1
|
Hu H, Wang J, Peng Z, Fan Y, Yang Q, Hu J. Dapagliflozin attenuates diabetes-induced podocyte lipotoxicity via ERRα-Mediated lipid metabolism. Free Radic Biol Med 2025; 234:178-191. [PMID: 40258521 DOI: 10.1016/j.freeradbiomed.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus, characterized by podocyte injury and lipid accumulation, which contribute to high morbidity and mortality. Current treatments primarily alleviate symptoms, underscoring the need for targeted therapies to address the underlying mechanisms of DKD progression. This study explores the protective effects of dapagliflozin (DAPA), a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on podocyte lipotoxicity and its regulatory role in the estrogen-related receptor alpha (ERRα)-acyl-CoA oxidase 1 (ACOX1) axis. Using db/db mice and streptozotocin-induced DKD models, we demonstrate that DAPA significantly reduces the urinary albumin-to-creatinine ratio (ACR) and improves renal pathology by alleviating glomerular hypertrophy, mesangial matrix expansion, and podocyte foot process effacement. DAPA also decreases triglyceride and free fatty acid accumulation in glomeruli, as evidenced by Oil Red O and BODIPY staining. Mechanistically, DAPA upregulates ERRα and ACOX1 expression in podocytes, enhancing fatty acid oxidation (FAO) and mitigating lipidtoxicity. Loss of ERRα exacerbates lipid-induced podocyte injury, while ERRα overexpression confers protective effects. These findings highlight DAPA's renoprotective effects via modulation of the ERRα-ACOX1 axis, suggesting that targeting ERRα could be a promising therapeutic strategy for DKD.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Wang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuan Peng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Nüsken E, Voggel J, Saschin L, Weber LT, Dötsch J, Alcazar MAA, Nüsken KD. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition. Pediatr Nephrol 2025; 40:1839-1852. [PMID: 39601825 PMCID: PMC12031794 DOI: 10.1007/s00467-024-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Our review summarizes and evaluates the current state of knowledge on lipid metabolism in relation to the pathomechanisms of kidney disease with a focus on common pediatric kidney diseases. In addition, we discuss how nutrition in early childhood can alter kidney development and permanently shape kidney lipid and protein metabolism, which in turn affects kidney health and disease throughout life. Comprehensive integrated lipidomics and proteomics network analyses are becoming increasingly available and offer exciting new insights into metabolic signatures. Lipid accumulation, lipid peroxidation, oxidative stress, and dysregulated pro-inflammatory lipid mediator signaling have been identified as important mechanisms influencing the progression of minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease, and acute kidney injury. We outline key features of metabolic homeostasis and lipid metabolic physiology in renal cells and discuss pathophysiological aspects in the pediatric context. On the one hand, special vulnerabilities such as reduced antioxidant capacity in neonates must be considered. On the other hand, there is a unique window of opportunity during kidney development, as nutrition in early life influences the composition of cellular phospholipid membranes in the growing kidney and thus affects local signaling pathways far beyond the growth phase.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz T Weber
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
3
|
Guo R, Chen MN, Lin QH, Qi HM, Wang XQ, Li BY, Wang S, Xu SJ, Zhang Y, Liu W. LARS1 Promotes Tubular Epithelial Cells Epithelial Mesenchymal Transition in Chronic Kidney Disease by Inhibiting Lipophagy. Inflammation 2025:10.1007/s10753-025-02313-5. [PMID: 40397353 DOI: 10.1007/s10753-025-02313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
Tubulointerstitial fibrosis (TIF), a critical pathological hallmark in progressive chronic kidney disease (CKD), may be potentiated by renal lipid metabolism dysregulation and ectopic lipid deposition, though these processes likely exhibit bidirectional interactions with fibrotic progression Lipophagy is a type of selective autophagy that specifically recognizes lipid droplets and is accountable for lipid stability and metabolism. It serves as a link between lipid metabolism and autophagy. It was found that a positive correlation between elevated LARS1 expression and the severity of renal interstitial fibrosis in CKD patients. In Lars1+/- mice, we observed that the absence of LARS1 significantly reduced lipid deposition and TIF. Mechanistically, stimulation of HK-2 cells with TGF-β1 resulted in LARS1-mediated activation of mTORC1 and suppression of lipophagy, consequently leading to increased lipid accumulation and epithelial mesenchymal transition (EMT) through a defined mechanistic pathway. Collectively, our studies demonstrate that LARS1 plays a pivotal role in renal fibrosis at least in part by inhibiting lipophagy, suggesting that targeting LARS1 may represent a novel therapeutic strategy for patients with CKD.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
- Department of Pathophysiology, Hebei North University, Zhangjiakou, 075000, China
| | - Mei-Ni Chen
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Qian-Hui Lin
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Hui-Min Qi
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Xiao-Qi Wang
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Bing-Yu Li
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Shuo Wang
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China
| | - Su-Juan Xu
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yue Zhang
- Department of Diagnostics, Hebei Medical University, No. 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei Province, China.
| | - Wei Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Wei MY, Jiang YJ, Tang YT, Wang CR, Yin D, Li AJ, Guo JY, Gong YB. Effectiveness and safety of Tongxinluo capsule for diabetic kidney disease: A systematic review and meta-analysis. World J Diabetes 2025; 16:100980. [DOI: 10.4239/wjd.v16.i5.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/25/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), a common microvascular complication of diabetes mellitus, is the primary cause of end-stage renal disease. Tongxinluo capsule (TXLC), a traditional Chinese medicinal compound, is widely utilized in China for treating DKD.
AIM To analyze the effectiveness and safety of TXLC for treating DKD.
METHODS Eight electronic literature databases were retrieved to obtain randomized controlled trials (RCTs) of TXLC for DKD. RevMan 5.3 software was used for data analysis. Evidence quality was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation System. Publication bias was detected using Stata 16.0 software.
RESULTS Twenty-two RCTs involving 1941 patients with DKD were identified. Compared with conventional treatment, TXLC combination therapy significantly improved the primary outcomes, including 24-hour urine proteinuria, urine microalbumin, and urinary albumin excretion rate. Regarding secondary outcomes, TXLC combination therapy significantly reduced serum creatinine, blood urea nitrogen, β2-microglobulin, and cystatin C levels; however, it had no significant effect on creatinine clearance rate. In terms of additional outcomes, TXLC combination therapy significantly reduced total cholesterol, triglycerides, low-density lipoprotein cholesterol, fibrinogen, plasma viscosity, whole blood low shear viscosity, whole blood high shear viscosity, and endothelin-1 levels, while increasing nitric oxide levels. However, the addition of TXLC treatment did not significantly affect fasting plasma glucose, 2-hour postprandial blood glucose, glycosylated hemoglobin, high-density lipoprotein cholesterol, or C-reactive protein levels. The safety of TXLC in DKD remains uncertain due to limited adverse event reporting.
CONCLUSION TXLC may benefit individuals with DKD by improving various health parameters, such as urinary protein levels, renal function, blood lipids, hemorheology, and vascular endothelial function. However, TXLC did not improve all studied outcomes.
Collapse
Affiliation(s)
- Mao-Ying Wei
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yi-Jia Jiang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi-Ting Tang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chu-Ran Wang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dan Yin
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ai-Jing Li
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Yi Guo
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan-Bing Gong
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
5
|
Chen Y, Wang S, Guo H, Han F, Sun B, Li N, Yang H, Chen L. Association of Serum Total Bilirubin to Cholesterol Ratio With Progression of Chronic Kidney Disease in Patients With Type 2 Diabetes: A Retrospective Cohort Study. J Diabetes 2025; 17:e70097. [PMID: 40356408 PMCID: PMC12069979 DOI: 10.1111/1753-0407.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/30/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
AIM To explore the influence of the serum total bilirubin to total cholesterol (TBIL/TC) ratio on the progression of chronic kidney disease (CKD) in people with type 2 diabetes. MATERIALS AND METHODS The present retrospective discovery cohort investigated 4282 patients. The exposure was baseline TBIL/TC ratio. The outcome was the first time to progressing CKD, defined by a drop in the estimated glomerular filtration rate (eGFR) category, along with a reduction in eGFR of at least 25% compared to the baseline value. Hazard ratios (HRs) for CKD progression were evaluated based on the Cox proportional hazards approach. Dose-response relationships were conducted using Restricted Cubic Splines (RCS). Additionally, 758 patients were enrolled as an independent validation cohort. RESULTS During a median observation period of 2.4 years (interquartile range 1.3-3.8 years) within the discovery cohort, 522 individuals showed progression in CKD. The analysis revealed a negative association between the TBIL/TC ratio and the risk of CKD progression, with an adjusted HR of 0.17 and a 95% CI ranging from 0.07 to 0.41. After adjusting for confounding variables, the HRs for the second, third, and fourth quartiles of the TBIL/TC ratio were recorded at 0.61 (95% CI 0.48, 0.78), 0.55 (95% CI 0.42, 0.72), and 0.55 (95% CI 0.41, 0.74), respectively. Analysis with RCS indicated an optimal TBIL/TC ratio threshold of 0.25%. Similar results were also observed in the validation cohort. CONCLUSIONS A higher TBIL/TC ratio was significantly associated with a reduced risk of CKD progression in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yanyan Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Shanshan Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Hang Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Nan Li
- Research Center of Clinical EpidemiologyPeking University Third HospitalPekingChina
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Tianjin Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
6
|
Zhang SJ, Wang SW, Liu SY, Li P, Huang DL, Zeng XX, Lan T, Ruan YP, Shi HJ, Zhang X. Epicardial adipose tissue: a new link between type 2 diabetes and heart failure-a comprehensive review. Heart Fail Rev 2025; 30:477-491. [PMID: 39730926 DOI: 10.1007/s10741-024-10478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Diabetic cardiomyopathy is a unique cardiomyopathy that is common in diabetic patients, and it is also a diabetic complication for which no effective treatment is currently available. Moreover, relevant studies have revealed that a link exists between type 2 diabetes and heart failure and that abnormal thickening of EAT is inextricably linked to the development of diabetic heart failure. Numerous clinical studies have demonstrated that EAT is implicated in the pathophysiologic process of diabetic myocardial disease. In this overview, we will introduce the physiology, pathophysiology of the disease and potential therapeutic strategies, knowledge gaps, and future directions of the role of epicardial adipose tissue in type 2 diabetes mellitus and heart failure to promote the development of novel therapeutic approaches to improve the prognosis of patients with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Si-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - De-Lian Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Jiao Shi
- The Third Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Pang X, Dan W, Lin L, Li H, Rao X, Li S. Association of normal range of urinary albumin-to-creatinine ratio with all-cause mortality among diabetic adults with preserved kidney function: National Health and Nutrition Examination Survey (NHANES) 2003-2018. Diabetes Obes Metab 2025; 27:2670-2678. [PMID: 40000417 PMCID: PMC11965009 DOI: 10.1111/dom.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
AIM To ascertain the connection between normal-range urinary albumin-to-creatinine ratio (UACR) and all-cause mortality (ACM) among diabetic adults with preserved eGFR. METHODS We used data from the 2003-2018 National Health and Nutrition Examination Survey. Nationally representative cross-sectional survey data linked with mortality outcomes from the National Death Index. Restricted cubic spline curves (RCS) and multivariable Cox regression models alongside subgroup analyses were utilised for estimating hazard ratios (HRs) and 95% confidence intervals (Cls) for UACR-ACM interplay, adjusting for demographic, socioeconomic, biochemical, medication and medical history factors. The UACR's predictive accuracy for survival outcomes was determined through receiver operating characteristic analysis. RESULTS The RCS regression analysis showcased that there was no significant evidence to support a nonlinear relationship between normal-range UACR and ACM (p = 0.080 for nonlinearity) in participants with diabetes mellitus (DM). In the model 2 adjusted for multiple confounding variables, the HR for ACM was 1.22 (95% CI, 1.06-1.40) per 10 mg/g raise in continuous UACR and 1.50 (95%CI, 1.18-1.91) for the high UACR tertile compared to the low. Kaplan-Meier analysis showed significantly lower survival rates in the medium and high UACR groups (p < 0.001). Subgroup analysis manifested a significant UACR-body mass index (BMI) interaction (p = 0.033 for interaction). CONCLUSIONS In DM adults without overt kidney dysfunction, elevated normal-range UACR was independently related to escalated ACM, particularly in those with normal BMI. To conclude, we underscore the significance of early risk assessment in DM patients with normal-range albuminuria, even without overt kidney dysfunction.
