1
|
Dhasmana A, Dobhal P, Sati A, Santhanam A, Preetam S, Malik S, Joshi N, Rustagi S, Deshwal RK. Synthesis of fungal polysaccharide-based nanoemulsions for cancer treatment. RSC Adv 2025; 15:13300-13312. [PMID: 40290748 PMCID: PMC12022750 DOI: 10.1039/d5ra01349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Long valued for their therapeutic qualities, shiitake mushrooms (Lentinula edodes) are a staple of traditional Asian medicine and cuisine. They are high in bio-actives such as polysaccharides, proteins, lipids, vitamins, minerals, sterols, and phenolic compounds, which exhibit immunomodulatory, anticancer, antibacterial, anti-inflammatory, and anti-oxidant properties. Despite these advantages, the limited bioavailability and stability of shiitake's bio-active components often restrict their therapeutic use. Recent advances in nanotechnology have led to the development of nanoemulsions to encapsulate bioactives, which enhanced their bioavailability, stability, and therapeutic efficacy. In this study, we developed a biopolymeric blend of zein and chitosan as a nanoemulsion for the encapsulation of crude shiitake extract. Focusing on the synthesis and refinement of bio-compatible nanoemulsion formulations, this study investigates the medicinal potential of shiitake mushrooms and their nanoemulsions using several in vitro assays: the DPPH assay for anti-oxidant activity; the BSA denaturation assay for anti-inflammatory activity; the MIC test for antimicrobial activity; and the MTT assay for anticancer activity. This study aimed to attain three main goals: synthesis of nanoemulsions, biochemical analysis of shiitake extracts, and in vitro characterization of the therapeutic efficacy of the resulting formulations. This study found that shiitake nanoemulsions showed significantly improved bio-availability and therapeutic efficacy, suggesting promising applications in pharmaceuticals, nutraceuticals, cosmetics, medicine, and the food industry.
Collapse
Affiliation(s)
- Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Pooja Dobhal
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Abhilekh Sati
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Ayushi Santhanam
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Subham Preetam
- Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand Ranchi Jharkhand 834001 India
- School of Applied and Life Sciences, Uttaranchal University 22 Dehradun 248007 Uttarakhand India
- University Center for Research & Development (UCRD) Chandigarh University NH-05 Chandigarh- Ludhiana Highway Mohali Punjab 140413 India
| | - Nupur Joshi
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Agriculture, Maya Devi University Dehradun Uttarakhand India
| | | |
Collapse
|
2
|
Judžentienė A, Šarlauskas J. Comparative Research of Antioxidant, Antimicrobial, Antiprotozoal and Cytotoxic Activities of Edible Suillus sp. Fruiting Body Extracts. Foods 2025; 14:1130. [PMID: 40238251 PMCID: PMC11988316 DOI: 10.3390/foods14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
The aim of this study was to evaluate bioactive properties of Basidiomycota fungi, mainly Suillus sp. Wide spectrum of activities were revealed for S. variegatus, S. luteus, S. bovinus and S. granulatus; and obtained results were compared with other common fungi. Total Phenolic Content (TPC) varied from 245.32 ± 5.45 to 580.77 ± 13.10 (mg (GAE) per 100 g of dry weight) in methanolic extracts of S. bovinus and S. granulatus fruiting bodies, respectively. In ethyl acetate extracts, the highest TPC were obtained for S. variegatus (310 ± 9.68, mg (GAE)/100 g, dry matter), and the lowest means for S. luteus (105 ± 3.55, mg (GAE)/100 g dry weight). The ethyl acetate extracts of the tested Suillus species exhibited a stronger antioxidant activity (AA) to scavenge DPPH● and ABTS•+ than the methanolic ones, and the highest effects were determined for S. luteus (EC50, 0.15 ± 0.05 and 0.23 ± 0.05%, respectively). In the case of methanolic extracts, the highest AA were evaluated for S. granulatus. (EC50 for DPPH● and ABTS•+, 0.81 ± 0.30 and 0.95 ± 0.22%, respectively). The ABTS•+ scavenging potential varied from 0.25 ± 0.05 to 0.74 ± 0.10 (mmol/L, TROLOX equivalent, for S. granulatus and S. variegatus fruiting body extracts, respectively) in the ethyl acetate extracts. S. granulatus extracts demonstrated the widest range of antimicrobial effects against both gram-positive and gram-negative bacteria (from 11.7 ± 1.3 to 28.5 ± 3.3 mm against Pseudomonas aeruginosa and Bacillus mycoides, respectively); and against two fungal strains (up to 13.6 ± 0.4 mm on Meyerozyma guilliermondii) in agar disc diffusion tests. Our study revealed that methanolic extracts of the most tested Suillus sp. were not active enough against the tested parasites: Trypanosoma cruzi, Trypanosoma brucei, Leishmania infantum and Plasmodium falciparum. Only S. variegatus extracts showed good antiprotozoal effects against P. falciparum (12.70 µg/mL). Cytotoxic activity was observed on human diploid lung cells MRC-5 SV2 by S. granulatus extracts (64.45 µg/mL). For comparative purposes, extracts of other common Lithuanian fungi, such as Xerocomus sp. (X. badius, X. chrysenteron and X. subtomentosus), Tylopilus felleus, Phallus impudicus and Pycnoporus cinnabarinus were investigated for their activity. The P. cinnabarinus extracts demonstrated the highest and broadest overall effects: 1.32 µg/mL against T. brucei, 1.46 µg/mL against P. falciparum, 3.93 µg/mL against T. cruzi and 21.53 µg/mL against L. infantum. Additionally, this extract exhibited strong cytotoxicity on MRC-5 cells (13.05 µg/mL). The investigation of bioactive fungal metabolites is important for the development of a new generation of antioxidants, antimicrobials, antiparasitic and anticancer agents.
Collapse
Affiliation(s)
- Asta Judžentienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Avenue 7, LT-10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
3
|
Naumoska K, Gregori A, Albreht A. Two-Dimensional Chromatographic Isolation of High Purity Erinacine A from Hericium erinaceus. J Fungi (Basel) 2025; 11:150. [PMID: 39997444 PMCID: PMC11856814 DOI: 10.3390/jof11020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
A simple and robust two-dimensional chromatographic fractionation protocol for the isolation of the neuroprotective compound erinacine A from Hericium erinaceus is proposed. This production platform yielded 19.4 mg of erinacine A from approximately 130 g of mushroom material, with a chromatographic purity of 97.4%. The procedure includes extraction, concentration, fractionation, purification, and characterisation of the bioactive compound. The crude H. erinaceus extract was fractionated in the first dimension by normal-phase flash chromatography, and the fraction containing erinacine A was further purified in the second dimension by semi-preparative reversed-phase chromatography. This strategy utilises the orthogonality of the two chromatographic modes to effectively eliminate difficult impurities, including structural isomers and analogues of erinacine A. Complementary analytical approaches such as high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography with ultraviolet and tandem mass spectrometric detection (HPLC-UV-MS/MS) were employed to unambiguously confirm erinacine A in the isolated fractions, while HPLC with a charged aerosol detector (CAD) was used to determine its purity. Given the limited commercial availability and the high price of erinacine A, the described method offers a straightforward and cost-effective alternative to obtain this valuable compound for further research and applications.
Collapse
Affiliation(s)
- Katerina Naumoska
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia;
| | - Andrej Gregori
- Mycomedica Ltd., Podkoren 72, 4280 Kranjska Gora, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Alen Albreht
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia;
| |
Collapse
|
4
|
Kumar Y, Xu B. New Insights into Chemical Profiles and Health-Promoting Effects of Edible Mushroom Dictyophora indusiate (Vent ex. Pers.) Fischer: A Review. J Fungi (Basel) 2025; 11:75. [PMID: 39852494 PMCID: PMC11767163 DOI: 10.3390/jof11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Mushrooms are valued for their culinary and medicinal benefits, containing bioactive compounds like polysaccharides, terpenoids, phenolics, lectins, and ergosterols. This review aims to encourage research on D. indusiata by summarizing its chemistry, health benefits, pharmacology, and potential therapeutic applications. Molecules from D. indusiata offer anti-diabetic, antioxidant, anti-tumor, hepatoprotective, and anti-bacterial effects. In particular, polysaccharides from Dictyophora indusiata (DIP) enhance immune function, reduce oxidative stress, and promote gut health as prebiotics. DIP shows neuroprotective effects by reducing oxidative damage, improving mitochondrial function, and regulating apoptosis, making them beneficial for neurodegenerative diseases. They also activate immune responses through TLR4 and NF-κB pathways. Additionally, compounds like dictyophorines and quinazoline from D. indusiata support nerve growth and protection. Mushrooms help regulate metabolism and improve lipid profiles, with potential applications in managing metabolic disorders, cancer, cardiovascular diseases, diabetes, and neurodegenerative conditions. Their wide range of bioactive compounds makes D. indusiata mushrooms functional foods with significant therapeutic potential.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Biotechnology, Mehsana Urban Institute of Sciences, Ganpat University, Mehsana 384012, Gujrat, India;
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
5
|
Sreedharan PL, Kishorkumar M, Neumann EG, Kurup SS. The Emerging Role of Oyster Mushrooms as a Functional Food for Complementary Cancer Therapy. Foods 2025; 14:128. [PMID: 39796417 PMCID: PMC11719500 DOI: 10.3390/foods14010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025] Open
Abstract
The importance of functional food's role in human nutrition as well as in the prevention of diseases, especially the treatment of chronic diseases like cancer, is an innovative field of research. Based on the studies regarding the antioxidant potential of oyster mushroom extract, it is evident that it has anticancer properties. The current article reviews the health benefits of edible oyster-mushroom-derived bioactive compounds, and how they specifically activate or regulate the immune system by affecting the maturation, differentiation, and proliferation of immune cells, thereby inhibiting cancer cell metastasis and growth. Mushrooms show anticancer potential by regulating a single molecule of a specific signaling pathway or by having multiple targets in the same or different signaling pathways. In addition, the prebiotic effects of mushrooms could enhance quality of life during and after cancer therapy by recovering the intestinal microbiota. More clinical research on oyster mushrooms needs to be conducted, and future studies should investigate the preventive aspects, which aid in reducing the rate of cancer occurrence, and the positive impact in cancer patients to prove that oyster mushrooms are preventive as a functional food as well as a curing dietary supplement for cancer patients.
