1
|
Wang Y, Sun Y, Jie T, Wang M, Zhang S, Yang H, Jian W, Dai D, Xu R, Yue B, Qu X. Association between serum Copper-Zinc-Selenium mixture and multiple health outcomes. Bioact Mater 2025; 50:432-442. [PMID: 40309256 PMCID: PMC12041763 DOI: 10.1016/j.bioactmat.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Background Metallic biomaterials have transformed modern medicine, with copper (Cu), zinc (Zn), and selenium (Se) emerging as critical components in medical applications. The study of the single and synergistic effects of serum metal concentrations on human health can provide valuable insights for future clinical transformation of biodegradable alloys. Methods We evaluated 2381 NHANES 2011-2016 participants to study individual and combined effects of these metals on health outcomes. Multivariable logistic regression, restricted cubic splines, and piecewise linear regression were used to examine linear, nonlinear, and threshold relationships. Overall metal mixture effects were assessed using weighted quantile sum (WQS) and Bayesian kernel-machine regression (BKMR). Results Elevated serum Cu levels were significantly associated with an increased risk of osteoarthritis. When Serum Cu ≥ 99.48 μg/dL, each 1-unit increase in Ln Cu raised diabetes risk 4.55-fold. For Se ≥ 122.74 μg/L, each 1-unit increase in Ln Se led to a 29.96-fold rise in diabetes prevalence, for Se < 157.56 μg/L it increased heart attack risk 165.19-fold. Furthermore, mixtures of Cu, Se, and Zn were positively associated with diabetes, hypertension, and heart attack risks; each unit increase in the mixture corresponded to a 23 % rise in diabetes and a 15 % rise in hypertension prevalence. Conclusions Serum Cu levels ≥99.48 μg/dL are significantly linked to diabetes risk, while serum Se levels ≥122.74 μg/L are associated with diabetes risk and levels <157.56 μg/L with elevated heart attack risk. Serum metal mixtures containing Cu, Se and Zn were significantly and positively associated with risk of diabetes, hypertension and heart attack.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Yiwen Sun
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, 100191, China
| | - Tianyang Jie
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Weiyan Jian
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, 100191, China
| | - Dai Dai
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shan Dong Middle Road, Shanghai, 200001, China
| | - Ruida Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| |
Collapse
|
2
|
D'Angelo A, Lixi F, Vitiello L, Gagliardi V, Pellegrino A, Giannaccare G. The Role of Diet and Oral Supplementation for the Management of Diabetic Retinopathy and Diabetic Macular Edema: A Narrative Review. BIOMED RESEARCH INTERNATIONAL 2025; 2025:6654976. [PMID: 40041571 PMCID: PMC11876532 DOI: 10.1155/bmri/6654976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/08/2025] [Indexed: 03/06/2025]
Abstract
Globally, diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of visual loss in working people. Current treatment approaches mostly target proliferative DR and DME, such as intravitreal injections of antivascular endothelial growth factor agents and laser photocoagulation. Before DR progresses into the more severe, sight-threatening proliferative stage, patients with early stages of the disease must get early and appropriate care. It has been suggested that nutraceuticals, which are natural functional foods with minimal adverse effects, may help diabetic patients with DR and DME. Several in vitro and in vivo studies were carried out over the last years, showing the potential benefits of several nutraceuticals in DR due to their neuroprotective, vasoprotective, anti-inflammatory, and antioxidant properties. Although most of the research is restricted to animal models and many nutraceuticals have low bioavailability, these compounds may adjuvate and implement conventional DR therapies. The purpose of this review is (i) to summarize the complex pathophysiology underlying DR and DME and (ii) to examine the main natural-derived molecules and dietary habits that can assist conventional therapies for the clinical management of DR and DME.
