should introduce quercetin as a therapeutic, alone or in combination with other chemotherapy agents. Here, in this study, we reviewed the anticancer effects of quercetin and highlighted the potential therapeutic effects of quercetin in various types of lymphoma.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
10
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2021; 20:116-133. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
11
|
Tian S, Liao L, Zhou Q, Huang X, Zheng P, Guo Y, Deng T, Tian X. Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues. Oncol Lett 2021; 21:286. [PMID: 33732362 PMCID: PMC7905673 DOI: 10.3892/ol.2021.12547] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin, one of the active ingredients of Curcuma longa (Jianghuang), has been reported to exert multiple bioactivities, including pro-apoptotic and anti-inflammatory activities. In recent years, curcumin has been extensively studied, and it has been revealed that curcumin inhibits the growth of numerous types of cancer. However, to the best of our knowledge, the inhibitory effects of curcumin on the activation or expansion of myeloid-derived suppressor cells (MDSCs) in liver cancer and the underlying mechanism have not yet been determined. Therefore, the present study aimed to investigate the inhibitory effect of curcumin on MDSC activity and the associated anti-neoplastic mechanism in a HepG2 ×enograft mouse model. The effect of curcumin on the viability of Huh-7, MHCC-97H and HepG2 cells in vitro was analyzed using a Cell Counting Kit-8 assay. The effects of curcumin on tumor growth, numbers of MDSCs, expression levels of proteins involved in the toll-like receptor 4 (TLR4)/NF-κB signaling pathway, levels of related inflammatory factors and angiogenesis were determined in HepG2 ×enograft model mice, which were given different doses of curcumin via intragastrical administration. The results of the present study revealed that curcumin inhibited the viability of Huh-7, MHCC-97H and HepG2 cells and the growth of HepG2 ×enograft tumors in mice. Flow cytometric analysis indicated that curcumin reduced the number of MDSCs in mouse xenograft tumors. In addition, the results demonstrated that curcumin inhibited the TLR4/NF-κB signaling pathway and the expression of inflammatory factors, including IL-6, IL-1β, prostaglandin E2 and cyclooxygenase-2, in mouse xenograft tumors. Furthermore, curcumin suppressed the secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte-colony stimulating factor (G-CSF), which are essential factors for MDSCs modulation, in tumor tissues. Additionally, curcumin was revealed to inhibit angiogenesis, which was demonstrated by the downregulation of the expression levels of vascular endothelial growth factor, CD31 and α-smooth muscle actin in western blotting, immunohistochemistry and immunofluorescence experiments. In conclusion, the findings of the present study identified a novel mechanism via which curcumin may suppress the growth of liver cancer by reducing the numbers of MDSCs and subsequently disrupting the process of angiogenesis. These conclusions were supported by the observed inactivation of the TLR4/NF-κB signaling pathway-mediated inflammatory response and the downregulation of GM-CSF and G-CSF secretion in xenograft tissues.
Collapse
Affiliation(s)
- Sha Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Liu Liao
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xiaodi Huang
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Piao Zheng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yinmei Guo
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Tianhao Deng
- Department of Oncology, The Affiliated Hospital of Hunan Institute of Chinese Medicine, Changsha, Hunan 410006, P.R. China
| | - Xuefei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
12
|
Russo E, Nannini G, Dinu M, Pagliai G, Sofi F, Amedei A. Exploring the food-gut axis in immunotherapy response of cancer patients. World J Gastroenterol 2020; 26:4919-4932. [PMID: 32952339 PMCID: PMC7476177 DOI: 10.3748/wjg.v26.i33.4919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
Nowadays, immunotherapy is widely used to treat different cancer types as it boosts the body's natural defenses against the malignancy, with lower risk of adverse events compared to the traditional treatments. The immune system is able to control cancer growth but, unfortunately, many cancers take advantage of immune checkpoints pathways for the immune evasion. An intricate network of factors including tumor, host and environmental variables influence the individual response to immune checkpoints' inhibitors. Between them, the gut microbiota (GM) has recently gained increasing attention because of its emerging role as a modulator of the immune response. Several studies analyzed the diversities between immunotherapy-sensitive and immunotherapy-resistant cohorts, evidencing that particular GM profiles were closely associated to treatment effect. In addition, other data documented that interventional GM modulation could effectively enhance efficacy and relieve resistance during immunotherapy treatment. Diet represents one of the major GM determinants, and ongoing studies are examining the role of the food-gut axis in immunotherapy treatment. Here, we review recent studies that described how variations of the GM affects patient's responsivity to anti-cancer immunotherapy and how diet-related factors impact on the GM modulation in cancer, outlining potential future clinical directions of these recent findings.
Collapse
Affiliation(s)
- Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Monica Dinu
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Giuditta Pagliai
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Francesco Sofi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, Florence 50139, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi, Florence 50134, Italy
| |
Collapse
|