Collapse
Affiliation(s)
| | | | | | - Shyam S. Kurup
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates; (P.L.S.)
| |
Collapse
|
6
|
Qi Y, Luo J, Zhang L, Fang C, Zhang X, Han C. Preparation and Characterization of a Novel Magnetic Molecularly Imprinted Polymer Capable of Isolating and Purifying Cordycepin from a Submerged Culture of the Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 2025; 27:63-79. [PMID: 39717919 DOI: 10.1615/intjmedmushrooms.2024056391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In this work, magnetic molecularly imprinted polymer (MMIP) capable of selectively recognizing and adsorbing cordycepin was prepared. The MMIP was prepared using cordycepin as the template molecule, methacrylic acid and acrylamide as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The MMIP was analyzed using various techniques including transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometer and x-ray diffraction. The adsorption properties of MMIP were subsequently investigated, including adsorption isotherms, kinetics, selectivity, and reusability. In an aqueous solution, the maximum theoretical adsorption of MMIP was 35.806 mg/g. Finally, two practical applications of MMIP were studied. Our results showed that MMIP was able to increase the purity of cordycepin in the fermentation broth of Cordyceps militaris by 5.46 times and, using in situ isolation techniques, MMIP was able to increase the total cordycepin content obtained from liquid fermentation of C. militaris by 33.41%. These results demonstrated that these MMIPs exhibit excellent magnetic properties and possess specific adsorption capability for cordycepin, enabling rapid separation. They offer advantages such as cost-effectiveness, high specificity, and recyclability.
Collapse
Affiliation(s)
- Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Chuanjian Fang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Xiuyun Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
7
|
Adachi S, Tougan T, Ryo H, Takanari J, Wakame K, Aoshi T, Nomura T. Continuous Ingestion of a Standardized Extract of Cultured Lentinula edodes Mycelia Suppresses Spontaneous Carcinogenesis in a Murine Model. Biol Pharm Bull 2025; 48:687-693. [PMID: 40414724 DOI: 10.1248/bpb.b24-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
AHCC®, a standardized extract of cultured Lentinula edodes mycelia, suppresses the proliferation of both cancer cell line-derived and patient-derived xenografts transplanted into mice. However, the mechanism of action underlying the suppressive effect of AHCC on spontaneous carcinogenesis remains unclear. This study investigated the effects of long-term AHCC ingestion on spontaneous carcinogenesis and the health of C3H/HeJ mice. The mice were divided into three groups: A (2% AHCC ingestion continuously 2 d a week), B (2% AHCC ingestion daily), and C (water ingestion). The ingestion of AHCC or water was started when mice were 5 weeks old and were observed until 24 months of age. The occurrence of the first death was delayed in the AHCC-ingestion groups, and the survival rates were significantly higher in the AHCC-ingestion groups than in the control group. The proportion of "healthy mice" with no morphological abnormalities in their organs was also significantly higher in the AHCC-ingestion groups than in the control group. Furthermore, the incidence of cancer-bearing mice, particularly breast cancer and liver cancer, was significantly reduced in the AHCC-ingestion groups. The reduced rates of breast cancer were particularly higher among females of the AHCC-ingestion groups, whereas the reduced rates of liver cancer were higher among males of the AHCC-ingestion groups. These results suggest that continuous AHCC ingestion maintains health and prevents spontaneous carcinogenesis.
Collapse
Affiliation(s)
- Shigeki Adachi
- Department of Cellular Immunology, RIMD, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Tougan
- Department of Cellular Immunology, RIMD, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruko Ryo
- Department of Cellular Immunology, RIMD, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun Takanari
- Amino Up Co., Ltd., 363-32 Shin-ei, Kiyota-ku, Sapporo 004-0839, Japan
| | - Koji Wakame
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, Hokkaido University of Science, 15-4-1 Maeda 7, Teine-ku, Sapporo 006-8585, Japan
| | - Taiki Aoshi
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Taisei Nomura
- Graduate School of Medicine, Faculty of Medicine, Osaka University, 2-2 Yamadaoka, Suita Osaka 565-0871, Japan
| |
Collapse
|
8
|
Ebbens EF, Williams SR, Bruccoleri RE, Frazier SB. Neurotoxicity associated with the medicinal mushroom product-Diamond Shruumz: A case report. Toxicol Rep 2024; 13:101748. [PMID: 39386889 PMCID: PMC11462057 DOI: 10.1016/j.toxrep.2024.101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Medicinal mushrooms are widely available as health supplements, and the federal government does not currently require these products to be examined for quality and contents. This places consumers at risk for unintentional ingestion of other substances, including toxic mushroom species. We describe a case report of an ingestion of an edible medicinal mushroom product likely contaminated with muscimol, the primary toxin of Amanita muscaria. A 17-year-old female presented with altered mental status, mydriasis, salivation, and myoclonic jerks that were refractory to benzodiazepines. She was intubated for airway protection and had spontaneous improvement of all her symptoms with return to baseline within 8 hours of presentation. She disclosed ingestion of the chocolate bar brand "Diamond Shruumz" that has been recalled for muscimol contamination. She was discharged home the day after presentation without symptom recurrence. This case displays the toxidrome of muscimol ingestion consistent with prior reports in the literature from muscimol containing mushroom ingestion. To our knowledge, this is among the first reports of Amanita muscaria ingestion from a commercially available medicinal mushroom product.
Collapse
Affiliation(s)
- Elizabeth F. Ebbens
- Pediatrics, Pediatric Emergency Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, 2200 Children's Way, Nashville, TN 37212, USA
| | - Saralyn R. Williams
- Emergency Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Rebecca E. Bruccoleri
- Medicine, Clinical Pharmacology, Vanderbilt University Medical Center, 1161 21st Ave, Nashville, TN 37232, USA
| | - S. Barron Frazier
- Pediatrics, Pediatric Emergency Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, 2200 Children's Way, Nashville, TN 37212, USA
| |
Collapse
|
9
|
Peiris TM, Perera M, Munasinghe HH, Thambugala KM, Dharmasena BP, Suttiprapan P, Cheewangkoon R. The treasured giants: a current overview on agricultural, nutritional, bioactive, and economic potential of Macrocybe Species (Agaricales, Basidiomycota). Front Cell Infect Microbiol 2024; 14:1493532. [PMID: 39624266 PMCID: PMC11609161 DOI: 10.3389/fcimb.2024.1493532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025] Open
Abstract
Macrocybe is a well-studied genus in the family Callistosporiaceae (Basidiomycota). Currently, the genus comprises eight species with worldwide distribution. All species in this genus are relatively large compared to other edible mushrooms and are commonly consumed by locals. Cultivation methodologies have been developed for several species of the genus, including M. gigantea, M. crassa, M. titans, and M. lobayensis. These mushrooms can be cultivated in lignocellulosic wastes such as sawdust, straw, and other agro-industrial wastes. The nutritional compositions have been identified for M. gigantea, M. crassa, and M. lobayensis, revealing that they are rich in fibers, proteins, and various vitamins. Although these mushrooms are of culinary significance, precautions should be taken when consuming them due to their potential cyanic toxicity. In addition to being rich in different nutrients, Macrocybe species possess medicinal properties such as antimicrobial, antioxidant, immunomodulatory, anticancer, anti-inflammatory, hepatoprotective, and several other beneficial effects. Several species are commercially available in countries like China and Thailand, and the commercial potential is high due to the large size, taste, and long shelf life of these mushrooms. There is significant potential for cultivating species of this genus and introducing their artificial cultivation practices to various counties worldwide. Diverse value-added products can also be produced using Macrocybe species.
Collapse
Affiliation(s)
- Thivanka M. Peiris
- Centre for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Menasha Perera
- Centre for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Helani H. Munasinghe
- Centre for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Kasun M. Thambugala
- Centre for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Buddhika P. Dharmasena
- Centre for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Department of Biosystems Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Piyawan Suttiprapan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Agrobiodiversity in Highland and Sustainable Utilization Research Group, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Agrobiodiversity in Highland and Sustainable Utilization Research Group, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Uzomba CG, Ezemagu UK, Ofoegbu MS, Lydia N, Goodness E, Emelike C, Obinna U, Nwafor AJ, Mbajiorgu EF. Edible mushroom ( Pleurotus cornucopiae) extract vs. glibenclamide on alloxan induced diabetes: sub-acute in vivo study of Nrf2 expression and renal toxicity. Anat Cell Biol 2024; 57:446-458. [PMID: 38972671 PMCID: PMC11424557 DOI: 10.5115/acb.24.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
The study aims to compare the action of Pleurotus cornucopiae and glibenclamide on alloxan-induced diabetes and ascertain how an aqueous extract of the edible mushroom regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), oxidative stress biomarkers and renal toxicity in a diabetic male Wistar rat model. Twenty-five adult male Wistar rats were randomly grouped into five groups with five rats per. Group 1 and those in the treatment groups received normal feed and water ad libitum. Group 2 received intraperitoneal administration of alloxan monohydrate (150 mg/kg body weight). Group 3 received alloxan monohydrate and glibenclamide (5 mg/kg body weight bwt), group 4 received alloxan monohydrate plus the extract (250 mg/kg bwt) and group 5 received alloxan monohydrate plus the extract (500 mg/kg bwt). The administration of glibenclamide plus the extract was oral for 14 days. Glibenclamide and the extract lowered blood glucose level, catalase, and glutathione peroxidase activities, increased the superoxide dismutase (SOD) activity in rats with alloxan induced diabetes. The extract at 500 mg/kg bwt reduced the plasma urea and sodium concentration in the treated rats. The extract and glibenclamide could detoxify alloxan and restore its induced renal degeneration and glomeruli atrophy, intra renal hemorrhage and inflammation and oxidative biomarkers through activation of Nrf2 expression. The drug glibenclamide and P. cornucopiae have appreciable hypoglycemic activity and potential to restore the normal renal architecture in the rats, hence they offer similar curative effects. Additionally, the extract at 500 mg/kg bwt activated SOD and Nrf2 expression more than glibenclamide in rats with alloxan-induced diabetes.
