1
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
2
|
Demir T, Simsir IY, Tuncel OK, Ozbaran B, Yildirim I, Pirildar S, Ozen S, Akinci B. Impact of lipodystrophy on health-related quality of life: the QuaLip study. Orphanet J Rare Dis 2024; 19:10. [PMID: 38183080 PMCID: PMC10768358 DOI: 10.1186/s13023-023-03004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Lipodystrophy is a rare disease characterized by loss of adipose tissue. Natural history studies have demonstrated significant burden of disease; however, there is limited data on the impact of lipodystrophy on quality of life (QoL) and psychoemotional well-being. The QuaLip study is a prospective observational real-world study that aims to determine the impact of lipodystrophy on QoL and psychoemotional well-being and explore subjective burden of the disease. Sixty-seven adult patients and eight pediatric patients with lipodystrophy were included. Patients were followed up for 24 months and assessments were repeated every three months. Patients were examined by licensed psychiatrists at baseline, and at year 1 and year 2 visits. RESULTS Eighteen (27.69%) of 65 adult patients (two subjects refused psychiatric assessment) were diagnosed with a psychiatric disorder (e.g., depressive episodes, mixed anxiety and depressive disorder, anxiety disorder, adjustment disorder, recurrent depression, panic disorder, generalized anxiety disorder, unspecified mood disorder, nonorganic sleep disorder, post-traumatic stress disorder, depressive episode comorbidity, social phobia and obsessive-compulsive disorder comorbidity). Lipodystrophy disease and QoL questionnaires revealed a significant disease burden over the study period. More than one-third of patients reported depression symptoms on the Beck Depression Inventory and more than one-fourth of the patients reported significant hunger throughout the study period. Physical appearance, fatigue, and pain contributed to the disease burden. QoL scores were lower in patients with psychiatric disease and in those with poor metabolic control. Attention deficit hyperactivity disorder, depressive disorder, sub-threshold depressive symptoms, obsessive-compulsive disorder, appetite problems, and issues with physical appearance were identified in selected pediatric subjects. CONCLUSIONS Lipodystrophy has a significant impact on QoL and psychoemotional well-being. Psychiatric disorders seem to be underdiagnosed among patients with lipodystrophy.
Collapse
Affiliation(s)
- Tevfik Demir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilgin Yildirim Simsir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ege University, Izmir, Turkey
| | | | - Burcu Ozbaran
- Department of Child and Adolescent Psychiatry, Ege University, Izmir, Turkey
| | | | | | - Samim Ozen
- Division of Pediatric Endocrinology and Metabolism, Ege University, Izmir, Turkey
| | - Baris Akinci
- Depark, Dokuz Eylul University, Izmir, Turkey.
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
| |
Collapse
|
3
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
4
|
Mosbah H, Vantyghem M, Nobécourt E, Andreelli F, Archambeaud F, Bismuth E, Briet C, Cartigny M, Chevalier B, Donadille B, Daguenel A, Fichet M, Gautier J, Janmaat S, Jéru I, Legagneur C, Leguier L, Maitre J, Mongeois E, Poitou C, Renard E, Reznik Y, Spiteri A, Travert F, Vergès B, Zammouri J, Vigouroux C, Vatier C. Therapeutic indications and metabolic effects of metreleptin in patients with lipodystrophy syndromes: Real-life experience from a national reference network. Diabetes Obes Metab 2022; 24:1565-1577. [PMID: 35445532 PMCID: PMC9541305 DOI: 10.1111/dom.14726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022]
Abstract