Collapse
Affiliation(s)
- Xiaoxia Pang
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Wenchao Dan
- Department of Dermatology, Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Lan Lin
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Huimei Li
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Xiangrong Rao
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Shen Li
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
8
|
Gao RR, Han C, Sui GY, Chen YB, Zhou L, Hu HZ, Wang YC, Liu Y, Li W. Huangqi and Danshen improve the chronic nephrotoxicity of cyclosporin A by regulating lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156582. [PMID: 40056636 DOI: 10.1016/j.phymed.2025.156582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND The clinical application of cyclosporine A (CsA) is limited due to nephrotoxicity. Lipid metabolism disorders play important roles in renal injury, but their role in CsA nephrotoxicity is not yet clear. Huangqi (Astragalus mongholicus Bunge) and Danshen (Salvia miltiorrhiza Bunge) (HD) play roles in ameliorating the nephrotoxicity of CsA, but their mechanisms still need to be fully clarified. OBJECTIVE This study innovatively aimed to analyse the coexpression of renal proteins and serum metabolites for the identification of key pathways and targets. This study provides novel insight into the mechanism by which HD ameliorates CsA-induced nephrotoxicity. METHODS We utilized HD to intervene in both in vivo and in vitro nephrotoxicity models induced by CsA. For the in vivo experiments, we constructed a coexpression network of renal proteins and serum metabolites, which was used to screen for key pathways. To validate these findings, we knocked down key proteins in vivo. For the in vitro studies, we employed MTT, Transwell, flow cytometry, and immunofluorescence assays to monitor the epithelial-mesenchymal transition (EMT) of HK-2 cells. Additionally, we used electron microscopy and Seahorse assays to examine the effects of HD on mitochondrial structure and function. Furthermore, we overexpressed Ppara to further confirm the mechanism by which HD improves renal function. RESULTS HD can improve renal pathological damage and function; regulate blood lipids, inflammation and oxidative stress indicators; and reduce apoptosis in renal tissues. Joint protein and metabolomics analyses revealed that two lipid metabolism-related pathways (the PPAR signalling pathway and linoleic acid metabolism pathway) were coenriched, involving six differential proteins (Cyp2e1, Cyp4a10, Gk, Lpl, Ppara, and Pck1) and two differentially abundant metabolites (alpha-Dimorphecolic acid and 12,13-EpOME). Western blot was used to verify differentially expressed proteins. HD improved mitochondrial damage and lipid accumulation, as demonstrated by transmission electron microscopy (TEM) analysis and Oil Red O staining. Knockdown of the key protein Ppara affected the expression of ACOX1 and exacerbated RF. In vitro verification demonstrated that HD significantly inhibited CsA-induced EMT in HK-2 cells and improved mitochondrial structure and function. Ppara overexpression promoted HD-mediated regulation of mitochondrial function, reduced apoptosis, and improved HK-2 RF. CONCLUSION HD can ameliorate CsA nephrotoxicity through renal protein-serum metabolism coexpression, the PPAR signalling pathway, and linoleic acid metabolism. HD-induced upregulation of Ppara to regulate lipid metabolism, improve mitochondrial function and reduce apoptosis are important mechanisms. The Ppara/ACOX1/TGF-β1 axis may play an important role in this process. These findings offer potential targets for the future development of therapeutic strategies and novel drugs.
Collapse
Affiliation(s)
- Ran-Ran Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China.
| | - Gui-Yuan Sui
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Yi-Bing Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Le Zhou
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Hong-Zhen Hu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Yi-Chuan Wang
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China.
| |
Collapse
|
9
|
Tian Y, Pan P, Luo X, Sun Y, Yang X, Gao H, Yang Y. Palmitic acid-induced insulin resistance triggers granulosa cell senescence by disruption of the UPR mt/mitophagy/lysosome axis. Chem Biol Interact 2025; 411:111450. [PMID: 40023272 DOI: 10.1016/j.cbi.2025.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Insulin resistance (IR) is the main pathological feature of polycystic ovary syndrome (PCOS), but the adverse impacts of IR on ovary and granulosa cells (GCs) are unknown. Therefore, the role of palmitic acid (PA) induced IR in GCs, and a mitochondrial proteostasis and mitochondrial homeostasis control system, the mitochondrial unfolded protein response (UPRmt)/mitophagy/lysosome axis were investigated to uncover the side effect and the mechanism of IR on GCs. Our results revealed that IR in GC was successfully constructed by 100 μM PA treatment accompanied with cell senescence. In addition, mitochondrial function was impaired by IR-induced GC senescence accompanied by significantly increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential, and mitochondrial proteostasis was impaired by a dysfunctional UPRmt and increased protein aggregation, leading to more unfolded and misfolded proteins accumulating in mitochondria. Mitochondrial homeostasis was maintained by the mitophagy/lysosome degradation system, although mitophagy was significantly increased, lysosomes were damaged; hence, malfunctional mitochondria were not cleared by the mitophagy/lysosome degradation system, more ROS were produced by malfunctional mitochondria. Therefore, accelerated GC senescence was triggered by excessive ROS, and reversed by the mitophagy inhibitor cyclosporin A (CsA) accompanied with reduced IR. Additionally, the mice were administered with PA, and results revealed that the accelerated ovarian aging was caused by PA, which might be attributed to GC senescence. In conclusion, GC senescence was triggered in PA-induced IR by disruption of the UPRmt/mitophagy/lysosome axis, and IR induced GC senescence was reversed by the CsA.
Collapse
Affiliation(s)
- Yuan Tian
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Pengge Pan
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Xiaoqiang Luo
- Department of Clinical Laboratory, Ningxia Women and Children's Hospital, Beijing University Hospital, Yinchuan, Ningxia, PR China
| | - Yaqi Sun
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Xintong Yang
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Hui Gao
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Yanzhou Yang
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China; Emergency Department, The First People's Hospital of Yinchuan, The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, PR China.
| |
Collapse
|
10
|
Yu W, Haoyu Y, Ling Z, Xing H, Pengfei X, Anzhu W, Lili Z, Linhua Z. Targeting lipid metabolic reprogramming to alleviate diabetic kidney disease: molecular insights and therapeutic strategies. Front Immunol 2025; 16:1549484. [PMID: 40352935 PMCID: PMC12061959 DOI: 10.3389/fimmu.2025.1549484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic kidney disease (DKD) is one of the major complications of diabetes, and its pathological progression is closely associated with lipid metabolic reprogramming. Under diabetic conditions, renal cells undergo significant lipid metabolic abnormalities, including increased lipid uptake, impaired fatty acid oxidation, disrupted cholesterol efflux, and enhanced lipid catabolism, as adaptive responses to metabolic stress. These changes result in the accumulation of lipids such as free fatty acids, diacylglycerol, and ceramides, leading to lipotoxicity that triggers inflammation and fibrosis. Hypoxia in the DKD microenvironment suppresses fatty acid oxidation and promotes lipid synthesis through the HIF-1α pathway, while chronic inflammation exacerbates lipid metabolic disturbances via inflammatory cytokines, inflammasomes, and macrophage polarization. Targeting lipid metabolism represents a promising therapeutic strategy for alleviating DKD; however, further clinical translational studies are warranted to validate the efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Haoyu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhou Ling
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Hang Xing
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xie Pengfei
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Wang Anzhu
- Chinese-Japanese Friendship Hospital, Beijing, China
| | - Zhang Lili
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhao Linhua
- Department of Endocrinology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
11
|
Hu T, Fang Z. Explore potential immune-related targets of leeches in the treatment of type 2 diabetes based on network pharmacology and machine learning. Front Genet 2025; 16:1554622. [PMID: 40296871 PMCID: PMC12036332 DOI: 10.3389/fgene.2025.1554622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that poses a significant global health burden due to its profound effects on systemic physiological homeostasis. Without timely intervention, the disease can progress insidiously, leading to multisystem complications such as cardiovascular, renal, and neuropathic pathologies. Consequently, pharmacological intervention becomes crucial in managing the condition. Leeches have been traditionally used in Chinese medicine for their potential to inhibit the progression of T2DM and its associated complications; however, the specific mechanisms underlying their action and target pathways remain poorly understood. The objective of this study was to predict potential therapeutic targets of leeches in the treatment of T2DM. Methods We collected active components and targets associated with leeches from four online databases, while disease-related targets were sourced from the GeneCards and OMIM databases. Following this, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Gene expression data were obtained from the GSE184050 dataset. Important immune cell types were identified through immunoinfiltration analysis in conjunction with single sample enrichment analysis (ssGSEA). Additionally, weighted co-expression network analysis (WGCNA) was utilized to identify significantly associated genes. Finally, we employed LASSO regression, SVM-RFE, XGBoost, and random forest algorithms to further predict potential targets, followed by validation through molecular docking. Results Leeches may influence cellular immunity by modulating immune receptor activity, particularly through the activation of RGS10, CAPS2, and OPA1, thereby impacting the pathology of Type 2 Diabetes Mellitus (T2DM). Discussion However, it is important to note that our results lack experimental validation; therefore, further research is warranted to substantiate these findings.
Collapse
Affiliation(s)
- Tairan Hu
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhaohui Fang
- Department of Cardioiogy, First Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Institution of Cardiovascular Disease, Anhui Academy of Chinese Medicine Sciences, Hefei, China
| |
Collapse
|
12
|
Assani MZ, Novac MB, Dijmărescu AL, Văduva CC, Vladu IM, Clenciu D, Mitrea A, Ahrițculesei RV, Stroe-Ionescu AȘ, Assani AD, Caragea DC, Boldeanu MV, Siloși I, Boldeanu L. Potential Association Between Atherogenic Coefficient, Prognostic Nutritional Index, and Various Obesity Indices in Diabetic Nephropathy. Nutrients 2025; 17:1339. [PMID: 40284203 PMCID: PMC12030341 DOI: 10.3390/nu17081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM), is a rapidly growing global health concern, often accompanied by chronic kidney disease (CKD) and metabolic disturbances. Obesity-related indices, such as the visceral adiposity index (VAI) and body adiposity index (BAI), have been linked to cardiovascular and renal complications in diabetic patients. However, studies integrating both the atherogenic coefficient (AC) and prognostic nutritional index (PNI) for evaluating diabetic nephropathy (DN) remain limited. This study aimed to assess the associations of obesity-related indices with immunological and nutritional factors in patients with T2DM and prediabetes (PreDM). Methods: A retrospective, cross-sectional study was conducted over six months at a university clinical hospital in Dolj County, Romania. The study enrolled 268 newly diagnosed T2DM patients and 150 PreDM patients. Anthropometric parameters, laboratory tests, and demographic data were collected. AC and PNI were calculated using standard formulas, and statistical analyses were performed to determine their associations with metabolic and inflammatory markers. Results: Our study found that T2DM patients had significantly lower PNI values, indicating mild malnutrition, while PreDM patients maintained a normal nutritional status. AC was significantly higher in T2DM patients, correlating with lipid profile alterations and systemic inflammation. Obesity indices, particularly VAI, were significantly elevated in T2DM patients with higher AC values. Statistically significant differences in total cholesterol, low-density lipoprotein cholesterol (LDL-c), and triglycerides were observed between AC subgroups, reinforcing its role in cardiovascular risk assessment. Conclusions: The findings highlight the potential of AC and PNI as biomarkers for assessing nutritional, inflammatory, and lipemic status in diabetic patients. The significant associations between obesity-related indices, lipid profiles, and inflammation markers suggest that early assessment of these parameters may potentially aid in predicting diabetic complications. Further studies are needed to explore the clinical utility of AC and PNI in managing T2DM and CKD progression. Future research should investigate how the lipidic spectrum alters the progression of DN across various patient groups with diabetes and prediabetes.
Collapse
Affiliation(s)
- Mohamed-Zakaria Assani
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-Z.A.); (R.-V.A.); (A.-Ș.S.-I.); (A.-D.A.)
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Marius Bogdan Novac
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anda Lorena Dijmărescu
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.L.D.); (C.-C.V.)
| | - Constantin-Cristian Văduva
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.L.D.); (C.-C.V.)
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.V.); (D.C.); (A.M.)
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.V.); (D.C.); (A.M.)
