1
|
Balkan BM, Meral O, Cetintav B, Tutun H, Ozkurt G, Sel T. The Effects of Storage Conditions and Homogenisation Buffers on the Measurement of SOD, CAT and ADA Enzyme Activities in Cattle Liver. Vet Med Sci 2025; 11:e70418. [PMID: 40434928 PMCID: PMC12118502 DOI: 10.1002/vms3.70418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Accurate measurement of enzyme activities is very important in studies to evaluate enzymatic parameters. While performing these measurements, many factors can affect the results, including the method of obtaining the tissues, the conditions under which they are stored until analysis, and the methods of determining enzyme activity. OBJECTIVES This study aimed to investigate the effect of different storage conditions (time and temperature) and different homogenisation buffers (PBS or KCl) on the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), and adenosine deaminase (ADA) in homogenised cattle liver. METHODS Fresh liver tissue samples were obtained from the slaughterhouse and homogenised in different homogenisation buffers. Supernatants from each sample were divided into three groups according to the experimental design of the study. SOD, CAT and ADA enzyme activities in homogenised tissues were evaluated. RESULTS Our data revealed that SOD, CAT and ADA activities did not differ significantly between PBS and KCl groups or between -20°C and -80°C freezing temperatures. However, our results showed that SOD levels decreased over time in both groups, CAT levels demonstrated a significant decrease from Month 0 to Month 3 and ADA levels decreased significantly over time. CONCLUSIONS The results indicated that storage time had a significant effect on enzyme activity changes, but the effect of storage temperature and homogenisation buffer was generally limited. These results may support the measurement of enzymatic activity in liver homogenate immediately and, if necessary, after freezing for the shortest possible time.
Collapse
Affiliation(s)
- Burcu Menekse Balkan
- Department of BiochemistryFaculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Ogunc Meral
- Department of BiochemistryFaculty of Veterinary MedicineAnkara UniversityAnkaraTurkey
| | - Bekir Cetintav
- Department of BiostatisticsFaculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Hidayet Tutun
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Guzin Ozkurt
- Department of BiochemistryFaculty of Veterinary MedicineAksaray UniversityAksarayTurkey
| | - Tevhide Sel
- Department of BiochemistryFaculty of Veterinary MedicineAnkara UniversityAnkaraTurkey
| |
Collapse
|
2
|
Singh S, Verma AK, Garg G, Singh AK, Rizvi SI. Spermidine protects cellular redox status and ionic homeostasis in D-galactose induced senescence and natural aging rat models. Z NATURFORSCH C 2025; 80:285-295. [PMID: 39438257 DOI: 10.1515/znc-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Impaired redox homeostasis is an important hallmark of aging. Among various anti-aging interventions, caloric restriction mimetics (CRMs) are the most effective in promoting health and longevity. The potential role of spermidine (SPD) as a CRM in modulating oxidative stress and redox homeostasis during aging remains unclear. This study aimed to investigate the protective effect of SPD in D-galactose (D-gal) accelerated induced senescence model and naturally aged rats. Young male rats (4 months), D-gal induced (500 mg/kg b. w., subcutaneously) aging model and naturally aged (22 months) rats were supplemented with SPD (10 mg/kg b. w., orally) for 6 weeks. The results showed that SPD supplementation suppresses the age induced increase in reactive oxygen species, lipid peroxidation and protein oxidation. Additionally, it increases the level of antioxidants, plasma membrane redox system in erythrocytes and membrane. These results also indicate that membrane transporter activity is correlated with the susceptibility of the erythrocyte towards oxidative damage. We therefore present evidence that SPD improves redox status and membrane impairments in erythrocytes in experimental and naturally aging rat models, however, more research is required to recommend a potential therapeutic role for SPD as an anti-aging intervention strategy.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research (MCBR), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Noida, Karnataka, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| |
Collapse
|
3
|
Teke H, Balci S, Neselioglu S, Teke S, Erel O, Tamer L, Toros F. Oxidative Stress and Dynamic Thiol/Disulfide Homeostasis in Autism: A Focus on Early Childhood. J Mol Neurosci 2025; 75:62. [PMID: 40314839 PMCID: PMC12048410 DOI: 10.1007/s12031-025-02358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with multifactorial etiopathogenesis, where oxidative stress (OS) has been implicated as a key contributing factor. This study aimed to evaluate the plasma dynamic thiol/disulfide homeostasis (DTDH) parameters-a relatively novel OS biomarker-alongside classical OS biomarkers, including total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), glutathione, and glutathione peroxidase (GPx), in preschool children diagnosed with ASD. A total of 49 children with ASD and 31 age- and sex-matched typically developing children between the ages of 2 and 6 years were included. In addition to sociodemographic data collection, the Childhood Autism Rating Scale (CARS) and Clinical Global Impression-Severity Scale (CGI-S) were administered to assess autism severity. Blood samples were analyzed using automated spectrophotometric techniques to determine OS biomarkers. The results demonstrated that DTDH parameters and classical OS markers exhibited parallel changes; however, no statistically significant differences were detected between the ASD and control groups across all OS markers. Furthermore, no significant association was found between OS biomarkers and autism severity. Moreover, we intentionally restricted our sample to a younger age group to enable a focused examination of OS dynamics during early developmental stages. This study underscores the potential impact of age as a critical determinant in OS-related alterations in autism and highlights the need for further age-stratified investigations to elucidate the role of OS in ASD pathophysiology and its potential diagnostic relevance.
Collapse
Affiliation(s)
- Halenur Teke
- Department of Child and Adolescent Psychiatry, Medical Faculty, Mersin University, Ankara, Turkey.
| | - Senay Balci
- Department of Medical Biochemistry, Medical Faculty, Mersin University, Mersin, Turkey
| | - Salim Neselioglu
- Department of Biochemistry, Ankara Bilkent City Hospital, Yıldırım Beyazit University, Ankara, Turkey
| | - Selçuk Teke
- Department of Pediatrics, Medical Faculty, Mersin University, Ankara, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Ankara Bilkent City Hospital, Yıldırım Beyazit University, Ankara, Turkey
| | - Lulufer Tamer
- Department of Medical Biochemistry, Medical Faculty, Mersin University, Mersin, Turkey
| | - Fevziye Toros
- Department of Child and Adolescent Psychiatry, Medical Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
5
|
Ahmad S, Akmal H, Jabeen F, Shahzad K. Exposure to bisphenol S induces organ toxicity by disrupting oxidative and antioxidant defense system and blood physiology in Labeo rohita (Hamilton, 1822). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:52. [PMID: 39982559 DOI: 10.1007/s10695-025-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Bisphenol S is an emerging pollutant that is contaminating aquatic ecosystems and causing detrimental effects on aquatic organisms, especially fish. Therefore, the study was designed to evaluate the toxicity of bisphenol S (BPS) through genotoxic, biochemical, histopathological, and oxidative damage in the liver, gills, and kidneys of Labeo rohita fish. Fish were exposed to three different concentrations (400 µg/L, 800 µg/L, and 1000 µg/L) of BPS for 21 days. A significant (p ≤ 0.05) decline in antioxidant enzymatic activity of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and peroxidase (POD) was observed in all tissues, whereas elevation in oxidative contents (TBARS and ROS) was observed. Comet analysis showed elevated olive tail moment and % of DNA damage. Light microscopy revealed several anomalies including cluster nuclei formation, damaged parenchyma cells, sinusoidal spaces, and melanomacrophage in the kidney, sinusoidal spaces, dilated hepatic vein, pyknotic nuclei, melanomacrophage, and cell necrosis in the liver and bone cell deformities, lamellar aneurysm, hyperplasia, and curved secondary gill lamellae in gills. Results of hematobiochemical analysis revealed a significant (p ≤ 0.05) increment in hematocrit, WBCs, cholesterol, blood glucose, triglycerides, AST, ALT, T3, TSH, T4, urea, and creatinine, whereas decline in RBCs, MCH, hemoglobin, proteins levels was observed. The results of the current study demonstrate that BPS has detrimental effects on the kidneys, gills, and liver. It interferes with normal functioning by inhibiting enzymatic activity, causing DNA damage, and disrupting the normal structure of vital organs. These effects make BPS toxic to fish, even at low concentrations.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Hasnain Akmal
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, 37251, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan.
| |
Collapse
|
6
|
Çalışkan H, Koçak S, Güneş E. Epoetin alfa has a potent anxiolytic effect on naive female rats. BMC Pharmacol Toxicol 2025; 26:18. [PMID: 39876022 PMCID: PMC11773716 DOI: 10.1186/s40360-025-00845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Epoetin alfa is a derivative of the erythropoietin hormone. This study aims to investigate the epoetin alfa effect on anxiety-like behaviors. METHODS Adult female Wistar Albino rats were divided into Control (n = 8), 1000 U Epoetien alfa, and 2000 U Epoetien alpha. Epoetin alfa was administered intraperitoneally once a week for 4 weeks. The animals were then subjected to open field test, elevated plus maze, light-dark box, and the behaviors were video recorded. RESULTS Epoetin alfa significantly reduced anxiety-like behaviors in both low- and high-dose groups in a dose-independent manner. This anxiolytic effect was seen in all three anxiety tests. Further, exploratory behaviors such as unsupported rearing and head-dipping behaviors increased with the application of Epoetin alfa. This protocol did not alter locomotor activity. CONCLUSION The present study found beneficial effects of epoetin alfa on behaviors. Further studies on the effect of derivatives of erythropoietin hormone on anxiety-like behaviors are needed.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Department of Physiology, Balıkesir University Medicine Faculty, Balıkesir, Turkey.
| | - Seda Koçak
- Department of Physiology, Kırşehir Ahi Evran University Medicine Faculty, Kırşehir, Turkey
| | - Emel Güneş
- Department of Physiology, Ankara University Medicine Faculty, Ankara, Turkey
| |
Collapse
|
7
|
Pandey KB. From bench to bedside: translational insights into aging research. FRONTIERS IN AGING 2025; 6:1492099. [PMID: 39926027 PMCID: PMC11802818 DOI: 10.3389/fragi.2025.1492099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
Aging research has rapidly advanced from fundamental discoveries at the molecular and cellular levels to promising clinical applications. This review discusses the critical translational insights that bridge the gap between bench research and bedside applications, highlighting key discoveries in the mechanisms of aging, biomarkers, and therapeutic interventions. It underscores the importance of interdisciplinary approaches and collaboration among scientists, clinicians, and policymakers to address the complexities of aging and improve health span.