Collapse
Affiliation(s)
- Angela D'Angelo
- Department of Clinical Sciences and Community Health–Department of Excellence 2023–2027, University of Milan, Milan, Italy
| | - Filippo Lixi
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Livio Vitiello
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Vincenzo Gagliardi
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Alfonso Pellegrino
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Giuseppe Giannaccare
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Subramaniam J, Aditi A, Arumugam K, Sri S, Bharathidevi SR, Ramkumar KM. Copper Dyshomeostasis and Diabetic Complications: Chelation Strategies for Management. Mini Rev Med Chem 2025; 25:277-292. [PMID: 39328144 DOI: 10.2174/0113895575308206240911104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024]
Abstract
Cuproptosis, an emerging concept in the field of diabetes research, presents a novel and promising perspective for the effective management of diabetes mellitus and its associated complications. Diabetes, characterized by chronic hyperglycemia, poses a substantial global health burden, with an increasing prevalence worldwide. Despite significant progress in our understanding of this complex metabolic disorder, optimal therapeutic strategies still remain elusive. The advent of cuproptosis, a term coined to describe copper-induced cellular cell death and its pivotal role in diabetes pathogenesis, opens new avenues for innovative interventions. Copper, an indispensable trace element, plays a pivotal role in a myriad of vital biological processes, encompassing energy production, bolstering antioxidant defenses, and altered cellular signaling. However, in the context of diabetes, this copper homeostasis is perturbed, driven by a combination of genetic predisposition, dietary patterns, and environmental factors. Excessive copper levels act as catalysts for oxidative stress, sparking intricate intracellular signaling cascades that further exacerbate metabolic dysfunction. In this review, we aim to explore the interrelationship between copper and diabetes comprehensively, shedding light on the intricate mechanisms underpinning cuproptosis. By unraveling the roles of copper transporters, copper-dependent enzymes, and cuproptotic signaling pathways, we seek to elucidate potential therapeutic strategies that harness the power of copper modulation in diabetes management. This insight sets the stage for a targeted approach to challenge the complex hurdles posed by diabetes, potentially transforming our therapeutic strategies in the ongoing fight against this pervasive global health concern.
Collapse
Affiliation(s)
- Jahnavi Subramaniam
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Aarya Aditi
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kishore Arumugam
- RS Mehta Jain Department of Biochemistry & Cell Biology, KBIRVO Block, Vision Research Foundation, Chennai, 600006, India
| | - Sathya Sri
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | | | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
4
|
Hu Q, Zhang X, Huang J, Peng H, Sun Y, Sang W, Jiang B, Sun D. The STAT1-SLC31A1 axis: Potential regulation of cuproptosis in diabetic retinopathy. Gene 2024; 930:148861. [PMID: 39153705 DOI: 10.1016/j.gene.2024.148861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND By identifying molecular biological markers linked to cuproptosis in diabetic retinopathy (DR), new pathobiological pathways and more accessible diagnostic markers can be developed. METHODS The datasets related to DR were acquired from the Gene Expression Omnibus database, while genes associated with cuproptosis were sourced from previously published compilations. Consensus clustering was conducted to delineate distinct DR subclasses. Feature genes were identified utilizing weighted correlation network analysis (WGCNA). Additionally, two machine-learning algorithms were employed to refine the selection of feature genes. Finally, we conducted preliminary validation experiments to ascertain the involvement of cuproptosis in DR development and the transcriptional regulation of critical genes using both the streptozotocin-induced diabetic mouse model and the high glucose-induced BV2 model. RESULTS In the STZ-induced diabetic mouse retinas, a decrease in the expression of cuproptosis