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.V.); (D.C.); (A.M.)
| | - Roxana-Viorela Ahrițculesei
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-Z.A.); (R.-V.A.); (A.-Ș.S.-I.); (A.-D.A.)
| | - Alexandra-Ștefania Stroe-Ionescu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-Z.A.); (R.-V.A.); (A.-Ș.S.-I.); (A.-D.A.)
| | - Alexandru-Dan Assani
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-Z.A.); (R.-V.A.); (A.-Ș.S.-I.); (A.-D.A.)
| | - Daniel Cosmin Caragea
- Department of Nephrology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Isabela Siloși
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
13
|
Tramontano D, D'Erasmo L, Larouche M, Brisson D, Lauzière A, Di Costanzo A, Bini S, Minicocci I, Covino S, Baratta F, Pasquali M, Cerbelli B, Gaudet D, Arca M. The vicious circle of chronic kidney disease and hypertriglyceridemia: What is first, the hen or the egg? Atherosclerosis 2025; 403:119146. [PMID: 40056689 DOI: 10.1016/j.atherosclerosis.2025.119146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025]
Abstract
Chronic kidney disease (CKD) is documented to cause alterations in lipid metabolism, and this was considered a potent driver of increased cardiovascular risk. Among the diverse alteration of lipid traits in CKD, research endeavours have predominantly concentrated on low-density lipoproteins (LDL) in view of the potent pro-atherogenic role of these lipoprotein particles and the demonstration of protective cardiovascular effect of reducing LDL. However, few studies have focused on the metabolism of triglyceride-rich lipoproteins and even fewer on their role in causing kidney damage. Therefore, the comprehensive description of the impact of hypertriglyceridemia (HTG) in CKD pathophysiology remains largely undetermined. This reflects the difficulty of disentangling the independent role of triglycerides (TG) in the complex, bidirectional relationship between TG and kidney disease. Abnormal neutral lipid accumulation in the intrarenal vasculature and renal cells eventually due to HTG may also promote glomerular injury, throughout mechanisms including oxidative stress, mitochondrial dysfunction and proinflammatory responses. While epidemiological and experimental evidence suggests a potential role of TG in kidney damage, the causal mechanisms and their clinical relevance remain unclear, representing a significant area for future investigation. This review aims to highlight the intricate interplay between TG metabolism and kidney disease, shedding light on the mechanisms through which HTG may influence kidney functionality.
Collapse
Affiliation(s)
- Daniele Tramontano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy.
| | - Miriam Larouche
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Diane Brisson
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Alex Lauzière
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Stella Covino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Francesco Baratta
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Pasquali
- Department of Internal Medicine and Medical Specialities, Nephrology Unit, University Policlinico Umberto I Hospital, Rome, Italy
| | - Bruna Cerbelli
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| |
Collapse
|
14
|
Han YZ, Wang YZY, Zhu XY, Du BX, Wang YX, Zhang XQ, Jia JM, Liu WJ, Zheng HJ. The gut microbiota and diabetic nephropathy: an observational study review and bidirectional Mendelian randomization study. Trials 2025; 26:101. [PMID: 40122887 PMCID: PMC11931829 DOI: 10.1186/s13063-025-08755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Earlier studies have implicated a crucial link between diabetic nephropathy (DN) and the gut microbiota (GM) by considering the gut-kidney axis; however, the specific cause-and-effect connections between these processes remain unclear. METHODS To compare changes in the GM between DN patients and control subjects, a review of observational studies was performed. The examination focused on the phylum, family, genus, and species/genus categories. To delve deeper into the cause-effect relationship, instrumental variables for 211 GM taxa (9 phyla, 16 classes, 20 orders, 35 families, and 131 genera), which were eligible for the mbQTL (microbial quantitative trait locus) mapping analysis, were collected from the Genome Wide Association Study (GWAS). A Mendelian randomization investigation was then conducted to gauge their impact on DN susceptibility using data from the European Bioinformatics Institute (EBI) and the FinnGen consortium. The European Bioinformatics Institute data included 1032 DN patients and 451,248 controls, while the FinnGen consortium data consisted of 3283 DN patients and 210,463 controls. Two-sample Mendelian randomization (TSMR) was utilized to determine the link between the GM and DN. The primary method for analysis was the inverse variance weighted (IVW) approach. Moreover, a reverse Mendelian randomization analysis was carried out, and the findings were validated through sensitivity assessments. RESULTS This review examined 11 observational studies that satisfied the inclusion and exclusion criteria. There was a significant difference in the abundance of 144 GM taxa between DN patients and controls. By employing the MR technique, 13 bacteria were pinpointed as having a causal link to DN (including 3 unknown GM taxa). Even after Bonferroni correction, the protective impact of the phylum Proteobacteria and genus Dialister (Sequeira et al. Nat Microbiol. 5:304-313, 2020; Liu et al. EBioMedicine. 90:104527, 2023) and the harmful impact of the genus Akkermansia, family Verrucomicrobiaceae, order Verrucomicrobia and class Verrucomicrobiae on DN remained significant. No noticeable heterogeneity or horizontal pleiotropy was detected in the instrumental variables (IVs). However, reverse MR investigations have failed to reveal any substantial causal relationship between DN and the GM. CONCLUSION Differences in the GM among DN patients and healthy controls are explored in observational studies. We verified the possible connection between certain genetically modified genera and DN, thereby emphasizing the connection between the "gut-kidney" axis and new insights into the GM's role in DN pathogenesis underlying DN. Investigations into this association are necessary, and novel biomarkers for the development of targeted preventive strategies against DN are needed.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Zhi Yuan Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Xian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Jia Meng Jia
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
15
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
16
|
Tu QM, Jin HM, Yang XH. Lipid abnormality in diabetic kidney disease and potential treatment advancements. Front Endocrinol (Lausanne) 2025; 16:1503711. [PMID: 40171201 PMCID: PMC11958226 DOI: 10.3389/fendo.2025.1503711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Numerous studies have shown that dyslipidemia increases the risk of atherosclerotic cardiovascular disease (ASCVD) and significantly impacts the occurrence and progression of diabetic kidney disease (DKD). Early interventions for lipid metabolism disorders in DKD may improve renal function. This article reviews the clinical characteristics of dyslipidemia, mechanisms of lipid-induced renal injury, and advances in lipid-lowering therapy in DKD. We searched PubMed, Web of Science, and EMBASE to identify relevant articles, using keywords such as "diabetic kidney disease", "diabetic nephropathy", "diabetes", "dyslipidemia", "kidney", "cardiovascular disease", and "lipid therapy". High triglyceride (TG) and low high-density lipoprotein (HDL) are associated with increased risks of albuminuria and estimated glomerular filtration rate (eGFR) decline. Abnormal lipid metabolism may damage glomerular podocytes and renal tubular epithelial cells via ectopic lipid deposition, eventually impairing glomerular filtration function and increasing urinary albumin excretion. Lipid-lowering therapies can ameliorate lipid accumulation, downregulate inflammatory mediator expressions, and alleviate renal fibrosis. Fibrate and statin applications exhibit beneficial effects, reducing albuminuria and slowing eGFR decline in early DKD. However, the long-term effects of statins and fibrates on renal outcomes remain controversial. Pro-protein convertase subtilisin/kexin 9 (PCSK9)-targeted interventions have minimal side effects on the kidneys and seem effective in reducing inflammation and improving renal impairment compared with statins and fibrates. In addition, LDL apheresis (LDL-A) and double filtration plasmapheresis (DFPP) are promising clinical applications in diabetic patients with severe hypercholesterolemia or lipid-lowering drug intolerance.
Collapse
Affiliation(s)
- Qian Ming Tu
- Department of General Medicine, Shanghai Putuo District Changzheng Town Community Health Service Center, Shanghai, China
| | - Hui Min Jin
- Department of Internal Medicine, Shanghai Dong Ji Fresenius Hemodialysis Center, Shanghai, China
- Department of Nephrology, the People’s Hospital of Wenshan Prefecture, Yunnan, China
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Xiu Hong Yang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Folestad E, Mehlem A, Ning FC, Oosterveld T, Palombo I, Singh J, Olauson H, Witasp A, Thorell A, Stenvinkel P, Ebefors K, Nyström J, Eriksson U, Falkevall A. Vascular endothelial growth factor B-mediated fatty acid flux in the adipose-kidney axis contributes to lipotoxicity in diabetic kidney disease. Kidney Int 2025; 107:492-507. [PMID: 39689809 DOI: 10.1016/j.kint.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
A common observation in diabetic kidney disease is lipid accumulation, but the mechanism(s) underlying this pathology is unknown. Inhibition of Vascular endothelial growth factor B (VEGF-B) signaling was shown to prevent glomerular lipid accumulation and ameliorated diabetic kidney disease in experimental models. Here, we examined kidney biopsies from patients with Type 2 (84%) and Type 1 diabetes (16%), combined with data mining of RNA-seq dataset analyses in patients with diabetic kidney disease. In glomeruli, mesangial cell-derived VEGF-B expression was increased, and glomerular lipid accumulation positively correlated with impaired kidney function. Tubular lipid accumulation also associated with kidney dysfunction but was independent of tubular-derived VEGF-B expression. In vitro, the uptake of the fatty acid analogue, BODIPY-FA, was quantified. VEGF-B treatment increased BODIPY-FA uptake in endothelial cells, whilst pre-incubation with neutralizing antibodies against VEGF-B and its receptor VEGFR1 abolished this uptake. Transcriptome analyses of kidney and white adipose tissue from diabetic macaques showed that VEGF-B expression was higher in white adipose tissue than in kidney, and expression of VEGF-B was increased in white adipose tissue from patients with diabetic kidney disease. Analyses in diabetic transgenic mice demonstrated that expression of VEGF-B in adipocytes determined the lipolytic activity, dyslipidemia, kidney lipid accumulation and the development of diabetic kidney disease. Overall, VEGF-B is a regulator of kidney lipotoxicity in diabetic kidney disease, by controlling white adipose tissue lipolysis as well as endothelial fatty acid transport in glomeruli. Our data propose that assessment of kidney lipid accumulation, and VEGF-B expression can serve as biomarkers for early diabetic kidney disease.
Collapse
Affiliation(s)
- Erika Folestad
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Mehlem
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Timo Oosterveld
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Isolde Palombo
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaskaran Singh
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Surgery and Anaesthesiology, Ersta Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Ebefors
- Lundberg Laboratory for Kidney Research, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Lundberg Laboratory for Kidney Research, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Falkevall
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Swarnakar R, Sahu D, Bahinipati J, Pradhan T, Meher D, Sarangi R, Mahapatra S. The significance of ANGPTL3 and ANGPTL4 proteins in the development of dyslipidemia in Type 2 diabetes mellitus. J Family Med Prim Care 2025; 14:947-953. [PMID: 40256107 PMCID: PMC12007761 DOI: 10.4103/jfmpc.jfmpc_1256_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 04/22/2025] Open
Abstract
Background Dyslipidemia is the leading cause of cardiovascular disease (CVD) in Type 2 diabetes mellitus patients. As a result, it is critical to target and manage the level of atherogenic lipids. Angiopoietin-like proteins 3 and 4 (ANGPTL 3 and ANGPTL 4) play an important role in the intravascular lipolysis of triglyceride-rich lipoproteins by blocking the enzyme lipoprotein lipase. This study aimed to determine the amounts of these angiopoietin-like proteins in T2DM and find their association with dyslipidemia in T2DM. Material and Methods Sixty-one T2DM patients of age group 25-65 years and 27 healthy age-matched control participants were enrolled in the study. Glycemic status (FBS, PPBS, HbA1C), serum lipid parameters (cholesterol, TG, LDL, VLDL, HDL, Tc/HDL ratio), free fatty acid, serum insulin, and ANGPTL3, 4 were measured. A correlation was found between the ANGPTLs and the above parameters in T2DM patients. Results Serum ANGPTL3 (P < 0.05) and ANGPTL4 (P < 0.001) were significantly decreased in T2DM. ANGPTL4 was also negatively correlated to PPBS (0.03), HbA1C (P = 0.05), and IR (P = 0.04). However, no such correlation was observed with ANGPTL 3. It was observed that lipid parameters were correlated with ANGPTL3 (LDL (P = 0.03), TC/HDL (P = 0.02)). There was a significant relationship between ANGPTL3 and 4 with FFA (P = 0.001 and P = 0.03, respectively). Conclusion This study shows that ANGPTL 3,4 may be associated with dyslipidemia in T2DM. ANGPTL4 is more correlated with glycemic status.