Collapse
Affiliation(s)
- Chinedu Godwin Uzomba
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Uchenna Kenneth Ezemagu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Mary-Sonia Ofoegbu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Njoku Lydia
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Essien Goodness
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Chinedum Emelike
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Uchewa Obinna
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Alo Joseph Nwafor
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Ejikeme Felix Mbajiorgu
- Department of Histology and Embryology, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Luo Y, Cao N, Huang L, Tang L, Liu X, Zhang W, Huang S, Xie X, Yan Y. Structural Characterization, and Antioxidant, Hypoglycemic and Immunomodulatory Activity of Exopolysaccharide from Sanghuangporus sanghuang JM-1. Molecules 2024; 29:4564. [PMID: 39407494 PMCID: PMC11477767 DOI: 10.3390/molecules29194564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Sanghuang as a medicinal fungus in China has a history of more than 2000 years, and is known as the "forest gold". Most notably, the polysaccharides of Sanghuangporus sp. have attracted widespread attention due to their significant bioactivity in recent years. At present, extensive studies are being carried out on the extraction methods, structural characterization, and activity evaluation of polysaccharides. Here, we aimed to evaluate the structure and bioactivity of LEPS-1, an exopolysaccharide derived from the S. sanghuang JM-1 strain. The structure was elucidated by chromatography/spectral methods and hydrolyzation, and the solubility, the antioxidant activity, hypoglycemic activity and immunomodulatory activity were investigated. Results showed that LEPS-1 contained a →2)-α-Manp(1→6)-α-Galp(1→[2)-α-Manp(1→]n→2,6)-α-Manp(1→6,2)-α-Manp(1→3)-α-Manp(1→ backbone substituted at the O-6 and O-2 positions with side chains. These two branching fragments were β-Manp(1→. The molecular weight of LEPS-1 is 36.131 kDa. The results of biological activity analysis suggested that LEPS-1 was easily soluble in water, with reducing capability and DPPH radical scavenging capability. Furthermore, the IC50 values of LEPS-1 against α-amylase and α-glucosidase were 0.96 mg/mL and 1.92 mg/mL. LEPS-1 stimulated RAW264.7 cells to release NO, TNF-α and IL-6 with no cytotoxicity, showing potent potential for immunomodulatory activity. These findings describe a potential natural exopolysaccharide with medicinal value and a basis for the development of S. sanghuang exopolysaccharides.
Collapse
Affiliation(s)
- Yanglan Luo
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Naixin Cao
- Shannxi Tanchi Biotech Co., Ltd., Yulin 718411, China;
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Liling Huang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Lanlan Tang
- Lueyang County Test and Inspection Center for Quality and Safety of Agricultural Products, Hanzhong 724300, China
| | - Xuzhou Liu
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Wenlong Zhang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Shilv Huang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Xiuchao Xie
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yong Yan
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| |
Collapse
|
12
|
Cueva-Clavijo RI, Téllez-Téllez M, Aguilar-Marcelino L, Wong-Villarreal A, Acosta-Urdapilleta MDL, Castañeda-Ramírez GS, Montañez-Palma LF, Hernández-Núñez E. Evaluation of Ointments with Daldinia eschscholtzii in Wound Healing in an In Vivo Model. J Med Food 2024; 27:681-691. [PMID: 39018055 DOI: 10.1089/jmf.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Fungi are a source of a variety of secondary metabolites of importance in different areas of biotechnology. Several compounds have been characterized with antioxidant, antimicrobial, and anti-inflammatory activity from fungi of the division of the Ascomycota, among which is the species Daldinia eschscholtzii, an endophyte fungus of pantropical distribution. In this study, we evaluated the effect of an ointment made with D. eschscholtzii on the wound healing of BALB/c mice. The species was corroborated using a molecular marker Internal Transcribed Spacer (ITS1 and ITS4). The extracts and dust of the fungus were considered nontoxic as they caused a mortality of <15% in the nematode Panagrellus redivivus, and experimental ointments had no adverse effects on the skin of BALB/c mice. Wounds treated with the D. eschscholtzii ointments had 99.9-100% wound contraction after 17 days, which was similar to commercial healing (positive control). As such, the ointment of D. eschscholtzii is a natural alternative to improve wound healing.
Collapse
Affiliation(s)
- Reina Isabel Cueva-Clavijo
- Master's Degree in Natural Resource Management, Biological Research Center of the Autonomous University of the State of Morelos, Cuernavaca, Mexico
| | - Maura Téllez-Téllez
- Biological Research Center of the Autonomous University of the State of Morelos, Cuernavaca, México
| | | | | | | | | | | | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados-Unidad Mérida, Mérida, México
| |
Collapse
|
13
|
Srivastava M, Kumari M, Karn SK, Bhambri A, Mahale VG, Mahale S. Submerged cultivation and phytochemical analysis of medicinal mushrooms ( Trametes sp.). FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1414349. [PMID: 38919599 PMCID: PMC11196847 DOI: 10.3389/ffunb.2024.1414349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Mushrooms are widely available around the world and have various nutritional as well as therapeutic values. Many Asian cultures believe that medicinal mushrooms can prolong life and improve vitality. This study aims to characterize the phytochemical and polysaccharide content, mainly β-glucan content, of mycelial biomass and fruiting bodies collected from the Himalayan region, particularly Uttarakhand. Through molecular analysis of the LSU F/R-rDNA fragment sequence and phylogenetic analysis, the strain was identified as Trametes sp. We performed screening of phytochemicals and polysaccharides in mushroom and biomass extracts using high-performance liquid chromatography (HPLC) and a PC-based UV-Vis spectrophotometer. The macrofungal biomass was found to be high in saponin, anthraquinone, total phenolic, flavonoid, and β-glucan content. In biomass extract, we observed a high level of saponin (70.6µg/mL), anthraquinone (14.5µg/mL), total phenolic (12.45 µg/mL), and flavonoid (9.500 µg/mL) content. Furthermore, we examined the contents of alkaloids, tannins, terpenoids, and sterols in the biomass and mushroom extracts; the concentration of these compounds in the ethanol extract tested was minimal. We also looked for antioxidant activity, which is determined in terms of the IC50 value. Trametes sp. mushroom extract exhibits higher DPPH radical scavenging activity (62.9% at 0.5 mg/mL) than biomass extract (59.19% at 0.5 mg/mL). We also analyzed β-glucan in Trametes sp. from both mushroom and biomass extracts. The biomass extract showed a higher β-glucan content of 1.713 mg/mL than the mushroom extract, which is 1.671 mg/mL. Furthermore, β-glucan analysis was confirmed by the Megazyme β-glucan assay kit from both biomass and mushroom extract of Trametes sp. β-glucans have a promising future in cancer treatment as adjuncts to conventional medicines. Producing pure β-glucans for the market is challenging because 90-95% of β glucan sold nowadays is thought to be manipulated or counterfeit. The present study supports the recommendation of Trametes sp. as rich in β-glucan, protein, phytochemicals, and antioxidant activities that help individuals with cancer, diabetes, obesity, etc.
Collapse
Affiliation(s)
| | - Moni Kumari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Anne Bhambri
- Department of Biotechnology, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | | |
Collapse
|
14
|
Lazić V, Klaus A, Kozarski M, Doroški A, Tosti T, Simić S, Vunduk J. The Effect of Green Extraction Technologies on the Chemical Composition of Medicinal Chaga Mushroom Extracts. J Fungi (Basel) 2024; 10:225. [PMID: 38535233 PMCID: PMC10971126 DOI: 10.3390/jof10030225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
The mushroom industry should implement green extraction technologies; however, there is not enough information on the differences between these techniques expressed as the chemical composition of the resulting extract. In this study, selected types of green extraction techniques (GETs) were used on Chaga (Inonotus obliquus) (Fr.) Pilát from Serbia (IS) and Mongolia (IM) to examine the differences that would enable the composition-based technology choices in the mushroom supplement industry. Subcritical water extraction (SWE), microwave-assisted (MW) extraction, and ultrasonic-assisted extraction (VAE) were used to prepare the extracts. SWE was performed at two different temperatures (120 and 200 °C), while 96% ethanol, 50% ethanol, and water were used for MW and VAE. The yield, the content of total phenols, total proteins, and carbohydrates, qualitative and quantitative analysis of phenolic compounds, carbohydrates, including α- and β- and total glucans, and fatty acids, were determined in the obtained extracts. SWE resulted in a significantly higher yield, total polysaccharide, and glucan content than any other technique. Glucose was the most dominant monosaccharide in the SWE samples, especially those extracted at 200 °C. The MW 50% EtOH extracts showed the highest yield of total phenols. Among the tested phenolic compounds, chlorogenic acid was the most dominant. SWE can be recommended as the most efficient method for extracting commercially important compounds, especially glucans and phenols.
Collapse
Affiliation(s)
- Vesna Lazić
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Anita Klaus
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Maja Kozarski
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Ana Doroški
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia;
| | - Siniša Simić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski Trg 12/V, 11158 Belgrade, Serbia
| |
Collapse
|
15
|
Xiong W, Xia J, Peng X, Tan Y, Chen W, Zhou M, Yang C, Wang W. Novel therapeutic role of Ganoderma Polysaccharides in a septic mouse model - The key role of macrophages. Heliyon 2024; 10:e26732. [PMID: 38449666 PMCID: PMC10915390 DOI: 10.1016/j.heliyon.2024.e26732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Ganoderma lucidum polysaccharides (G. PS) have been recognized for their immune-modulating properties. In this study, we investigated the impact of G. PS in a sepsis mouse model, exploring its effects on survival, inflammatory cytokines, Treg cell differentiation, bacterial load, organ dysfunction, and related pathways. We also probed the role of macrophages through chlorphosphon-liposome pretreatment. Using the cecal ligation and puncture (CLP) model, we categorized mice into normal, PBS, and G. PS injection groups. G. PS significantly enhanced septic mouse survival, regulated inflammatory cytokines (TNF-α, IL-17A, IL-6, IL-10), and promoted CD4+Foxp3+ Treg cell differentiation in spleens. Additionally, G. PS reduced bacterial load, mitigated organ damage, and suppressed the NF-κB pathway. In vitro, G. PS facilitated CD4+ T cell differentiation into Treg cells via the p-STAT5 pathway. Chlorphosphon-liposome pretreatment heightened septic mortality, bacterial load, biochemical markers, and organ damage, emphasizing macrophages' involvement. G. PS demonstrated significant protective effects in septic mice by modulating inflammatory responses, enhancing Treg cell differentiation, diminishing bacterial load, and inhibiting inflammatory pathways. These findings illuminate the therapeutic potential of G. PS in sepsis treatment.
