1
|
Xu Y, Xiao T, Yang J, Wang J, Wang B, Qiao C. A Mendelian randomization study on the causal association of circulating cytokines with diabetic nephropathy. J Diabetes Investig 2025. [PMID: 40304587 DOI: 10.1111/jdi.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Circulating cytokines were reported to be related to diabetic nephropathy (DN) in observational studies. However, the causal relationship between them remains unknown. This study aimed to investigate the causal relationship between DN and circulating cytokines with genetic data in the frame of Mendelian Randomization (MR). METHODS We performed a two-sample MR analysis to investigate the causal relationship in individuals of European ancestry, utilizing publicly available genome-wide association study (GWAS) statistics. We selected eligible instrumental SNPs that were significantly related to the circulating cytokines. Multiple MR analysis approaches were employed, including inverse variance weighted (IVW), Weighted Median, MR-Egger, Weighted Mode, Simple Mode, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. RESULTS We found evidence supporting the causal role of genetically predicted circulating levels in the increased risk of DN. Specifically, we observed associations for interferon-gamma [OR = 1.352, 95% CI: 1.089-1.678, P = 0.006], stem cell factor [OR = 1.252, 95% CI: 1.028-1.525, P = 0.025], and stromal-cell-derived factor 1 alpha [OR = 1.326, 95% CI: 1.017-1.727, P = 0.037]. Additionally, MR analysis revealed a negative causal association between macrophage inflammatory protein 1b and DN [OR = 0.921, 95% CI: 0.858-0.988, P = 0.022]. The results obtained from MR-Egger, Weighted Median, Weighted Mode, and Simple Mode methods were consistent with the Inverse Variance Weighted (IVW) estimates. Sensitivity analyses showed no evidence of horizontal pleiotropy, suggesting that the causal estimates were not biased. CONCLUSIONS Our findings offer promising leads for developing novel therapeutic targets for DN. By identifying the role of inflammatory cytokines in this debilitating condition through a genetic epidemiological approach, our study made contributions to a better understanding of the underlying disease mechanisms.
Collapse
Affiliation(s)
- Yiming Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tian Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiali Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bingting Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Satta E, Strollo F, Borgia L, Guarino G, Romano C, Masarone M, Marfella R, Gentile S. Urinary L-FABP: A Novel Biomarker for Evaluating Diabetic Nephropathy Onset and Progression. A Narrative Review. Diabetes Ther 2025:10.1007/s13300-025-01731-w. [PMID: 40178792 DOI: 10.1007/s13300-025-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Patients with diabetes mellitus (DM) are at risk of developing diabetic nephropathy (DN), a condition whose onset and progression are linked to increased morbidity and mortality. Therefore, early recognition is crucial. Presently, this relies on the albumin excretion rate (AER) and glomerular filtration rate (GFR). Nevertheless, DN eventually affects patients with normal AER and GFR. Thus, further easy-to-handle biomarkers of DN onset/worsening are needed. Liver-type fatty acid-binding protein (L-FABP) has been associated with renal damage and could help predict/diagnose DN. We performed a literature selection to evaluate the performance of urinary excretion of such biomarker (urinary-L-FABP:uL-FABP) in predicting/diagnosing DN and its progression in diabetes. We evaluated 635 publications, 21 of which were included. Of these, 14 have cross-sectional design/arms and ten longitudinal design/arms. Cross-sectional studies showed uL-FABP to correlate with DN onset and severity in type-1 DM and type-2 DM, besides being higher than in healthy controls in the case of normoalbuminuria. Longitudinal studies showed baseline uL-FABP to predict DN onset in normoalbuminuric patients with T1DM and DN progression independently of diabetes type. The results suggest that uL-FABP is a marker of tubular damage detectable before increased albumin excretion and can represent the earliest sign of DN. Indeed, it discloses its onset and often predicts its severity in T2DM and patients with T1DM. Currently, uL-FABP can be routinely assessed and, being available as a point-of-care fast-test kit, may also become an easy-to-handle diagnostic tool for outpatients. In conclusion, uL-FABP represents a user-friendly biomarker of DN and can even predict DN progression in T2DM and T1DM over time.
Collapse
Affiliation(s)
- Ersilia Satta
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
| | - Felice Strollo
- Department of Endocrinology and Diabetes, IRCCS San Raffaele Pisana, Rome, Italy
| | - Luisa Borgia
- Bioethics, DISVA, Department of Life and Environmental Sciences, Biological Sciences Faculty, Marche Polytechnic University, 22, Piazza Roma, 60121, Ancona, Italy
| | - Giuseppina Guarino
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | | | - Mario Masarone
- Department of Medicine, Surgery and Odontostomatology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
| | - Raffaele Marfella
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Sandro Gentile
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Tanaka M, Sato T, Gohda T, Kamei N, Murakoshi M, Ishiwata E, Endo K, Kawaharata W, Aida H, Nakata K, Akiyama Y, Kubota M, Sanuki M, Suzuki T, Suzuki Y, Furuhashi M. Urinary fatty acid-binding protein 4 is a promising biomarker for glomerular damage in patients with diabetes mellitus. J Diabetes Investig 2025; 16:670-679. [PMID: 39723798 PMCID: PMC11970305 DOI: 10.1111/jdi.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS/INTRODUCTION Fatty acid-binding protein (FABP) 4, which acts as an adipokine secreted by adipocytes, macrophages, and capillary endothelial cells, is expressed in injured glomerular cells. It has been reported that urinary (U-) FABP4 is associated with renal dysfunction and proteinuria in several glomerular kidney diseases. However, the clinical significance of U-FABP4 in diabetic kidney disease (DKD) remains undetermined. MATERIALS AND METHODS Immunohistological analyses of FABP4 and FABP1 (liver-type FABP), an established biomarker for impaired proximal tubules, were performed in the kidneys of patients with DKD and nonobese diabetic mice (KK-Ta/Akita mice). The associations between U-FABP4 and U-FABP1 with kidney function and metabolic indices were also investigated in patients with type 1 diabetes (n = 57, mean age: 61 years) and patients with type 2 diabetes (n = 608, mean age: 65 years). RESULTS In both patients with diabetes and diabetic mice, FABP4 was expressed in injured glomeruli with increased markers of endoplasmic reticulum stress in addition to peritubular capillaries, whereas FABP1 was mainly expressed in proximal tubules. Levels of U-FABP4 and U-FABP1 were independently associated with each other, and both levels were independently associated with estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (UACR) after adjustment of age, sex, type of diabetes, duration of diabetes, and systolic blood pressure in patients with diabetes. CONCLUSIONS Urinary level of FABP4 derived from injured glomeruli with increased endoplasmic reticulum stress is independently associated with eGFR and UACR, suggesting a promising biomarker for glomerular damage in patients with diabetes.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Tanaka Medical ClinicYoichiJapan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Tomohito Gohda