Collapse
Affiliation(s)
- Rik Swarnakar
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Debadyuti Sahu
- Department of Biochemistry, BSSCCRI, Bhubaneswar, Odisha, India
| | - Jyotirmayee Bahinipati
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Tapaswini Pradhan
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Dayanidhi Meher
- Department of Endocrinology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rajlaxmi Sarangi
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Srikrushna Mahapatra
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
19
|
Tian D, Chen Q, Zeng L, Hao Y. The impact of blood lipids and statins on renal function and mortality in patients with diabetic nephropathy: A meta-analysis. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2025; 75:1-22. [PMID: 39686670 DOI: 10.2478/acph-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
The aim of this study is to explore the impact of blood lipids and statins on renal function and all-cause mortality in patients with diabetic nephropathy (DN). PubMed, Embase, Web of Science, and Cochrane Library were systematically searched until April 9, 2024, for relevant studies of blood lipids and statins on renal function and all-cause mortality in patients with DN. After the selection, total cholesterol levels (TC), total triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), estimated glomerular filtration rate (eGFR), urinary albumin excretion (UAE), serum creati-nine (SCR), end-stage renal disease (ESRD), and all-cause mortality indexes were extracted for finally meta-analysis. In total, 25 papers containing 21,411 patients with DN were finally included in this study. Levels of TC and LDL-C, which are continuous variables, were higher in DN patients who developed ESRD [TC/weighted mean difference (WMD) = 0.517, 95 % confidence interval (CI): (0.223, 0.812), p = 0.001; LDL-C/WMD = 0.449, 95%CI: (0.200, 0.698), p < 0.001]. In addition, this study also observed that statins may reduce UAE levels [WMD = -46.814, 95% CI: (-71.767, -21.861), p < 0.001]. Finally, the survey indicated that statins may be associated with an ESRD reduction [HR = 0.884, 95% CI: (0.784, 0.998), p = 0.045]. Blood lipids, particularly TC and LDL-C, may slow the progression of DN to ESRD. Besides, statins may protect the kidneys by lowering the excretion of UAE levels and reducing the risk of ESRD. Based on the above outcomes, the findings of this study provided robust evidence-based medical support for the future prevention, surveillance, and management of DN.
Collapse
Affiliation(s)
- Dongqin Tian
- 1Department of Nephrology, Zigong First People's Hospital Zigong 643000, Sichuan P.R. China
| | - Qian Chen
- 1Department of Nephrology, Zigong First People's Hospital Zigong 643000, Sichuan P.R. China
| | - Lingli Zeng
- 1Department of Nephrology, Zigong First People's Hospital Zigong 643000, Sichuan P.R. China
| | - Yan Hao
- 1Department of Nephrology, Zigong First People's Hospital Zigong 643000, Sichuan P.R. China
| |
Collapse
|
20
|
Kryska A, Sawic M, Depciuch J, Sosnowski P, Szałaj K, Paja W, Khalavka M, Sroka-Bartnicka A. Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102804. [PMID: 39855441 DOI: 10.1016/j.nano.2025.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/09/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine Raman spectroscopy and biochemical lipid profiling, complemented by machine learning (ML) techniques to evaluate chemical composition changes in kidneys induced by Type 2 Diabetes mellitus (T2DM). Raman spectroscopy identified significant differences in lipid content and specific molecular vibrations, with the 1777 cm-1 band emerging as a potential spectroscopic marker for diabetic kidney damage. The integration of ML algorithms improved the analysis, providing high accuracy, selectivity, and specificity in detecting these changes. Moreover, lipids metabolic profiling revealed distinct variations in the concentration of 11 phosphatydylocholines and 9 acyl-alkylphosphatidylcholines glycerophospholipids. Importantly, the correlation between Raman data and lipids metabolic profiling differed for control and T2DM groups. This study underscores the combined power of Raman spectroscopy and ML in offering a low-cost, fast, precise, and comprehensive approach to diagnosing and monitoring diabetic nephropathy, paving the way for improved clinical interventions. However, taking into account small number of data related to ethical committee approvals, the study should be verified on a larger number of cases.
Collapse
Affiliation(s)
- Adrianna Kryska
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Sawic
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Walerego Eljasza - Radzikowskiego 152, 31-342 Kraków, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Klaudia Szałaj
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Wiesław Paja
- Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszów, Poland
| | - Maryna Khalavka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
21
|
Deng S, Peng L. Triglyceride Glucose Index and the Risk of Diabetic Nephropathy in Patients with Type 2 Diabetes: A Meta-Analysis. Horm Metab Res 2025; 57:106-116. [PMID: 39236743 DOI: 10.1055/a-2376-6044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in patients with type 2 diabetes mellitus (T2DM). This meta-analysis aims to evaluate the association between the triglyceride glucose (TyG) index, a novel marker reflecting insulin resistance, and the risk of developing DN in patients with T2DM. We conducted a comprehensive literature search in PubMed, Embase, and Web of Science databases up to May 12, 2024. Studies assessing the TyG index in relation to DN risk among T2DM patients were included. The pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated using a random-effects model. A total of eight longitudinal follow-up studies encompassing 15 889 patients with T2DM were included. The pooled analysis revealed a significant association between a higher TyG index and an increased risk of DN in patients with T2DM (RR=1.53, 95% CI: 1.37-1.71, p<0.001; I2=35%). The results of meta-regression analysis suggested that the cutoff of TyG index was positively associated with the RR for the association between TyG index and DN. Subgroup analyses demonstrated that the association was stronger in studies with cutoff of TyG index ≥9.5 as compared to those with the cutoff <9.5 (RR: 1.73 vs. 1.40, p for subgroup difference <0.05). The association was not significantly affected by study design, mean age of the patients, proportion of men, or follow-up durations. In conclusion, higher TyG index is significantly associated with an increased risk of DN in patients with T2DM.
Collapse
Affiliation(s)
- Sheng Deng
- Department of Medical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ling Peng
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
22
|
Li Z, Wang H, Liu N, Lan X, Xie A, Yuan G, Li B, Geng J, Liu X. Renal Lipid Alterations From Diabetes to Early-Stage Diabetic Kidney Disease and Mitophagy: Focus on Cardiolipin. J Cell Mol Med 2025; 29:e70419. [PMID: 39936909 PMCID: PMC11816159 DOI: 10.1111/jcmm.70419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Lipotoxicity plays a crucial role in the progression of diabetic kidney disease (DKD), yet the dynamic changes in renal lipid composition from diabetes to early-stage DKD remain unclear. Free fatty acids, lactosylceramides and cardiolipin (CL) were identified as the most significantly altered lipids by quantitatively comparing targeted lipids in the renal cortex of the classic spontaneous diabetic db/db mice using high-coverage targeted lipidomics. Further investigation into the causes and effects of decreased CL, which is a unique mitochondrial phospholipid, was conducted in mitochondria-rich renal proximal tubular cells by using western blotting, real-time PCR, immunohistochemistry and transmission electron microscopy. Reduced expression of cardiolipin synthase, a key enzyme in the CL synthesis pathway, and inhibition of CL-related mitophagy were confirmed under high glucose conditions. In addition, the protective effect of CL-targeted Szeto-Schiller 31 in preserving mitophagy was demonstrated in both in vivo and in vitro studies. These findings provide new insights into the pathogenesis of early-stage DKD from a lipid perspective and offer a theoretical basis for discovering new treatments.
Collapse
Affiliation(s)
- Zhijie Li
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hongmiao Wang
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Nan Liu
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiayuchen Lan
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ailing Xie
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ge Yuan
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Bowen Li
- LipidALL Technologies Company LimitedChangzhouJiangsuChina
| | - Jiaxin Geng
- LipidALL Technologies Company LimitedChangzhouJiangsuChina
| | - Xiaodan Liu
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
23
|
Guo X, Yang L, An X, Hu M, Shen Y, Wang N, Xu Y, Gui D. Protective effects of Notoginsenoside R2 on reducing lipid accumulation and mitochondrial dysfunction in diabetic nephropathy through regulation of c-Src. Chin Med 2025; 20:10. [PMID: 39810230 PMCID: PMC11734535 DOI: 10.1186/s13020-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated. This study aimed to assess the therapeutic potential of NR2 in DN and explore its underlying mechanisms. METHODS In vivo models were developed using db/db mice, while in vitro models utilized HK-2 cells exposed to high glucose and palmitic acid (HGPA). Online databases and Cytoscape software were employed to predict the potential targets of NR2. The expression of associated proteins was measured using immunohistochemistry and western blot. Lipid accumulation, oxidative stress levels, mitochondrial function and cell apoptosis were also assessed. Small interfering RNA was used in in vitro experiments to examine the effect of c-Src. RESULTS NR2 ameliorated albuminuria, renal function and renal pathology in db/db mice. The activation of c-Src was suppressed in db/db mice and in HK-2 cells exposed to HGPA. NR2 inhibited JNK/STAT1 phosphorylation and CD36 overexpression. NR2 also ameliorated lipid accumulation, oxidative stress, mitochondrial dysfunction and cell apoptosis in vivo and in vitro. By inhibiting c-Src, HK-2 cells exposed to HGPA experienced less lipid deposition and mitochondrial damage, indicating the renoprotective effects of NR2 were correlated with the inhibition of c-Src. CONCLUSION NR2 ameliorated mitochondrial dysfunction and delayed the progression of DN partly through suppression of c-Src. The protective effects of NR2 might be related to a reduction in lipid accumulation.
Collapse
Affiliation(s)
- Xieyi Guo
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yang
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoning An
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maofang Hu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China.
| | - Dingkun Gui
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Lin ZM, Gao HY, Shi SH, Li YT. Mizagliflozin ameliorates diabetes induced kidney injury by inhibitor inhibit inflammation and oxidative stress. World J Diabetes 2025; 16:92711. [PMID: 39817219 PMCID: PMC11718448 DOI: 10.4239/wjd.v16.i1.92711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes. AIM To explore the impact of MIZ on diabetic nephropathy (DN). METHODS Diabetic mice were created using db/db mice. They were administered either a low dose (0.5 mg/kg) or a high dose (1.0 mg/kg) of the SGLT1 inhibitor MIZ via stomach gavage for 8 weeks. Subsequently, mesangial cells (MCs) were isolated and subjected to high glucose conditions in culture to assess the effects of MIZ on DN. RESULTS The results showed that low doses of MIZ significantly reduced albuminuria to a level comparable to that achieved with high doses in db/db mice. High doses of MIZ led to a substantial increase in body weight in mice, along with decreased blood glucose levels and food intake. Moreover, the intervention with high-dose MIZ notably decreased the expression of extracellular matrix genes, such as collagen type 1 alpha 1 mRNA levels. While the expression of SGLT1 increased after exposure to high glucose, it decreased following treatment with MIZ. Furthermore, MIZ intervention was more effective in improving lactate dehydrogenase levels in MCs induced by high glucose compared to canagliflozin. MIZ also significantly elevated levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione, while reducing malondialdehyde levels. CONCLUSION These findings indicate that MIZ can ameliorate DN by inhibiting SGLT1, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Zhi-Min Lin
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Han-Yuan Gao
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu-Han Shi
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yue-Ting Li
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
25
|
Joubert MBV, Ingaramo PI, Collins P, D'Alessandro ME. Astaxanthin improves lipotoxicity, lipid peroxidation and oxidative stress in kidney of sucrose-rich diet-fed rats. J Nutr Biochem 2025; 135:109779. [PMID: 39374743 DOI: 10.1016/j.jnutbio.2024.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Metabolic Syndrome (MS) is a cluster of metabolic risk factors, characterized by abdominal obesity, dyslipidemia, hypertension, insulin resistance, among others. The purpose of the study was to evaluate the astaxanthin (AXT) effects extracted from freshwater crab (Dilocarcinus pagei) at the Paraná Basin on lipotoxicity, lipid peroxidation and oxidative stress in the kidney of rats fed with a sucrose-rich diet (SRD). We hypothesized that daily administration of AXT prevents kidney damage by reducing lipotoxicity, lipid peroxidation, and reactive oxygen species (ROS), and by improving antioxidant enzyme defenses and crosstalk between NrF2 and NF-ĸB transcription factors. Male Wistar rats were fed a reference diet (RD), RD+AXT, SRD and SRD+AXT (AXT daily oral dose: [10 mg/kg body weight]) for 90 days. Systolic and diastolic blood pressure, biochemical assays in serum and urine were evaluated. Renal cortex samples were taken for histological analysis, determination of triglyceride content, ROS, thiobarbituric acid reactive substances (TBARS), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) enzyme activities and glutathione content (GSH). 4-HNE, NrF2, and NF-ĸB p65 expression were analyzed by immunohistochemistry. We demonstrated that daily oral supplementation of AXT to animals fed a SRD reduced systolic and diastolic blood pressure, histological renal damage, lipid accumulation, ROS and lipid peroxidation, and increased CAT and GPx activities. NrF2 protein expression in renal cortex was increased, whilst NF-ĸB p65 was reduced. AXT extracted from freshwater crabs (Dilocarcinus pagei) may be promising nutritional strategy for the prevention of renal alterations present in this model.