Collapse
Affiliation(s)
- Kanti Bhooshan Pandey
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Faculty of Biological Sciences, Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Choi S, Shin M, Kim WY. Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants. J Ginseng Res 2025; 49:1-11. [PMID: 39872282 PMCID: PMC11764321 DOI: 10.1016/j.jgr.2024.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 01/30/2025] Open
Abstract
DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments. Natural compounds from traditional medicine, renowned for their anti-aging and anticarcinogenic properties, have garnered attention. Ginseng-derived compounds, in particular, exhibit anti-carcinogenic effects by suppressing reactive oxygen species (ROS) and protecting cells from DNA damage-induced carcinogenesis. However, the anticancer therapeutic effect of ginseng compounds has also been demonstrated by inducing DNA damage and blocking DDR. This review concentrates on the biphasic effects of ginseng compounds on DNA mutations-both inhibiting mutation accumulation and impairing DNA repair. Additionally, it explores other natural compounds targeting DDR directly, providing potential insights into enhancing cancer therapy efficacy.
Collapse
Affiliation(s)
- SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minwook Shin
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Capece U, Gugliandolo S, Morciano C, Avolio A, Splendore A, Di Giuseppe G, Ciccarelli G, Soldovieri L, Brunetti M, Mezza T, Pontecorvi A, Giaccari A, Cinti F. Erythrocyte Membrane Fluidity and Omega-3 Fatty Acid Intake: Current Outlook and Perspectives for a Novel, Nutritionally Modifiable Cardiovascular Risk Factor. Nutrients 2024; 16:4318. [PMID: 39770939 PMCID: PMC11676811 DOI: 10.3390/nu16244318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs). Two trials, REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial), with highly purified EPA, and STRENGTH (Effect of High-Dose Omega-3 Fatty Acids vs. Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk), with a combination of EPA and DHA, have produced different outcomes, triggering a scientific debate on possible explanations for the discrepancies. Furthermore, doubts have arisen as to the anti-inflammatory and anti-aggregating activity of these compounds. Recent studies have, however, highlighted interesting effects of EPA and DHA on erythrocyte membrane fluidity (EMF). EMF is governed by a complex and dynamic biochemical framework, with fatty acids playing a central role. Furthermore, it can be easily measured in erythrocytes from a blood sample using fluorescent probes. Recent research has also shown that EMF could act as a possible cardiovascular risk factor biomarker. This review aims to synthetize the latest evidence on erythrocyte membrane fluidity, exploring its potential role as a biomarker of residual cardiovascular risk and discussing its clinical relevance. Further, we aim to dissect the possible biological mechanisms that link omega-3 modifiable membrane fluidity to cardiovascular health.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Shawn Gugliandolo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cassandra Morciano
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Adriana Avolio
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Amelia Splendore
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
10
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
11
|
Çalışkan H, Önal D, Nalçacı E. Darbepoetin alpha has an anxiolytic and anti-neuroinflammatory effect in male rats. BMC Immunol 2024; 25:75. [PMID: 39523336 PMCID: PMC11552158 DOI: 10.1186/s12865-024-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS We aimed to investigate the anxiolytic effect of darbepoetin alpha (DEPO), an erythropoietin derivative, in a neuroinflammation model regarding different behaviors and biological pathways. METHODS Forty adult male Wistar albino rats were divided into four groups (control, LPS, DEPO, and DEPO + LPS). The rats were treated with 5 µg /kg DEPO once a week for four weeks, after which neuroinflammation was induced with 2 mg/kg lipopolysaccharide (LPS). The elevated plus maze, open-field, and light‒dark box tests were conducted to assess anxiety levels. Harderian gland secretions were scored via observation. Tumor necrosis factor alpha (TNF-α), Interleukin-1-beta (IL-1β), brain-derived growth factor (BDNF), serotonin, cortisol, total antioxidant/oxidant (TAS/TOS), and total/free thiol levels were measured in the prefrontal cortex, striatum, and serum. RESULTS DEPO had a potent anxiolytic effect on both DEPO and DEPO + LPS groups. Compared to the control group, DEPO administration caused an increase in serotonin and BDNF levels and decreased basal cortisol and TNF-α levels in naive rats. IL-1β did not alter after DEPO administration in naive rats. Prophylactic DEPO treatment remarkably downregulated cortisol, IL-1β, and TNF-α in the DEPO + LPS group. In addition, prophylactic DEPO administration significantly attenuated the decrease in serotonin and BDNF levels in the DEPO + LPS group. Furthermore, DEPO ameliorated excessive harderian gland secretion in the DEPO + LPS group. Compared with those in the control group, the free thiol content in the serum increased after DEPO administration. No similar effect was seen in the DEPO + LPS group receiving prophylactic DEPO. TAS showed no difference among all experimental groups. DEPO administration increased TOS and OSI in the serum and prefrontal cortex but not in the striatum. This effect was not seen in the DEPO + LPS group. CONCLUSION Darbepoetin alpha had an anxiolytic effect on many physiological mechanisms in a neuroinflammation model and naive rats.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Physiology Department, Balıkesir University Medicine Faculty, Balıkesir, Turkey.
| | - Deniz Önal
- Physiology Department, Balıkesir University Medicine Faculty, Balıkesir, Turkey
| | - Erhan Nalçacı
- Physiology Department, Ankara University Medicine Faculty , Ankara, Turkey
| |
Collapse
|
12
|
Ontawong A, Aida CJ, Vivithanaporn P, Amornlerdpison D, Vaddhanaphuti CS. Cladophora glomerata Kützing extract exhibits antioxidant, anti-inflammation, and anti-nitrosative stress against impairment of renal organic anion transport in an in vivo study. Nutr Res Pract 2024; 18:633-646. [PMID: 39398884 PMCID: PMC11464274 DOI: 10.4162/nrp.2024.18.5.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cladophora glomerata extract (CGE), rich in polyphenols, was reported to exhibit antidiabetic and renoprotective effects by modulating the functions of protein kinases-mediated organic anion transporter 1 (Oat1) and 3 (Oat3) in rats with type 2 diabetes mellitus (T2DM). Nevertheless, the antioxidant effects of CGE on such renoprotection have not been investigated. This study examined the mechanisms involved in the antioxidant effects of CGE on renal organic anion transport function in an in vivo study. MATERIALS/METHODS Diabetes was induced in the rats through a high-fat diet combined with a single dose of 40 mg/kg body weight (BW) streptozotocin. Subsequently, normal-diet rats were supplemented with a vehicle or 1,000 mg/kg BW of CGE, while T2DM rats were supplemented with a vehicle, CGE, or 200 mg/kg BW of vitamin C for 12 weeks. The study evaluated the general characteristics of T2DM and renal oxidative stress markers. The renal organic transport function was assessed by measuring the para-aminohippurate (PAH) uptake using renal cortical slices and renal inflammatory cytokine expression in the normal diet (ND) and ND + CGE treated groups. RESULTS CGE supplementation significantly reduced hyperglycemia, hypertriglyceridemia, insulin resistance, and renal lipid peroxidation in T2DM rats. This was accompanied by the normalization of high expressions of renal glutathione peroxidase and nuclear factor kappa B by CGE and vitamin C. The renal anti-inflammation of CGE was evidenced by the reduction of tumor necrosis factor-1α and interleukin-1β. CGE directly blunted sodium nitroprusside-induced renal oxidative/nitrosative stresses and mediated the PAH uptake in the normally treated CGE in rats was particularly noteworthy. These data also correlated with reduced nitric oxide production, highlighting the potential of CGE as a therapeutic agent for managing T2DM-related renal complications. CONCLUSION These findings suggest that CGE has antidiabetic effects and directly prevents diabetic nephropathy through oxidative/nitrosative stress pathways.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chaliya J. Aida
- Office of Educational Affairs, Faculty of Abhaibhubejhr Thai Traditional Medicine, Burapha University, Chon Buri 20131, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Doungporn Amornlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneurs and Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Chutima S. Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Yang Q, Chen D, Li C, Liu R, Wang X. Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes-band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Front Physiol 2024; 15:1399154. [PMID: 38706947 PMCID: PMC11066195 DOI: 10.3389/fphys.2024.1399154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: The integrity of the erythrocyte membrane cytoskeletal network controls the morphology, specific surface area, material exchange, and state of erythrocytes in the blood circulation. The antioxidant properties of resveratrol have been reported, but studies on the effect of resveratrol on the hypoxia-induced mechanical properties of erythrocytes are rare. Methods: In this study, the effects of different concentrations of resveratrol on the protection of red blood cell mor-phology and changes in intracellular redox levels were examined to select an appropriate concentration for further study. The Young's modulus and surface roughness of the red blood cells and blood viscosity were measured via atomic force microsco-py and a blood rheometer, respectively. Flow cytometry, free hemoglobin levels, and membrane lipid peroxidation levels were used to characterize cell membrane damage in the presence and absence of resveratrol after hypoxia. The effects of oxida-tive stress on the erythrocyte membrane proteins band 3 and spectrin were further investigated by immunofluorescent label-ing and Western blotting. Results and discussion: Resveratrol changed the surface roughness and Young's modulus of the erythrocyte mem-brane, reduced the rate of eryptosis in erythrocytes after hypoxia, and stabilized the intracellular redox level. Further data showed that resveratrol protected the erythrocyte membrane proteins band 3 and spectrin. Moreover, resistance to band 3 pro-tein tyrosine phosphorylation and sulfhydryl oxidation can protect the stability of the erythrocyte membrane skeleton net-work, thereby protecting erythrocyte deformability under hypoxia. The results of the present study may provide new insights into the roles of resveratrol in the prevention of hypoxia and as an antioxidant.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
El-Shamarka MEA, Aboulthana WM, Omar NI, Mahfouz MM. Evaluation of the biological efficiency of Terminalia chebula fruit extract against neurochemical changes induced in brain of diabetic rats: an epigenetic study. Inflammopharmacology 2024; 32:1439-1460. [PMID: 38329710 PMCID: PMC11006788 DOI: 10.1007/s10787-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus (DM) is a chronic and progressive metabolic disorder that can stimulate neuroinflammation and increase oxidative stress in the brain. Therefore, the present study was aimed to assess the efficacy of ethanolic Terminalia chebula extract against the neurochemical and histopathological changes induced in the brains of diabetic rats. The study clarified the reduction in oxidative stress induced in the brains of diabetic rats by the significant (P ≤ 0.05) increase in levels of the antioxidants with decreasing the peroxidation products via ethanolic T. chebula extract at both doses (400 and 600 mg/kg). Moreover, T. chebula extract improved the brain integrity by lowering levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), β-amyloid (Aβ) content, monocyte chemoattractant protein-1 (MCP-1) and acetylcholine esterase (ACHE) significantly (P ≤ 0.05) in a dose dependent manner compared to brain of diabetic rats. Severe nuclear pyknosis and degeneration were noticed in neurons of the cerebral cortex, hippocampus and striatum in brains of diabetic rats. The severity of these alterations decreased with T. chebula extract at a dose of 600 mg/kg compared to the other treated groups. The different electrophoretic protein and isoenzyme assays revealed that the lowest similarity index (SI%) values exist in the brains of diabetic rats compared to the control group. The quantity of the most native proteins and isoenzyme types increased significantly (P ≤ 0.05) in the brains of diabetic rats, and these electrophoretic variations were completely diminished by T. chebula extract. The study concluded that T. chebula extract ameliorated the biochemical, histopathological and electrophoretic abnormalities induced in the brains of diabetic rats when administered at a dose of 600 mg/kg.