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Nozomu Kamei
- Department of Endocrinology and MetabolismHiroshima Red Cross Hospital & Atomic‐bomb Survivors HospitalHiroshimaJapan
- Institute for Clinical ResearchNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Maki Murakoshi
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Erika Ishiwata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Kawaharata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hiroki Aida
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yukinori Akiyama
- Department of NeurosurgerySapporo Medical University School of MedicineSapporoJapan
| | - Mitsunobu Kubota
- Department of Endocrinology and DiabetologyNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Michiyoshi Sanuki
- Institute for Clinical ResearchNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Toru Suzuki
- Natori Toru Internal Medicine and Diabetes ClinicNatoriJapan
| | - Yusuke Suzuki
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
4
|
Alhazzani K, Alrewily SQ, Alanzi AR, Aljerian K, Raish M, Hawwal MF, Alhossan A, Alanazi AZ. Therapeutic Effects of Liposomal Resveratrol in the Mitigation of Diabetic Nephropathy via Modulating Inflammatory Response, Oxidative Stress, and Apoptosis. Appl Biochem Biotechnol 2025; 197:1570-1589. [PMID: 39589702 DOI: 10.1007/s12010-024-05092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
An important factor in the development of diabetes and its associated consequences is prolonged chronic hyperglycemia, which weakens the antioxidant defense system and produces reactive oxygen species. Phytochemicals have been found to scavenge free radicals and exhibit antioxidant effects necessary to increase insulin sensitivity and reduce the development of diabetes-related complications. Current treatments for managing diabetes and diabetic nephropathy are often not very effective and come with several limitations and side effects. Resveratrol, for example, has shown therapeutic potential in mitigating kidney damage induced by high glucose levels, but its short bioavailability is a significant limitation. This accentuates the need for alternatives that not only improve the disease but also reduce the side effects associated with treatment. To enhance the therapeutic efficacy of resveratrol, we investigated the protective effects of liposomal resveratrol (LR) in a streptozotocin-induced diabetic rat model at doses of 20 and 40 mg/kg. We compared the impact of LR to that of resveratrol alone (at a dose of 40 mg/kg) on various parameters, including serum levels of biochemical markers, tissue levels of pro-inflammatory cytokines, nuclear transcription factor, oxidative stress indices, and apoptotic markers. LR, as a highly absorbable and metabolized form of resveratrol, has demonstrated beneficial effects in diabetic rats. Administered at both 20 mg/kg and 40 mg/kg dosages over a 5-week period, it demonstrated notable efficacy in alleviating inflammation. This was accomplished by diminishing the levels of pro-inflammatory mediators, TNF-α and IL-6, through the inhibition of NF-κB translocation. Additionally, LR influenced apoptotic markers, specifically caspase, BCL-2, and BAX. Furthermore, it enhanced the expression of key antioxidant enzymes such as catalase and glutathione peroxidase while significantly lowering malondialdehyde levels. These significant biochemical and immunological protective effects correlated with improved histological integrity and overall kidney architecture. Notably, resveratrol alone was not as effective as LR in restoring kidney function, highlighting its potential as a therapeutic candidate for the treatment of diabetic nephropathy. However, more in-depth studies are needed to explore its mechanism of action and improved bioavailability.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salah Q Alrewily
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alhossan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Panda CR, Mangaraj M, Panda SK, Kumari S, Nayak S, Saharia GK. Unravelling interplay of serum MMP-7 and TGF- β in diabetic nephropathy - A study from a tertiary centre in eastern India. J Family Med Prim Care 2025; 14:997-1002. [PMID: 40256077 PMCID: PMC12007780 DOI: 10.4103/jfmpc.jfmpc_1158_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 04/22/2025] Open
Abstract
Background Diabetic Nephropathy (DN) constitutes nearly half of cases of end stage renal disease. Despite decrease in kidney function, eGFR in the early stages may remain unaltered, making diagnosis difficult pointing towards need of more accurate biomarkers for early detection. Altered serum Matrix Metallo-Proteinase-7 (MMP-7) and transforming growth factor- β (TGF-β) has been noted independently in diabetic complications. The role of MMP-7 with TGF-β together has been highlighted in extracellular matrix remodelling in kidneys of diabetic rats. Interaction between MMP-7 with TGF- β in DN cases is scarce. Hence, the objective of present study is to evaluate role of serum MMP-7 and TGF-β in DN. Methods This case control Study included 61 DN cases, 61 diabetes Mellitus controls and 61 healthy controls. After clinical evaluation routine biochemical parameters were estimated along with serum MMP-7 and TGF-β. They were analysed in relation to glycemia and eGFR along with correlation analysis. Results Serum MMP-7 and TGF-β registered significant rise (P value-<0.001) in DN cases in comparison to control groups. Their substantial association with each other and with glycaemic status and renal function was noted in the correlational analysis. Diagnostic accuracy of MMP-7 and TGF-β for DN was also noted with significant sensitivity and specificity. Multiple regression analysis documented MMP-7 as an independent determinant for Diabetic nephropathy. Conclusion Serum MMP-7 along with TGF-β play significant role in the pathogenesis of DN. Prospective longitudinal study with future Genetic analysis for their expression is needed to establish their role in disease diagnosis and progression.