signature proteins (FDX1, DLAT, and NDUFS8) suggested the occurrence of cuproptosis in DR. Subsequently, the expression of eight cuproptosis differential genes was validated through the STZ-induced diabetes and oxygen-induced retinopathy (OIR) models, with the key gene SLC31A1 showing upregulation in both models and dataset species. Further analyses, including weighted gene co-expression network analysis, GSVA, and immune infiltration analysis, indicated a close correlation between cuproptosis and microglia function. Additionally, validation in an in vitro model of microglia indicated the occurrence of cuproptosis in microglia under high glucose conditions, alongside abnormal expression of STAT1 with SLC31A1. CONCLUSION Our findings suggest that STAT1/SLC31A1 may pave the way for a deeper comprehension of the mechanistic basis of DR and offer potential therapeutic avenues.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiayang Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yage Sun
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Ophthalmology, Qiqihar Eye & ENT Hospital, Qiqihar, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Wang YM, Feng LS, Xu A, Ma XH, Zhang MT, Zhang J. Copper ions: The invisible killer of cardiovascular disease (Review). Mol Med Rep 2024; 30:210. [PMID: 39301641 PMCID: PMC11425066 DOI: 10.3892/mmr.2024.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Copper, a vital trace element, is indispensable for the maintenance of physiological functioning, particularly in the cardiac system. Unlike other forms of cell death such as iron death and apoptosis, copper‑induced cell death has gained increasing recognition as a significant process influencing the development of cardiovascular diseases. The present review highlights the significance of maintaining copper homeostasis in addressing cardiovascular diseases. This review delves into the crucial roles of copper in physiology, including the metabolic pathways and its absorption, transport and excretion. It provides detailed insights into the mechanisms underlying cardiovascular diseases resulting from both excess and deficient copper levels. Additionally, it summarizes strategies for treating copper imbalances through approaches such as copper chelators and ion carriers while discussing their limitations and future prospects.
Collapse
Affiliation(s)
- Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Ao Xu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Xiao-Han Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Miao-Tiao Zhang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Jie Zhang
- Cardiovascular Department, Xi'an Fifth Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
6
|
Deng XJ, Wang YN, Lv CB, Qiu ZZ, Zhu LX, Shi JH, Sana SRGL. Effect of cuproptosis on acute kidney injury after cardiopulmonary bypass in diabetic patients. World J Diabetes 2024; 15:2123-2134. [PMID: 39493567 PMCID: PMC11525729 DOI: 10.4239/wjd.v15.i10.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is a common procedure in cardiac surgery. CPB is a high-risk factor for acute kidney injury (AKI), and diabetes is also such a factor. Diabetes can lead to copper overload. It is currently unclear whether AKI after CPB in diabetic patients is related to copper overload. AIM To explore whether the occurrence of CPB-AKI in diabetic patients is associated with cuproptosis. METHODS Blood and urine were collected from clinical diabetic and non-diabetic patients before and after CPB. Levels of copper ion, lactate, glucose, heat shock protein-70 (HSP-70), and dihydrolipoamide dehydrogenase (DLAT) were determined. A diabetic rat model was established and CPB was performed. The rats were assessed for the development of CPB-AKI, and for the association of AKI with cuproptosis by detecting copper levels, iron-sulfur cluster proteins and observation of mitochondrial structure by electron microscopy. RESULTS CPB resulted in elevations of copper, lactate, HSP-70 and DLAT in blood and urine in both diabetic and non-diabetic patients. CPB was associated with pathologic and mitochondrial damage in the kidneys of diabetic rats. Cuproptosis-related proteins also appeared to be significantly reduced. CONCLUSION CPB-AKI is associated with cuproptosis. Diabetes mellitus is an important factor aggravating CPB-AKI and cuproptosis.