Collapse
Affiliation(s)
- Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Nagwa Ibrahim Omar
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Marwa M Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shibīn Al-Kawm, Egypt
| |
Collapse
|
15
|
Muller CR, Courelli V, Govender K, Omert L, Yoshida T, Cabrales P. Hypoxically stored RBC resuscitation in a rat model of traumatic brain injury and severe hemorrhagic shock. Life Sci 2024; 340:122423. [PMID: 38278347 DOI: 10.1016/j.lfs.2024.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
This study aims to investigate the effects of hypoxically stored Red Blood Cells (RBCs) in a rat model of traumatic brain injury followed by severe hemorrhagic shock (HS) and resuscitation. RBCs were made hypoxic using an O2 depletion system (Hemanext Inc. Lexington, MA) and stored for 3 weeks. Experimental animals underwent craniotomy and blunt brain injury followed by severe HS. Rats were resuscitated with either fresh RBCs (FRBCs), 3-week-old hypoxically stored RBCs (HRBCs), or 3-week-old conventionally stored RBCs (CRBCs). Resuscitation was provided via RBCs transfusion equivalent to 70 % of the shed blood and animals were followed for 2 h. The control group was comprised of healthy animals that were not instrumented or injured. Post-resuscitation hemodynamics and lactate levels were improved with FRBCs and HRBCs, and markers of organ injury in the liver (Aspartate aminotransferase [AST]), lung (chemokine ligand 1 [CXCL-1] and Leukocytes count), and heart (cardiac troponin, Interleukin- 6 [IL-6] and Tumor Necrosis Factor Alpha[TNF-α]) were lower with FRBCs and HRBCs resuscitation compared to CRBCs. Following reperfusion, biomarkers for oxidative stress, lipid peroxidation, and RNA/DNA injury were assessed. Superoxide dismutase [SOD] levels in the HRBCs group were similar to the FRBCs group and levels in both groups were significantly higher than CRBCs. Catalase levels were not different than control values in the FRBCs and HRBCs groups but significantly lower with CRBCs. Thiobarbituric acid reactive substances [Tbars] levels were higher for both CRBCs and HRBCs. Hypoxically stored RBCs show few differences from fresh RBCs in resuscitation from TBI + HS and decreased organ injury and oxidative stress compared to conventionally stored RBCs.
Collapse
Affiliation(s)
- Cynthia R Muller
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Vasiliki Courelli
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Krianthan Govender
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Laurel Omert
- Hemanext, Lexington, MA, United States of America
| | | | - Pedro Cabrales
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
16
|
Yévenes-Briones H, Caballero FF, Struijk EA, Arias-Fernández L, Lana A, Rey-Martinez J, Rodríguez-Artalejo F, Lopez-Garcia E. Association Between Speech Reception Threshold in Noise and Multimorbidity: The UK Biobank Study. Otolaryngol Head Neck Surg 2024; 170:480-489. [PMID: 37622533 DOI: 10.1002/ohn.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE To investigate the association between hearing function, as approached with the functional auditory capacity, and multimorbidity. STUDY DESIGN Cross-sectional study. SETTING The UK Biobank was established from 2006 to 2010 in the United Kingdom. This cross-sectional analysis included 165,524 participants who provided baseline information on hearing function. METHODS Functional auditory capacity was measured with a digit triplet test. Three categories were defined according to the speech reception threshold in noise (SRTn): normal (SRTn < -5.5 dB signal-to-noise ratio [SNR]), insufficient (SRTn ≥ -5.5 to ≤ -3.5 dB SNR) and poor hearing function (SRTn > -3.5 dB SNR). To define multimorbidity, 9 chronic diseases were considered, including chronic obstructive pulmonary disease, dementia, Parkinson's disease, stroke, cancer, depression, osteoarthritis, coronary heart disease, and diabetes; multimorbidity was defined as the coexistence of 2 or more in the same individual. Analyses were conducted using logistic models adjusted for relevant confounders. RESULTS Among the study participants, 54.5% were women, and the mean (range) age was 56.7 (39-72) years. The prevalence of insufficient and poor hearing function and multimorbidity was 13% and 13.2%, respectively. In comparison with having a normal SRTn, the odds ratio (95% confidence interval) of multimorbidity associated with insufficient SRTn was 1.13 (1.08-1.18), and with poor SRTn was 1.25 (1.14-1.37). CONCLUSION Insufficient and poor hearing function was associated with multimorbidity. This association suggests common biological pathways for many of the considered morbidities.
Collapse
Affiliation(s)
- Humberto Yévenes-Briones
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francisco Félix Caballero
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ellen A Struijk
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Alberto Lana
- Department of Medicine, Universidad de Oviedo/ISPA, Oviedo, Spain
| | - Jorge Rey-Martinez
- Neurotology Unit, ENT Department, Hospital Universitario Donostia, San Sebastián-Donostia, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- IMDEA-Food Institute, CEI UAM, Madrid, Spain
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- IMDEA-Food Institute, CEI UAM, Madrid, Spain
| |
Collapse
|
17
|
Biswas A, Deo C, Sharma D, Matin A, Tiwari AK. Production performance, haematological parameters, serum biochemistry, and expression of HSP-70 in broiler chickens fed dietary ascorbic acid during heat stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:33-43. [PMID: 37897559 DOI: 10.1007/s00484-023-02568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023]
Abstract
An experiment was carried out to assess the efficacy of supplemental ascorbic acid (AA) on broiler chicken production performance, blood haematological profile, biochemical profile, and carcass traits under heat stress conditions. A total of 192-day-old broiler chicks were divided into four groups, each with six replicates of eight each (4 × 6 × 8). Four corn-based dietary treatments were formulated: T1 (control diet), T2 (T1 + AA at 200 mg/kg), T3 (T1 + AA at 400 mg/kg), and T4 (T1 + AA at 600 mg/kg) for a period of 42 days. Despite the high temperature and humidity, the 600 mg AA supplemental groups (T4) gained significantly (P ≤ 0.05) more body weight and had a higher feed intake and better feed conversion ratio (FCR) than the control group (T1). After 28 days of feeding the three AA-supplemented diets, antibody titres (humoral immune response) were significantly higher (P ≤ 0.05). The response to intradermally injected phyto-haemagglutinin (PHA-P), an index of the in vivo cell-mediated immune response, was found to be increased (P ≤ 0.05) in the 400 and 600 mg AA-supplemented groups after 35 days. Higher levels of AA (T4) supplementation significantly (P ≤ 0.05) improved haematological values such as haemoglobin (Hb), total erythrocyte count (TEC), total leukocyte count (TLC), and differential leukocyte count (DLC), heterophil:lymphocyte (H:L) in comparison to the control group (T1). The supplemented group improved the serum biochemical profile of the birds, with an increase (P ≤ 0.05) in total serum protein, albumin, and globulin and a decrease in serum cholesterol and corticosterone levels in the T4 group compared to the control group. Heat shock protein-70 (HSP-70) was gradually elevated after increasing the ascorbic acid concentration (P ≤ 0.05) at 14 and 21 days. As a result, it can be concluded that supplementing ascorbic acid at 600 mg/kg is beneficial for improving the performance, immunity, and blood haematological biochemical profile and upregulating the HSP-70 gene of broiler chickens under heat stress conditions.
Collapse
Affiliation(s)
- Avishek Biswas
- Division of Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Izatnagar, 243 122, India.
| | - Chandra Deo
- Division of Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Izatnagar, 243 122, India
| | - Divya Sharma
- Division of Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Izatnagar, 243 122, India
| | - Ansari Matin
- Division of Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243 122, India
| | - Ashok Kumar Tiwari
- Division of Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243 122, India
| |
Collapse
|
18
|
Kuru Bektaşoğlu P, Arıkök AT, Ergüder Bİ, Sargon MF, Altun SA, Ünlüler C, Börekci A, Kertmen H, Çelikoğlu E, Gürer B. Cinnamaldehyde has ameliorative effects on rabbit spinal cord ischemia and reperfusion injury. World Neurosurg X 2024; 21:100254. [PMID: 38148767 PMCID: PMC10750183 DOI: 10.1016/j.wnsx.2023.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ata Türker Arıkök
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University School of Medicine, Ankara, Turkey
| | - Seda Akyıldız Altun
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Caner Ünlüler
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Ali Börekci
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Erhan Çelikoğlu
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
19
|
Mantskava M, Chkhitauri L, Shekiladze E, Tskhvediani N, Kalmakhelidze S, Momtselidze N, Prantl L, Jung F, Machaliński B, Wojciech P, Sanikidze T. Impact of different severity hyperglycemia on erythrocyte rheological properties1. Clin Hemorheol Microcirc 2024; 87:271-281. [PMID: 38363605 DOI: 10.3233/ch-239104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND The triad "insulin resistance, prediabetes, diabetes" is three independent neologies with characteristic features and development. In addition, each are characterized by progression and the possibility of transition from one form to other. Due to the fact that diabetes is one of the common diseases associated with high rates of disability, it is necessary to improve diagnostic methods and educational regimens for successful prevention and treatment of the disease. OBJECTIVE We investigated Band 3 protein (B3p) level, osmotic resistance of erythrocytes, the total antioxidant activity (TAA) of blood serum, level of HbA1 in group patients with insulin resistance (IR), prediabetes, and Type 2 Diabetes Mellitus (T2DM) and comparative with health control group. METHODS We used original, accurate research methods that measure the essence of the studied quantities. RESULTS Disruptions of glucose and insulin homeostasis ay lead to the initiation of oxidative stress (in our study demonstrated by a decrease of TAA of blood serum) increased redox-sensitive PTP activity and aberrant band 3 phosphorylation, potentially leading to reduced erythrocyte deformability. At the same time glycation of Hb during T2DM may affect its cross-link with membrane proteins, in particular with B3p, and although appears to limit its cross-linking and decrease its clusterization ability, induces alterations in the cytoskeletal matrix, and thereby decrease erythrocytes' osmotic resistance making them more susceptible to hemolysis. CONCLUSIONS The osmotic resistance of the erythrocytes can be used as a sensitive marker for the detection of the early stages of hyperglycemia (prediabetes). This set of clinical trials will make it possible to identify diseases that make up the triad at an early stage. Early detection of disorders and continued research in this direction will help in the development of a diagnostic scheme for the prevention of such patients. Based on our data, research into anti-oxidation drugs is very important. With the help of the array of studies described in the article and antioxidant treatment, the likelihood of successful treatment will increase.
