1
|
Olas B. The Pulp, Peel, Seed, and Food Products of Persea americana as Sources of Bioactive Phytochemicals with Cardioprotective Properties: A Review. Int J Mol Sci 2024; 25:13622. [PMID: 39769384 PMCID: PMC11728118 DOI: 10.3390/ijms252413622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Botanically speaking, avocado (Persea americana) is a fruit. It consists of a single large seed surrounded by a creamy, smooth-textured edible mesocarp or pulp covered by a thick, bumpy skin. Avocado is a nutrient-dense fruit, containing a range of bioactive compounds which have been independently associated with cardiovascular health. These compounds have been obtained from the pulp, peel, and seed. This narrative review summarizes the current understanding of the cardioprotective potential of avocado fruit, especially the pulp and seed, and its food products, and examines the biological mechanism behind it.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Neves BB, Pinto S, Pais R, Batista J, Domingues MR, Melo T. Looking into the lipid profile of avocado and byproducts: Using lipidomics to explore value-added compounds. Compr Rev Food Sci Food Saf 2024; 23:e13351. [PMID: 38682674 DOI: 10.1111/1541-4337.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
Consumer priorities in healthy diets and lifestyle boosted the demand for nutritious and functional foods as well as plant-based ingredients. Avocado has become a food trend due to its nutritional and functional values, which in turn is increasing its consumption and production worldwide. Avocado edible portion has a high content of lipids, with the pulp and its oil being rich in monounsaturated fatty acids and essential omega - 3 and omega - 6 polyunsaturated fatty acids (PUFA). These fatty acids are mainly esterified in triacylglycerides, the major lipids in pulp, but also in minor components such as polar lipids (phospholipids and glycolipids). Polar lipids of avocado have been overlooked despite being recently highlighted with functional properties as well. The growth in the industry of avocado products is generating an increased amount of their byproducts, such as seed and peels (nonedible portions), still undervalued. The few studies on avocado byproducts pointed out that they also contain interesting lipids, with seeds particularly rich in polar lipids bearing PUFA, and thus can be reused as a source of add-value phytochemical. Mass spectrometry-based lipidomics approaches appear as an essential tool to unveil the complex lipid signature of avocado and its byproducts, contributing to the recognition of value-added lipids and opening new avenues for their use in novel biotechnological applications. The present review provides an up-to-date overview of the lipid signature from avocado pulp, peel, seed, and its oils.
Collapse
Affiliation(s)
- Bruna B Neves
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Sara Pinto
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rita Pais
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Joana Batista
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
3
|
Razola-Díaz MDC, Verardo V, Guerra-Hernández EJ, García-Villanova Ruiz B, Gómez-Caravaca AM. Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants (Basel) 2023; 12:1409. [PMID: 37507948 PMCID: PMC10376872 DOI: 10.3390/antiox12071409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Avocado peel and seed are the main by-products of avocado processing and are considered as promising sources of phenolic compounds with biological activities. Thus, this research focuses on the establishment, for the first time, of ultrasound-assisted extraction of flavan-3-ols with high antioxidant activity from avocado peel and seed using a sonotrode. Indeed, 2 Box-Behnken designs were performed for 15 experiments, with each design having three independent factors (ratio ethanol/water (v/v), time (min) and amplitude (%)). In both models, the responses included total procyanidins (flavan-3-ols) measured via HPLC-FLD and antioxidant activity measured via DPPH, ABTS and FRAP. The results showed that applying the sonotrode extraction method could increase flavan-3-ols recovery by 54% and antioxidant activity by 62-76% compared to ultrasound bath technology. Therefore, this technology was demonstrated to be a non-thermal, low time-consuming and scalable method that allowed the recovery of flavan-3-ols from avocado by-products that could be used as functional ingredients.