Collapse
Affiliation(s)
- Xi-Jin Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yi-Nan Wang
- Department of The Health Management Service Evaluation Center, The Health Management Service Evaluation Center of Heilongjiang Province, Harbin 150000, Hei-longjiang Province, China
| | - Chuan-Bao Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 150001, Guangdong Province, China
| | - Zhong-Zhi Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ling-Xin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jing-Hui Shi
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Si-Ri-Gu-Leng Sana
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
7
|
Dascalu AM, Grigorescu CC, Serban D, Tudor C, Alexandrescu C, Stana D, Jurja S, Costea AC, Alius C, Tribus LC, Dumitrescu D, Bratu D, Cristea BM. Complement Inhibitors for Geographic Atrophy in Age-Related Macular Degeneration-A Systematic Review. J Pers Med 2024; 14:990. [PMID: 39338244 PMCID: PMC11432754 DOI: 10.3390/jpm14090990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Age-related macular degeneration (AMD) is one of the main causes of blindness and visual impairment worldwide. Intravitreal complement inhibitors are an emergent approach in the treatment of AMD, which have had encouraging results. This systematic review analyzes the outcomes and safety of complement inhibitor therapies for GA in AMD cases. METHODS A comprehensive search on the PubMed and Web of Science databases returned 18 studies involving various complement inhibitor agents, with a total of 4272 patients and a mean follow-up of 68.2 ± 20.4 weeks. RESULTS Most treated patients were white (96.8%) and female (55.8%), with a mean age of 78.3 ± 7.8 years and a mean GA area of 8.0 ± 3.9 mm2. There were no differences in visual function change between treated and control participants. The mean GA area change was 2.4 ± 0.7 mm2 in treated participants vs. 2.7 ± 0.8 mm2 in control groups (p < 0.001). The ocular and systemic side effects were similar to those of intravitreal anti-VEGF. A less-understood effect was that of the onset of choroidal neovascularization (CNV) in 1.1-13% of patients; this effect was found to be more frequent in patients with neovascular AMD in the fellow eye or nonexudative CNV in the study eye at baseline. CONCLUSIONS Complement inhibitors may represent a useful therapy for GA in AMD, but a personalized approach to patient selection is necessary to optimize the outcomes.
Collapse
Affiliation(s)
- Ana Maria Dascalu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | | | - Dragos Serban
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Corneliu Tudor
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Cristina Alexandrescu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Daniela Stana
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Sanda Jurja
- Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
- Ophthalmology Department, Emergency County Hospital Constanta, 900591 Constanta, Romania
| | | | - Catalin Alius
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Laura Carina Tribus
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine, Ilfov Emergency Clinic Hospital, 022113 Bucharest, Romania
| | - Dan Dumitrescu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Dan Bratu
- Faculty of Medicine, University "Lucian Blaga", 550169 Sibiu, Romania
- Department of Surgery, Emergency County Hospital Sibiu, 550245 Sibiu, Romania
| | - Bogdan Mihai Cristea
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
8
|
Jia D, Liu L, Liu W, Li J, Jiang X, Xin Y. Copper metabolism and its role in diabetic complications: A review. Pharmacol Res 2024; 206:107264. [PMID: 38876443 DOI: 10.1016/j.phrs.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.
Collapse
Affiliation(s)
- Dongkai Jia
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Lulu Liu
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun 130012, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Wang T, Zhang T, Dong N, Tan Y, Li X, Xie Y, Li L, Zhou Y, Zhang P, Li M, Li Q, Wang R, Wu R, Gao L. The association of islet autoantibodies with the neural retinal thickness and microcirculation in type 1 diabetes mellitus with no clinical evidence of diabetic retinopathy. Acta Diabetol 2024; 61:897-907. [PMID: 38530415 DOI: 10.1007/s00592-024-02255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/06/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To examine the association between islet autoantibodies (IAbs) and the retinal neurovascular changes in type 1 diabetes mellitus (T1DM) with no diabetic retinopathy (NDR). METHODS This cross-sectional study measured the neural retinal structure and microvascular density of 118 NDR eyes using spectral-domain optical coherence tomography angiography. Retinal structure parameters included retinal thickness (RT), inner retinal thickness (iRT), retina never fibral layer thickness (RNFL thickness), ganglion cell complex thickness (GCC thickness), and loss volume of GCC. Microvascular parameters included vessel density of superficial capillary plexus (sVD), vessel density of deep capillary plexus, and vessel density of choroid capillary plexus. Comparison and correlation analyses of these OCTA parameters were made with various IAbs, including glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen 2 antibody (IA2A), and zinc transporter 8 antibody (ZnT8A). A general linear model was used to understand the association of IAbs with the retina parameters. RESULTS The IAb positive (IAbs +) group, which included 85 patients, had thinner RT (235.20 ± 18.10 mm vs. 244.40 ± 19.90 mm at fovea, P = 0.021) and thinner iRT (120.10 ± 9.00 mm vs. 124.70 ± 6.90 mm at parafovea, P = 0.015), compared with the IAb negative (IAbs-) group comprising 33 patients. Furthermore, a more severe reduction of RT was demonstrated in the presence of multiple IAbs. Among the three IAbs, GADA was the most significant independent risk factor of all-round RT decrease (β = -0.20 vs. -0.27 at fovea and parafovea, respectively, P < 0.05), while titers of IA2A negatively affect sVD in the parafovea (β = -0.316, P = 0.003). CONCLUSIONS IAbs are associated with neural retinal thinning and microcirculation reduction in T1DM patients before the clinical onset of diabetic retinopathy.