Collapse
Affiliation(s)
- M Mantskava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Tbilisi State Medical University, Tbilisi, Georgia
| | - L Chkhitauri
- Ivane Javakhishvili State University, Tbilisi, Georgia
| | - E Shekiladze
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | - S Kalmakhelidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Tbilisi State Medical University, Tbilisi, Georgia
| | - N Momtselidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - L Prantl
- University Hospital Regensburg, Regensburg, Germany
| | - F Jung
- Brandenburg University of Technology, Cottbus Senftenberg, Germany
| | | | - P Wojciech
- Pomeranian Medical University, Szczecin, Poland
| | - T Sanikidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
20
|
Turcov D, Zbranca-Toporas A, Suteu D. Bioactive Compounds for Combating Oxidative Stress in Dermatology. Int J Mol Sci 2023; 24:17517. [PMID: 38139345 PMCID: PMC10744063 DOI: 10.3390/ijms242417517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
There are extensive studies that confirm the harmful and strong influence of oxidative stress on the skin. The body's response to oxidative stress can vary depending on the type of reactive oxygen species (ROS) or reactive nitrogen species (RNS) and their metabolites, the duration of exposure to oxidative stress and the antioxidant capacity at each tissue level. Numerous skin diseases and pathologies are associated with the excessive production and accumulation of free radicals. title altered Both categories have advantages and disadvantages in terms of skin structures, tolerability, therapeutic performance, ease of application or formulation and economic efficiency. The effect of long-term treatment with antioxidants is evaluated through studies investigating their protective effect and the improvement of some phenomena caused by oxidative stress. This article summarizes the available information on the presence of compounds used in dermatology to combat oxidative stress in the skin. It aims to provide an overview of all the considerations for choosing an antioxidant agent, the topics for further research and the answers sought in order to optimize therapeutic performance.
Collapse
Affiliation(s)
- Delia Turcov
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University, 71 A Mangeron Blvd., 700500 Iasi, Romania;
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street no. 16, 700115 Iasi, Romania;
| | - Anca Zbranca-Toporas
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street no. 16, 700115 Iasi, Romania;
| | - Daniela Suteu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University, 71 A Mangeron Blvd., 700500 Iasi, Romania;
| |
Collapse
|
21
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Remigante A, Spinelli S, Patanè GT, Barreca D, Straface E, Gambardella L, Bozzuto G, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. AAPH-induced oxidative damage reduced anion exchanger 1 (SLC4A1/AE1) activity in human red blood cells: protective effect of an anthocyanin-rich extract. Front Physiol 2023; 14:1303815. [PMID: 38111898 PMCID: PMC10725977 DOI: 10.3389/fphys.2023.1303815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: During their lifespan in the bloodstream, red blood cells (RBCs) are exposed to multiple stressors, including increased oxidative stress, which can affect their morphology and function, thereby contributing to disease. Aim: This investigation aimed to explore the cellular and molecular mechanisms related to oxidative stress underlying anion exchanger 1 activity (band 3, SLC4A1/AE1) in human RBCs. To achieve this aim, the relationship between RBC morphology and functional and metabolic activity has been explored. Moreover, the potential protective effect of an anthocyanin-enriched fraction extracted from Callistemon citrinus flowers was studied. Methods: Cellular morphology, parameters of oxidative stress, as well as the anion exchange capability of band 3 have been analyzed in RBCs treated for 1 h with 50 mM of the pro-oxidant 2,2'-azobis (2-methylpropionamide)-dihydrochloride (AAPH). Before or after the oxidative insult, subsets of cells were exposed to 0.01 μg/mL of an anthocyanin-enriched fraction for 1 h. Results: Exposure to AAPH caused oxidative stress, exhaustion of reduced glutathione, and over-activation of the endogenous antioxidant machinery, resulting in morphological alterations of RBCs, specifically the formation of acanthocytes, increased lipid peroxidation and oxidation of proteins, as well as abnormal distribution and hyper-phosphorylation of band 3. Expected, oxidative stress was also associated with a decreased band 3 ion transport activity and an increase of oxidized haemoglobin, which led to abnormal clustering of band 3. Exposure of cells to the anthocyanin-enriched fraction prior to, but not after, oxidative stress efficiently counteracted oxidative stress-related alterations. Importantly, protection of band3 function from oxidative stress could only be achieved in intact cells and not in RBC ghosts. Conclusion: These findings contribute a) to clarify oxidative stress-related physiological and biochemical alterations in human RBCs, b) propose anthocyanins as natural antioxidants to neutralize oxidative stress-related modifications, and 3) suggest that cell integrity, and therefore a cytosolic component, is required to reverse oxidative stress-related pathophysiological derangements in human mature RBCs.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide Barreca
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
24
|
García-Rodríguez MDC, Hernández-Cortés LM, Mendoza-Núñez VM, Arenas-Huertero F. Effects of green tea polyphenols against metal-induced genotoxic damage: underlying mechanistic pathways. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:371-386. [PMID: 37306405 DOI: 10.1080/10937404.2023.2224119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review is based upon evidence from the published effects of green tea polyphenols (GTP) on genotoxic damage induced by metals with carcinogenic potential. First, the relationship between GTP and antioxidant defense system is provided. Subsequently, the processes involved in the oxidative stress generated by metals and their relationship to oxidative DNA damage is examined. The review demonstrated that GTP generally decrease oxidative DNA damage induced by exposure to metals such as arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), and lead (Pb). The pathways involved in these effects are related to: (1) direct scavenging of free radicals (FR); (2) activation of mechanisms to repair oxidative DNA damage; (3) regulation of the endogenous antioxidant system; and (4) elimination of cells with genetic damage via apoptosis. The results obtained in the studies reviewed demonstrate potential for possible use of GTP to prevent and treat oxidative damage in populations exposed to metals. Further, GTP may be considered as adjuvants to treatments for metal-associated diseases related to oxidative stress and DNA damage.
Collapse
Affiliation(s)
- María Del Carmen García-Rodríguez
- Laboratorio de Antimutagénesis, Anticarcinogénesis Y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lourdes Montserrat Hernández-Cortés
- Laboratorio de Antimutagénesis, Anticarcinogénesis Y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Unidad de Investigación En Gerontología, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación En Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
25
|
Tomsič K, Domanjko Petrič A, Nemec A, Pirman T, Rezar V, Seliškar A, Vovk T, Nemec Svete A. Evaluation of antioxidant status and lipid peroxidation in dogs with myxomatous mitral valve degeneration stage B1. Front Vet Sci 2023; 10:1203480. [PMID: 37745214 PMCID: PMC10512023 DOI: 10.3389/fvets.2023.1203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Myxomatous mitral valve degeneration (MMVD) is the most common naturally occurring heart disease in dogs. There is a lack of data on antioxidant status and oxidative damage in dogs with MMVD stage B1 according to the American College of Veterinary Internal Medicine (ACVIM B1). The aim of this study was to investigate antioxidant status (plasma vitamin E, lipid-standardized vitamin E (LS-VitE), antioxidant capacity of lipid-(ACL) and water-soluble antioxidants, whole blood glutathione peroxidase and erythrocyte superoxide dismutase), and lipid peroxidation [malondialdehyde (MDA)] in dogs with MMVD ACVIM B1. Serum cholesterol and triglyceride concentrations were measured to calculate LS-VitE. Fourteen dogs with MMVD ACVIM B1 and 12 control dogs were included in the study. Dogs with MMVD had significantly higher vitamin E, ACL, MDA, and cholesterol concentrations and significantly higher LS-VitE values than control dogs. No significant correlations between MDA and antioxidant parameters were determined in either group. In conclusion, oxidative damage to lipids is already present and the antioxidant status is altered but not depleted in dogs with MMVD ACVIM B1. The antioxidant response to increased oxidative damage consists mainly of the activation of fat-soluble antioxidants. Further research is needed to evaluate the efficacy and targets of early antioxidant supplementation to prevent or ameliorate oxidative stress and mitigate disease progression in dogs with early-stage MMVD.
Collapse
Affiliation(s)
- Katerina Tomsič
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Ana Nemec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Vida Rezar
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Alenka Seliškar
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Vovk
- The Chair of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Nemec Svete
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Chung JW, Kim JE, Nam YE, Kim WS, Lee I, Yim SV, Kwon O. Eight-week supplementation of Aronia berry extract promoted the glutathione defence system against acute aerobic exercise-induced oxidative load immediately and 30 min post-exercise in healthy adults: a double-blind, randomised controlled trial. J Hum Nutr Diet 2023; 36:1589-1599. [PMID: 36727618 DOI: 10.1111/jhn.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Food antioxidants have received prompt attention for controlling oxidative stress encountered in daily life. This study aimed to examine the protective effects of Aronia berry extract (ABE) supplementation on acute aerobic exercise (AAE)-induced oxidative stress in healthy subjects. METHODS We assessed a battery of antioxidant defence and oxidative stress parameters at pre-exercise, immediately post-exercise and 30 min post-exercise in healthy middle-aged adults with habitually low intakes of fruit and vegetables in an 8-week, double-blind, randomised, controlled clinical trial with two arms (n = 70). The AAE challenge model, characterised as a treadmill exercise for 30 min at 60% VO2 maximum, was applied to load oxidative stress at the end of the study. Pearson's correlation analysis assessed the association between the changes in antioxidant defence capacities and oxidative stress levels. RESULTS The time-course-dependent oxidative stress was well observed in the placebo group regarding the glutathione peroxidase (GPx) activity and the reduced glutathione (GSH) availability for antioxidant defence and erythrocyte malondialdehyde, interleukin-6 and lactate levels for oxidative damage. Meanwhile, the ABE supplementation effectively strengthened the glutathione defence system by increasing GSH availability and GPx activity immediately post-exercise and 30 min post-exercise. In addition, the scatter plot and linear regression analysis revealed strong negative correlations of GSH availability with oxidised low-density lipoprotein and plasma malonaldehyde levels. CONCLUSION These findings suggest that daily supplementation of 300 mg ABE might help boost GSH levels and an adaptive antioxidant enzyme defence system of erythrocytes in healthy adults with habitually low fruit and vegetable intakes.