Collapse
Affiliation(s)
| | | | | | - Suchitra Kumari
- Department of Biochemistry, AIIMS, Bhubaneswar, Odisha, India
| | - Saurav Nayak
- Department of Biochemistry, AIIMS, Bhubaneswar, Odisha, India
| | | |
Collapse
|
6
|
Kamiyama M, Iijima K, Okuzawa R, Kawata R, Kimura A, Shinohara Y, Shimada A, Yamanaka M, Youda A, Iwamoto T. Augmented Intrarenal and Urinary Angiotensinogen in Diabetic Nephropathy: The Role of Isoflavones. Int J Mol Sci 2025; 26:1443. [PMID: 40003909 PMCID: PMC11855285 DOI: 10.3390/ijms26041443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The circulating renin-angiotensin system (RAS) is an endocrine system with key functions in maintaining blood pressure, fluid volume, and electrolytes. The RAS in the kidney (intrarenal RAS) plays a critical role in the onset and progression of kidney diseases. However, the mechanism underlying the onset and progression of diabetic nephropathy in relation to the expression and secretion of angiotensinogen (AGT) in the kidneys remains unclear. In this review, we present an overview of the intrarenal RAS and its role in diabetic nephropathy, as well as reviewing the evidence for the use of urinary AGT as a biomarker of this system in diabetic nephropathy. We also describe the roles of isoflavones in the context of diabetic nephropathy. The considered studies show that the intrarenal RAS-especially AGT-plays a diversified role in diabetic nephropathy; for instance, the increase in AGT due to oxidative stress is suppressed by polyphenols with antioxidant capacity, which is thought to affect the progression of diabetic nephropathy. Therefore, clarification of how polyphenols affect the onset and progression of diabetic nephropathy may provide insights into new treatments for this illness.
Collapse
Affiliation(s)
- Masumi Kamiyama
- Department of Food and Nutrition, Jumonji University, 2-1-28, Sugasawa, Niiza 352-8510, Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kumar D, Dutta P, Ramachandran R, Bhattacharyya R, Banerjee D. Excreted albumin of diabetic microalbuminuria cases exhibits pseudo esterase activity: A new way to explore microalbuminuria, perhaps with more information. Clin Chim Acta 2025; 565:119947. [PMID: 39216816 DOI: 10.1016/j.cca.2024.119947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Microalbuminuria is associated with several clinical conditions of public health concern. Particularly in diabetic patients, there is routine microalbuminuria screening to understand whether the renal complication has progressed to the microalbuminuria stage or not. Therefore, microalbuminuria detection is a matter of considerable interest. For such detection, the clinical labs rely on immunochemical methods. Nevertheless, the immunochemical methods are believed to be less sensitive for the purpose. So, the need arises for continuous research in the field. We believe that pseudoesterase activity of the excreted albumin in microalbuminuria cases is a potential target. This aspect is investigated here and it is shown that the excreted albumin in diabetic microalbuminuria cases retains its pseudoesterase activity, unlike the overt albuminuria cases. METHODS The cases of diabetic nephropathy and healthy controls were included in the study. The patients were divided into diabetic controls microalbuminuria, and overt albuminuria group considering the albumin to creatinine ratio (ACR). The urinary proteins of the cases were isolated by centrifugation. The obtained protein pellet was then checked for pseudoesterase activity by electrophoretic and fluorescence-based methods. The CD spectroscopy and LC-MS study was carried out to show the suitability of the substrate for the detection of albumin pseudoesterase activity. To further, understand the structure-function relation, molecular docking studies were carried out. RESULTS From the CD and LC-MS study the suitability of the used substrate was confirmed. The electrophoretic and fluorescence study showed that the protein of the microalbuminuria group retained the pseudoesterase activity whereas the same is lost in the overt albuminuria group. The molecular docking studies indicated that a change in albumin structure may result in a change in its pseudoesterase activity. CONCLUSION The urinary protein of diabetic microalbuminuria cases exhibits pseudoesterase activity. It distinguishes the excreted protein in the diabetic albuminuria group and the overt albuminuria group. This is the first study that showed the retention of pseudoesterase property in excreted albumin. Further, in this study a simple test is developed that distinguishes the excreted albumin in the microalbuminuria group and overt albuminuria group.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Pinaki Dutta
- Department of Endocrinology, PGIMER, Chandigarh 160012, India
| | | | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
8
|
Bin Dayel AF, Alrasheed NM, Alonazi AS, Alamin MA, Al-Mutairi NM, Alateeq RA. Renoprotective effect of liraglutide on diabetic nephropathy by modulation of Krüppel-like transcription factor 5 expression in rats. J Pharm Pharmacol 2024; 76:1563-1571. [PMID: 39403839 DOI: 10.1093/jpp/rgae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a serious consequence of diabetes that can develop through the lysophosphatidic acid axis. The purpose of this study was to determine whether the antidiabetic drug liraglutide can slow the development of diabetic kidney damage by altering the lysophosphatidic acid axis via KLF5. METHODS Wistar albino rats were divided into nondiabetic and diabetic rats (resulting from an intraperitoneal streptozotocin dose of 30 mg/kg and a high-fat diet). These rats were further divided into four groups: nondiabetic control, liraglutide-treated nondiabetic, diabetic control, and liraglutide-treated diabetic. The nondiabetic and diabetic control groups received normal saline for 42 days, while the liraglutide-treated nondiabetic and diabetic groups received normal saline for 21 days, followed by a subcutaneous dose of liraglutide (200 μg/kg/day) for 21 days. Subsequently, serum levels of DN biomarkers were evaluated, and kidney tissues were histologically examined. The protein expression of PCNA, autotaxin, and KLF5 was detected. KEY FINDINGS Liraglutide treatment in diabetic rats decreased DN biomarkers, histological abnormalities in kidney tissues, and the protein expression of PCNA, autotaxin, and KLF5. CONCLUSION Liraglutide can slow the progression of DN by modulating KLF5-related lysophosphatidic acid axis. Thus, liraglutide may be an effective treatment for preventing or mitigating diabetes-related kidney damage.