Collapse
Affiliation(s)
- Tong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tong Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, 325027, China
| | - Ning Dong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yao Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, 94304, USA
| | - Yandan Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pu Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ming Li
- Department of Immunology, College of Basic Medical Immunology, Central South University, Changsha, 410011, China
| | - Qianxin Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, 325027, China
| | - Ruixuan Wang
- Bourns Engineering, The University of California, Riverside, Riverside, CA, 92521, USA
| | - Ronghan Wu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Clinical Research Center for Ocular Diseases, Wenzhou, 325027, China.
| | - Ling Gao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Clinical Research Center for Ocular Diseases, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Calcagno D, Perina ML, Zingale GA, Pandino I, Tuccitto N, Oliveri V, Parravano MC, Grasso G. Detection of insulin oligomeric forms by a novel surface plasmon resonance-diffusion coefficient based approach. Protein Sci 2024; 33:e4962. [PMID: 38501507 PMCID: PMC10949399 DOI: 10.1002/pro.4962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.
Collapse
Affiliation(s)
| | | | | | | | - Nunzio Tuccitto
- Dipartimento di Scienze ChimicheUniversity of CataniaCataniaItaly
| | | | | | - Giuseppe Grasso
- Dipartimento di Scienze ChimicheUniversity of CataniaCataniaItaly
| |
Collapse
|
11
|
Ezzat GM, Azoz NMA, El Zohne RA, Abdellatif H, Saleem TH, Emam WA, Mohammed AR, Mohamed SA, Muhammed AA, Abd el-Rady NM, Hamdy M, Sherkawy HS, Sabet MA, Seif Eldin S, Dahpy MA. Dysregulated miRNA-375, IL-17, TGF-β, and Microminerals Are Associated with Calpain-10 SNP 19 in Diabetic Patients: Correlation with Diabetic Nephropathy Stages. Int J Mol Sci 2023; 24:17446. [PMID: 38139275 PMCID: PMC10744180 DOI: 10.3390/ijms242417446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Zinc (Zn) and copper (Cu) have been shown to have the potential to improve glucose metabolism through interactions with cytokines and signaling events with multiple genes. miRNA-375 and the Calpin-10 gene are potential genetic biomarkers for the early prediction of diabetic nephropathy (DN). 128 healthy controls and 129 type 2 diabetic (T2DM) participants were matched for age and sex. Three subgroups were identified from the T2DM group: 39 patients had microalbuminuria, 41 had macroalbuminuria, and 49 patients had renal problems. Circulating miR-375 expression levels were measured via qPCR. Calpain-10 SNP 19 (rs3842570) genotyping was assessed with allele-specific PCR in all the included participants. Spectrophotometry was used to measure the concentrations of serum copper, zinc, and magnesium, while ELISA was used to measure the levels of TGF-β and IL-17. There was significant up-regulation in the expression of miR-375 and serum levels of TGF-β, IL-17, Cu, and the Cu/Zn ratio, whereas, in contrast to the control group, the Zn and Mg levels were lower in the T2DM group. The DN groups had significantly lower miR-375, TGF-β, IL-17, Mg, and Zn levels compared with the T2DM without nephropathy group. Furthermore, between TGF-β, IL-17, and miRNA-375, there were notable correlations. Calpain-10 SNP 19 genotype 22 and allele 2 were linked to a higher incidence of T2DM and DN. Significant TGF-β, Cu, Cu/Zn ratio, HbAc1, and creatinine levels, but insignificant miRNA-375 levels, were associated with genotype 22 of Calpain-10 SNP 19. interactions between the Calpain-10 SNP 19 genotype 22 and IL-17, TGF-β, mineral levels, and miRNA-375 might contribute to the aetiology of DN and T2DM and may have clinical implications for diagnosis and management.