Collapse
Affiliation(s)
- Jae-Won Chung
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Ji-Eon Kim
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Yea-Eun Nam
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Woo-Shik Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, South Korea
| | - Insoo Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, South Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
27
|
Arya JK, Kumar R, Singh A, Srivastava P, Yadawa AK, Rizvi SI. Acarbose Mitigates Age-Dependent Alterations in Erythrocyte Membrane Transporters During Aging in Rats. Rejuvenation Res 2023; 26:139-146. [PMID: 37166369 DOI: 10.1089/rej.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Acarbose (ACA), a well-studied and effective inhibitor of α-amylase and α-glucosidase, is a postprandial-acting antidiabetic medicine. The membrane of the erythrocyte is an excellent tool for analyzing different physiological and biochemical activities since it experiences a range of metabolic alterations throughout aging. It is uncertain if ACA modulates erythrocyte membrane activities in an age-dependent manner. As a result, the current study was conducted to explore the influence of ACA on age-dependent deteriorated functions of transporters/exchangers, disrupted levels of various biomarkers such as lipid hydroperoxides (LHs), protein carbonyl (PCO), sialic acid (SA), total thiol (-SH), and erythrocyte membrane osmotic fragility. In addition to a concurrent increase in Na+/H+ exchanger activity and concentration of LH, PCO, and osmotic fragility, we also detected a considerable decrease in membrane-linked activities of Ca2+-ATPase (PMCA) and Na+/K+-ATPase (NKA), as well as concentrations of SA and -SH in old-aged rats. The aging-induced impairment of the activities of membrane-bound ATPases and the changed levels of redox biomarkers were shown to be effectively restored by ACA treatment.
Collapse
Affiliation(s)
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | | - Arun Kumar Yadawa
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
28
|
Błaszczyk JW. Metabolites of Life: Phosphate. Metabolites 2023; 13:860. [PMID: 37512567 PMCID: PMC10385453 DOI: 10.3390/metabo13070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The process of aging and escalating the failure of all body organs has become the center of interest in contemporary science and medicine. The leading role of phosphate-calcium tandem deficiency as a pacemaker of metabolic senescence has emerged recently. Most of the phosphates in the human body are stored in the bones, which seem to play a pivotal role in all metabolic and energetic processes. Bone metabolism combines physical activity with adaptive changes in the internal environment of the body, which is necessary for its survival. Phosphate-calcium signaling is the primary mechanism for controlling homeostasis and its recovery after exercise-induced disorders. Phosphates play an important role in the regulation of energy metabolism both by regulating postprandial glucose storage in the muscles and in the liver, as well as the distribution and adaptation of energy metabolites to the needs of the brain and skeletal muscles. The bone-driven energy metabolism is of decisive importance for maintaining all vital functions of the body organs, including their proper functioning and integrated interplay. The phosphate-calcium tandem contributes to the development and proper functioning of the organism, whereas energy dysmetabolism is the main cause of aging and the final termination of life.
Collapse
|
29
|
Remigante A, Spinelli S, Straface E, Gambardella L, Russo M, Cafeo G, Caruso D, Falliti G, Dugo P, Dossena S, Marino A, Morabito R. Mechanisms underlying the anti-aging activity of bergamot ( Citrus bergamia) extract in human red blood cells. Front Physiol 2023; 14:1225552. [PMID: 37457030 PMCID: PMC10348362 DOI: 10.3389/fphys.2023.1225552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Aging is a process characterised by a decline in physiological functions. Reactive species play a crucial role in the aging rate. Due to the close relationship between aging and oxidative stress, functional foods rich in phytochemicals are excellent candidates to neutralise age-related changes. Aim: This investigation aims to verify the potential protective role of bergamot (Citrus bergamia, Femminello cultivar) peel and juice extract in a model of aging represented by human red blood cells (RBCs) exposed to D-Galactose (DGal). Methods: Bergamot peel and juice extracts were subjected to RP-HPLC/PDA/MS for determination of their composition in bioactive compounds. Markers of oxidative stress, including ROS production, thiobarbituric acid reactive substances (TBARS) levels -a marker of lipid peroxidation, oxidation of total protein sulfhydryl groups, as well as the expression and anion exchange capability of band 3 and glycated haemoglobin (A1c) production have been investigated in RBCs treated with D-Gal for 24 h, with or without pre-incubation for 15 min with 5 μg/mL peel or juice extract. In addition, the activity of the endogenous antioxidant system, including catalase (CAT) and superoxide dismutase (SOD), as well as the diversion of the RBC metabolism from glycolysis towards the pentose phosphate pathway shunt, as denoted by activation of glucose-6-phosphate dehydrogenase (G6PDH), have been explored. Results: Data shown here suggest that bergamot peel and juice extract i) prevented the D-Gal-induced ROS production, and consequently, oxidative stress injury to biological macromolecules including membrane lipids and proteins; ii) significantly restored D-Gal-induced alterations in the distribution and ion transport kinetics of band 3; iii) blunted A1c production; iv) effectively impeded the over-activation of the endogenous antioxidant enzymes CAT and SOD; and v) significantly prevented the activation of G6PDH. Discussion: These results further contribute to shed light on aging mechanisms in human RBCs and identify bergamot as a functional food rich in natural antioxidants useful for prevention and treatment of oxidative stress-related changes, which may lead to pathological states during aging.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Russo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Cafeo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Paola Dugo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
30
|
Ozaydin D, Kuru Bektaşoğlu P, Türe D, Bozkurt H, Ergüder Bİ, Sargon MF, Arıkök AT, Kertmen H, Gürer B. Mildronate Has Ameliorative Effects on the Experimental Ischemia/Reperfusion Injury Model in the Rabbit Spinal Cord. World Neurosurg 2023; 173:e717-e726. [PMID: 36889637 DOI: 10.1016/j.wneu.2023.02.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Mildronate is a useful anti-ischemic agent and has antiinflammatory, antioxidant, and neuroprotective activities. The aim of this study is to investigate the potential neuroprotective effects of mildronate in the experimental rabbit spinal cord ischemia/reperfusion injury (SCIRI) model. METHODS Rabbits were randomized into 5 groups of 8 animals as groups 1 (control), 2 (ischemia), 3 (vehicle), 4 (30 mg/kg methylprednisolone [MP]), and 5 (100 mg/kg mildronate). The control group underwent only laparotomy. The other groups have the spinal cord ischemia model by a 20-minute aortic occlusion just caudal to the renal artery. The malondialdehyde and catalase levels and caspase-3, myeloperoxidase, and xanthine oxidase activities were investigated. Neurologic, histopathologic, and ultrastructural evaluations were also performed. RESULTS The serum and tissue myeloperoxidase, malondialdehyde, and caspase-3 values of the ischemia and vehicle groups were statistically significantly higher than those of the MP and mildronate groups (P < 0.001). Serum and tissue catalase values of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). The histopathologic evaluation showed a statistically significantly lower score in the mildronate and MP groups than in the ischemia and vehicle groups (P < 0.001). The modified Tarlov scores of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). CONCLUSIONS This study presented the antiinflammatory, antioxidant, antiapoptotic, and neuroprotective effects of mildronate on SCIRI. Future studies will elucidate its possible use in clinical settings in SCIRI.
Collapse
Affiliation(s)
- Dilan Ozaydin
- Department of Neurosurgery, Kartal Dr. Lutfi Kırdar Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Durukan Türe
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Toros University, Mersin, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Dışkapı Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Berrin İmge Ergüder
- Ankara University School of Medicine, Department of Biochemistry, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Lokman Hekim University School of Medicine, Department of Anatomy, Ankara, Turkey
| | - Ata Türker Arıkök
- University of Health Sciences, Dışkapı Education and Research Hospital, Department of Pathology, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, Dışkapı Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
31
|
Spinelli S, Straface E, Gambardella L, Caruso D, Falliti G, Remigante A, Marino A, Morabito R. Aging Injury Impairs Structural Properties and Cell Signaling in Human Red Blood Cells; Açaì Berry Is a Keystone. Antioxidants (Basel) 2023; 12:antiox12040848. [PMID: 37107223 PMCID: PMC10135063 DOI: 10.3390/antiox12040848] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Red blood cell (RBC) deformability is the ability of cells to modulate their shape to ensure transit through narrow capillaries of the microcirculation. A loss of deformability can occur in several pathological conditions, during natural RBC aging through an increase in membrane protein phosphorylation, and/or through the structural rearrangements of cytoskeletal proteins due to oxidative conditions, with a key role played by band 3. Due to the close relationship between aging and oxidative stress, flavonoid-rich foods are good candidates to counteract age-related alterations. This study aims to verify the beneficial role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human RBCs. To this end, band 3 phosphorylation and structural rearrangements in membrane cytoskeleton-associated proteins, namely spectrin, ankyrin, and/or protein 4.1, are analyzed in RBCs treated with 100 mM d-Gal for 24 h, with or without pre-incubation with 10 μg/mL Açaì extract for 1 h. Furthermore, RBC deformability is also measured. Tyrosine phosphorylation of band 3, membrane cytoskeleton-associated proteins, and RBC deformability (elongation index) are analyzed using western blotting analysis, FACScan flow cytometry, and ektacytometry, respectively. The present data show that: (i) Açaì berry extract restores the increase in band 3 tyrosine phosphorylation and Syk kinase levels after exposure to 100 mM d-Gal treatment; and (ii) Açaì berry extract partially restores alterations in the distribution of spectrin, ankyrin, and protein 4.1. Interestingly, the significant decrease in membrane RBC deformability associated with d-Gal treatment is alleviated by pre-treatment with Açaì extract. These findings further contribute to clarify mechanisms of natural aging in human RBCs, and propose flavonoid substances as potential natural antioxidants for the treatment and/or prevention of oxidative-stress-related disease risk.