Collapse
Affiliation(s)
- Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wansong Chen
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Minghua Zhou
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| |
Collapse
|
16
|
Ejaz U, Afzal M, Naveed M, Amin ZS, Atta A, Aziz T, Kainat G, Mehmood N, Alharbi M, Alasmari AF. Pharmacological evaluation and phytochemical profiling of butanol extract of L. edodes with in- silico virtual screening. Sci Rep 2024; 14:5751. [PMID: 38459108 PMCID: PMC10923892 DOI: 10.1038/s41598-024-56421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
L. edodes (L. edodes) is the most consumed mushroom in the world and has been well known for its therapeutic potential as an edible and medicinal candidate, it contains dietary fibers, vitamins, proteins, minerals, and carbohydrates. In the current study butanolic extract of mushroom was used to form semisolid butanol extract. The current study aimed to explore biometabolites that might have biological activities in n-butanol extract of L. edodes using FT-IR and GC-MS and LC-MS. The synergistic properties of bioactive compounds were futher assessed by performing different biological assays such as antioxidant, anti-inflammatory and antidiabetic. FTIR spectra showed different functional groups including amide N-H group, Alkane (C-H stretching), and (C = C stretching) groups at different spectrum peaks in the range of 500 cm-1 to 5000 cm-1 respectively. GC-MS profiling of n-butanol extract depicted 34 potent biomolecules among those dimethyl; Morphine, 2TMS derivative; Benzoic acid, methyl ester 1-(2-methoxy-1-methylethoxy)-2-propanol were spotted at highest range. Results indicate that L. edodes n-butanol extract showed a maximum anti-inflammatory potential 91.4% at 300 mg/mL. Antioxidant activity was observed by measuring free radical scavenging activity which is 64.6% at optimized concentration along with good antidiabetic activity. In-silico study executed the biopotential of active ingredient morphine which proved the best docking score (- 7.0 kJ/mol) against aldose reductase. The in-silico drug design analysis was performed on biometabolites detected through GC-MS that might be a potential target for sulfatase-2 to treat ruminated arthritis. Morphine binds more strongly (- 7.9 kJ/mol) than other bioactive constituents indicated. QSAR and ADMET analysis shown that morphine is a good candidates against ruminated arthritis. The current study showed that L. edodes might be used as potent drug molecules to cure multiple ailments. As mushrooms have high bioactivity, they can be used against different diseases and to develop antibacterial drugs based on the current situation in the world in which drug resistance is going to increase due to misuse of antibiotics so new and noval biological active compounds are needed to overcome the situation.
Collapse
Affiliation(s)
- Umer Ejaz
- Department of Biochemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Afzal
- Department of Biochemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zeemal Seemab Amin
- School of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, 54590, Pakistan.
| | - Asia Atta
- Department of Biochemistry, Nur international university, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, 47132, Arta, Greece.
| | - Gul Kainat
- Department of Microbiology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Noshaba Mehmood
- School of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, 54590, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Gerardo DG, Maura TT. Mushrooms and Their Compounds with Potential Anticancer Activity: A Review. Int J Med Mushrooms 2024; 26:1-15. [PMID: 39093398 DOI: 10.1615/intjmedmushrooms.2024054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mushrooms produce many metabolites that show biological activity, which can be obtained from their fruiting body, mycelium or recovered from the culture broth when mushrooms are grown in submerged fermentation. Mushrooms are a source of natural pharmaceuticals; they have been reported to have potential inhibitory or preventive activity against some diseases, including different types of cancer. Cancer represents one of the main causes of death worldwide. It is worth mentioning that despite advances in pharmacological treatments, they still present side effects in patients. In this sense, the study of the use of mushrooms in complementary treatments against cancer is of great interest. Based on studies carried out in vitro and, in some cases, using animal models, it has been observed that mushrooms present preventive, corrective, and therapeutic properties against different types of cancer, by stimulating the immune system, due to their antioxidant, antimutagenic, and anti-inflammatory activities, as well as the regulation of the expression of some cellular processes, cell cycle arrest, and apoptosis, etc. Based on the above, this manuscript shows a review of scientific studies that support the anticancer activity of some mushrooms and/or their bioactive compounds.
Collapse
|
18
|
Gürgen A, Unal O, Sevindik M. Biological Activities of the Golden Chantarelle Mushroom Cantharellus cibarius (Agaricomycetes) Extracts Obtained as a Result of Single and Multi-Objective Optimization Studies. Int J Med Mushrooms 2024; 26:63-74. [PMID: 39704620 DOI: 10.1615/intjmedmushrooms.2024055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In our study, the biological activities of the wild edible mushroom Cantharellus cibarius were determined. First of all, 64 different experiments were performed in the Soxhlet device at 40-70°C extraction temperatures, 4, 6, 8, and 10 h of extraction time and 0.25, 0.50, 1, and 2 mg/mL extract concentrations, and total antioxidant (TAS) and total oxidant values (TOS) were determined, and both single-purpose and multi-objective optimization studies were performed. The extraction conditions were optimized so that the objective function of the single-purpose optimization would be the maximum TAS value, and the objective function of the multi-objective optimization would be the maximum TAS and minimum TOS values. The data obtained from the experimental study were modeled with artificial neural networks from artificial intelligence methods, and optimization was performed with a genetic algorithm. After the single-objective optimization process, the optimum extraction conditions were found as 46.622°C, 5.110 h and 1.973 mg/mL and the multi-objective optimum extraction conditions were found as 50.927°C, 6.094 h and 1.439 mg/mL. The TAS values of the extracts obtained as a result of single-objective and multi-objective optimization were measured as 5.511 and 5.359, respectively, and the TOS values were measured as 7.289 and 6.061. The anti-AChE value of the extracts was calculated as 16.12, 20.31 and anti-BChE value as 36.92, 40.28. In addition, it was determined that the single-objective optimization extract had stronger antiproliferative activity than the multi-objective extract. As a result, it was determined that the biological activities of the extracts of C. cibarius obtained under suitable conditions were high.
Collapse
Affiliation(s)
- Ayşenur Gürgen
- University of Osmaniye Korkut Ata, Faculty of Engineering and Nature Sciences, Department of Industrial Engineering, Osmaniye, Turkey
| | - Orhan Unal
- University of Akdeniz, Faculty of Science, Deparment of Biology, Antalya, Turkey
| | | |
Collapse
|
19
|
Cheng M, Zhang L, Wang J, Sun X, Qi Y, Chen L, Han C. The Artist's Conk Medicinal Mushroom Ganoderma applanatum (Agaricomycetes): Mycological, Mycochemical, and Pharmacological Properties: A Review. Int J Med Mushrooms 2024; 26:13-66. [PMID: 38884263 DOI: 10.1615/intjmedmushrooms.2024053900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As a commonly used Chinese herbal medicine, Ganoderma applanatum (Pers.) Pat., also known as flat-ling Ganoderma (Chinese name bianlingzhi), old mother fungus (laomujun), and old ox liver (laoniugan), has high medicinal value. It is used as an anti-cancer drug in China and Japan. Besides, it can treat rheumatic tuberculosis and has the effect of relieving pain, clearing away heat, eliminating accumulation, stopping bleeding and eliminating phlegm. The purpose of this review is to analyze the research progress systematically and comprehensively in mycology, mycochemistry and pharmacological activities of G. applanatum, and discuss the prospect of prospective research and implementation of this medicinal material. A comprehensive literature search was performed on G. applanatum using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier. Collected data from different sources was comprehensively summarized for mycology, mycochemistry and pharmacology of G. applanatum. A total of 324 compounds were recorded, the main components of which were triterpenoids, meroterpenoids, steroids, and polysaccharides. G. applanatum and its active ingredients have a variety of pharmacological effects, including anti-tumor, liver protection, hypoglycemic, anti-fat, anti-oxidation, antibacterial and other activities. Although G. applanatum is widely used in traditional medicine and has diverse chemical constituents, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity.
Collapse
Affiliation(s)
- Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijing Chen
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of TCM, Jinan 250000, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
20
|
Saengha W, Karirat T, Pitisin N, Plangklang S, Butkhup L, Udomwong P, Ma NL, Konsue A, Chanthaket P, Katisart T, Luang-In V. Exploring the Bioactive Potential of Calostoma insigne, an Endangered Culinary Puffball Mushroom, from Northeastern Thailand. Foods 2023; 13:113. [PMID: 38201139 PMCID: PMC10778563 DOI: 10.3390/foods13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Calostoma insigne puffball mushrooms are only found in forests with rich biodiversity in very few countries including Thailand, and their biofunctions remain largely unexplored. This study used the agar disk diffusion assay, the anti-glucosidase assay, and the 3, 4, 5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT) assay to evaluate the bioactive potential of these endangered puffball mushrooms. Internal transcribed spacer (ITS) gene analysis identified C. insigne, a puffball mushroom with green, globose, and spiny spores. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the polysaccharide structure while scanning electron microscopy (SEM) revealed a fiber-like network. The ethanolic gelatinous fruiting body extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging capacity (57.96%), a ferric ion-reducing antioxidant power (FRAP) value of 1.73 mg FeSO4/g, and α-glucosidase inhibition (73.18%). C. insigne cytotoxicity was effective towards HT-29 colon cancer cells using the MTT assay (IC50 of 770.6 µg/mL at 72 h) and also showed antiproliferative capacity (IC50 of 297.1 µg/mL). This puffball mushroom stimulated apoptotic genes and proteins (caspase-3, Bax, and p21) via an intrinsic apoptotic pathway in HT-29 cells. In the laboratory, the medium formula consisting of 20% potato, 2% sucrose, and 0.2% peptone was optimal to increase fungal mycelial biomass (2.74 g DW/100 mL), with propagation at pH 5.0 and 30 °C. Puffball mushrooms are consumed as local foods and also confer several potential health benefits, making them worthy of conservation for sustainable utilization.