Collapse
Affiliation(s)
- Ghada M. Ezzat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.M.E.); (T.H.S.)
| | - Nashwa Mostafa A. Azoz
- Department of Internal Medicine, Nephrology Unit, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Randa A. El Zohne
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (R.A.E.Z.); (H.A.)
| | - HebatAllah Abdellatif
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (R.A.E.Z.); (H.A.)
| | - Tahia H. Saleem
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.M.E.); (T.H.S.)
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11351, Egypt; (W.A.E.); (A.R.M.); (S.A.M.)
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11351, Egypt; (W.A.E.); (A.R.M.); (S.A.M.)
| | - Shimaa Ali Mohamed
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11351, Egypt; (W.A.E.); (A.R.M.); (S.A.M.)
| | - Asmaa A. Muhammed
- Department of Medical Physiology, Faculty of Medicine, Aswan University, Aswan 81511, Egypt;
| | - Nessren M. Abd el-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Medical Physiology Department, Sphinx University, New Assiut 71515, Egypt
| | - Marwa Hamdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hoda S. Sherkawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New Assiut 71684, Egypt;
| | - Salwa Seif Eldin
- Department of Medical Microbiology and Immunology, College of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Marwa A. Dahpy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.M.E.); (T.H.S.)
- Department of Medical Biochemistry and Molecular Biology, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt
| |
Collapse
|
12
|
Murkey SP, Agarwal A, Pandit P, Kumar S, Jaiswal A. Unveiling the Spectrum of Ophthalmic Manifestations in Nutritional Deficiencies: A Comprehensive Review. Cureus 2023; 15:e50311. [PMID: 38205491 PMCID: PMC10777438 DOI: 10.7759/cureus.50311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review explores the intricate relationship between nutrition and ocular health, focusing on the crucial roles of essential nutrients like Vitamin A, Vitamin B1 (thiamine), Vitamin B12, Vitamin C, Vitamin D, Vitamin E, Zinc, and Folate (Vitamin B9) in maintaining eye well-being. Nutrient deficiencies have significant consequences, leading to various eye-related issues, from night blindness to age-related conditions such as cataracts and macular degeneration. It is imperative to address these deficiencies, emphasizing the importance of a well-rounded diet with the necessary nutrients. When necessary, supplementation and regular eye examinations are vital components for effectively monitoring ocular health. Public health campaigns and educational initiatives also play a key role in raising awareness about the profound impact of nutrition on eye health. Future research should explore personalized nutrition plans, nutrigenomics, longitudinal studies, and targeted nutritional interventions. Such investigations will not only enhance our understanding of this crucial connection but also have the potential to reduce the global burden of eye diseases.