Collapse
Affiliation(s)
- Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
32
|
Abstract
Vascular age is determined by functional and structural changes in the arterial wall. When measured by its proxy, pulse wave velocity, it has been shown to predict cardiovascular and total mortality. Disconcordance between chronological and vascular age might represent better or worse vascular health. Cell senescence is caused by oxidative stress and sustained cell replication. Senescent cells acquire senescence-associated secretory phenotype. Oxidative stress, endothelial dysfunction, dysregulation of coagulation and leucocyte infiltration are observed in the aging endothelium. All of these mechanisms lead to increased vascular calcification and stiffness. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can involve the vascular endothelium. It enters cells using angiotensin-converting enzyme 2 (ACE-2) receptors, which are abundant in endothelial cells. The damage this virus does to the endothelium can be direct or indirect. Indirect damage is caused by hyperinflammation. Direct damage results from effects on ACE-2 receptors. The reduction of ACE-2 levels seen during coronavirus disease 2019 (COVID-19) infection might cause vasoconstriction and oxidative stress. COVID-19 and vascular aging share some pathways. Due to the novelty of the virus, there is an urgent need for studies that investigate its long-term effects on vascular health.
Collapse
Affiliation(s)
- Ignas Badaras
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania,Ignas Badaras, Faculty of Medicine, Vilnius
University, M. K. Ciurlionio g. 21/27, LT-03101, Vilnius 01513, Lithuania.
| | - Agnė Laučytė-Cibulskienė
- Department of Nephrology, Skåne University
Hospital, Malmö, Sweden,Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
33
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
34
|
Ferreira IJ, Paiva A, Diniz M, Duarte AR. Uncovering biodegradability and biocompatibility of betaine-based deep eutectic systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40218-40229. [PMID: 36607574 PMCID: PMC10067644 DOI: 10.1007/s11356-022-25000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Deep eutectic systems (DES) have shown increasing popularity in last decade; however, the number of studies on the potential toxicity towards living organisms remains scarce. These studies are of the utmost importance to infer on the claimed non-toxicity and biocompatibility of DES. Most articles published, at this moment, only evaluate the toxicity towards a cell model or in different strains of bacteria. For this purpose, in this work, the effect of two DES (betaine:sorbitol:water 1:1:3 and betaine:glycerol 1:2) and their individual components were evaluated at different concentrations after administered via intraperitoneal injection in zebrafish (Danio rerio). The total antioxidant capacity, lipoperoxidation, and the activity of various enzymes that work in different antioxidant pathways (superoxide dismutase, glutathione peroxidase, catalase, and glutathione S-transferase) were assessed. The results show no significant toxicity within the tested concentrations: up to 5000 µM and 3000 µM, for the assays using the system betaine:sorbitol:water 1:1:3 and for betaine:glycerol 1:2, respectively. The toxicity of individual components was studied up to 1000 µM. Based on the encouraging results that have been obtained, it is safe to conclude that these two deep eutectic systems can be used as the new class of environmentally friendly solvents.
Collapse
Affiliation(s)
- Inês João Ferreira
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technolog, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technolog, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - Mário Diniz
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry / Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Ana Rita Duarte
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technolog, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
35
|
Protein Susceptibility to Peroxidation by 4-Hydroxynonenal in Hereditary Hemochromatosis. Int J Mol Sci 2023; 24:ijms24032922. [PMID: 36769239 PMCID: PMC9917916 DOI: 10.3390/ijms24032922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Iron overload caused by hereditary hemochromatosis (HH) increases free reactive oxygen species that, in turn, induce lipid peroxidation. Its 4-hydroxynonenal (HNE) by-product is a well-established marker of lipid peroxidation since it reacts with accessible proteins with deleterious consequences. Indeed, elevated levels of HNE are often detected in a wide variety of human diseases related to oxidative stress. Here, we evaluated HNE-modified proteins in the membrane of erythrocytes from HH patients and in organs of Hfe-/- male and female mice, a mouse model of HH. For this purpose, we used one- and two-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF analysis. We identified cytoskeletal membrane proteins and membrane receptors of erythrocytes bound to HNE exclusively in HH patients. Furthermore, kidney and brain of Hfe-/- mice contained more HNE-adducted protein than healthy controls. Our results identified main HNE-modified proteins suggesting that HH favours preferred protein targets for oxidation by HNE.
Collapse
|
36
|
Arya JK, Kumar R, Singh A, Srivastava P, Yadawa AK, Rizvi SI. Acarbose, an α-Glucosidase Inhibitor, Maintains Altered Redox Homeostasis During Aging by Targeting Glucose Metabolism in Rat Erythrocytes. Rejuvenation Res 2023; 26:21-31. [PMID: 36524249 DOI: 10.1089/rej.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing age is the single largest risk factor for a variety of chronic illnesses. As a result, improving the capability to target the aging process leads to an increased health span. A lack of appropriate glucoregulatory control is a recurring issue associated with aging and chronic illness, even though many longevity therapies result in the preservation of glucoregulatory control. In this study, we suggest that targeting glucose metabolism to improve regulatory control can help slow the aging process. Male Wistar rats, both young (age 4 months) and old (age 24 months), were given acarbose (ACA) (30 mg/kg b.w.) for 6 weeks. An array of oxidative stress indicators was assessed after the treatment period, including plasma antioxidant capacity as determined by the ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (malondialdehyde [MDA]), reduced glutathione (GSH), total plasma thiol (sulfhydryl [SH]), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs), and sialic acid (SA) in control and treated groups. When compared with controls, ACA administration increased FRAP, GSH, SH, and PMRS activities in both age groups. The treated groups, on the contrary, showed substantial decreases in ROS, MDA, PCO, AOPP, AGE, and SA levels. The effect of ACA on almost all parameters was more evident in old-age rats. ACA significantly increased PMRS activity in young rats; here the effect was less prominent in old rats. Our data support the restoration of antioxidant levels in older rats after short-term ACA treatment. The findings corroborate the potential role of ACA as a putative calorie restriction mimetic.
Collapse
Affiliation(s)
- Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Parisha Srivastava
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Arun Kumar Yadawa
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
37
|
Adorno HA, Souza IDC, Monferrán MV, Wunderlin DA, Fernandes MN, Monteiro DA. A multi-biomarker approach to assess the sublethal effects of settleable atmospheric particulate matter from an industrial area on Nile tilapia (Oreochromis niloticus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159168. [PMID: 36195137 DOI: 10.1016/j.scitotenv.2022.159168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Iron and steel industries discharge a large amount of atmospheric particulate matter (PM) containing metals and metallic nanoparticles (NPs) that contaminate not only the air, but also settle into the aquatic environments. However, the effects of settleable atmospheric particulate matter (SePM) on aquatic fauna are still poorly understood. This study aimed to evaluate the sublethal effects of a short-term exposure to a realistic concentration of SePM on Nile tilapia (Oreochromis niloticus) using a multi-biomarker approach: relative ventricular mass (RVM) and heart function, blood oxidative stress, stress indicators, hemoglobin concentration, metallic NPs internalization, and metal bioaccumulation. Exposed fish exhibited reduced hemoglobin content and elevated plasma cortisol and glucose levels, reflecting stressed states. Furthermore, SePM caused blood oxidative stress increasing lipid and protein oxidation, decreasing glutathione levels, and inhibiting superoxide and glutathione reductase activities. SePM exposure also increased RVM and improved cardiac performance, increasing myocardial contractile force and rates of contraction and relaxation. In the heart tissue there was a significant accumulation of Fe > Zn > > Cr > Cu > Rb > Ni > V > Mn > Se > Mo > As. On the other hand, in the erythrocytes there was significant accumulation of Sn > Zn > > Cr > Ti > Mn = Ni > Nb > As > Bi. The highest bioaccumulation factors were found for Cr, Zn and Ni in both tissues. NPs (Ti, Sn, Al, Fe, Cu, Si, Zn) were also detected in ventricular myocardium of fish exposed and nanocrystallographic analysis revealed a predominance of anatase phase of TiO2-NP, which is regarded to be more cytotoxic. The association between blood oxidative stress and energy expenditure to sustain increased cardiac pumping capacity under stress condition suggests that SePM has negative impacts on fish physiological performance, threatening their survival, growth rate and/or population establishment.
Collapse
Affiliation(s)
- Henrique Aio Adorno
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Ambientais (PPGCAm), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
38
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
39
|
ETYEMEZ M, GÜLAY MŞ. The effects of safranal against bisphenol AF on some reproductive parameters in male new zealand rabbits. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.24880/maeuvfd.1138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Bisphenol AF (BPAF) is used as an analog of the endocrine disruptor BPA, whereas safranal is a powerful antioxidant obtained from the saffron plant. In the current study, the possible effects of BPAF and Safranal on some spermatological parameters, reproductive hormones, oxidant/antioxidant enzymes, and histopathological parameters were investigated. A total of 24 male New Zealand rabbits were divided into 4 groups (n= 6 for each group). The groups and the treatments they received by oral gavage for 9 weeks are as follows: The control group received 1 ml/day of corn oil, the BPAF group received 20 mg/kg/day of bisphenol AF, the Safranal group received 100 mg/kg/day safranal, and the treatment group received 20 mg/kg/day bisphenol AF and 100 mg/kg/day safranal. Although the spermatological parameters prior to the experiment revealed no differences among the groups, BPAF treatment reduced sperm quantity and motility, and elevated seminal plasma estrogen levels at the end of the study. BPAF treatments also had a negative impact on testicular MDA and GSH levels. It also caused seminiferous tubule degeneration in testicular tissue. On the other hand, the administration of safranal with BPAF decreased estrogen levels while increasing sperm concentration and motility to control group levels. Thus, the results suggested that safranal could have a beneficial effect in reducing BPAF-induced tissue damage. In conclusion, BPAF may have potentially harmful to the male reproductive system and safranal may exhibit a protective effect against BPAF exposure.