AIM To describe baseline characteristics and follow-up data in patients with lipodystrophy syndromes treated with metreleptin in a national reference network, in a real-life setting. PATIENTS AND METHODS Clinical and metabolic data from patients receiving metreleptin in France were retrospectively collected, at baseline, at 1 year and at the latest follow-up during treatment. RESULTS Forty-seven patients with lipodystrophy including generalized lipodystrophy (GLD; n = 28) and partial lipodystrophy (PLD; n = 19) received metreleptin over the last decade. At baseline, the median (interquartile range [IQR]) patient age was 29.3 (16.6-47.6) years, body mass index was 23.8 (21.2-25.7) kg/m2 and serum leptin was 3.2 (1.0-4.9) ng/mL, 94% of patients had diabetes (66% insulin-treated), 53% had hypertension and 87% had dyslipidaemia. Metreleptin therapy, administered for a median (IQR) of 31.7 (14.2-76.0) months, was ongoing in 77% of patients at the latest follow-up. In patients with GLD, glycated haemoglobin (HbA1c) and fasting triglyceride levels significantly decreased from baseline to 1 year of metreleptin treatment, from 8.4 (6.5-9.9)% [68 (48-85) mmol/mol] to 6.8 (5.6-7.4)% [51(38-57) mmol/mol], and 3.6 (1.7-8.5) mmol/L to 2.2 (1.1-3.7) mmol/L, respectively (P < 0.001), with sustained efficacy thereafter. In patients with PLD, HbA1c was not significantly modified (7.7 [7.1-9.1]% [61 (54-76) mmol/mol] at baseline vs. 7.7 [7.4-9.5]% [61(57-80) mmol/mol] at 1 year), and the decrease in fasting triglycerides (from 3.3 [1.9-9.9] mmol/L to 2.5 [1.6-5.3] mmol/L; P < 0.01) was not confirmed at the latest assessment (5.2 [2.2-11.3] mmol/L). However, among PLD patients, at 1 year, 61% were responders regarding glucose homeostasis, with lower baseline leptin levels compared to nonresponders, and 61% were responders regarding triglyceridaemia. Liver enzymes significantly decreased only in the GLD group. CONCLUSIONS In this real-life setting study, metabolic outcomes are improved by metreleptin therapy in patients with GLD. The therapeutic indication for metreleptin needs to be clarified in patients with PLD.
Collapse
Affiliation(s)
- Héléna Mosbah
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Marie‐Christine Vantyghem
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital; University of Lille, INSERM U1190European Genomic Institute for DiabetesLilleFrance
| | - Estelle Nobécourt
- Department of Endocrinology, Diabetology and MetabolismLa Réunion University HospitalSaint Pierre de la RéunionFrance
| | - Fabrizio Andreelli
- AP‐HP, Pitié‐Salpêtrière University Hospital, Department of Diabetology; Sorbonne University, INSERMNutrition and Obesity: systemic approaches « NutriOmics »ParisFrance
| | - Francoise Archambeaud
- Department of Endocrinology, Diabetology and MetabolismDupuytren University HospitalLimogesFrance
| | - Elise Bismuth
- AP‐HP, Robert‐Debré University Hospital, Department of Paediatric Endocrinology, Diabetology and MetabolismUniversity of ParisParisFrance
| | - Claire Briet
- Department of EndocrinologyDiabetology and Metabolism, Angers University Hospital, Laboratory MITOVASC, UMR CNRS 6015, INSERM 1083AngersFrance
| | - Maryse Cartigny
- Reference Centre for Rare Diseases of Genital Development DEVGEN, Endocrinology Unit, Diabetology and Paediatric Gynecology DepartmentLille University HospitalLilleFrance
| | - Benjamin Chevalier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital; University of Lille, INSERM U1190European Genomic Institute for DiabetesLilleFrance
| | - Bruno Donadille
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Anne Daguenel
- Department of PharmacyAP‐HP, Saint–Antoine University HospitalParisFrance
| | - Mathilde Fichet
- Department of Endocrinology, Diabetology and MetabolismRennes University HospitalRennesFrance
| | - Jean‐François Gautier
- Department of Endocrinology, Diabetology and MetabolismAP‐HP, Lariboisière University HospitalParisFrance
| | - Sonja Janmaat
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Isabelle Jéru
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Carole Legagneur
- Department of Paediatric Endocrinology, Diabetology and MetabolismUniversity Hospital Brabois‐Vandoeuvre lès NancyVandoeuvre lès NancyFrance