Collapse
Affiliation(s)
- Michelle Berenice Vega Joubert
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Paola Inés Ingaramo
- Departamento de Fisiopatología Ambiental, Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Cs. Biológicas. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Pablo Collins
- Departamento de Acuicultura, Instituto Nacional de Limnología (INALI), Universidad Nacional del Litoral- Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
26
|
Wang LF, Li Q, Le Zhao J, Wen K, Zhang YT, Zhao QH, Ding Q, Li JH, Guan XH, Xiao YF, Deng KY, Xin HB. CD38 deficiency prevents diabetic nephropathy by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway. Biochem Cell Biol 2025; 103:1-12. [PMID: 39116458 DOI: 10.1139/bcb-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes. Our previous study showed that CD38 knockout (CD38KO) mice had protective effects on many diseases. However, the roles and mechanisms of CD38 in DN remain unknown. Here, DN mice were generated by high-fat diet (HFD) feeding plus streptozotocin (STZ) injection in male CD38KO and CD38flox mice. Mesangial cells (SV40 MES 13 cells) were used to mimic the injury of DN with palPagination Donemitic acid (PA) treatment in vitro. Our results showed that CD38 expression was significantly increased in kidney of diabetic CD38flox mice and SV40 MES 13 cells treated with PA. CD38KO mice were significantly resistant to diabetes-induced renal injury. Moreover, CD38 deficiency markedly decreased HFD/STZ-induced lipid accumulation, fibrosis, and oxidative stress in kidney tissue. In contrast, overexpression of CD38 aggravated PA-induced lipid accumulation and oxidative stress. CD38 deficiency increased expression of SIRT3, while overexpression of CD38 decreased its expression. More importantly, 3-TYP, an inhibitor of SIRT3, significantly enhanced PA-induced lipid accumulation and oxidative stress in CD38 overexpressing cell lines. In conclusion, our results demonstrated that CD38 deficiency prevented DN by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway.
Collapse
Affiliation(s)
- Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qian Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jia Le Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ya-Ting Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi Ding
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jia-Hui Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
27
|
Gupta H, Bhandari U. Molecular Insight into Obesity-Associated Nephropathy: Clinical Implications and Possible Strategies for its Management. Curr Drug Targets 2025; 26:188-202. [PMID: 39411934 DOI: 10.2174/0113894501314788241008115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 04/11/2025]
Abstract
Obesity is a significant health concern due to its rapid increase worldwide. It has been linked to the pathogenic factors of renal diseases, cancer, cardiovascular diseases, hypertension, dyslipidemia, and type 2 diabetes. Notably, obesity raises the likelihood of developing chronic kidney disease (CKD), leading to higher adult mortality and morbidity rates. This study explores the molecular mechanisms that underlie obesity-associated nephropathy and its clinical implications. Obesity-Associated Nephropathy (OAN) develops and worsens due to insulin resistance and hyperinsulinemia, which promote renal sodium reabsorption, glomerular hyperfiltration, and hypertension, leading to progressive kidney damage. Renal damage is further aggravated by persistent inflammation and redox damage, mediated by adipokines and proinflammatory cytokines, such as TNF-α and IL-6. Furthermore, stimulation of the sympathetic nervous system and the renin-angiotensin- aldosterone system (RAAS) intensifies glomerular hypertension and fibrosis. These elements cause glomerular hyperfiltration, renal hypertrophy, and progressive kidney damage. Clinical manifestations of obesity-associated nephropathy include proteinuria, reduced glomerular filtration rate (GFR), and ultimately, CKD. Management strategies currently focus on lifestyle modifications, such as weight loss through diet and exercise, which have been effective in reducing proteinuria and improving GFR. Pharmacological treatments targeting metabolic pathways, including GLP-1 receptor agonists and SGLT2 inhibitors, have shown renoprotective properties. Additionally, traditional RAAS inhibitors offer therapeutic benefits. Early detection and comprehensive management of OAN are essential to prevent its progression and lessen the burden of CKD.
Collapse
Affiliation(s)
- Himani Gupta
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
28
|
Lu YP, Wang XH, Xia B, Wu HW, Lei Y, Cai KW, Deng ZY, Tang C, Bai WB, Zhu T, Zheng ZH. C3G improves lipid droplet accumulation in the proximal tubules of high-fat diet-induced ORG mice. Pharmacol Res 2025; 211:107550. [PMID: 39675540 DOI: 10.1016/j.phrs.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Obesity-related glomerulopathy (ORG) represents an escalating public health with no effective treatments currently available. Abnormal lipid metabolism and lipid droplet deposition in the kidneys are key contributors to ORG. Cyanidin-3-glucoside (C3G) has shown potential in regulating lipid metabolism and may offer reno-protective effects; however, its therapeutic efficacy and underlying mechanisms in ORG remain unclear. An ORG mouse model was established, followed by an 8-week C3G intervention. The mice were divided into three groups: normal control (CT) group, ORG group, and C3G treatment group. Fecal 16S rRNA sequencing, metabolomics of feces-serum-kidney, and kidney single-cell RNA sequencing (scRNA-seq) were performed to investigate the effects and mechanisms of C3G. Compared to CT mice, ORG mice exhibited elevated serum CHO, TG, Cys-C, UACR, urinary Kim-1, and NAG levels, along with glomerular hypertrophy and tubular injury. These biochemical and pathological indicators improved following C3G treatment. Fecal 16S analysis revealed reduced gut microbiota diversity in ORG mice compared to CT mice, while C3G intervention increased gut microbiota diversity. Metabolic profiling of feces, serum, and kidney indicated reprogramming of glycerophospholipid metabolism in ORG mice, ameliorated by C3G treatment. Further analysis demonstrated that abnormal glycerophospholipid metabolites correlated with blood lipids, urinary protein, urinary tubular injury markers, and gut microbiota, specifically Lachnospiraceae and Blautia. Additionally, scRNA-seq analysis identified activation of the PPARγ/CD36 pathway in proximal tubule cells (PTCs) of ORG mice. C3G improved abnormal glycerophospholipid metabolism and alleviated injury in PTCs by inhibiting the PPARγ/CD36 pathway. C3G reduces lipid droplet accumulation in the PTCs of ORG mice by modulating the gut microbiota and inhibiting the PPARγ/CD36 pathway. These findings offer new insights and therapeutic targets for ORG.
Collapse
Affiliation(s)
- Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bin Xia
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wei-Bin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China.
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
29
|
Wang H, Wang W, Jiang Y, Cui S, Kong Y, Chen YQ, Zhu S. F2RL1 Inhibition Alleviates Lipotoxicity-Induced Kidney Injury Through the Hippo Pathway in Diabetic Kidney Disease. Inflammation 2024:10.1007/s10753-024-02215-y. [PMID: 39738821 DOI: 10.1007/s10753-024-02215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Diabetic kidney disease (DKD), which is emerging as a pervasive global health concern and a considerable economic burden, is characterized by a detrimental effect on renal function and structure. Recent research indicates that the progression of DKD is facilitated by lipotoxic injury to tubular epithelial cells (TECs). However, the specific mechanisms that contribute to this cellular damage have yet to be fully elucidated. Our results revealed a significant upregulation of F2RL1 in vivo and in vitro models, which was positively correlated with the expression of inflammatory factors. Knockdown of F2RL1 significantly reduced inflammatory response in palmitate-stimulated HK-2 cells. Mechanistically, F2RL1 might exacerbate lipotoxicity-induced DKD through the modulation of the Hippo signaling pathway. Collectively, these findings suggest that modulating F2RL1 expression may be a strategic approach to mitigate the inflammatory damage to RTECs associated with DKD, potentially through its involvement in the Hippo signaling pathway. Given these findings, F2RL1 merits consideration as a candidate therapeutic target for DKD.
Collapse
Affiliation(s)
- Hui Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- The Affiliated Wuxi No.2, People's Hospital of Nanjing Medical University , Wuxi, China
| | - Yulin Kong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, China.
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
30
|
Wang X, Long D, Peng X, Li J, Zhou M, Wang Y, Hu X. Diphenyl diselenide protects against diabetic kidney disease through modulating gut microbiota dysbiosis in streptozotocin-induced diabetic rats. Front Pharmacol 2024; 15:1506398. [PMID: 39697537 PMCID: PMC11653185 DOI: 10.3389/fphar.2024.1506398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Diphenyl diselenide (DPDS) ameliorates nephropathy in streptozotocin (STZ)-induced type 1 diabetic rats by inhibiting oxidative stress and inflammatory reactions. However, it has not been clarified whether DPDS alleviates type 1 diabetic kidney disease (DKD) is related to the inhibition of extracellular matrix (ECM) production and the regulation of intestinal flora disorder. Methods The present study investigated the effects of DPDS on ECM generation in the kidney and intestinal microflora composition in feces. The rats were orally administered DPDS or metformin for eight weeks. Various indices were measured to assess the severity of renal injury. After euthanizing the rats, oxidative stress markers in serum and kidney were assessed using biochemical methods, and the expressions of ECM-related proteins in kidney were analyzed using Western blot. Additionally, 16S rRNA high-throughput sequencing was used to evaluate the diversity and composition of the intestinal flora in feces. Results The results showed DPDS and metformin improved the DKD in STZ rats, as evidenced by decreased blood glucose, BUN, urine volume, urine microalbumin, urinary β2 microglobulin, and improvement of renal pathological morphology. Furthermore, DPDS intervention markedly reduced the protein expression of α-SMA, COI Ⅳ, FN, and vimentin in the kidneys. Besides, DPDS not only improved dyslipidemia in STZ diabetic rats, but also enhanced the activities of antioxidant enzymes, decreased the level of MDA in serum and kidney, and regulated the expression of proteins related to the Nrf2/Keap1 signaling pathway in the kidney. Moreover, we found that DPDS could selectively improve the relative abundance of probiotics as well as the diversity of flora, thus ameliorating the intestinal microbial composition of the STZ rats, significantly regulating the intestinal microbial homeostasis. Discussion Overall, DPDS inhibited ECM production and improved renal pathological changes, which may be related to reducing oxidative stress damage in the kidney and improving intestinal flora imbalance, providing data support for the further development and application of DPDS in DKD.
Collapse
Affiliation(s)
- Xing Wang
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Dongmei Long
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, China
| | - Xingcan Peng
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jiaxuan Li
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Maoting Zhou
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yu Wang
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xianghong Hu
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
31
|
Wu W, Wang Y, Shao X, Huang S, Wang J, Zhou S, Liu H, Lin Y, Yu P. GLP-1RA improves diabetic renal injury by alleviating glomerular endothelial cells pyrotosis via RXRα/circ8411/miR-23a-5p/ABCA1 pathway. PLoS One 2024; 19:e0314628. [PMID: 39621727 PMCID: PMC11611192 DOI: 10.1371/journal.pone.0314628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Lipotoxicity has been implicated in diabetic kidney disease (DKD). However, the role of high glucose levels in DKD and the underlying renal protective mechanisms of GLP-1 receptor agonists (GLP-1RAs) remain unclear. METHODS To investigate cholesterol accumulation, pyroptosis in glomerular endothelial cells (GEnCs), and the renal protective mechanisms of GLP-1RAs, we used various techniques, including RT-qPCR, Oil Red O staining, Western blotting, lactate dehydrogenase (LDH) activity assays, circRNA microarrays, bioinformatics analysis, gain and loss-of-function experiments, rescue experiments, and luciferase assays. Additionally, in vivo experiments were conducted using C57BL/6J and ApoE-deficient (ApoE-/-) mice. RESULTS GEnCs exposed to high glucose exhibited reduced cholesterol efflux, which was accompanied by downregulation of ATP-binding cassette transporter A1 (ABCA1) expression, cholesterol accumulation, and pyroptosis. Circ8411 was identified as a regulator of ABCA1, inhibiting miR-23a-5p through its binding to the 3'UTR. Additionally, higher glucose levels decreased circ8411 expression by inhibiting RXRα. GLP-1RAs effectively reduced cholesterol accumulation and cell pyroptosis by targeting the RXRα/circ8411/miR-23a-5p/ABCA1 pathway. In diabetic ApoE-/- mice, renal structure and function were impaired, with resulted in increased cholesterol accumulation and pyroptosis; however, GLP-1RAs treatment reversed these detrimental changes. CONCLUSIONS These findings suggest that the RXRα/circ8411/miR-23a-5p/ABCA1 pathway mediates the contribution of high glucose to lipotoxic renal injury. Targeting this pathway may represent a potential therapeutic strategy for patients with DKD and hypercholesterolemia. Moreover, GLP-1RAs may provide renal protective effects by activating this pathway.