Collapse
Affiliation(s)
- Worachot Saengha
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Nathanon Pitisin
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Supawadee Plangklang
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Luchai Butkhup
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Piyachat Udomwong
- International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Ampa Konsue
- Thai Traditional Medicinal Research Unit, Division of Applied Thai Traditional Medicine, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Teeraporn Katisart
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| |
Collapse
|
21
|
Chou P, Lu Y, Sheu M. Phellinus merrillii extracts induce apoptosis of vascular smooth muscle cells via intrinsic and extrinsic pathways. Food Sci Nutr 2023; 11:7900-7909. [PMID: 38107129 PMCID: PMC10724586 DOI: 10.1002/fsn3.3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 12/19/2023] Open
Abstract
Restenosis frequently occurs after balloon angioplasty. Percutaneous coronary intervention (PCI)-induced artery damage is a significant part of triggering restenosis of the vascular smooth muscles (VSMC). This study aimed to study how ethanol extract of Phellinus merrillii (EPM) affected balloon injury-induced overgrowth of VSMC, indicating neointima formation. Firstly, our results demonstrated that EPM notably decreased VSMC viability. A fragmentation assay and Annexin V/Propidium Iodide apoptosis assay showed that higher doses of EPM significantly induced the apoptosis of VSMC after 24 h of exposure. Total protein extracted from VSMC treated with EPM in various time and concentration periods was then conducted in Western blotting analysis. Our data demonstrated that EPM substantially elevated the p53, p21, Fas, Bax, p-p38, and active caspase-3 protein expressions. The results indicated that EPM induces VSMC apoptosis via intrinsic and extrinsic pathways. Also, our results demonstrated that EPM effectively attenuated the balloon injury-induced neointima formation. In conclusion, the information offers a mechanism of EPM in inducing the VSMC apoptosis, thus as a potential interference for restenosis.
Collapse
Affiliation(s)
- Pei‐Yu Chou
- Department of NursingNational Chi Nan UniversityNantouTaiwan
| | - Ya‐Ting Lu
- Department of Hematology & OncologyTainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation)Tainan CityTaiwan
| | - Ming‐Jyh Sheu
- Department of PharmacyChina Medical University, Beigang HospitalYunlin CountyTaiwan
- School of PharmacyChina Medical UniversityTaichung CityTaiwan
| |
Collapse
|
22
|
De Padua JC, Fukushima-Sakuno E, Ueno K, Dela Cruz TEE, Ishihara A. Isolation, structure elucidation, and biological activities of sesquiterpenes and phthalides from two edible mushrooms Pleurotus species. Biosci Biotechnol Biochem 2023; 87:1429-1441. [PMID: 37667536 DOI: 10.1093/bbb/zbad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Antimicrobial compounds were purified from culture filtrates from 2 edible Pleurotus species. Using a bioassay-guided fractionation of the culture filtrate extracts, 3 compounds (1-3) were obtained from Pleurotus ostreatus, and another compound (4) was obtained from Pleurotus pulmonarius. Spectroscopic analysis revealed that 1-3 was identified as 5,7-dimethoxyphthalide, 4,6-dimethoxyphthalide, and cheimonophyllon E, respectively, while 4 were identified as pleuroton A. The minimum inhibitory concentration and minimum bactericidal concentration of these compounds were determined against 6 pathogenic bacterial species, Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae. Compounds 2 and 4 were inhibitory against all tested bacteria, while 1 and 4 were inhibitory against 3 and 2 species, respectively. In addition, 1-4 inhibited tyrosinase, with IC50 values of 0.10-0.30 mg/mL, and α-glucosidase, with IC50 values of 0.12-0.54 mg/mL. However, their antioxidant capacities were marginal.
Collapse
Affiliation(s)
- Jewel C De Padua
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Emi Fukushima-Sakuno
- The Tottori Mycological Institute, The Japan Kinoko Research Center Foundation, Tottori, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Thomas Edison E Dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila, Philippines
| | | |
Collapse
|
23
|
Tain YL, Chang-Chien GP, Lin S, Hou CY, Hsu CN. Renoprotective Effects of Solid-State Cultivated Antrodia cinnamomea in Juvenile Rats with Chronic Kidney Disease. Nutrients 2023; 15:4626. [PMID: 37960279 PMCID: PMC10650666 DOI: 10.3390/nu15214626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Antrodia cinnamomea (AC), a medicinal mushroom, has multiple beneficial actions, such as acting as a prebiotic. The incidence of chronic kidney disease (CKD) in children has steadily increased year by year, and CKD is related to gut microbiota dysbiosis. Herein, we investigated the renoprotection of solid-state cultivated AC in adenine-induced CKD juvenile rats. CKD was induced in 3-week-old male rats by feeding with adenine (0.5%) for three weeks. Treated groups received oral administration of AC extracts at either a low (10 mg/kg/day) or high dose (100 mg/kg/day) for six weeks. At nine weeks of age, the rats were sacrificed. Renal outcomes, blood pressure, and gut microbiome composition were examined. Our results revealed that AC treatment, either low- or high-dose, improved kidney function, proteinuria, and hypertension in CKD rats. Low-dose AC treatment increased plasma concentrations of short-chain fatty acids (SCFAs). Additionally, we observed that AC acts like a prebiotic by enriching beneficial bacteria in the gut, such as Akkermansia and Turicibacter. Moreover, the beneficial action of AC against CKD-related hypertension might also be linked to the inhibition of the renin-angiotensin system. This study brings new insights into the potential application of AC as a prebiotic dietary supplement in the prevention and treatment of pediatric CKD.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
24
|
Gebreyohannes G, Sbhatu DB, Nyerere A, Bii C, Gebrehiwot AG. Wild Mushrooms: Potential Natural Sources of Antioxidant and Anti-Quorum Sensing Bioactive Compounds for Medical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6141646. [PMID: 37899907 PMCID: PMC10602707 DOI: 10.1155/2023/6141646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Objective This study was aimed at determining the antioxidant, anti-quorum sensing, and in vitro cytotoxic activities of five wild mushroom extracts. Methods Wild mushrooms of Auricularia auricula-judae, Termitomyces umkowaani, Trametes elegans, Trametes versicolor, and Microporus xanthopus were collected from Arabuko-Sokoke and Kakamega National Forests, in Kenya. Specimens were identified and extracted using chloroform (CHL), 70% ethanol (Eth), and hot water (HW) solvents. Antioxidant and cytotoxic activities of the extracts were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Vero cell lines, respectively, while anti-quorum sensing activities were tested against Chromobacterium violaceum. All data were compared using relevant descriptive and inferential statistics at a significance level of p ≤ 0.05. Results A total of 35 wild mushrooms were collected, identified, and classified into 14 genera. Among screened mycochemicals, fatty acids, flavonoids, polyphenols, and saponins were detected at higher concentrations. The highest free radical scavenging activities of A. auricula-judae, T. umkowaani, T. elegans, and T. versicolor were observed in 70% Eth extract with the percentage values of 76.40 ± 0.12%, 68.40 ± 0.01%, 62.40 ± 0.07%, and 66.40 ± 0.04%, respectively, whereas the HW extract of Microporus xanthopus showed free radical scavenging activity at 65.90 ± 0.02%. None of the extracts, at the tested concentrations (up to 1000 µg/mL), had shown cytotoxic activity against the Vero cell line. The HW extract of T. umkowaani and the 70% Eth extract of T. versicolor showed a statistically significant difference in the inhibitory activity of violacein production against C. violaceum at the concentration of 200 µg/mL. Conclusions The antioxidant activity of wild mushrooms can help to tackle the diseases caused by free radicals. The anti-quorum sensing potential of wild mushrooms could also provide future alternatives to conventional drug therapies cost-effectively. Further detailed chemistry of the bioactive compounds and their possible mechanisms of action responsible for the observed antioxidant and anti-quorum sensing activities are needed.
Collapse
Affiliation(s)
- Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Ethiopia
| | - Desta Berhe Sbhatu
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Ethiopia
| | - Andrew Nyerere
- Department of Medical Microbiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Christine Bii
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | |
Collapse
|
25
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Son TH, Kim SH, Shin HL, Kim D, Huh JS, Ryoo R, Choi Y, Choi SW. Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium. J Microbiol Biotechnol 2023; 33:1197-1205. [PMID: 37317624 PMCID: PMC10580891 DOI: 10.4014/jmb.2304.04048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.
Collapse
Affiliation(s)
- Tae Hyun Son
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Shin-Hye Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Dongsoo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Jin-Sung Huh
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Rhim Ryoo
- Forest Microbiology Division, Department of Forest Bio-Resources, NIFoS, Suwon 16631, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| |
Collapse
|
27
|
Interdonato L, Impellizzeri D, D’Amico R, Cordaro M, Siracusa R, D’Agostino M, Genovese T, Gugliandolo E, Crupi R, Fusco R, Cuzzocrea S, Di Paola R. Modulation of TLR4/NFκB Pathways in Autoimmune Myocarditis. Antioxidants (Basel) 2023; 12:1507. [PMID: 37627502 PMCID: PMC10451772 DOI: 10.3390/antiox12081507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Myocarditis is an inflammatory and oxidative disorder characterized by immune cell recruitment in the damaged tissue and organ dysfunction. In this paper, we evaluated the molecular pathways involved in myocarditis using a natural compound, Coriolus versicolor, in an experimental model of autoimmune myocarditis (EAM). Animals were immunized with an emulsion of pig cardiac myosin and complete Freund's adjuvant supplemented with mycobacterium tuberculosis; thereafter, Coriolus versicolor (200 mg/Kg) was orally administered for 21 days. At the end of the experiment, blood pressure and heart rate measurements were recorded and the body and heart weights as well. From the molecular point of view, the Coriolus versicolor administration reduced the activation of the TLR4/NF-κB pathway and the levels of pro-inflammatory cytokines (INF-γ, TNF-α, IL-6, IL-17, and IL-2) and restored the levels of anti-inflammatory cytokines (IL-10). These anti-inflammatory effects were accompanied with a reduced lipid peroxidation and nitrite levels and restored the antioxidant enzyme activities (SOD and CAT) and GSH levels. Additionally, it reduced the histological injury and the immune cell recruitment (CD4+ and CD68+ cells). Moreover, we observed an antiapoptotic activity in both intrinsic (Fas/FasL/caspase-3) and extrinsic (Bax/Bcl-2) pathways. Overall, our data showed that Coriolus versicolor administration modulates the TLR4/NF-κB signaling in EAM.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Melissa D’Agostino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
28
|
Van Elst D, Van Pamel E, Sedeyn P, Van Poucke C, Pyck N, Daeseleire E. Nicotine in the button mushroom Agaricus bisporus, endogenous biosynthesis? Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023:1-15. [PMID: 37326451 DOI: 10.1080/19440049.2023.2223695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
In early 2009 nicotine was unexpectedly detected in dried mushroom samples. As its origin has not yet been elucidated, this study addressed possible endogenous synthesis of nicotine. Therefore, Agaricus bisporus fruiting bodies were grown in a representative and controlled (nicotine-free) setup. Fruiting bodies (fresh versus stored, intact versus processed (sliced/cooked)) from different harvest days and flushes were analysed with a validated, sensitive dilute-and-shoot UHPLC-MS/MS methodology for nicotine and its precursors putrescine and nicotinic acid. Neither storage nor processing initiated any endogenous nicotine biosynthesis (detection limit 1.6 ng g-1 fresh weight). In contrast, putrescine and nicotinic acid were detected in all samples, with increasing amounts in the different treatments. In silico analysis of the fully sequenced genome of A. bisporus confirmed its inability to produce nicotine. The data obtained do not provide evidence for natural, endogenous presence of nicotine in mushrooms, indicating an exogenous contamination source (e.g. contamination during hand-picking, sample preparation/analysis).