Collapse
Affiliation(s)
- Anfal F Bin Dayel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asma S Alonazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maha A Alamin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawal M Al-Mutairi
- PharmD Program, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raghad A Alateeq
- PharmD Program, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Jin J, Zhang M. Research progress on the role of extracellular vesicles in the pathogenesis of diabetic kidney disease. Ren Fail 2024; 46:2352629. [PMID: 38769599 PMCID: PMC11107856 DOI: 10.1080/0886022x.2024.2352629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.
Collapse
Affiliation(s)
- Jiangyuan Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
10
|
Rhode H, Tautkus B, Weigel F, Schitke J, Metzing O, Boeckhaus J, Kiess W, Gross O, Dost A, John-Kroegel U. Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases-Independently of Usual Markers of Kidney Impairment and Inflammation. Int J Mol Sci 2024; 25:9320. [PMID: 39273271 PMCID: PMC11395411 DOI: 10.3390/ijms25179320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glomerular kidney diseases typically begin insidiously and can progress to end stage kidney failure. Early onset of therapy can slow down disease progression. Early diagnosis is required to ensure such timely therapy. The goal of our study was to evaluate protein biomarkers (BMs) for common nephropathies that have been described for children with Alport syndrome. Nineteen candidate BMs were determined by commercial ELISA in children with congenital anomalies of the kidneys and urogenital tract, inflammatory kidney injury, or diabetes mellitus. It is particularly essential to search for kidney disease BMs in children because they are a crucial target group that likely exhibits early disease stages and in which misleading diseases unrelated to the kidney are rare. Only minor differences in blood between affected individuals and controls were found. However, in urine, several biomarker candidates alone or in combination seemed to be promising indicators of renal injury in early disease stages. The BMs of highest sensitivity and specificity were collagen type XIII, hyaluronan-binding protein 2, and complement C4-binding protein. These proteins are unrelated to inflammation markers or to risk factors for and signs of renal failure. In conclusion, our study evaluated several strong candidates for screening for early stages of kidney diseases and can help to establish early nephroprotective regimens.
Collapse
Grants
- German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20). German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20).
Collapse
Affiliation(s)
- Heidrun Rhode
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Baerbel Tautkus
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Friederike Weigel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Julia Schitke
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Oliver Metzing
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Jan Boeckhaus
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Wieland Kiess
- Hospital for Children and Adolescents, University of Leipzig, Liebigstr. 20a, 04103 Leipzig, Germany
| | - Oliver Gross
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Axel Dost
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Ulrike John-Kroegel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
11
|
Gumede NM, Lembede BW, Nkomozepi P, Brooksbank RL, Erlwanger KH, Chivandi E. Protective effect of β-sitosterol against high-fructose diet-induced oxidative stress, and hepatorenal derangements in growing female sprague-dawley rats. Lab Anim Res 2024; 40:30. [PMID: 39187895 PMCID: PMC11346026 DOI: 10.1186/s42826-024-00215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Chronic consumption of a high-fructose diet causes oxidative stress that compromises kidney and liver health. β-sitosterol (Bst), a phytosterol, is a functional nutrient with health benefits. β-sitosterol antioxidant activity protects the liver and kidney from ROS-mediated damage and lipid peroxidation. We evaluated the potential renoprotective and hepatoprotective effects of orally administrated β-sitosterol in high-fructose diet-fed growing female rats. Thirty-five 21-day old female Sprague-Dawley rat pups were randomly assigned to and administered the following treatments for 12 weeks: group I- standard rat chow (SRC) + plain drinking water (PW) + plain gelatine cube (PC); group II- SRC + 20% w/v fructose solution (FS) as drinking fluid + PC; group III- SRC + FS + 100 mg/kg body mass (BM) fenofibrate in gelatine cube; group IV- SRC + FS + 20 mg/kg BM β-sitosterol gelatine cube (Bst) and group V- SRC + PW + Bst. The rats were fasted overnight, weighed then euthanised. Blood was collected, centrifuged and plasma harvested. Livers and kidneys were excised, weighed and samples preserved for histological assessments. Plasma biomarkers of oxidative stress, liver and kidney function and renal tubular injury were assessed. RESULTS High fructose diet fed rats had increased plasma KIM-1, NGAL (p < 0.001) and MDA levels (p < 0.05). Dietary fructose caused microvesicular and macrovesicular steatosis, and reduced glomerular density, Bowman's capsule area and urinary space. β-sitosterol protected against the high-fructose diet-induced hepatic steatosis and glomerular disturbances without adverse effects on liver and kidney function. CONCLUSIONS β-sitosterol, as a dietary supplement, could potentially be exploited to prevent high-fructose diet-induced NAFLD and to protect against high-fructose diet-induced renal tubular injury.