Collapse
Affiliation(s)
- Siddhant P Murkey
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akash Agarwal
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pranam Pandit
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arpita Jaiswal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Ganesh R, Meenakshi B. Serum Zinc and Copper Levels in Children with Type 1 Diabetes Mellitus. Indian J Pediatr 2023; 90:1052. [PMID: 37450247 DOI: 10.1007/s12098-023-04725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Ramaswamy Ganesh
- Department of Pediatrics & Metabolic Disorders, Rainbow Children's Hospital, Chennai, Tamil Nadu, 600015, India.
| | - B Meenakshi
- Panimalar Engineering College, Chennai, Tamil Nadu, 600034, India
| |
Collapse
|
14
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
15
|
Wang F, Fernandez-Gonzalez P, Ramon E, Gomez-Gutierrez P, Morillo M, Garriga P. Effect of Trace Metal Ions on the Conformational Stability of the Visual Photoreceptor Rhodopsin. Int J Mol Sci 2023; 24:11231. [PMID: 37446409 DOI: 10.3390/ijms241311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Trace metals are essential elements that play key roles in a number of biochemical processes governing human visual physiology in health and disease. Several trace metals, such as zinc, have been shown to play important roles in the visual phototransduction process. In spite of this, there has been little research conducted on the direct effect of trace metal elements on the visual photoreceptor rhodopsin. In the current study, we have determined the effect of several metal ions, such as iron, copper, chromium, manganese, and nickel, on the conformational stability of rhodopsin. To this aim, we analyzed, by means of UV-visible and fluorescence spectroscopic methods, the effects of these trace elements on the thermal stability of dark rhodopsin, the stability of its active Metarhodopsin II conformation, and its chromophore regeneration. Our results show that copper prevented rhodopsin regeneration and slowed down the retinal release process after illumination. In turn, Fe3+, but not Fe2+, increased the thermal stability of the dark inactive conformation of rhodopsin, whereas copper ions markedly decreased it. These findings stress the important role of trace metals in retinal physiology at the photoreceptor level and may be useful for the development of novel therapeutic strategies to treat retinal disease.
Collapse
Affiliation(s)
- Feifei Wang
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pol Fernandez-Gonzalez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Eva Ramon
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Patricia Gomez-Gutierrez
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici ETSEIB, Av. Diagonal 647, 08028 Barcelona, Catalonia, Spain
| | - Margarita Morillo
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| |
Collapse
|
16
|
Comparison of selenium levels between diabetic patients with and without retinopathy. JOURNAL OF SURGERY AND MEDICINE 2023. [DOI: 10.28982/josam.7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background/Aim: Diabetic retinopathy is a common ailment that causes visual impairment among adults, and evidence suggests that oxidative stress plays a significant role in its pathogenesis. The objective of this study was to examine the potential association between selenium deficiency and an increased risk of diabetic retinopathy among individuals with type 2 diabetes mellitus.
Methods: This study was a prospective case-control study. 115 patients with a diagnosis of type 2 diabetes mellitus were included. The patients were divided into groups with and without retinopathy. No subgroups were made according to the level of retinopathy. The aim was to compare the serum selenium level of patients between groups. Therefore, other variables that may contribute to the development of retinopathy were also recorded. The duration of diabetes, medications used, and glycosylated hemoglobin levels were recorded. The retinopathy group included 47 patients, and the non-retinopathy group included 68 patients. Selenium levels were measured in plasma samples.
Results: The mean selenium level of the retinopathy group (70.11 [17.28] μg/l) was significantly lower than that of the non-retinopathy group (80.20 [19.10] μg/l) (P=0.005). The median duration of diabetes mellitus was significantly higher in the retinopathy group than in the non-retinopathy group (10 [1-25] and 6 [1-21], respectively; P=0.002). Logistic regression analyses showed that higher levels of blood selenium were independent preventive factors against the occurrence of retinopathy (OR [95% CI]: 0.965 [0.939-0. 991]). The duration of diabetes mellitus was an independent risk factor for retinopathy occurrence [OR (95% CI): 1.131 (1.050-1.219)]. One unit increase in selenium level was associated with a unit decrease in diabetic retinopathy of 0.965 (0.939-0.991).