Collapse
Affiliation(s)
- Daan Van Elst
- Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Melle, Belgium
| | - Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Melle, Belgium
| | | | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Melle, Belgium
| | - Nancy Pyck
- Inagro, Edible Mushrooms, Rumbeke-Beitem, Belgium
| | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Melle, Belgium
| |
Collapse
|
29
|
Gariboldi MB, Marras E, Ferrario N, Vivona V, Prini P, Vignati F, Perletti G. Anti-Cancer Potential of Edible/Medicinal Mushrooms in Breast Cancer. Int J Mol Sci 2023; 24:10120. [PMID: 37373268 DOI: 10.3390/ijms241210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Edible/medicinal mushrooms have been traditionally used in Asian countries either in the cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing attention in Europe as well, due to their health and nutritional benefits. In particular, among the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative, antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially focusing on the possible bioactive compounds involved and their mechanisms of action. In particular, the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes, and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses focusing on the effects of fungal extracts on breast cancer patients.
Collapse
Affiliation(s)
- Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Francesca Vignati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
30
|
Li Y, Zhang C, Feng L, Shen Q, Liu F, Jiang X, Pang B. Application of natural polysaccharides and their novel dosage forms in gynecological cancers: therapeutic implications from the diversity potential of natural compounds. Front Pharmacol 2023; 14:1195104. [PMID: 37383719 PMCID: PMC10293794 DOI: 10.3389/fphar.2023.1195104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is one of the most lethal diseases. Globally, the number of cancers is nearly 10 million per year. Gynecological cancers (for instance, ovarian, cervical, and endometrial), relying on hidden diseases, misdiagnoses, and high recurrence rates, have seriously affected women's health. Traditional chemotherapy, hormone therapy, targeted therapy, and immunotherapy effectively improve the prognosis of gynecological cancer patients. However, with the emergence of adverse reactions and drug resistance, leading to the occurrence of complications and poor compliance of patients, we have to focus on the new treatment direction of gynecological cancers. Because of the potential effects of natural drugs in regulating immune function, protecting against oxidative damage, and improving the energy metabolism of the body, natural compounds represented by polysaccharides have also attracted extensive attention in recent years. More and more studies have shown that polysaccharides are effective in the treatment of various tumors and in reducing the burden of metastasis. In this review, we focus on the positive role of natural polysaccharides in the treatment of gynecologic cancer, the molecular mechanisms, and the available evidence, and discuss the potential use of new dosage forms derived from polysaccharides in gynecologic cancer. This study covers the most comprehensive discussion on applying natural polysaccharides and their novel preparations in gynecological cancers. By providing complete and valuable sources of information, we hope to promote more effective treatment solutions for clinical diagnosis and treatment of gynecological cancers.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- International Medical Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Liu B, Yu L, Zhai Q, Li M, Li L, Tian F, Chen W. Effect of water-soluble polysaccharides from Morchella esculenta on high-fat diet-induced obese mice: changes in gut microbiota and metabolic functions. Food Funct 2023. [PMID: 37191147 DOI: 10.1039/d3fo00574g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Morchella esculenta polysaccharides exhibit numerous probiotic activities, but their regulatory effects on the gut microbiota are unclear. This study was conducted to explore whether M. esculenta polysaccharides can regulate dysbacteriosis caused by a high-fat diet and relieve obesity. We extracted a water-soluble polysaccharide from M. esculenta (MPF, purity: 96.19%, consisting of 55.97% glucose, 9.63% xylose, and 22% mannose) that reduces mouse fat accumulation, alleviates obesity, and relieves liver injury, after 90 days of high-fat diet intake. This polysaccharide reversed dysbiosis and regulated the abundance of gut microbiota caused by a high-fat diet (restoring the ratio of Firmicutes/Bacteroidetes and changing the abundances of Lactobacillus, Dubosiella, and Faecalibaculum), increasing short-chain fatty acids and decreasing gene expression in the liver (glucose 6-phosphatase, glucose transporter 1, peroxisome proliferator-activated receptor gamma (PPAR) receptor-1α, PPARα, PPARγ, and CCAAT enhancer binding protein α). We identified a regulatory relationship between polysaccharides, gut microbiota, and the liver as a potential mechanism by which polysaccharides can alleviate obesity.
Collapse
Affiliation(s)
- Bingshu Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liuruolan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
32
|
Brandalise F, Roda E, Ratto D, Goppa L, Gargano ML, Cirlincione F, Priori EC, Venuti MT, Pastorelli E, Savino E, Rossi P. Hericium erinaceus in Neurodegenerative Diseases: From Bench to Bedside and Beyond, How Far from the Shoreline? J Fungi (Basel) 2023; 9:jof9050551. [PMID: 37233262 DOI: 10.3390/jof9050551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
A growing number of studies is focusing on the pharmacology and feasibility of bioactive compounds as a novel valuable approach to target a variety of human diseases related to neurological degeneration. Among the group of the so-called medicinal mushrooms (MMs), Hericium erinaceus has become one of the most promising candidates. In fact, some of the bioactive compounds extracted from H. erinaceus have been shown to recover, or at least ameliorate, a wide range of pathological brain conditions such as Alzheimer's disease, depression, Parkinson's disease, and spinal cord injury. In a large body of in vitro and in vivo preclinical studies on the central nervous system (CNS), the effects of erinacines have been correlated with a significant increase in the production of neurotrophic factors. Despite the promising outcome of preclinical investigations, only a limited number of clinical trials have been carried out so far in different neurological conditions. In this survey, we summarized the current state of knowledge on H. erinaceus dietary supplementation and its therapeutic potential in clinical settings. The bulk collected evidence underlies the urgent need to carry out further/wider clinical trials to prove the safety and efficacy of H. erinaceus supplementation, offering significant neuroprotective applications in brain pathologies.
Collapse
Affiliation(s)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Ratto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Goppa
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Maria Teresa Venuti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Emanuela Pastorelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
33
|
Abstract
The microbiome may impact cancer development, progression and treatment responsiveness, but its fungal components remain insufficiently studied in this context. In this review, we highlight accumulating evidence suggesting a possible involvement of commensal and pathogenic fungi in modulation of cancer-related processes. We discuss the mechanisms by which fungi can influence tumour biology, locally by activity exerted within the tumour microenvironment, or remotely through secretion of bioactive metabolites, modulation of host immunity and communications with neighbouring bacterial commensals. We examine prospects of utilising fungi-related molecular signatures in cancer diagnosis, patient stratification and assessment of treatment responsiveness, while highlighting challenges and limitations faced in performing such research. In all, we demonstrate that fungi likely constitute important members of mucosal and tumour-residing microbiomes. Exploration of fungal inter-kingdom interactions with the bacterial microbiome and the host and decoding of their causal impacts on tumour biology may enable their harnessing into cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Aurelia Saftien
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
35
|
Shamim MZ, Mishra AK, Kausar T, Mahanta S, Sarma B, Kumar V, Mishra PK, Panda J, Baek KH, Mohanta YK. Exploring Edible Mushrooms for Diabetes: Unveiling Their Role in Prevention and Treatment. Molecules 2023; 28:molecules28062837. [PMID: 36985818 PMCID: PMC10058372 DOI: 10.3390/molecules28062837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a complex illness in which the body does not create enough insulin to control blood glucose levels. Worldwide, this disease is life-threatening and requires low-cost, side-effect-free medicine. Due to adverse effects, many synthetic hypoglycemic medications for diabetes fail. Mushrooms are known to contain natural bioactive components that may be anti-diabetic; thus, scientists are now targeting them. Mushroom extracts, which improve immune function and fight cancer, are becoming more popular. Mushroom-derived functional foods and dietary supplements can delay the onset of potentially fatal diseases and help treat pre-existing conditions, which leads to the successful prevention and treatment of type 2 diabetes, which is restricted to the breakdown of complex polysaccharides by pancreatic-amylase and the suppression of intestinal-glucosidase. Many mushroom species are particularly helpful in lowering blood glucose levels and alleviating diabetes symptoms. Hypoglycaemic effects have been observed in investigations on Agaricussu brufescens, Agaricus bisporus, Cordyceps sinensis, Inonotus obliqus, Coprinus comatus, Ganoderma lucidum, Phellinus linteus, Pleurotus spp., Poria cocos, and Sparassis crispa. For diabetics, edible mushrooms are high in protein, vitamins, and minerals and low in fat and cholesterol. The study found that bioactive metabolites isolated from mushrooms, such as polysaccharides, proteins, dietary fibers, and many pharmacologically active compounds, as well as solvent extracts of mushrooms with unknown metabolites, have anti-diabetic potential in vivo and in vitro, though few are in clinical trials.