Collapse
Affiliation(s)
- María Del Carmen Razola-Díaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | | | | | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Asghar HA, Syed QA, Shukat R, Israr B. EXPLORING the prophylactic potential of Azadirachta indica leaf extract against dyslipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116008. [PMID: 36521768 DOI: 10.1016/j.jep.2022.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several studies revealed that different parts of Azadirachta indica A. Juss, has therapeutic potential against inflammatory issues and dyslipidemia which is a major contributing cause to cardiovascular diseases, oxidative stress and serum glucose levels, etc. AIM OF STUDY: Present study was conducted to evaluate anti-dyslipidemic capacity of Azadirachta indica leaf extract in dyslipidemic rabbits. MATERIALS AND METHODS Ethanolic extract of Azadirachta indica leaves was obtained by using Soxhlet apparatus. This extract was used for efficacy study on rabbits. In this context, 25 healthy rabbits were selected for study, Efficacy trial involved five groups of rabbits, 5 rabbits in each group; NC (Negative Control); healthy rabbits received normal diet. In remaining 20 rabbits, dyslipidemia was induced by using high fat diet for 28 days followed by administration of Azadirachta indica leaf ethanolic extract for 60 days in a dose-dependent manner. PC (Positive Control) include dyslipidemic rabbits received normal diet while G1, G2, G3 groups included dyslipidemic rabbits receiving different concentrations of Azadirachta indica leaf extract (i.e. 300, 500 and 700 mg/kg of body weight, respectively). Blood samples were analyzed for serum lipid profile after every 15 days to determine the effect of treatments. RESULTS Significant reduction in total cholesterol (60 ± 3.4 mg/dL), triglycerides (40.31 ± 2.5 mg/dL) and low-density lipoprotein (28.87 ± 2.1 mg/dL) was observed in G2 (P ≤ 0.05)while a significant increase was observed in high-density lipoprotein (60.47 ± 1.7 mg/dL) of G2 (P ≤ 0.05) as compared to other groups. CONCLUSION Results revealed that ethanolic extract of Azadirachta indica leaves in G2 group (@ 500 mg/kg of body weight) normalized lipid profile in dyslipidemic rabbits after 60 days of extract administration which significantly lowered TC, TG, LDL levels (P ≤ 0.05) and improved HDL level.
Collapse
Affiliation(s)
- Hafiza Anam Asghar
- National Institute of Food Science & Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Qamar Abbas Syed
- National Institute of Food Science & Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Rizwan Shukat
- National Institute of Food Science & Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Beenish Israr
- Institute of Home Sciences, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants (Basel) 2022; 11:antiox11061049. [PMID: 35739946 PMCID: PMC9220077 DOI: 10.3390/antiox11061049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Avocado seed and peel are the main by-products from avocado industrialisation, and account for nearly 30% of fruit weight. Although they are usually discarded, their high phenolic content has been deeply associated with several nutritional and functional benefits. Thus, for a comprehensive analytical evaluation of both semi-industrial extracts, various steps have been developed: tentative characterisation and quantification of the phenolic composition using HPLC-ESI-qTOF-MS, determination of TPC and antioxidant activity by Folin–Ciocalteu, FRAP, TEAC and ORAC methods, evaluation of scavenging capacity against different ROS and measurement of the enzymatic inhibitory potential against potentially harmful enzymes. Finally, their bioactive potential was tested in a human platelet model where antiaggregatory activity was measured. Hence, 48 different compounds were identified, where flavonoids and procyanidins were the most representative groups. The higher TPC was found in avocado peel extract (190 ± 3 mg/g), which showed more antioxidant power and more capacity to decrease ROS generation than seed extract (60 ± 2 mg/g). In addition, both extracts showed enzymatic inhibition, especially against hyaluronidase, xanthine oxidase and acetylcholinesterase. Lastly, avocado peel was proven to inhibit platelet aggregation with significant results at 1, 0.75 and 0.5 mg/mL, where the extract showed reducing effects on agonists’ expression such as p-selectin or GPIIb/IIIa complex. These results demonstrate that both semi-industrial extracts—above all, avocado peel—have an interesting potential to be exploited as a natural by-product with antioxidant properties with multiple applications for the prevention of different pathologies.
Collapse
|