Collapse
Affiliation(s)
- Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Shuai Huang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jian Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Hu Z, Zhu Q, Wang Y, Deng X, Yang H, Zhou M, Zhang J, Wang H, Wang H, Wang L, Zhang C, Li S. Lipid nephrotoxicity mediated by HIF-1α activation accelerates tubular injury in diabetic nephropathy. Ren Fail 2024; 46:2347446. [PMID: 38695335 PMCID: PMC11067561 DOI: 10.1080/0886022x.2024.2347446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
This study is intended to explore the effect of hypoxia-inducible factor-1α (HIF-1α) activation on lipid accumulation in the diabetic kidney. A type 1 diabetic rat model was established by STZ intraperitoneal injection. Cobalt chloride (CoCl2) and YC-1 were used as the HIF-1α activator and antagonist, respectively. CoCl2 treatment significantly increased HIF-1α expression, accelerated lipid deposition, and accelerated tubular injury in diabetic kidneys. In vitro, CoCl2 effectively stabilized HIF-1α and increased its transportation from the cytoplasm to the nucleus, which was accompanied by significantly increased lipid accumulation in HK-2 cells. Furthermore, results obtained in vivo showed that HIF-1α protein expression in the renal tubules of diabetic rats was significantly downregulated by YC-1 treatment. Meanwhile, lipid accumulation in the tubules of the DM + YC-1 group was markedly decreased in comparison to the DM + DMSO group. Accordingly, PAS staining revealed that the pathological injury caused to the tubular epithelial cells was alleviated by YC-1 treatment. Furthermore, the blood glucose level, urine albumin creatinine ratio, and NAG creatinine ratio in the DM + YC-1 group were significantly decreased compared to the DM + DMSO group. Moreover, the protein expression levels of transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) in diabetic kidneys were decreased by YC-1 treatment. Our findings demonstrate that the activation of HIF-1α contributed to interstitial injury in a rat model of diabetic nephropathy and that the underlying mechanism involved the induction of lipid accumulation.
Collapse
Affiliation(s)
- Zebo Hu
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Qianwen Zhu
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Ying Wang
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Xue Deng
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Yang
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Mingjun Zhou
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Jiyuan Zhang
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hao Wang
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Haosen Wang
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Lin Wang
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Cui Zhang
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Shu Li
- Department of Pathophysiology, School of Basic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
33
|
Yang Q, Zou Y, Lang Y, Yang J, Wu Y, Xiao X, Qin C, Zhao Y, Liu F. Estimated small dense low-density lipoprotein-cholesterol and the risk of kidney and cardiovascular outcomes in diabetic kidney disease. Ren Fail 2024; 46:2369701. [PMID: 38952279 PMCID: PMC467091 DOI: 10.1080/0886022x.2024.2369701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
AIMS This study aimed to investigate the correlations between estimated small dense low-density lipoprotein-cholesterol (esd-LDL-c) and the development of end-stage kidney disease (ESKD), cardiovascular mortality, and all-cause mortality in individuals with diabetic kidney disease (DKD) or diabetes mellitus (DM) concomitant chronic kidney disease (CKD). METHODS We analyzed the data from a biopsy-proven DKD cohort conducted at West China Hospital of Sichuan University between 2009 and 2021 (the DKD cohort) and participants with DM and CKD in the National Health and Nutrition Examination Survey (NHANES) 2011-2014 (the NHANES DM-CKD cohort). Cox regression analysis was also used to estimate associations between esd-LDL-c and the incidence of ESKD, cardiovascular mortality, and all-cause mortality. RESULTS There were 175 ESKD events among 338 participants in the DKD cohort. Patients were divided into three groups based on esd-LDL-c tertiles (T1 < 33.7 mg/dL, T2 ≥ 33.7 mg/dL to <45.9 mg/dL, T3 ≥ 45.9 mg/dL). The highest tertile of esd-LDL-c was associated with ESKD (adjusted HR 2.016, 95% CI 1.144-3.554, p = .015). Furthermore, there were 99 deaths (39 cardiovascular) among 293 participants in the NHANES DM-CKD cohort. Participants were classified into three groups in line with the tertile values of esd-LDL-c in the DKD cohort. The highest tertile of esd-LDL-c was associated with cardiovascular mortality (adjusted HR 3.95, 95% CI 1.3-12, p = .016) and all-cause mortality (adjusted HR 2.37, 95% CI 1.06-5.32, p = .036). CONCLUSIONS Higher esd-LDL-c was associated with increased risk of ESKD in people with biopsy-proven DKD, and higher cardiovascular and all-cause mortality risk among those with DM-CKD.
Collapse
Affiliation(s)
- Qing Yang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yanlin Lang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Jia Yang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Xiang Xiao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Chunmei Qin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yuancheng Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Shi S, Ding K, Chen F, Yang M, Ni L, Wu X. Identification of hub genes in the crosstalk between type 2 diabetic nephropathy and obesity according to bioinformatics analysis. Adipocyte 2024; 13:2423723. [PMID: 39526504 PMCID: PMC11556279 DOI: 10.1080/21623945.2024.2423723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) and obesity bring a huge burden to society. Obesity plays a crucial role in the progression of type 2 DN, but the pathophysiology remains unclear. Thus, we aimed the explore the association between type 2 DN and obesity using bioinformatics method. The gene expression profiles of type 2 DN (GSE96804) and obesity (GSE94752) were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened with the thresholds defined as |log2FC| ≥1 and P<0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Subsequently, a protein-protein interaction network was constructed based on the STRING database. Hub genes were identified, and the co-expression network was constructed. Finally, the hub genes were verified in clinical samples of 24 patients by immunohistochemistry. A total of 17 common DEGs were identified. Finally, two overlapping hub genes were identified (CCL18, C1QC). C1QC has been verified in clinical specimens. Using bioinformatics methods, the present study analyzed the common DEGs and the potential pathogenic mechanisms involved in type 2 DN and obesity. C1QC was the hub gene. Further studies are needed to clarify the specific relationships among C1QC, type 2 DN and obesity.
Collapse
Affiliation(s)
- Shaomin Shi
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ke Ding
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Feng Chen
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
| | - Mei Yang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
| |
Collapse
|
35
|
Yang XY, Jiang D, Wang YZ, Duan MY, Huang YW, Wang XJ, Xiang ZM, Sheng J, Zhu QQ. Chlorogenic acid alleviates renal fibrosis by reducing lipid accumulation in diabetic kidney disease through suppressing the Notch1 and Stat3 signaling pathway. Ren Fail 2024; 46:2371988. [PMID: 38952291 PMCID: PMC11221469 DOI: 10.1080/0886022x.2024.2371988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
AIMS Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.
Collapse
Affiliation(s)
- Xiao-ying Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Die Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuan-zhu Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mei-yan Duan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ye-wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Xuan-jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Ze-min Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Qiang-qiang Zhu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
36
|
Chen X, Zhu S, Huang C, Liu J, Wang J, Cui S. Bioinformatic analyses reveal lysosomal-associated protein transmembrane 5 as a potential therapeutic target in lipotoxicity-induced injury in diabetic kidney disease. Ren Fail 2024; 46:2359638. [PMID: 38832484 PMCID: PMC11151807 DOI: 10.1080/0886022x.2024.2359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.
Collapse
Affiliation(s)
- Xin Chen
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
- School of Medicine, Nanjing Medical University, Nanjing, P. R. China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
| | - Ciyou Huang
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| | - Jiayi Liu
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| | - Jinbang Wang
- Subei People’s Hospital of Jiangsu Province, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Siyuan Cui
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| |
Collapse
|
37
|
Wang W, Zhang X, Zhang M, Zhang F, Li C, Yang C, Zhao Z, Wang J, Wang F, Li P, Zhou Y, Wang L, Zhang L. Extreme temperature events, "Life's Essential 8", and prevalence of chronic kidney disease: A nationally representative surveillance in China. ENVIRONMENT INTERNATIONAL 2024; 194:109176. [PMID: 39657396 DOI: 10.1016/j.envint.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
The population disease burden caused by extreme temperature events has been increasing. However, research on the long-term effects of extreme temperature events on chronic kidney disease (CKD), as well as the combined effects with individual behaviors and metabolic factors is still lacking. Based on 176,874 participants from the most recent nationally representative surveillance on CKD and validated high spatial resolution (0.1°) remote-sensing products, this study investigated the associations between extreme temperature events in the preceding five years before investigation and CKD (defined by reduced renal function or albuminuria) prevalence. We also investigated the associations between "Life's Essential 8", a recognized scale to evaluate overall cardiovascular health (CVH) based on individual behaviors and metabolic indicators and CKD prevalence, as well as its combined effects with extreme temperature events. One additional day of heat waves and cold spells per year was associated with increased ORs of CKD [1.10 (95 % CI: 1.08, 1.11) and 1.07 (95 % CI: 1.05, 1.09), respectively]. Meanwhile, per standard deviation (SD) increment in health behavior score (SD = 16.1), health factor score (SD = 18.4), and overall CVH score (SD = 12.4) were associated with decreased ORs of CKD [0.92 (95 % CI: 0.90, 0.93), 0.60 (95 % CI: 0.59, 0.61), and 0.64 (95 % CI: 0.63, 0.65, respectively]. Relative to higher heat wave & lower CVH score group, the ORs of CKD were 0.87 (95 % CI: 0.84, 0.90), 0.51 (95 % CI: 0.48, 0.53), and 0.42 (95 % CI: 0.40, 0.44) in lower & lower, higher & higher, and lower & higher group, respectively. Our findings underscore the importance of considering the synergistic effects of individual behavioral and metabolic factors for strategies to mitigate the impacts of climate change on CKD.
Collapse
Affiliation(s)
- Wanzhou Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xiao Zhang
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Zhang
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Feifei Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Chun Li
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhenping Zhao
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China
| | - Fulin Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, People's Republic of China
| | - Ying Zhou
- Center for Smart and Healthy Buildings, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Limin Wang
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Luxia Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China; Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China.
| |
Collapse
|
38
|
Luo M, Hu Z, Yang J, Yang J, Sheng W, Lin C, Li D, He Q. Diosgenin Improves Lipid Metabolism in Diabetic Nephropathy via Regulation of miR-148b-3p/DNMT1/FOXO1 Axis. Nephron Clin Pract 2024; 149:226-239. [PMID: 39602888 DOI: 10.1159/000541690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The progression of diabetic nephropathy (DN) is closely associated with lipid accumulation. Diosgenin (Dio) plays a beneficial role in the lipid metabolism associated with multiple diseases. Thus, the mechanism underlying Dio's function in DN associated with aberrant lipid accumulation warrants further investigation. METHODS To model DN in vitro, HK-2 cells were treated with high glucose (HG) and palmitic acid. Cell viability was evaluated using MTT assay. The triglyceride (TG) content in HK-2 cells was measured using a commercial assay kit. The formation of lipid droplets in HK-2 cells was observed using Oil Red O staining. The expression levels of mRNA and protein were detected using RT-qPCR and Western blot, respectively. The DNA methylation of FOXO1 was assessed using MSP. The interaction between DNMT1 and the FOXO1 promoter was confirmed by ChIP assay. RESULTS Dio treatment reduced TG levels and lipid droplet formation in HK-2 cells co-treated with HG and palmitic acid. Simultaneously, the levels of miR-148b-3p and FOXO1 were increased by Dio, while Dio decreased the expression levels of DNMT1 and SREBP-2. Meanwhile, miR-148b-3p can bind to DNMT1, which in turn inhibits the expression of FOXO1 by mediating the DNA methylation of FOXO1. In addition, FOXO1 negatively regulates the expression of SREBP-2 by interacting with the SREBP-2 promoter. MiR-148b-3p inhibition or silencing of FOXO1 abolished the inhibitory effect of Dio on TG production and lipid droplet formation. This effect was further exacerbated by the downregulation of DNMT1. FOXO1 overexpression may counteract the promotive effects of miR-148b-3p inhibitor on lipid accumulation. CONCLUSIONS Dio treatment reduced TG production and lipid droplet formation in HK-2 cells during the progression of DN by modulating the miR-148b-3p/DNMT1/FOXO1/SREBP-2 axis. This finding provides new evidence supporting the therapeutic potential of Dio for DN.