Collapse
Affiliation(s)
- Mohammad Zaki Shamim
- Department of Food Nutrition and Dietetics, Faculty of Sciences, Assam Down Town University, Guwahati 781026, Assam, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tahreem Kausar
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, Delhi, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati 781008, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji 787057, Assam, India
| | - Vijay Kumar
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Jibanjyoti Panda
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, Ri-Bhoi 793101, Meghalaya, India
| |
Collapse
|
36
|
Kozarski M, Klaus A, van Griensven L, Jakovljevic D, Todorovic N, Wan-Mohtar WAAQI, Vunduk J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: nature of the application. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Swallah MS, Bondzie-Quaye P, Wu Y, Acheampong A, Sossah FL, Elsherbiny SM, Huang Q. Therapeutic potential and nutritional significance of Ganoderma lucidum - a comprehensive review from 2010 to 2022. Food Funct 2023; 14:1812-1838. [PMID: 36734035 DOI: 10.1039/d2fo01683d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With a long history in traditional Asian medicine, Ganoderma lucidum (G. lucidum) is a mushroom species suggested to improve health and extend life. Its medicinal reputation has merited it with numerous attributes and titles, and it is evidenced to be effective in the prevention and treatment of various metabolic disorders owing to its unique source of bioactive metabolites, primarily polysaccharides, triterpenoids, and polyphenols, attributed with antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic activities, etc. These unique potential pharmaceutical properties have led to its demand as an important resource of nutrient supplements in the food industry. It is reported that the variety of therapeutic/pharmacological properties was mainly due to its extensive prebiotic and immunomodulatory functions. All literature summarized in this study was collated based on a systematic review of electronic libraries (PubMed, Scopus databases, Web of Science Core Collection, and Google Scholar) from 2010-2022. This review presents an updated and comprehensive summary of the studies on the immunomodulatory therapies and nutritional significance of G. lucidum, with the focus on recent advances in defining its immunobiological mechanisms and the possible applications in the food and pharmaceutical industries for the prevention and management of chronic diseases. In addition, toxicological evidence and the adoption of standard pharmaceutical methods for the safety assessment, quality assurance, and efficacy testing of G. lucidum-derived compounds will be the gateway to bringing them into health establishments.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Frederick Leo Sossah
- Council For Scientific And Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O.Box 245, Sekondi, Ghana.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China.,Department of Physics, Faculty of Science, Mansoura University, Mansoura 33516, Egypt
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
38
|
Innayah AM, Hariani ENS, Khotimah H, Kusumastuty I, Yunita EP, Handayani D. β-(1,3)-D-glucan from <em>Pleurotus ostreatus</em> correlates with lower plasma IL-6, IL-1β, HOMA-IR, and higher pancreatic beta cell count in High-Fat and High-Fructose Diet (HFFD) rats. HEALTHCARE IN LOW-RESOURCE SETTINGS 2023. [DOI: 10.4081/hls.2023.11165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction: The increasing consumption of high-fat and high-fructose foods contributes to the increasing prevalence of global obesity. Low-grade chronic inflammation in obesity is a significant risk factor for insulin resistance and type 2 diabetes. Therefore, this study aimed to determine the effect of β-(1,3)-D-glucan from oyster mushroom (Pleurotus ostreatus) extract on rats fed with a high-fat and high-fructose diet.
Design and Methods: This experimental study was conducted on 35 male Sprague-Dawley rats aged eight weeks. The rats were divided into groups given a normal (N) diet, a high-fat and high-fructose diet (HFFD), D1 (HFFD+125 mg/kg BW β-glucan), D2 (HFFD+250 mg/kg BW β glucan), and D3 (HFFD+375 mg/kg BW β-glucan) with an intervention of 14 weeks. IL-6 and IL-1β levels were measured by the ELISA method, while HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) was calculated by the fasting insulin (ng/mL) x fasting blood glucose (mg/dL)/405 formula. Pancreatic beta-cell counts were measured by hematoxylin and eosin (H&E) staining.
Results: The results showed no differences in IL-6 and IL-1β between the treatment groups. However, there were significant differences in HOMA-IR and pancreatic beta-cell counts between groups. There were negative correlations between the dose of β-glucan and IL-6, IL-1β, and HOMA-IR levels. Also, there was a positive correlation between the dose of β-glucan and the number of pancreatic beta cells.
Conclusions: Administration of β-(1,3)-D-glucan from oyster mushroom (Pleurotus ostreatus) extract prevented hyperglycemia and insulin resistance, also reduced inflammation in rats fed with HFFD regardless of weight gain.
Collapse
|
39
|
Gangwar R, Ghosh A, Kumar S, Maurya VK. Antibacterial, Antioxidant and Nutraceutical Potential of New Culinary-Medicinal Mushroom Russula lakhanpalii (Agaricomycetes) from India. Int J Med Mushrooms 2023; 25:77-85. [PMID: 36749059 DOI: 10.1615/intjmedmushrooms.2022046844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Russula lakhanpalii is a wild edible mushroom, collected from Pedkhal block of Pauri Garhwal, India. The nutritional composition, antioxidant activity (AOA), and antibacterial activity (ABA) of R. lakhanpalii were analyzed for the first time in this study. Dried fruiting bodies of R. lakhanpalii were reported to contain 17.7% ash, 10% crude fiber, 13.4% protein, 30.9% carbohydrate, and 5% unsaturated lipids. In addition, 10.22-72.56% DPPH scavenging activity also confirmed the good antioxidant nature of R. lakhanpalii. The methanolic extract of R. lakhanpalii fruiting bodies inhibited the growth of five pathogenic bacteria in vitro; Klebsiella pneumoniae (MTCC 4030), Micrococcus luteus (MTCC 1809), Staphylococcus aureus (MTCC 1144), Escherichia coli (MTCC 68), and Streptococcus pneumoniae (MTCC 655). The maximum and minimum zone of inhibitions (ZOIs) reported were 17.8 ± 1.04 mm (K. pneumoniae) and 11.16 ± 0.76 mm, (E. coli), respectively. The noticeable feature of the extract was the inhibition of erythromycin-resistant E. coli and M. luteus by it, which were resistant to 15 μg/disc concentration of erythromycin. Dietary components, antibacterial and antioxidant potentials of R. lakhanpalii suggested its nutraceutical and medicinal applications.
Collapse
Affiliation(s)
- Reena Gangwar
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Aniket Ghosh
- Department of Botany, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India; Central National Herbarium, Botanical Survey of India, Salt Lake City, Kolkata 700064, India
| | - Shambhu Kumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - Vineet Kumar Maurya
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| |
Collapse
|
40
|
He P, Chen Z, Men Y, Wang M, Wang W, Liu W. Activity Assay of Amylase and Xylanase Is Available for Quantitative Assessment of Strain Aging in Cultivated Culinary-Medicinal Morchella Mushrooms (Ascomycotina). Int J Med Mushrooms 2023; 25:57-64. [PMID: 36734919 DOI: 10.1615/intjmedmushrooms.2022046420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Strain aging has been mainly contributing to the "uncertainty" of Morchella farming. The situation calls for urgent quantitative assessment of strain aging in cultivated Morchella mushrooms. In this paper, systemic senescence of the productive strains of M. eximia, M. importuna, and M. sextelata was achieved through successive subculturing to provide subcultures with different degree of aging for further studies. Then the quantitative assessment of morel strain aging was conducted by activity assay of amylase and xylanase using dinitrosalicylic acid (DNS) method. The results suggested that both activity of amylase and xylanase decreased along with the rise of subculture times. Meanwhile, the correlation between xylanase activity and time of subculturing in the tested morel strains was higher than that of amylase assay. Consequently, assay of amylase and xylanase activity by DNS method can be used in the quantitative assessment of morel strain aging, and assay of xylanase activity is the better alternative. The work will improve the settlement of "uncertainty" in the morel industry and thus be beneficial for stable development of morel farming.
Collapse
Affiliation(s)
- Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China; Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Zhuo Chen
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China
| | - Ying Men
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China
| | - Miaomiao Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China
| | - Wensheng Wang
- Henan Junsheng Agricultural Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Wei Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| |
Collapse
|
41
|
Risoli S, Nali C, Sarrocco S, Cicero AFG, Colletti A, Bosco F, Venturella G, Gadaleta A, Gargano ML, Marcotuli I. Mushroom-Based Supplements in Italy: Let's Open Pandora's Box. Nutrients 2023; 15:nu15030776. [PMID: 36771482 PMCID: PMC9919834 DOI: 10.3390/nu15030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mushrooms and derivates are well known to the scientific community for having different health benefits and exhibit a wide range of pharmacological activities, including lipid-lowering, antihypertensive, antidiabetic, antimicrobic, antiallergic, anti-inflammatory, anticancer, immunomodulating, neuroprotective and osteoprotective actions. In Europe, medical mushrooms are mainly marketed in the form of food supplements as single components or combined with other nutraceuticals. In this context, the first peculiarity that distinguishes it is the safety established through the "history of consumption" that characterizes that mushroom. However, the cultivation of medicinal mushrooms on a large scale is performed mainly in China, where most of the production facilities do not have internationally recognized good manufacturing practices, despite that many European companies that sell myotherapies are supplied by Chinese manufacturers. This is particularly evident in Italy, where an arsenal of mushroom products is marketed in the form of powders and extracts not always of ascertained origin and sometimes of doubtful taxonomic identification, and thus not meeting the quality criteria required. The growing interest in mycotherapy involves a strong commitment from the scientific community to propose supplements of safe origin and genetic purity as well as to promote clinical trials to evaluate its real effects on humans. The purpose of this research is to analyze different mushroom-based dietary supplements used in medicine as monotherapy on the Italian market and to evaluate their composition and quality. The molecular identification of the sequences with those deposited in GenBank allowed for identifying 6 out of 19 samples, matching with those deposited belonging to the species indicated in the label, i.e., Lentinula edodes (samples 1, 4, 12 and 18) and Ganoderma lucidum (samples 5 and 10). Samples containing Ganoderma, labeled in the commercial product as G. lucidum, showed sequences that showed homology of 100% and 99% with G. resinaceum and G. sichuanense. An additional investigation was carried out in order to determine the active fungal ingredients, such as ergosterol, aflatoxins, heavy metals, nicotine and total glucan. The results obtained and shown in the manuscript highlight how the data were not only in line with what is expected with respect to what is indicated in the labels.
Collapse
Affiliation(s)
- Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Arrigo Francesco Giuseppe Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy
- IRCCS AOU S. Orsola di Bologna, 40126 Bologna, Italy
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-345-589-8928
| | - Filippo Bosco
- U.O. Anesthesia and Intensive Care MiSC, AOUP Complementary Medicine Oncology Integrated, University Hospital Trust of Pisa, 56126 Pisa, Italy
| | - Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Agata Gadaleta
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Ilaria Marcotuli
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
42
|
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb Cell Fact 2023; 22:11. [PMID: 36647087 PMCID: PMC9841694 DOI: 10.1186/s12934-022-02013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.