Collapse
|
40
|
Akhzari M, Barazesh M, Jalili S, Farzinezhadi Zadeh MM. Berberine Recovered Oxidative Stress Induced by Sodium Nitrite in Rat Erythrocytes. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:192-201. [PMID: 36056864 DOI: 10.2174/2949681015666220902114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Berberine, a plant derived alkaloid, present in Berberis species is well known as one of the most important antioxidants. The current research aimed to study the heamatoprotective characteristics of berberine and clarify its plausible mechanisms against sodium nitrite. METHODS Forty numbers of male Sprague Dawley rats were categorized into five equal groups, including group 1: control (normal saline); group 2: berberine (100 mg/kg); group 3: sodium nitrite (80 mg/kg); group 4: sodium nitrite (80 mg/kg) plus berberine (50 mg/kg) and group 5: sodium nitrite (80 mg/kg) plus berberine (100 mg/kg) groups. All animals were orally administrated for two months once daily. At the end of the 60th day, blood samples were withdrawn by cardiac puncture and collected in test vials when the animals had been anesthetized with ketamine (70 mg/kg). Then, hemolysate was prepared and the oxidative stress biomarkers, lipid peroxidation, and antioxidant capacity of erythrocytes were evaluated. RESULTS Feeding of rats with sodium nitrite remarkably enhanced malondialdehyde (MDA) (p=0.001) levels and considerably reduced the levels of glutathione (GSH) (p=0.001), and also reduced the enzymatic activities of glutathione peroxidase (GPx) (p=0.02), superoxide dismutase (SOD) (p=0.001), glutathione reductase (GR) (p=0.02), and catalase (CAT) (p=0.01). However, the co-administration of these animals with 100 mg/kg of berberine remarkably reverted the values to reach nearly a normal level. While 50 mg/kg berberine failed to restore significantly all of these antioxidant biomarkers at a normal level. CONCLUSION Our results clearly demonstrated that berberine in a dose-dependent manner led to protection against sodium nitrite-induced oxidative injury in rat erythrocytes, which possibly reflects the antioxidant ability of this alkaloid.
Collapse
Affiliation(s)
- Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash. Iran
| | - Sajad Jalili
- Department of Ortopedics, Faculty of Medicine, Ahvaz, Jundishapour University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
41
|
Gao X, Huang J, Cardenas A, Zhao Y, Sun Y, Wang J, Xue L, Baccarelli AA, Guo X, Zhang L, Wu S. Short-Term Exposure of PM 2.5 and Epigenetic Aging: A Quasi-Experimental Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14690-14700. [PMID: 36197060 DOI: 10.1021/acs.est.2c05534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epigenetic age (EA) is an emerging DNA methylation-based biomarker of biological aging, but whether EA is causally associated with short-term PM2.5 exposure remains unknown. We conducted a quasi-experimental study of 26 healthy adults to test whether short-term PM2.5 exposure accelerates seven EAs with three health examinations performed before, during, and after multiple PM2.5 pollution waves. Seven EAs were derived from the DNA methylation profiles of the Illumina HumanMethylationEPIC BeadChip from CD4+ T-helper cells. We found that an increase of 10 μg/m3 in the 0-24 h personal PM2.5 exposure prior to health examinations was associated with a 0.035, 0.035, 0.050, 0.055, 0.052, and 0.037-unit increase in the changes of z-scored DNA methylation age acceleration (AA,Horvath), AA (Hannum), AA (GrimAge), DunedinPoAm, mortality risk score (MS), and epiTOC, respectively (p-values < 0.05). The same increase in the 24-48 h average personal PM2.5 exposure yielded smaller effects but was still robustly associated with the changes in AA (GrimAge), DunedinPoAm, and MS. Such acute aging effects of PM2.5 were mediated by the changes in several circulating biomarkers, including EC-SOD and sCD40L, with up to ∼28% mediated proportions. Our findings demonstrated that short-term PM2.5 exposure could accelerate aging reflected by DNA methylation profiles via blood coagulation, oxidative stress, and systematic inflammation.
Collapse
Affiliation(s)
- Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, California94720, United States
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing100069, China
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Andrea A Baccarelli
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, New York10032, United States
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing100191, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing100069, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi710061, China
| |
Collapse
|
42
|
Mariano A, Bigioni I, Misiti F, Fattorini L, d’Abusco AS, Rodio A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Curr Issues Mol Biol 2022; 44:3481-3495. [PMID: 36005136 PMCID: PMC9406754 DOI: 10.3390/cimb44080240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disease, shows an increasing prevalence in the aging population in industrialized countries. OA is characterized by low-grade chronic inflammation, which causes degeneration of all joint tissues, such as articular cartilage, subchondral bone, and synovial membrane, leading to pain and loss of functionality. Erythrocytes, the most abundant blood cells, have as their primary function oxygen transport, which induces reactive oxygen species (ROS) production. For this reason, the erythrocytes have several mechanisms to counteract ROS injuries, which cause damage to lipids and proteins of the cell membrane. Oxidative stress and inflammation are highly correlated and are both causes of joint disorders. In the synovial fluid and blood of osteoarthritis patients, erythrocyte antioxidant enzyme expression is decreased. To date, OA is a non-curable disease, treated mainly with non-steroidal anti-inflammatory drugs and corticosteroids for a prolonged period of time, which cause several side effects; thus, the search for natural remedies with anti-inflammatory and antioxidant activities is always ongoing. In this review, we analyze several manuscripts describing the effect of traditional remedies, such as Harpagophytum procumbens, Curcumin longa, and Boswellia serrata extracts, in the treatments of OA for their anti-inflammatory, analgesic, and antioxidant activity. The effects of such remedies have been studied both in in vitro and in vivo models, considering both joint cells and erythrocytes.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
- Correspondence:
| | - Luigi Fattorini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| |
Collapse
|
43
|
Niemiec T, Skowron K, Świderek W, Kwiecińska-Piróg J, Gryń G, Wójcik-Trechcińska U, Gajewska M, Zglińska K, Łozicki A, Koczoń P. Effect of radiant catalytic ionization on environmental conditions in rodent rooms and the haematological status of mice. BMC Vet Res 2022; 18:298. [PMID: 35922808 PMCID: PMC9347109 DOI: 10.1186/s12917-022-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
High stocking densities, closed animal houses, and elevated concentrations of bacteria, fungi, and the products of their activity, including ammonia and hydrogen sulphide, have adverse health effects. Active techniques used to reduce unfavourable environmental conditions, such as ventilation, sprinkling, bedding sorbents, and nutritional treatments, are not always sufficient to improve the animals’ living environment. The current paper aims to evaluate the effect of radiant catalytic ionization (RCI) on airborne microorganisms, cage microbiological status, gaseous ammonia concentrations, and the haematological status of mice in animal houses. After one week of operation of an RCI system, the number of airborne bacteria and fungi in the experimental room decreased in comparison to the first day of the experiment (p < 0.05 and p < 0.05 respectively), as did the concentrations of ammonia (p < 0.01) and dust. At the same time, the basic health parameters of the mice, determined in the blood, were very similar between the control and experimental room. RCI seems to be an ideal solution to ensure high hygiene standards in animal rooms and houses with limited use of disinfectants or antibiotic treatment of sick animals. An additional, environmental benefit is the limited amount of nitrogen released.
Collapse
Affiliation(s)
- Tomasz Niemiec
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Wiesław Świderek
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Grzegorz Gryń
- Plant Breeding and Acclimatization Institute - National Research Institute, Bydgoszcz, Poland
| | | | - Marta Gajewska
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Klara Zglińska
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland.
| | - Andrzej Łozicki
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
44
|
Remigante A, Spinelli S, Straface E, Gambardella L, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. Açaì (Euterpe oleracea) Extract Protects Human Erythrocytes from Age-Related Oxidative Stress. Cells 2022; 11:cells11152391. [PMID: 35954235 PMCID: PMC9368007 DOI: 10.3390/cells11152391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is a process characterised by a general decline in physiological functions. The high bioavailability of reactive oxygen species (ROS) plays an important role in the aging rate. Due to the close relationship between aging and oxidative stress (OS), functional foods rich in flavonoids are excellent candidates to counteract age-related changes. This study aimed to verify the protective role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. Markers of OS, including ROS production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, as well as the anion exchange capability through Band 3 protein (B3p) and glycated haemoglobin (A1c) have been analysed in erythrocytes treated with d-Gal for 24 h, with or without pre-incubation for 1 h with 0.5–10 µg/mL Açaì extract. Our results show that the extract avoided the formation of acanthocytes and leptocytes observed after exposure to 50 and 100 mM d-Gal, respectively, prevented d-Gal-induced OS damage, and restored alterations in the distribution of B3p and CD47 proteins. Interestingly, d-Gal exposure was associated with an acceleration of the rate constant of SO42− uptake through B3p, as well as A1c formation. Both alterations have been attenuated by pre-treatment with the Açaì extract. These findings contribute to clarify the aging mechanisms in human erythrocytes and propose functional foods rich in flavonoids as natural antioxidants for the treatment and prevention of OS-related disease conditions.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (L.G.)
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (L.G.)
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy; (D.C.); (G.F.)
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy; (D.C.); (G.F.)
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
- Correspondence:
| |
Collapse
|
45
|
Oxidation Stress as a Mechanism of Aging in Human Erythrocytes: Protective Effect of Quercetin. Int J Mol Sci 2022; 23:ijms23147781. [PMID: 35887126 PMCID: PMC9323120 DOI: 10.3390/ijms23147781] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is a multi-factorial process developing through a complex net of interactions between biological and cellular mechanisms and it involves oxidative stress (OS) as well as protein glycation. The aim of the present work was to verify the protective role of Quercetin (Q), a polyphenolic flavonoid compound, in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. The anion-exchange capability through the Band 3 protein (B3p) measured by the rate constant of the SO42− uptake, thiobarbituric acid reactive substances (TBARS) levels—a marker of lipid peroxidation—total sulfhydryl (-SH) groups, glycated hemoglobin (A1c), and a reduced glutathione/oxidized glutathione (GSH-GSSG) ratio were determined following the exposure of erythrocytes to 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µM Q. The results confirmed that d-Gal activated OS pathways in human erythrocytes, affecting both membrane lipids and proteins, as denoted by increased TBARS levels and decreased total sulfhydryl groups, respectively. In addition, d-Gal led to an acceleration of the rate constant of the SO42− uptake through the B3p. Both the alteration of the B3p function and oxidative damage have been improved by pre-treatment with Q, which preferentially ameliorated lipid peroxidation rather than protein oxidation. Moreover, Q prevented glycated A1c formation, while no protective effect on the endogenous antioxidant system (GSH-GSSG) was observed. These findings suggest that the B3p could be a novel potential target of antioxidant treatments to counteract aging-related disturbances. Further studies are needed to confirm the possible role of Q in pharmacological strategies against aging.