Collapse
Affiliation(s)
- Nontobeko M Gumede
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private bag X32, Pretoria, 0031, South Africa.
| | - Busisani W Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, Republic of South Africa
| | - Richard L Brooksbank
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| |
Collapse
|
12
|
Mondal A, Bose C, Pramanik S, Dash D, Mukherjee B, Malik RA, Mukhopadhyay S. Circulating netrin-1 levels are reduced and related to corneal nerve fiber loss in patients with diabetic neuropathy. J Diabetes Investig 2024; 15:1068-1074. [PMID: 38725153 PMCID: PMC11292387 DOI: 10.1111/jdi.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS/INTRODUCTION Deficiency of neurotropic factors is implicated in diabetic neuropathy (DN). Netrin-1 is a neurotropic factor, but its association with DN has not been explored. We have assessed the association between serum netrin-1 levels and early diabetic neuropathy assessed by quantifying corneal nerve fiber loss using corneal confocal microscopy. MATERIALS AND METHODS A total of 72 participants with type 2 diabetes, without and with corneal nerve fiber loss (DN- n = 42, DN+ n = 30), and 45 healthy controls were studied. Serum netrin-1 levels were measured by enzyme-linked immunosorbent assay, and corneal nerve morphology was assessed using corneal confocal microscopy. RESULTS Corneal nerve fiber density, branch density, fiber length and serum netrin-1 levels were significantly lower in the DN- and DN+ groups compared with controls (P < 0.001). Netrin-1 levels correlated with corneal nerve fiber length in the DN+ group (r = 0.51; P < 0.01). A receiver operating characteristic curve analysis showed that a netrin-1 cut-off value of 599.6 (pg/mL) had an area under the curve of 0.85, with a sensitivity of 76% and specificity of 74% (P < 0.001; 95% confidence interval 0.76-0.94) for differentiating patients with and without corneal nerve loss. CONCLUSIONS Serum netrin-1 levels show a progressive decline with increasing severity of small nerve fiber damage in patients with diabetes. Netrin-1 could act as a biomarker for small nerve fiber damage in DN.
Collapse
Affiliation(s)
- Asif Mondal
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research (IPGME&R)KolkataWest BengalIndia
| | - Chiranjit Bose
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research (IPGME&R)KolkataWest BengalIndia
| | - Subhasish Pramanik
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research (IPGME&R)KolkataWest BengalIndia
| | - Debasish Dash
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research (IPGME&R)KolkataWest BengalIndia
| | - Bidisha Mukherjee
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research (IPGME&R)KolkataWest BengalIndia
| | - Rayaz A Malik
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
| | - Satinath Mukhopadhyay
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research (IPGME&R)KolkataWest BengalIndia
| |
Collapse
|
13
|
Ozaki Y, Uemura Y, Tanaka A, Yamaguchi S, Okajima T, Mitsuda T, Ishikawa S, Takemoto K, Murohara T, Watarai M. Clinical Impacts of Urinary Neutrophil Gelatinase-Associated Lipocalin in Patients With Chronic Kidney Disease Undergoing Percutaneous Coronary Intervention. Circ J 2024; 88:944-950. [PMID: 38538331 DOI: 10.1253/circj.cj-24-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with poor prognosis in patients undergoing percutaneous coronary intervention (PCI). Urinary neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker for renal injury. However, the association between urinary NGAL concentrations and renal and cardiovascular events in patients with CKD undergoing PCI has not been elucidated. This study investigated the clinical impact of urinary NGAL concentrations on renal and cardiovascular outcomes in patients with non-dialysis CKD undergoing PCI. METHODS AND RESULTS We enrolled 124 patients with non-dialysis CKD (estimated glomerular filtration rate <60 mL/min/1.73 m2) undergoing elective PCI. Patients were divided into low and high NGAL groups based on the median urinary NGAL concentration measured the day before PCI. Patients were monitored for renal and cardiovascular events during the 2-year follow-up period. Kaplan-Meier analyses showed that the incidence of renal and cardiovascular events was higher in the high than low NGAL group (log-rank P<0.001 and P=0.032, respectively). Multivariate Cox proportional hazards analyses revealed that urinary NGAL was an independent risk factor for renal (hazard ratio [HR] 4.790; 95% confidence interval [CI] 1.537-14.924; P=0.007) and cardiovascular (HR 2.938; 95% CI 1.034-8.347; P=0.043) events. CONCLUSIONS Urinary NGAL could be a novel and informative biomarker for predicting subsequent renal and cardiovascular events in patients with CKD undergoing elective PCI.
Collapse
Affiliation(s)
- Yuta Ozaki
- Cardiovascular Center, Anjo Kosei Hospital
| | | | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | | | | | | | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | |
Collapse
|
14
|
Lv X, Shang Y, Ning Y, Yu W, Wang J. Pharmacological targets of SGLT2 inhibitors on IgA nephropathy and membranous nephropathy: a mendelian randomization study. Front Pharmacol 2024; 15:1399881. [PMID: 38846092 PMCID: PMC11155304 DOI: 10.3389/fphar.2024.1399881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Emerging research suggests that sodium-glucose cotransporter 2 (SGLT2) inhibitors may play a pivotal role in the treatment of primary glomerular diseases. This study was aimed to investigate potential pharmacological targets connecting SGLT2 inhibitors with IgA nephropathy (IgAN) and membranous nephropathy (MN). Methods A univariate Mendelian randomization (MR) analysis was conducted using publicly available genome-wide association studies (GWAS) datasets. Co-localization analysis was used to identify potential connections between target genes and IgAN and MN. Then, Comparative Toxicogenomics Database (CTD) was employed to predict diseases associated with these target genes and SGLT2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin). Subsequently, phenotypic scan analyses were applied to explore the causal relationships between the predicted diseases and target genes. Finally, we analyzed the immune signaling pathways involving pharmacological target genes using the Kyoto encyclopedia of genes and genomes (KEGG). Results The results of MR analysis revealed that eight drug targets were causally linked to the occurrence of IgAN, while 14 drug targets were linked to MN. In the case of IgAN, LCN2 and AGER emerged as co-localized genes related to the pharmacological agent of dapagliflozin and the occurrence of IgAN. LCN2 was identified as a risk factor, while AGER was exhibited a protective role. KEGG analysis revealed that LCN2 is involved in the interleukin (IL)-17 immune signaling pathway, while AGER is associated with the neutrophil extracellular traps (NETs) signaling immune pathway. No positive co-localization results of the target genes were observed between two other SGLT2 inhibitors (canagliflozin and empagliflozin) and the occurrence of IgAN, nor between the three SGLT2 inhibitors and the occurrence of MN. Conclusion Our study provided evidence supporting a causal relationship between specific SGLT2 inhibitors and IgAN. Furthermore, we found that dapagliflozin may act on IgAN through the genes LCN2 and AGER.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shang
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
15
|
Hou Q, Yi B. The role of long non-coding RNAs in the development of diabetic kidney disease and the involved clinical application. Diabetes Metab Res Rev 2024; 40:e3809. [PMID: 38708843 DOI: 10.1002/dmrr.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Diabetic kidney disease (DKD), one of the common microvascular complications of diabetes, is increasing in prevalence worldwide and can lead to End-stage renal disease. However, there are still gaps in our understanding of the pathophysiology of DKD, and both current clinical diagnostic methods and treatment strategies have drawbacks. According to recent research, long non-coding RNAs (lncRNAs) are intimately linked to the developmental process of DKD and could be viable targets for clinical diagnostic decisions and therapeutic interventions. Here, we review recent insights gained into lncRNAs in pathological changes of DKD such as mesangial expansion, podocyte injury, renal tubular injury, and interstitial fibrosis. We also discuss the clinical applications of DKD-associated lncRNAs as diagnostic biomarkers and therapeutic targets, as well as their limitations and challenges, to provide new methods for the prevention, diagnosis, and treatment of DKD.