Collapse
|
43
|
An Immunomodulatory Polysaccharide-Protein Complex Isolated from the Polypore Fungus Royoporus badius. J Fungi (Basel) 2023; 9:jof9010087. [PMID: 36675908 PMCID: PMC9864380 DOI: 10.3390/jof9010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Many wild edible polypore mushrooms have medicinal value. In this study, we investigate the potential medicinal properties of the wild polypore mushroom Royoporus badius collected from north-central British Columbia, Canada. Water extract from R. badius was found to exhibit potent immunomodulatory activity. The extract was purified using DEAE-Sephadex anion-exchange chromatography as well as Sephacryl S-500 and HPLC BioSEC5 size-exclusion chromatography, to yield a novel polysaccharide-protein complex (IMPP-Rb).IMPP-Rb has a peak maxima molecular weight (Mp) of 950 kDa. GC-MS analyses showed that IMPP-Rb is composed predominantly of glucose (49.2%), galactose (11.3%), mannose (10.8%), rhamnose (9.6%), and galacturonic acid (8.2%), with smaller amounts of xylose (5.2%), fucose (2.8%), N-acetyl glucosamine (1.8%), and arabinose (1.2%). IMPP-Rb has multiple linkages, with 4-Glcp, 4-Manp, 6-Manp, 3,4-Manp, 4-Xylp, and 2-Rhap being the most prominent. IMPP-Rb is capable of inducing many cytokines in vitro and the protein component is indispensable for its immunomodulatory activity. IMPP-Rb has potential application as an immuno-stimulatory agent with pharmaceutical value.
Collapse
|
44
|
Liu X, Luo D, Guan J, Chen J, Xu X. Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review. Front Nutr 2022; 9:1087826. [PMID: 36590224 PMCID: PMC9794872 DOI: 10.3389/fnut.2022.1087826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a global health threat. Searching for anti-diabetic components from natural resources is of intense interest to scientists. Mushroom polysaccharides have received growing attention in anti-diabetes fields due to their advantages in broad resources, structure diversity, and multiple bioactivities, which are considered an unlimited source of healthy active components potentially applied in functional foods and nutraceuticals. In this review, the current knowledge about the roles of oxidative stress in the pathogenesis of DM, the extraction method of mushroom polysaccharides, and their potential biological mechanisms associated with anti-diabetes, including antioxidant, hypolipidemic, anti-inflammatory, and gut microbiota modulatory actions, were summarized based on a variety of in vitro and in vivo studies, with aiming at better understanding the roles of mushroom polysaccharides in the prevention and management of DM and its complications. Finally, future perspectives including bridging the gap between the intervention of mushroom polysaccharides and the modulation of insulin signaling pathway, revealing structure-bioactivity of mushroom polysaccharides, developing synergistic foods, conducting well-controlled clinical trials that may be very helpful in discovering valuable mushroom polysaccharides and better applications of mushroom polysaccharides in diabetic control were proposed.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| |
Collapse
|
45
|
Hossen SM, Yusuf A, Emon NU, Alam N, Sami SA, Polash SH, Nur MA, Mitra S, Uddin MH, Emran TB. Biochemical and Pharmacological aspects of Ganoderma lucidum: Exponent from the in vivo and computational investigations. Biochem Biophys Rep 2022; 32:101371. [PMID: 36386440 PMCID: PMC9650014 DOI: 10.1016/j.bbrep.2022.101371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ganoderma lucidum is known as lingzhi mushroom, which is said to have medicinal properties by the local residents. This research was focused to assess the antidepressant, anxiolytic, and sedative activities of the mentioned mushroom extracts by means of in vivo and in silico approaches. The antidepressant, anxiolytic, and sedative properties of the methanol extracts of G. lucidum (MEGL) were assessed using the forced swim test hole board, open field test, elevated plus maze, hole cross test, and thiopental sodium-induced sleeping time. The extracts revealed significant antidepressant, anxiolytic, and sedative activities in a dose-dependent manner. Rutin and quercetin were found to be the most effective enzyme inhibitors in the molecular docking study. According to the findings of in vivo and molecular docking study, it could be forecast that, the extract could have substantial antidepressant, anxiolytic, and sedative characteristics and deep molecular strategies on this extracts might create a target for the development of novel therapeutics. Further investigations are needed to appraise the molecular mechanisms implicated and isolate the bioactive components.
Collapse
Affiliation(s)
- S.M. Moazzem Hossen
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - A.T.M. Yusuf
- Department of Pharmacy, University of Science & Technology Chittagong, Chattogram, 4202, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Najmul Alam
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chattogram, 4331, Bangladesh
- Department of Pharmacy, Faculty of Pharmacy, Varendra University, Rajshahi 6204, Bangladesh
| | - Shajjad Hossain Polash
- Department of Pharmacy, University of Science & Technology Chittagong, Chattogram, 4202, Bangladesh
| | | | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Helal Uddin
- Department of Applied Chemistry & Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
46
|
Anti-Aging and Neuroprotective Properties of Grifola frondosa and Hericium erinaceus Extracts. Nutrients 2022; 14:nu14204368. [PMID: 36297052 PMCID: PMC9611596 DOI: 10.3390/nu14204368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Nutrition has relevant consequences for human health and increasing pieces of evidence indicate that medicinal mushrooms have several beneficial effects. One of the main issues in Western countries is represented by the challenges of aging and age-related diseases, such as neurodegenerative disorders. Among these, Parkinson’s disease (PD) affects 10 million people worldwide and is associated with α-synuclein misfolding, also found in other pathologies collectively called synucleinopathies. Here, we show that aqueous extracts of two edible mushrooms, Grifola frondosa and Hericium erinaceus, represent a valuable source of β-glucans and exert anti-aging effects in yeast. Their beneficial effects are mediated through the inhibition of the Ras/PKA pathway, with increased expression of heat shock proteins, along with a consistent increase of both mean and maximal lifespans. These fungal extracts also reduce the toxicity of α-synuclein heterologously expressed in yeast cells, resulting in reduced ROS levels, lower α-synuclein membrane localization, and protein aggregation. The neuroprotective activity of G. frondosa extract was also confirmed in a PD model of Drosophila melanogaster. Taken together, our data suggest the use of G. frondosa and H. erinaceus as functional food to prevent aging and age-related disorders, further supporting the neuro-healthy properties of these medicinal mushroom extracts.
Collapse
|
47
|
Wang GL, Li JY, Wang Y, Chen Y, Wen QL. Extraction, Structure and Bioactivity of Polysaccharides from Tricholoma matsutake (S. Ito et Imai) Singer (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Özgür A, Kaplan Ö, Gökşen Tosun N, Türkekul İ, Gökçe İ. Green synthesis of silver nanoparticles using Macrolepiota procera extract and investigation of their HSP27, HSP70, and HSP90 inhibitory potentials in human cancer cells. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2089303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Aykut Özgür
- Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Özlem Kaplan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Nazan Gökşen Tosun
- Department of Biomaterials and Tissue Engineering, Institute of Graduate Studies, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İbrahim Türkekul
- Department of Biology, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İsa Gökçe
- Department of Bioengineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
49
|
Sustainability of Agaricus blazei Murrill Mushrooms in Classical and Semi-Mechanized Growing System, through Economic Efficiency, Using Different Culture Substrates. SUSTAINABILITY 2022. [DOI: 10.3390/su14106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mushroom cultivation is a source of organic, sustainable food that is growing rapidly to become a profitable sector of agriculture. Nutritional supplements and natural medicines are provided by many mushroom products, including the Agaricus blazei Murrill mushroom. In recent years, the classical culture system has begun to be used more in less-developed countries, providing an additional gain for locals. The content of the article is based on the deductive research method, starting from theory to practice. This paper aimed at the economic efficiency of the Agaricus blazei Murrill mushroom crop using four substrate recipes and two protein additives, following the economic efficiency of the crops and the composition of production costs for the classic semi-mechanized production system. According to prepared technological sheets, the principal component analysis of the main economic indicators highlighted the experimental variant V5 (Synthetic substrate, with 3% wheat bran protein addition) with the highest labor productivity, obtaining 6.48 kg md−1, the equivalent of 194.3 RON md−1, and a profit rate of 80.42% compared to the V10 variant (reed substrate without protein addition), where the profit rate was only 26.16%. The addition of 3% wheat bran protein to the synthetic culture substrate (V5) brings an increase in global production with 45 RON sqm−1 compared to the variant without protein addition (V4). The research carried out is of practical use, especially for small producers using classical mushroom cultivation technology, and can be extended to other harvested mushroom species.
Collapse
|
50
|
Park HJ, Boo S, Park I, Shin MS, Takahashi T, Takanari J, Homma K, Kang I. AHCC ®, a Standardized Extract of Cultured Lentinula Edodes Mycelia, Promotes the Anti-Tumor Effect of Dual Immune Checkpoint Blockade Effect in Murine Colon Cancer. Front Immunol 2022; 13:875872. [PMID: 35514996 PMCID: PMC9066372 DOI: 10.3389/fimmu.2022.875872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Treatment strategies combining immune checkpoint blockade (ICB) with other agents have emerged as a promising approach in the treatment of cancers. AHCC®, a standardized extract of cultured Lentinula edodes mycelia, has been reported to inhibit tumor growth and enhance immune cell function. Here we investigated whether AHCC® promotes the therapeutic effect of immunotherapy in cancers. A combination of oral AHCC® and dual immune checkpoint blockade (DICB), including PD-1/CTLA-4 blockade, had reduced tumor growth and increased granzyme B and Ki-67 expression by tumor-infiltrating CD8+ T cells in MC38 colon cancer bearing mice compared to a combination of water and DICB. In the same tumor bearing mice, AHCC® and DICB treatment also altered the composition of the gut microbiome with the increased abundance of the species of Ruminococcaceae family which is associated with increased therapeutic efficacy of immunotherapy. The anti-tumor effect of AHCC® and DICB was not found in MC38 tumor-bearing mice treated with antibiotics. These data suggest that AHCC® increases the anti-tumor effect of DICB by enhancing T cell function and affecting the gut microbiome.
Collapse
Affiliation(s)
- Hong-Jai Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sunjin Boo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Internal Medicine, Jeju National University School of Medicine, Jeju, South Korea
| | - Inkeun Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Min Sun Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Tsukasa Takahashi
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Jun Takanari
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Kohei Homma
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|