Conclusion: Our research revealed a correlation between the duration of diabetes and the incidence of diabetic retinopathy. Furthermore, a notable difference was observed in blood selenium levels between patients with diabetic retinopathy and those without it. Specifically, patients with diabetic retinopathy had lower plasma selenium levels compared to the control group. These findings have potential implications for the treatment or prevention of diabetic retinopathy, but more research is needed to determine the efficacy of selenium supplementation for diabetic patients with or without microvascular complications. Future studies should investigate the effect of selenium deficiency on different subtypes of diabetic retinopathy and the impact of selenium supplementation in this patient population.
Collapse
|
17
|
Otsuka T, Masuda T, Takahashi Y, Suzuki A, Uemura A, Arakawa R, Okabe T, Naito A. Effect of triamcinolone acetonide on retinal inflammation and angiogenesis induced by pericyte depletion in mouse. J Pharmacol Sci 2023; 151:28-36. [DOI: 10.1016/j.jphs.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
|
18
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
19
|
Ren X, Pan C, Pan Z, Zhao S, Wu C, Chen W, Liu M, Han X, Kuang H, Qu M. Knowledge mapping of copper-induced cell death: A bibliometric study from 2012 to 2022. Medicine (Baltimore) 2022; 101:e31133. [PMID: 36397452 PMCID: PMC10662818 DOI: 10.1097/md.0000000000031133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The recent article Copper induces cell death by targeting lipoylated TCA cycle proteins has attracted much attention. Although copper-induced cell death has only recently been formally proposed, it has been studied much earlier. This study aims to undertake a bibliometric analysis of the literature on copper-induced cell death to understand the development of copper-induced cell death better and identify potential new research directions. METHODS With the help of Cite Space software, visual analysis is carried out on the annual number of published papers, countries/regions and institutions, journals co-citation, literature co-citation and reference burst, keywords co-occurrence, clustering, and burst. RESULTS A search of 770 articles published in English over the last ten years showed a fluctuating trend of increasing numbers of articles. China had the highest number of articles (190% or 24.68%), followed by the USA and India. Inflammation, biological evaluation, nanoparticle, and cu(ii) have been popular research themes in the last 4 years. The keyword clusters are summarized in 8 categories, including exposure, complexe, er stress, cleavage, paraptosis, cancer, glutamate, reactive oxygen species (ROS), expression. The hot topics are mainly focused on the exploration of mechanisms and related diseases, including induced apoptosis, aggregation, autophagy, endoplasmic reticulum stress, induced oxidative stress, and inflammation. Parkinson's disease and cancer are 2 diseases that are closely related to copper-induced cell death. CONCLUSION This study provides a visual analysis of copper-induced cell death trends and provides some hidden potentially useful information for future research directions.
Collapse
Affiliation(s)
- Xue Ren
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Ciming Pan
- Yunnan University of Chinese Medicine, Yunnan, China
| | - Zimeng Pan
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Shanshan Zhao
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Chen Wu
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Wan Chen
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Mengchen Liu
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Xingyue Han
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Hongying Kuang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Hei Longjiang, China
| | - Miao Qu
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| |
Collapse
|
20
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
21
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 2022; 203:115168. [PMID: 35835206 DOI: 10.1016/j.bcp.2022.115168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Pathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S. population, or about one in 1600 individuals. Vision impairment due to mitochondrial dysfunction in the eye is a prominent feature evident in numerous primary mitochondrial diseases and is common to the pathophysiology of many of the familiar ophthalmic disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma and retinopathy of prematurity - a collection of syndromes, diseases and disorders with significant unmet medical needs. Focusing on metabolic mitochondrial pathway mechanisms, including the possible roles of cuproptosis and ferroptosis in retinal mitochondrial dysfunction, we shed light on the potential of α-lipoyl-L-carnitine in treating eye diseases. α-Lipoyl-L-carnitine is a bioavailable mitochondria-targeting lipoic acid prodrug that has shown potential in protecting against retinal degeneration and photoreceptor cell loss in ophthalmic indications.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|