Collapse
Affiliation(s)
- Qizhuo Hou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Maes A, Borgel O, Braconnier C, Balcaen T, Wevers M, Halbgebauer R, Huber-Lang M, Kerckhofs G. X-Ray-Based 3D Histopathology of the Kidney Using Cryogenic Contrast-Enhanced MicroCT. Int J Biomed Imaging 2024; 2024:3924036. [PMID: 38634014 PMCID: PMC11022514 DOI: 10.1155/2024/3924036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024] Open
Abstract
The kidney's microstructure, which comprises a highly convoluted tubular and vascular network, can only be partially revealed using classical 2D histology. Considering that the kidney's microstructure is closely related to its function and is often affected by pathologies, there is a need for powerful and high-resolution 3D imaging techniques to visualize the microstructure. Here, we present how cryogenic contrast-enhanced microCT (cryo-CECT) allowed 3D visualization of glomeruli, tubuli, and vasculature. By comparing different contrast-enhancing staining agents and freezing protocols, we found that the preferred sample preparation protocol was the combination of staining with 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate and freezing by submersion in isopentane at -78°C. This optimized protocol showed to be highly sensitive, allowing to detect small pathology-induced microstructural changes in a mouse model of mild trauma-related acute kidney injury after thorax trauma and hemorrhagic shock. In summary, we demonstrated that cryo-CECT is an effective 3D histopathological tool that allows to enhance our understanding of kidney tissue microstructure and their related function.
Collapse
Affiliation(s)
- Arne Maes
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Onno Borgel
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Clara Braconnier
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Tim Balcaen
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Martine Wevers
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Greet Kerckhofs
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Takagi A, Kusunoki Y, Ohigashi M, Osugi K, Inoue C, Inoue M, Tsunoda T, Kadoya M, Konishi K, Katsuno T, Koyama H. Association between continuous glucose monitoring-derived glycemic control indices and urinary biomarkers of diabetic kidney disease: Hyogo Diabetes Hypoglycemia Cognition Complications study. Acta Diabetol 2024; 61:413-423. [PMID: 38006524 DOI: 10.1007/s00592-023-02214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
AIMS Glomerular damage and proximal tubular damage play an important role in the pathogenesis of diabetic kidney disease. This study aimed to investigate the relationship between the urinary markers of proximal tubular injury, including urinary liver-type fatty acid-binding protein-to-creatinine ratio (uL-FABP/Cr) and urinary N-acetyl-β-D-glucosaminidase-to-creatinine ratio (uNAG/Cr), and glycemic control status. METHODS This cross-sectional study included 245 and 39 patients with type 2 diabetes mellitus (T2DM) and non-T2DM (NDM), respectively. The participants of this study were fitted with retrospective CGM, and glycemic control indices, such as time in range (TIR) and glycemia risk index (GRI), were calculated. RESULTS The results were presented as medians (interquartile ranges). The uL-FABP/Cr was significantly higher in the microalbuminuria than in the normo-albuminuria group [4.2 (2.7-7.1) and 2.2 (1.4-3.4) μg/gCr, respectively, P < 0.001], while the uNAG/Cr in the normo-albuminuria group [6.3 (4.5-10.1) U/gCr] was significantly higher than that in the NDM group [5.3 (3.8-6.3) U/gCr, P = 0.048] but significantly lower than that in the microalbuminuria group [9.2 (6.4-11.1) U/gCr, P = 0.004]. The multivariate logistic regression analysis indicated that CGM-derived TIR was significantly associated with the urinary albumin-to-creatinine ratio [uAlb/Cr, odds ratio (OR) 0.985, 95% confidence interval (CI) 0.971-0.998, P = 0.029] and uNAG/Cr (OR 0.973, 95% CI 0.957-0.989, P = 0.001) independent of renal function. GRI was similarly associated with uAlb/Cr and uNAG/Cr. CONCLUSION The findings of this study indicated that uNAG/Cr was elevated before albuminuria development and was associated with CGM-derived TIR and GRI.