Collapse
Affiliation(s)
- Min Luo
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zongren Hu
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jichang Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Jinhan Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Wen Sheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chengxiong Lin
- Huairen Hospital of Traditional Chinese Medicine, Huaihua, China
| | - Dian Li
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qinghu He
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
39
|
Yang M, Wang J, Meng H, Xu J, Xie Y, Kong W. Identification of key genes in diabetic nephropathy based on lipid metabolism. Exp Ther Med 2024; 28:406. [PMID: 39268370 PMCID: PMC11391184 DOI: 10.3892/etm.2024.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/20/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes with a high incidence rate. Notably, the disturbance of lipid metabolism is associated with DN progression. The present study aimed to identify lipid metabolism-related hub genes associated with DN for improved diagnosis of DN. The gene expression profile data of DN and healthy samples (GSE142153) were obtained from the Gene Expression Omnibus database, and the lipid metabolism-related genes were obtained from the Molecular Signatures Database. Differentially expressed genes (DEGs) between DN and healthy samples were analyzed. The weighted gene co-expression network analysis (WGCNA) was performed to examine the relationship between genes and clinical traits to identify the key module genes associated with DN. Next, the Venn Diagram R package was used to identify the lipid metabolism-related genes associated with DN and their protein-protein interaction (PPI) network was constructed. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The hub genes were identified using machine-learning algorithms. The Gene Set Enrichment Analysis (GSEA) was used to analyze the functions of the hub genes. The present study also investigated the immune infiltration discrepancies between DN and healthy samples, and assessed the correlation between the immune cells and hub genes. Finally, the expression levels of key genes were verified by reverse transcription-quantitative (RT-q)PCR. The present study determined 1,445 DEGs in DN samples. In addition, 694 DN-related genes in MEyellow and MEturquoise modules were identified by WGCNA. Next, the Venn Diagram R package was used to identify 17 lipid metabolism-related genes and to construct a PPI network. GO analysis revealed that these 17 genes were markedly associated with 'phospholipid biosynthetic process' and 'cholesterol biosynthetic process', while the KEGG analysis showed that they were enriched in 'glycerophospholipid metabolism' and 'fatty acid degradation'. In addition, SAMD8 and CYP51A1 were identified through the intersections of two machine-learning algorithms. The results of GSEA revealed that the 'mitochondrial matrix' and 'GTPase activity' were the markedly enriched GO terms in both SAMD8 and CYP51A1. Their KEGG pathways were mainly concentrated in the 'pathways of neurodegeneration-multiple diseases'. Immune infiltration analysis showed that nine types of immune cells had different expression levels in DN (diseased) and healthy samples. Notably, SAMD8 and CYP51A1 were both markedly associated with activated B cells and effector memory CD8 T cells. Finally, RT-qPCR confirmed the high expression of SAMD8 and CYP51A1 in DN. In conclusion, lipid metabolism-related genes SAMD8 and CYP51A1 may play key roles in DN. The present study provides fundamental information on lipid metabolism that may aid the diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Meng Yang
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jian Wang
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Hu Meng
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jian Xu
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Yu Xie
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Weiying Kong
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
40
|
Giardini E, Moore D, Sadlier D, Godson C, Brennan E. The dual role of lipids in chronic kidney disease: Pathogenic culprits and therapeutic allies. Atherosclerosis 2024; 398:118615. [PMID: 39370307 DOI: 10.1016/j.atherosclerosis.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Chronic kidney disease (CKD) is a significant health burden, with rising incidence and prevalence, attributed in part to increasing obesity and diabetes rates. Lipid accumulation in the kidney parenchyma and chronic, low-grade inflammation are believed to significantly contribute to the development and progression of CKD. The effect of dysregulated kidney lipid metabolism in CKD progression, including altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury through the activation of oxidative stress and inflammatory signalling cascades. In contrast, classes of endogenous specialized pro-resolving lipid mediators (SPMs) have been described that act to limit the inflammatory response and promote the resolution of inflammation. This review highlights our current understanding of how lipids can cause damage within the kidney, and classes of protective lipid metabolites that offer therapeutic benefits.
Collapse
Affiliation(s)
- Elena Giardini
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Dean Moore
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Denise Sadlier
- Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
41
|
Wang W, Dai R, Cheng M, Chen Y, Gao Y, Hong X, Zhang W, Wang Y, Zhang L. Metabolic reprogramming and renal fibrosis: what role might Chinese medicine play? Chin Med 2024; 19:148. [PMID: 39465434 PMCID: PMC11514863 DOI: 10.1186/s13020-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic reprogramming is a pivotal biological process in which cellular metabolic patterns change to meet the energy demands of increased cell growth and proliferation. In this review, we explore metabolic reprogramming and its impact on fibrotic diseases, providing a detailed overview of the key processes involved in the metabolic reprogramming of renal fibrosis, including fatty acid decomposition and synthesis, glycolysis, and amino acid catabolism. In addition, we report that Chinese medicine ameliorates renal inflammation, oxidative stress, and apoptosis in chronic kidney disease by regulating metabolic processes, thereby inhibiting renal fibrosis. Furthermore, we reveal that multiple targets and signaling pathways contribute to the metabolic regulatory effects of Chinese medicine. In summary, this review aims to elucidate the mechanisms by which Chinese medicine inhibits renal fibrosis through the remodeling of renal cell metabolic processes, with the goal of discovering new therapeutic drugs for treating renal fibrosis.
Collapse
Affiliation(s)
- Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yilin Gao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Hong
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| |
Collapse
|
42
|
Fan R, Kong J, Zhang J, Zhu L. Exercise as a therapeutic approach to alleviate diabetic kidney disease: mechanisms, clinical evidence and potential exercise prescriptions. Front Med (Lausanne) 2024; 11:1471642. [PMID: 39526249 PMCID: PMC11543430 DOI: 10.3389/fmed.2024.1471642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is a global and severe complication that imposes a significant burden on individual health, families, and society. Currently, the main treatment approaches for DKD include medication, blood glucose control, protein-restricted diet, and blood pressure management, all of which have certain limitations. Exercise, as a non-pharmacological intervention, has attracted increasing attention. This review introduces the mechanisms and clinical evidence of exercise on DKD, and proposes potential exercise prescriptions. Exercise can improve blood glucose stability related to DKD and the renin-angiotensin-aldosterone system (RAAS), reduce renal oxidative stress and inflammation, enhance the crosstalk between muscle and kidneys, and improve endothelial cell function. These mechanisms contribute to the comprehensive improvement of DKD. Compared to traditional treatment methods, exercise has several advantages, including safety, effectiveness, and no significant side effects. It can be used as an adjunct therapy to medication, blood glucose control, protein-restricted diet, and blood pressure management. Despite the evident benefits of exercise in DKD management, there is still a lack of large-scale, long-term randomized controlled trials to provide more evidence and develop exercise guidelines for DKD. Healthcare professionals should actively encourage exercise in DKD patients and develop personalized exercise plans based on individual circumstances.
Collapse
Affiliation(s)
| | | | | | - Lei Zhu
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
43
|
Hu Y, Ye S, Kong J, Zhou Q, Wang Z, Zhang Y, Yan H, Wang Y, Li T, Xie Y, Chen B, Zhao Y, Zhang T, Zheng X, Niu J, Hu B, Wang S, Chen Z, Zheng C. DOT1L protects against podocyte injury in diabetic kidney disease through phospholipase C-like 1. Cell Commun Signal 2024; 22:519. [PMID: 39456056 PMCID: PMC11515305 DOI: 10.1186/s12964-024-01895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Podocyte injury causes proteinuria and accelerates glomerular sclerosis during diabetic kidney disease (DKD). Disruptor of telomeric silencing 1-like (DOT1L), an evolutionarily conserved histone methyltransferase, has been reported in preventing kidney fibrosis in chronic kidney disease models. However, whether DOT1L exerts beneficial effects in diabetes induced podocyte injury and the underlying molecular mechanisms need further exploration. METHODS The expression of DOT1L was confirmed by Western blotting in MPC-5 cells and cortex of kidney from db/db mice, as well as immunofluorescence staining in human renal biopsy samples. The effect of DOT1L on podocyte injury was obtained using MPC-5 cells and db/db mice. The potential target genes regulated by DOT1L was measured by RNA-sequencing. Then, a series of molecular biological experiments was performed to investigate the regulation of PLCL1 by DOT1L in MCP-5 cells and db/db mice. Lipid accumulation was assessed by UPLC-MS/MS analysis and Oil Red O staining. RESULTS DOT1L expression was significantly declined in high glucose (HG)-treated MPC-5 cells, podocyte regions of kidney tissues from db/db mice and human renal biopsy samples. Subsequent investigations revealed that upregulation of DOT1L ameliorated HG-induced cell apoptosis in MPC-5 cells as well as primary podocytes. Furthermore, podocyte-specific DOT1L overexpression inhibited diabetic podocyte injury in db/db mice. Mechanistically, we revealed that DOT1L upregulated phospholipase C-like 1 (PLCL1) expression by mediating H3K79me2 at its promoter and PLCL1 silencing suppressed the protective role of DOT1L on podocyte injury. Moreover, DOT1L improved diabetes induced abnormal fatty acid metabolism in podocytes and PLCL1 knockdown reversed its protective effects. CONCLUSIONS Taken together, our results indicate that DOT1L protects podocyte injury via PLCL1-mediated fatty acid metabolism and provides new insights into the therapeutic target of DKD.
Collapse
Affiliation(s)
- Yepeng Hu
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Shu Ye
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Jing Kong
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Zhe Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yikai Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yaqiong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Tiekun Li
- Nanjing Kingmed Center for Clinical Laboratory Co., Ltd., 11 Yaogu Avenue, Nanjing, Jiangsu, China
| | - Yi Xie
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Bingbing Chen
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Tianyue Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xianan Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Junjia Niu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Bibi Hu
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Zhida Chen
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Lu Y, Fang R, Xu B, Feng C, Zhu Z, Yu M, Tong Y. A semantic segmentation method to analyze retinal vascular parameters of diabetic nephropathy. Front Med (Lausanne) 2024; 11:1494659. [PMID: 39512612 PMCID: PMC11540694 DOI: 10.3389/fmed.2024.1494659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction By using spectral domain optical coherence tomography (SD-OCT) to measure retinal blood vessels. The correlation between the changes of retinal vascular structure and the degree of diabetic nephropathy is analyzed with a full-pixel Semantic segmentation method. Methods A total of 120 patients with diabetic nephropathy who were treated in the nephrology department of Quzhou People's Hospital from March 2023 to March 2024 were selected and divided into three groups according to the urinary albumin creatinine ratio (UACR). The groups included simple diabetes group (UACR < 30 mg/g), microalbuminuria group (30 mg/g ≤ UACR <300 mg/g) and macroalbuminuria group (UACR ≥300 mg/g). SD-OCT was used to scan the arteries and veins in the superior temporal area B of the retina. The semantic segmentation method built into the SD-eye software was used to automatically identify the morphology and structure of the vessels and calculate the parameters of arteriovenous vessels. The parameters of arteriovenous vessels are as follows: outer diameter of the retinal artery (RAOD); inner diameter of the retinal artery (RALD); arterial wall thickness (AWT); arterial wall to lumen ratio (AWLR); cross sectional area of arterial wall (AWCSA); retinal vein outer diameter (RVOD); retinal vein inner diameter (RVLD); vein wall thickness (VWT); vein wall to lumen ratio (VWLR); cross sectional area of vein wall (VWCSA). Statistical analysis software was used to compare and analyze the parameters of retinal arteriovenous vessels of the three groups. Results The study revealed statistically significant differences in RAOD and RALD among the three groups (p < 0.05) with the RAOD and RALD of the macroalbuminuria group and microalbuminuria group being lower than those of the simple diabetes group. Conversely, there were no significant differences in AWT, AWLR and AWCSA among the three groups (p > 0.05). Additionally, the differences in RVOD and RVLD among the three groups were found to be statistically significant (p < 0.05) with the RVOD and RVLD of the simple diabetes group being lower than those of the microalbuminuria group and macroalbuminuria group. No significant differences were observed in VWT and VWL among the groups. Additionally, RVOD and RVLD were weakly associated with UACR (R = 0.247, p = 0.007; R = 0.210, p = 0.021). Full-pixel semantic segmentation method combined with OCT images is a new retinal vascular scanning technology, which can be used as a new method for early diagnosis of diabetic nephropathy. The structural changes of retinal vessels can be used to predict the severity of diabetic nephropathy during the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Youlv Lu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruolin Fang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bolun Xu
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Chunyun Feng
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zhentao Zhu
- Department of Ophthalmology, Huaian Hospital of Huaian City, Huaian, China
| | - Meiting Yu
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Yuhua Tong
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
45
|
Peng CC, Chen ECY, Chen CR, Chyau CC, Chen KC, Peng RY. Molecular mechanism of ectopic lipid accumulation induced by methylglyoxal via activation of the NRF2/PI3K/AKT pathway implicates renal lipotoxicity caused by diabetes mellitus. PLoS One 2024; 19:e0306575. [PMID: 39413106 PMCID: PMC11482718 DOI: 10.1371/journal.pone.0306575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/19/2024] [Indexed: 10/18/2024] Open
Abstract
Patients with chronic kidney disease (CKD) have a high incidence of dyslipidemia comprising high triglyceride (TG) and low high-density lipoprotein (HDL)-cholesterol levels. An abnormal increase of TGs within cells can lead to intracellular lipid accumulation. In addition to dyslipidemia, hyperglycemia in diabetes may elicit ectopic lipid deposition in non-adipose tissues. Hyperglycemia increases intracellular levels of methylglyoxal (MG) leading to cellular dysfunction. A deficit of glyoxalase I (GLO1) contributes to dicarbonyl stress. Whether dicarbonyl stress induced by MG causes renal lipotoxicity through alteration of lipid metabolism signaling is still unknown. In this study, mice with high fat diet-induced diabetes were used to investigate the renal pathology induced by MG. NRK52E cells treated with MG were further used in vitro to delineate the involvement of lipogenic signaling. After treatment with MG for 12 weeks, plasma TG levels, renal fatty changes, and tubular injuries were aggravated in diabetic mice. In NRK52E cells, MG activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and sterol regulatory element-binding protein 1 (SREBP1), resulting in stimulation of fatty acid synthase. The intracellular accumulation of lipid droplets was mainly contributed by TGs, which increased the oxidative stress accompanied by high Nrf2 expression. In addition, MG time-dependently activated cyclin D, cyclin-dependent kinase 4 (CDK4), and cleaved caspase-3, evidencing that G0/G1 arrest was associated with apoptosis of NRK52E cells. In conclusion, our studies revealed the mechanism of lipotoxicity caused by MG. The target of such dicarbonyl stress may become a promising therapy for diabetic CKD.