Collapse
|
46
|
Li X, Cao X, Ying Z, Yang G, Hoogendijk EO, Liu Z. Plasma superoxide dismutase activity in relation to disability in activities of daily living and objective physical functioning among Chinese older adults. Maturitas 2022; 161:12-17. [PMID: 35688489 DOI: 10.1016/j.maturitas.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study aimed to examine the associations of plasma superoxide dismutase (SOD) activity, an indicator of oxidative stress, with disability in activities of daily living (ADL) and objective physical functioning among Chinese older adults. METHODS We used cross-sectional data of 2223 older adults (≥65 years, including 1505 adults≥80 years) from the 2011/2012 main survey of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) and the 2012 biomarker sub-study. Plasma SOD activity was assessed by the T-SOD assay kit based on the hydroxylamine method. Outcomes included ADL disability and disability in three objective physical tasks (standing up from a chair, picking up a book from the floor, and turning around 360°). Logistic regression models were used to examine the associations of plasma SOD activity with outcomes. RESULTS After controlling for age and sex, compared with participants in the lowest quartile group of SOD activity, those in the highest quartile group had 31% lower odds of ADL disability (odds ratio [OR]: 0.69; 95%CI: 0.48, 0.98); 60% lower odds of disability in standing up from a chair (OR: 0.40; 95%CI: 0.25, 0.63); and 57% lower odds of disability in picking up a book from a floor (OR: 0.43; 95%CI: 0.28, 0.65). The results did not change substantially after controlling for additional covariates. We did not observe statistically significant age and sex differences. CONCLUSIONS Overall, plasma SOD activity was associated with subjectively and objectively measured disability in Chinese older adults, highlighting the potential of SOD activity to serve as a biomarker of physical functioning.
Collapse
Affiliation(s)
- Xueqin Li
- Department of Big Data in Health Science and Center for Clinical Big Data and Analytics, Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xingqi Cao
- Department of Big Data in Health Science and Center for Clinical Big Data and Analytics, Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhimin Ying
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangtao Yang
- School of Laboratory Medicine and School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Emiel O Hoogendijk
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC-location VU University Medical Center, Amsterdam, the Netherlands
| | - Zuyun Liu
- Department of Big Data in Health Science and Center for Clinical Big Data and Analytics, Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Raza A, Karimyan N, Watters A, Emperumal CP, Al-Eryani K, Enciso R. Efficacy of oral and topical antioxidants in the prevention and management of oral mucositis in head and neck cancer patients: a systematic review and meta-analyses. Support Care Cancer 2022; 30:8689-8703. [PMID: 35680672 DOI: 10.1007/s00520-022-07190-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the effectiveness of antioxidants in the prevention and management of oral mucositis in adults undergoing radiotherapy and/or chemotherapy with diagnosed head and neck cancer (HNC) compared to placebo intervention. METHODS Cochrane, EMBASE, PubMed, and Web of Science databases were used to search for randomized controlled trials (RCTs) comparing oral or topical antioxidants with placebo in clinically diagnosed HNC adult patients receiving radiotherapy with/without chemotherapy. The primary outcome was to assess the efficacy of the antioxidant to prevent and decrease the incidence/prevalence and severity of oral/oropharyngeal mucositis. The risk of bias was assessed following Cochrane's guidelines. RESULTS The database search resulted in 203 records up to February 19, 2021. Thirteen RCTs were included with 650 HNC-diagnosed patients. Included studies showed a statistically significant improvement in mucositis severity score for all antioxidants except melatonin. However, further studies are needed as only one study reported outcomes for zinc, propolis, curcumin, and silymarin. Patients receiving vitamin E were 60% less likely to develop severe mucositis grade 2 or higher than those receiving placebo in one study (P = 0.040). Patients receiving zinc were 95% less likely to develop severe mucositis (grades 3-4) in one study compared to placebo (P = 0.031). One meta-analysis showed no statistical difference in the risk of having severe mucositis (grades 3-4) with 199 patients compared to placebo for honey (n = 2 studies, P = 0.403). Meta-analyses could not be conducted for zinc, propolis, curcumin, melatonin, silymarin, and selenium due to the lack of studies reporting similar outcomes for the same intervention. CONCLUSION Though oral and topical antioxidants significantly improved mucositis severity scores in HNC patients receiving radiotherapy with/without chemotherapy in individual studies, the quality of the evidence was low due to the small number of studies and unclear/high-risk bias. Additionally, large RCTs are needed to confirm these results.
Collapse
Affiliation(s)
- Afsheen Raza
- Orofacial Pain and Oral Medicine, Herman Ostrow School of Dentistry of USC, Los Angeles, CA, USA
| | - Nelli Karimyan
- Orofacial Pain and Oral Medicine, Herman Ostrow School of Dentistry of USC, Los Angeles, CA, USA
| | | | - Chitra P Emperumal
- Orofacial Pain and Oral Medicine, Herman Ostrow School of Dentistry of USC, Los Angeles, CA, USA
| | - Kamal Al-Eryani
- Department of Diagnostic Sciences, Herman Ostrow School of Dentistry of USC, CA, Los Angeles, USA
| | - Reyes Enciso
- Department of Geriatrics, Special Patients and Behavioral Science, Herman Ostrow School of Dentistry of University of Southern California, 925 West 34th Street, room #4268, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Moutabian H, Ghahramani-Asl R, Mortezazadeh T, Laripour R, Narmani A, Zamani H, Ataei G, Bagheri H, Farhood B, Sathyapalan T, Sahebkar A. The cardioprotective effects of nano-curcumin against doxorubicin-induced cardiotoxicity: A systematic review. Biofactors 2022; 48:597-610. [PMID: 35080781 DOI: 10.1002/biof.1823] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Although the chemotherapeutic drug, doxorubicin, is commonly used to treat various malignant tumors, its clinical use is restricted because of its toxicity especially cardiotoxicity. The use of curcumin may alleviate some of the doxorubicin-induced cardiotoxic effects. Especially, using the nano-formulation of curcumin can overcome the poor bioavailability of curcumin and enhance its physicochemical properties regarding its efficacy. In this study, we systematically reviewed the potential cardioprotective effects of nano-curcumin against the doxorubicin-induced cardiotoxicity. A systematic search was accomplished based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for the identification of all relevant articles on "the role of nano-curcumin on doxorubicin-induced cardiotoxicity" in the electronic databases of Scopus, PubMed, and Web of Science up to July 2021. One hundred and sixty-nine articles were screened following a predefined set of inclusion and exclusion criteria. Ten eligible scientific papers were finally included in the present systematic review. The administration of doxorubicin reduced the body and heart weights of mice/rats compared to the control groups. In contrast, the combined treatment of doxorubicin and nano-curcumin increased the body and heart weights of animals compared with the doxorubicin-treated groups alone. Furthermore, doxorubicin could significantly induce the biochemical and histological changes in the cardiac tissue; however, coadministration of nano-curcumin formulation demonstrated a pattern opposite to the doxorubicin-induced changes. The coadministration of nano-curcumin alleviates the doxorubicin-induced cardiotoxicity through various mechanisms including antioxidant, anti-inflammatory, and antiapoptotic effects. Also, the cardioprotective effect of nano-curcumin formulation against doxorubicin-induced cardiotoxicity was higher than free curcumin.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Laripour
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Zamani
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School (HYMS), The University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Mashhad, Iran
| |
Collapse
|
49
|
Remigante A, Spinelli S, Pusch M, Sarikas A, Morabito R, Marino A, Dossena S. Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiol (Oxf) 2022; 235:e13796. [PMID: 35143116 PMCID: PMC9542443 DOI: 10.1111/apha.13796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl−/HCO3−) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl−/HCO3− exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress‐related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.
Collapse
Affiliation(s)
- Alessia Remigante
- Biophysics Institute National Research Council Genova Italy
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Michael Pusch
- Biophysics Institute National Research Council Genova Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| |
Collapse
|
50
|
Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK. Protective role of AKBA against benzo(a)pyrene-induced lung carcinogenesis by modulating biotransformation enzymes and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23072. [PMID: 35437857 DOI: 10.1002/jbt.23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
The present study was designed to explore the chemopreventive potential of 3-acetyl-11-keto-β-boswellic acid (AKBA) during the initiation and promotion stage of lung carcinogenesis induced by benzo(a)pyrene (BaP) in female Sprague Dawley rats. BaP was administered at a dose level of 50 mg/kg b.wt. twice a week orally in olive oil for 4 weeks. AKBA administration was started 4 weeks before BaP treatment and continued for another 8 weeks at a dose level of 50 mg/kg b.wt. orally in olive oil three times a week. BaP treatment showed significantly increased in the activities of Phase I biotransformation enzymes (Cytochrome P450 , b5 , and aryl hydrocarbon hydrolase) and inhibited the activity of Phase II enzyme (glutathione-S-transferase). Also, a significant elevation in oxidative stress biomarkers lipid peroxidation, reactive oxygen species, and protein carbonyl content concentration. Further, an appreciable decrease was observed in the activities of endogenous antioxidant enzymes superoxide dismutase, CAT, GPx, GR, and a decline in nonenzymatic GSH levels. As a result of BaP induced oxidative stress, alteration in erythrocytes morphology was observed. Fourier transform infrared spectroscopy spectrum of lung tissue showed structural changes due to BaP exposure. Moreover, levels of tumor biomarkers such as total sialic acid, carcinoembryonic antigen, and alkaline phosphatase were significantly elevated following BaP treatment which was substantiated by alterations noticed in the histoarchitecture of lung tissue. Interestingly, AKBA administration to BaP treated rats appreciably alleviated the changes inflicted by BaP on various biochemical indices and histoarchitecture of lungs. Therefore, the study clearly revealed that AKBA by containing oxidative stress shall prove to be quite effective in providing chemoprevention against BaP induced lung carcinogenesis.
Collapse
Affiliation(s)
- Priti Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India.,Electron microscopy facility, National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Manoj Kumar
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Higher Education Shimla, Govt. College Chowari, Shimla, Himachal Pradesh, India
| | - Sunil Kumar Dhatwalia
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Zoology and Environmental Sciences, Maharaja Agarsen University, Baddi Solan, Himachal Pradesh, India
| | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|