Collapse
Affiliation(s)
- Ayako Takagi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshiki Kusunoki
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Mana Ohigashi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Keiko Osugi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Chikako Inoue
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Maki Inoue
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Taku Tsunoda
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Manabu Kadoya
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kosuke Konishi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tomoyuki Katsuno
- Department of Occupational Therapy, School of Rehabilitation, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
18
|
Bagińska J, Kirejczyk JK, Korzeniecka-Kozerska A. Evaluation of Urinary L-FABP as a Tubular Damage Marker in Pediatric Neurogenic Bladder-A Pilot Study. J Clin Med 2024; 13:736. [PMID: 38337429 PMCID: PMC10856261 DOI: 10.3390/jcm13030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The article aims to find potential biomarker for the detection of tubular damage in pediatric neurogenic bladder (NB) by investigating urinary levels of liver-type fatty acid-binding protein (uL-FABP). This prospective analysis was conducted on two groups: 42 children with NB and 18 healthy children. The uL-FABP concentrations were measured using ELISA methods. The medical charts of the children were examined to determine age, sex, anthropometric measurements, activity assessment using Hoffer's scale, and renal function parameters. The results revealed that the uL-FABP/creatinine ratio was higher in the study group compared with the reference group, but the difference was not statistically significant (p = 0.52, p > 0.05). However, the uL-FABP/creatinine ratio exhibited a wider range in NB patients compared to the reference group. NB children with proteinuria and the history of high-grade vesicoureteral reflux (VUR) tended to have the highest uL-FABP concentrations. In conclusion, uL-FABP may be considered a potential tubular damage biomarker in children with NB. Proteinuria and the history of VUR may be the factors influencing the uL-FABP.
Collapse
Affiliation(s)
- Joanna Bagińska
- Department of Pediatrics and Nephrology, Medical University of Białystok, 17 Waszyngtona Str., 15-274 Białystok, Poland;
| | | | - Agata Korzeniecka-Kozerska
- Department of Pediatrics and Nephrology, Medical University of Białystok, 17 Waszyngtona Str., 15-274 Białystok, Poland;
| |
Collapse
|
19
|
Mohammed MM, Rehim SRA, Okasha AMM, El-Mezayen H, Mohammed DGAN, Gomaa W, Mourad F, Ayad EG. Phenobarbital ameliorates hyperglycemia-induced angiogenesis in diabetic nephropathy-possible intervention at the HIF-1α/VEGF axis. UKRAINIAN BIOCHEMICAL JOURNAL 2023; 95:40-49. [DOI: 10.15407/ubj95.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Hyperglycemia contributes to a cascade of inflammatory responses in kidneys that result in the development of renal hypoxia and angiogenesis with subsequent chronic renal failure. As the hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) axis is a key pathway for neovascularization, the inhibition of this axis is a target for renal angiogenesis therapy. We speculate that Phenobarbital (PB) which has a potential to reduce vascularization in clinical settings might have an influence on the development of angiogenesis in diabetic kidney. The aim of the study was to explore the effects of PB on the HIF-1α and VEGF expression and angiogenesis in renal tissue of rats with hyperglycemia and diabetic nephropathy. Sixty-four male Wistar rats were devided into 4 groups: control group received a single intraperitoneal saline injection; PB group received 0.05% PB orally in drinking water; diabetic group received a single intra-peritoneal STZ (65 mg/kg) injection; PB-STZ group received 0.05% PB orally two weeks before STZ administration. At the end of the experiment period (8 weeks), the kidneys were removed and used for biochemical analyses. Serum glucose, urea and creatinine levels, IL-6 levels in kidney homogenate and changes in HIF-1α and VEGF gene expression were estimated. Hematoxylin-eosin staining was performed for histopathological examination. The results obtained showed that both HIF-1α and VEGF gene expression and IL6 level in diabetic rat group were significantly elevated compared to that in control group, whereas in PB and PB-STZ groups, these indices were significantly down-regulated compared to the diabetic group. Abundant glomerular congestion and mesangial proliferation were detected in diabetic rat renal tissues. However, in PB-treated diabetic group, newly formed vessels were significantly decreased. These findings confirmed that phenobarbital, affecting the HIF-1α/VEGF signaling pathway, ameliorates angiogenesis after hyperglycemic kidney injury. Keywords: angiogenesis, HIF-1α, hyperglycemia, IL6, kidney injury, VEGF
Collapse
|
20
|
Huang HJ, Chou CL, Sandar TT, Liu WC, Yang HC, Lin YC, Zheng CM, Chiu HW. Currently Used Methods to Evaluate the Efficacy of Therapeutic Drugs and Kidney Safety. Biomolecules 2023; 13:1581. [PMID: 38002263 PMCID: PMC10669823 DOI: 10.3390/biom13111581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Kidney diseases with kidney failure or damage, such as chronic kidney disease (CKD) and acute kidney injury (AKI), are common clinical problems worldwide and have rapidly increased in prevalence, affecting millions of people in recent decades. A series of novel diagnostic or predictive biomarkers have been discovered over the past decade, enhancing the investigation of renal dysfunction in preclinical studies and clinical risk assessment for humans. Since multiple causes lead to renal failure, animal studies have been extensively used to identify specific disease biomarkers for understanding the potential targets and nephropathy events in therapeutic insights into disease progression. Mice are the most commonly used model to investigate the mechanism of human nephropathy, and the current alternative methods, including in vitro and in silico models, can offer quicker, cheaper, and more effective methods to avoid or reduce the unethical procedures of animal usage. This review provides modern approaches, including animal and nonanimal assays, that can be applied to study chronic nonclinical safety. These specific situations could be utilized in nonclinical or clinical drug development to provide information on kidney disease.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Tin Tin Sandar
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Hsiu-Chien Yang
- Division of Nephrology, Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yen-Chung Lin
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
21
|
Xu W, Xue W, Zhou Z, Wang J, Qi H, Sun S, Jin T, Yao P, Zhao JY, Lin F. Formate Might Be a Novel Potential Serum Metabolic Biomarker for Type 2 Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2023; 16:3147-3160. [PMID: 37842336 PMCID: PMC10576463 DOI: 10.2147/dmso.s428933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomics technique. Methods Thirty-six patients enrolled in this study were divided into two groups: 18 T2DM patients without DPN (T2DM group) and 18 T2DM patients with DPN (DPN group). Serum metabolites were measured via 1H-NMR spectroscopy. Bioinformatic approaches including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), independent sample t-test, Fisher's test, Pearson and Spearman correlation analysis, Stepwise multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were used to identify the potential altered serum biomarkers. Results A total of 20 metabolites were obtained and further analyzed. Formate was identified as the only potential biomarker that decreased in the DPN group with statistical significance after multiple comparisons (p<0.05). Formate also displayed a negative relationship with some elevated clinical markers in DPN. ROC curve analysis showed a good discriminative ability for formate in DPN with an area under the curve (AUC) value of 0.981. Conclusion Formate could be considered a potential serum metabolic biomarker for DPN. The reduced level of formate in DPN may be associated with mitochondrial dysfunction and gut microbiota alteration. Monitoring the level of serum formate would be an important strategy for the early diagnosis of DPN and a supplement of formate may be a promising treatment for DPN in the future.