Collapse
Affiliation(s)
- Chiung Chi Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Eugene Chang Yu Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- MD Program, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Chang-Rong Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Charng-Cherng Chyau
- Department of Biotechnology, College of Medical and Health Care, Hungkuang University, Shalu District, Taichung, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Urology, Taipei Medical University Shuang-Ho Hospital, Zhong-He District, New Taipei City, Taiwan
- TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Robert Y. Peng
- Department of Biotechnology, College of Medical and Health Care, Hungkuang University, Shalu District, Taichung, Taiwan
| |
Collapse
|
46
|
Han S, Chen Y, Lu Y, Jia M, Xu Y, Wang Y. Association between gut microbiota and diabetic nephropathy: a two-sample mendelian randomization study. BMC Endocr Disord 2024; 24:214. [PMID: 39390505 PMCID: PMC11468553 DOI: 10.1186/s12902-024-01746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Observational studies have demonstrated the alterations of gut microbiota composition in diabetic nephropathy (DN), however, the correlation between gut microbiota and DN remains unclear. METHODS A two-sample Mendelian randomization (MR) analysis was designed to estimate the association between gut microbiota and DN. The summary statistics of gut microbiota from phylum level to genus level were obtained from a large-scale, genome-wide association study involving 18,340 individuals, and the data at the species level was derived from the study of TwinsUK Registry, including 1126 twin pairs. The summary statistics of DN were originated from the latest release data of FinnGen (R7, 299623 participants). The MR estimation was calculated using inverse variance weighted, weighted median, MR-Egger regression, and MR-PRESSO. Heterogeneity was assessed using Cochrane's Q test. RESULTS Inverse variance weighted results indicated that the order Bacteroidetes and its corresponding class and phylum [odds ratio (OR), 1.58; 95% confidence interval (CI), 1.15-2.17], the family Verrucomicrobiaceae and its corresponding class and order (OR, 1.46; 95% CI, 1.14-1.87), the genera Akkermansia (OR, 1.46; 95% CI, 1.14-1.87) and Catenibacterium (OR, 1.33; 95% CI, 1.07-1.66) might be associated with a higher risk of DN; whereas the genera Coprococcus2 (OR, 0.68; 95% CI, 0.51-0.91) and Eubacterium_coprostanoligenes_group (OR, 0.69; 95% CI, 0.52-0.92) might play protective roles in DN. CONCLUSIONS This MR study suggested that several gut bacteria were potentially associated with DN, further studies are required to validate these findings.
Collapse
Affiliation(s)
- Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yinqing Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Meng Jia
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
47
|
Zhou J, Zhu L, Yue R. Evolution and global research trends of immunity in diabetic nephropathy: a bibliometric and visual analysis from 2004 to 2023. Int Urol Nephrol 2024; 56:3307-3321. [PMID: 38758346 PMCID: PMC11405497 DOI: 10.1007/s11255-024-04081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, with an increasing prevalence worldwide, but its pathomechanisms remain incompletely understood. Accumulating evidence suggests that immunity plays an important role in the development of DN. Many papers have been published in the field over the last 20 years, but there has been no bibliometric review of the research hotspots and trends in the field. This study aimed to assess the current research status and future trends of the link between immune and DN using bibliometric analysis. METHODS Publications on the association between immunity and DN from 2004 to 2023 were retrieved from the Web of Science Core Collection database and screened according to inclusion criteria. VOSviewer and CiteSpace software were employed to visualize research trends and hotspots in the field. Data including author, institution, country, journal, reference, and keyword were analyzed. RESULTS Ultimately 1246 publications meeting the criteria were included in the bibliometric analysis, involving 838 articles (84.96%) and 408 reviews (15.04%). The literature covered 81 countries and regions, 1751 institutions, and 6584 authors. The top 2 countries in terms of the number of publications were China (435) and the United States (318), and they collaborated most frequently. The United States had the highest number of citations for published papers (18,161), far exceeding the other countries. England had 38 publications but had the highest average number of citations (92.32). The University of California system was the most prolific institution (25 papers, 1062 citations, 42.48 citations per paper). Frontiers in Immunology was the most prolific journal in the field (30 papers). The most cited journal was Kidney International (863 citations). The analysis of keywords and references showed that inflammation, ferroptosis, and lipid metabolism may be future research hotspots in this field. CONCLUSIONS The number of publications related to immunity and DN has increased annually over the past 20 years, with a significant increase in the last 3 years especially. Our results identified research hotspots and trends in the field. These findings provide valuable perspectives for future research, enhancing our understanding of the immune-related mechanisms of DN and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Jianlong Zhou
- Department of Clinical Medicine, People's Hospital of Deyang City, Deyang, China.
| | - Lv Zhu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Rensong Yue
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Liu J, Wu Y, Tian C, Zhang X, Su Z, Nie L, Wang R, Zeng X. Quantitative assessment of renal steatosis in patients with type 2 diabetes mellitus using the iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification sequence imaging: repeatability and clinical implications. Quant Imaging Med Surg 2024; 14:7341-7352. [PMID: 39429570 PMCID: PMC11485345 DOI: 10.21037/qims-24-330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
Background Fatty kidney disease is linked to renal function damage, but there is no noninvasive tool for monitoring renal fat accumulation. This study aimed to explore the repeatability of the iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification (IDEAL-IQ) sequence imaging in quantifying renal fat deposition and to assess the differences observed in patients with type 2 diabetes mellitus (T2DM). Methods A total of 26 healthy participants underwent two IDEAL-IQ scans without repositioning, and the repeatability of the imaging technique was assessed with Bland-Altman analysis. Additionally, 96 patients with T2DM underwent a single IDEAL-IQ scan for the examination of renal fat deposition. The patients with T2DM were classified into three groups based on their estimated glomerular filtration rate (eGFR). One-way analysis of variance was used to analyze the differences of renal fat depositions between the groups. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of IDEAL-IQ. Results Bland-Altman analyses showed narrower limits of agreement and a significant correlation (r=0.81; P<0.05) between the two IDEAL-IQ scans. Statistically significant differences between the healthy volunteers and patients with T2DM, diabetic kidney disease (DKD) I-II, and or DKD III-IV were found in renal parenchymal proton-density fat fraction (PDFF) values (P<0.001). Renal parenchymal PDFF was negatively correlated with eGFR (r=-0.437; P<0.001) and positive correlated with serum creatinine level (µmol/L) (r=0.421; P<0.001). The area under the curve of IDEAL-IQ in discriminating between the healthy volunteers and patients with T2DM was 0.857. For discriminating T2DM from DKD I-II and DKD III-IV, the IDEAL-IQ had an area under the curve of 0.689 and 0.823, respectively. Conclusions IDEAL-IQ is a promising and reproducible technique for the assessment of renal fat deposition and identification of risk of DKD in patients with T2DM. Moreover, IDEAL-IQ imaging is expected to improve the sensitivity and specificity of early renal function damage and staging assessment of patients with T2DM.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yu Wu
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Chong Tian
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xunlan Zhang
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Zhijie Su
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Lisha Nie
- GE HealthCare Magnetic Resonance Research, Beijing, China
| | - Rongpin Wang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xianchun Zeng
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
49
|
Chen Y, Chen M, Zhu W, Zhang Y, Liu P, Li P. Morroniside attenuates podocytes lipid deposition in diabetic nephropathy: A network pharmacology, molecular docking and experimental validation study. Int Immunopharmacol 2024; 138:112560. [PMID: 38959541 DOI: 10.1016/j.intimp.2024.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Dysregulation of lipid metabolism is a key factor influencing the progression of diabetic nephropathy (DN). Morroniside (MOR) is a major active compound isolated from the traditional Chinese herb Cornus officinalis, our previous research found that it can improve the lipid deposition of renal tubular epithelial cells. The purpose of this study is to explore whether MOR can improve podocyte lipid deposition and its mechanism of reducing DN. METHODS Initially, we used network pharmacology and bioinformatics techniques to predict the relationship between renal lipid metabolism of MOR and DN. Subsequently, the binding activity of MOR with lipid-related proteins was studied by molecular docking to determine how MOR acts through these proteins. After determining the target of MOR, animal experiments and cell tests were carried out to verify it. RESULTS Using network pharmacology, bioinformatics, and molecular docking, target proteins for MOR treatment of DN were predicted and screened, including PGC-1α, LXRs, ABCA1, PPARY, CD36, and nephrin. It is particularly noted that MOR effectively binds to PGC-1α, while LXRs, ABCA1, PPARY and CD36 are downstream molecules of PGC-1α. Silencing the PGC-1α gene significantly reduced the therapeutic effects of MOR. Conversely, in groups without PGC-1α knockdown, MOR was able to increase the expression levels of PGC-1α and influence the expression of downstream proteins. Furthermore, through in vivo and in vitro experiments, utilizing techniques such as lipid droplet staining, PAS, MASSON staining, immunofluorescence, and Western blot, we found that MOR effectively elevated the expression levels of the podocyte protein nephrin and lipid metabolism-regulating proteins PGC-1α, PPARY, and ABCA1, while significantly inhibiting the expression of the lipid accumulation promoter CD36. CONCLUSION MOR can regulate the cholesterol efflux in podocytes via the PGC-1α/LXRs/ABCA1 signaling pathway, and control cholesterol intake via the PGC-1α/PPARY/CD36 signaling pathway, thereby ameliorating lipid deposition in DN.
Collapse
Affiliation(s)
- Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- First People's Hospital of Qiqihaer City, Heilongjiang Province, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
50
|
Liu Y, Lyu K, Liu S, You J, Wang X, Wang M, Zhang D, Bai Y, Yin C, Jiang M, Zheng S. Predictive value of total cholesterol to high-density lipoprotein cholesterol ratio for chronic kidney disease among adult male and female in Northwest China. Chronic Dis Transl Med 2024; 10:216-226. [PMID: 39027193 PMCID: PMC11252436 DOI: 10.1002/cdt3.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Studies have found that the ratio of total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C) was associated with the development of chronic kidney disease (CKD). However, the relationship in different genders was rarely discussed. The aim of this study was to explore this relationship and assess its predictive power for both males and females. Methods Based on a prospective cohort platform in northwest China, 32,351 participants without CKD were collected in the baseline and followed up for approximately 5 years. Cox proportional hazard model and restricted cubic spline regression analysis were performed to investigate the association between TC, HDL-C, TC/HDL-C and CKD in adult female and male. The clinical application value of the indicators in predicting CKD was evaluated by the receiver operator characteristic curve. Results During a mean follow-up of 2.2 years, 484 males and 164 females developed CKD. After adjusted for relevant confounders, for every one standard deviation increase in TC, HDL-C and TC/HDL-C, the hazard ratios (HRs) and 95% confidence intervals (95% CIs) for CKD were 1.17 (1.05-1.31), 0.84 (0.71-0.99), and 1.15 (1.06-1.25) for males, 0.94 (0.78-1.13), 0.58 (0.35-0.95), and 1.19 (1.01-1.40) for females, respectively. The results also showed that TC, HDL-C, and TC/HDL-C were associated with CKD in a linear dose-response relationship. The TC/HDL-C had the largest area under the curve (AUC) compared to TC and HDL-C, and the AUC among the females was larger than that among males. Conclusions The TC/HDL-C was significantly associated with CKD in adult males and females and has better clinical value in predicting CKD than TC and HDL-C, especially in females.
Collapse
Affiliation(s)
- Yanli Liu
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| | - Kang Lyu
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| | - Shaodong Liu
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| | - Jinlong You
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| | - Xue Wang
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| | - Minzhen Wang
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| | - Desheng Zhang
- Workers' Hospital of Jinchuan Group Co. Ltd.JinchangGansuChina
| | - Yana Bai
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co. Ltd.JinchangGansuChina
| | - Min Jiang
- Wuwei People's HospitalWuweiGansuChina
| | - Shan Zheng
- School of Public Health, Institute of Epidemiology and StatisticsLanzhou UniversityLanzhouGansuChina
| |
Collapse
|