| | - Lysiane Leguier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital; University of Lille, INSERM U1190European Genomic Institute for DiabetesLilleFrance
| | - Julie Maitre
- Department of Paediatrics and Endocrinology, Diabetology and MetabolismOrléans HospitalOrléansFrance
| | - Elise Mongeois
- Department of Paediatrics and Endocrinology, Diabetology and MetabolismOrléans HospitalOrléansFrance
| | - Christine Poitou
- Nutrition Department, Sorbonne University/INSERM, Research Unit: Nutrition and Obesity; Systemic Approaches (NutriOmics)AP‐HP, Pitié‐Salpêtrière University Hospital, Reference Centre for Rare Diseases PRADORT (PRADer‐Willi Syndrome and other Rare Obesities with Eating Disorders)ParisFrance
| | - Eric Renard
- Department of Endocrinology, Diabetes and Nutrition, Montpellier University Hospital; Clinical Investigation Centre INSERM1411; Institute of Functional Genomics, CNRS, INSERMUniversity of MontpellierMontpellierFrance
| | - Yves Reznik
- Department of Endocrinology, Diabetology and MetabolismCôte de Nacre University HospitalCaenFrance
| | - Anne Spiteri
- Department of Endocrinology, Diabetology and MetabolismGrenoble University HospitalGrenobleFrance
| | - Florence Travert
- Department of Diabetology and MetabolismAP‐HP, Bichat University HospitalParisFrance
| | - Bruno Vergès
- Department of Endocrinology, Diabetology and MetabolismBocage University HospitalDijonFrance
| | - Jamila Zammouri
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
- AP‐HP, Robert‐Debré University Hospital, Department of Paediatric Endocrinology, Diabetology and MetabolismUniversity of ParisParisFrance
| | - Corinne Vigouroux
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Camille Vatier
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| |
Collapse
|
5
|
Al-Beltagi M, Bediwy AS, Saeed NK. Insulin-resistance in paediatric age: Its magnitude and implications. World J Diabetes 2022; 13:282-307. [PMID: 35582667 PMCID: PMC9052009 DOI: 10.4239/wjd.v13.i4.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is insulin failure in normal plasma levels to adequately stimulate glucose uptake by the peripheral tissues. IR is becoming more common in children and adolescents than before. There is a strong association between obesity in children and adolescents, IR, and the metabolic syndrome components. IR shows marked variation among different races, crucial to understanding the possible cardiovascular risk, specifically in high-risk races or ethnic groups. Genetic causes of IR include insulin receptor mutations, mutations that stimulate autoantibody production against insulin receptors, or mutations that induce the formation of abnormal glucose transporter 4 molecules or plasma cell membrane glycoprotein-1 molecules; all induce abnormal energy pathways and end with the development of IR. The parallel increase of IR syndrome with the dramatic increase in the rate of obesity among children in the last few decades indicates the importance of environmental factors in increasing the rate of IR. Most patients with IR do not develop diabetes mellitus (DM) type-II. However, IR is a crucial risk factor to develop DM type-II in children. Diagnostic standards for IR in children are not yet established due to various causes. Direct measures of insulin sensitivity include the hyperinsulinemia euglycemic glucose clamp and the insulin-suppression test. Minimal model analysis of frequently sampled intravenous glucose tolerance test and oral glucose tolerance test provide an indirect estimate of metabolic insulin sensitivity/resistance. The main aim of the treatment of IR in children is to prevent the progression of compensated IR to decompensated IR, enhance insulin sensitivity, and treat possible complications. There are three main lines for treatment: Lifestyle and behavior modification, pharmacotherapy, and surgery. This review will discuss the magnitude, implications, diagnosis, and treatment of IR in children.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| |
Collapse
|