Collapse
Affiliation(s)
- Weisheng Xu
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
- School of Medicine, Tongji University, Shanghai, 200331, People’s Republic of China
| | - Wangsheng Xue
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Zeyu Zhou
- School of Life Sciences, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Jiying Wang
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Hui Qi
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Shiyu Sun
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Tong Jin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Ping Yao
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200090, People’s Republic of China
| | - Fuqing Lin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
22
|
Zhang H, Huang L, Yang Y, Qiu L, He Q, Liu J, Qian L, Luo J. Evaluation of Early Diabetic Kidney Disease Using Ultrasound Localization Microscopy: A Feasibility Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2277-2292. [PMID: 37146242 DOI: 10.1002/jum.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE The purpose of this study is to detect the hemodynamic changes of microvessels in the early stage of diabetic kidney disease (DKD) and to test the feasibility of ultrasound localization microscopy (ULM) in early diagnosis of DKD. METHODS In this study, streptozotocin (STZ) induced DKD rat model was used. Normal rats served as the control group. Conventional ultrasound, contrast-enhanced ultrasound (CEUS), and ULM data were collected and analyzed. The kidney cortex was divided into four segments, which are 0.25-0.5 mm (Segment 1), 0.5-0.75 mm (Segment 2), 0.75-1 mm (Segment 3), and 1-1.25 mm (Segment 4) away from the renal capsule, respectively. The mean blood flow velocities of arteries and veins in each segment were separately calculated, and also the velocity gradients and overall mean velocities of arteries and veins. Mann-Whitney U test was used for comparison of the data. RESULTS Quantitative results of microvessel velocity obtained by ULM show that the arterial velocity of Segments 2, 3, and 4, and the overall mean arterial velocity of the four segments in the DKD group are significantly lower than those in the normal group. The venous velocity of Segment 3 and the overall mean venous velocity of the four segments in the DKD group are higher than those in the normal group. The arterial velocity gradient in the DKD group is lower than that in the normal group. CONCLUSION ULM can visualize and quantify the blood flow and may be used for early diagnosis of DKD.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yi Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Lanyan Qiu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jinping Liu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Robles-Osorio ML, Sabath E. Tight junction disruption and the pathogenesis of the chronic complications of diabetes mellitus: A narrative review. World J Diabetes 2023; 14:1013-1026. [PMID: 37547580 PMCID: PMC10401447 DOI: 10.4239/wjd.v14.i7.1013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
The chronic complications of diabetes mellitus constitute a major public health problem. For example, diabetic eye diseases are the most important cause of blindness, and diabetic nephropathy is the most frequent cause of chronic kidney disease worldwide. The cellular and molecular mechanisms of these chronic complications are still poorly understood, preventing the development of effective treatment strategies. Tight junctions (TJs) are epithelial intercellular junctions located at the most apical region of cell-cell contacts, and their main function is to restrict the passage of molecules through the paracellular space. The TJs consist of over 40 proteins, and the most important are occludin, claudins and the zonula occludens. Accumulating evidence suggests that TJ disruption in different organs, such as the brain, nerves, retina and kidneys, plays a fundamental pathophysiological role in the development of chronic complications. Increased permeability of the blood-brain barrier and the blood-retinal barrier has been demonstrated in diabetic neuropathy, brain injury and diabetic retinopathy. The consequences of TJ disruption on kidney function or progression of kidney disease are currently unknown. In the present review, we highlighted the molecular events that lead to barrier dysfunction in diabetes. Further investigation of the mechanisms underlying TJ disruption is expected to provide new insights into therapeutic approaches to ameliorate the chronic complications of diabetes mellitus.
Collapse
Affiliation(s)
| | - Ernesto Sabath
- Renal and Metabolism Unit, Hospital General de Querétaro, Queretaro 76180, Mexico
- Department of Nutrition, Universidad Autónoma de Queretaro, Queretaro 76230, Mexico
| |
Collapse
|
24
|
Pediatric Diabetic Nephropathy: Novel Insights from microRNAs. J Clin Med 2023; 12:jcm12041447. [PMID: 36835983 PMCID: PMC9961327 DOI: 10.3390/jcm12041447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Diabetic nephropathy (DN) represents the most common microvascular complication in patients with diabetes. This progressive kidney disease has been recognized as the major cause of end-stage renal disease with higher morbidity and mortality. However, its tangled pathophysiology is still not fully known. Due to the serious health burden of DN, novel potential biomarkers have been proposed to improve early identification of the disease. In this complex landscape, several lines of evidence supported a critical role of microRNAs (miRNAs) in regulating posttranscriptional levels of protein-coding genes involved in DN pathophysiology. Indeed, intriguing data showed that deregulation of certain miRNAs (e.g., miRNAs 21, -25, -92, -210, -126, -216, and -377) were pathogenically linked to the onset and the progression of DN, suggesting not only a role as early biomarkers but also as potential therapeutic targets. To date, these regulatory biomolecules represent the most promising diagnostic and therapeutic options for DN in adult patients, while similar pediatric evidence is still limited. More, findings from these elegant studies, although promising, need to be deeper investigated in larger validation studies. In an attempt to provide a comprehensive pediatric overview in the field, we aimed to summarize the most recent evidence on the emerging role of miRNAs in pediatric DN pathophysiology.
Collapse
|