1
|
Patel R, Kokori E, Olatunji G, Adejumo FA, Ukah JD, Babalola AE, Ndakotsu A, Abraham IC, Aderinto N. Therapeutic Potential of GLP-1 Receptor Agonists in Heart Failure with Preserved Ejection Fraction (HFpEF) in Obese Patients. Curr Heart Fail Rep 2025; 22:17. [PMID: 40366488 DOI: 10.1007/s11897-025-00704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW Heart failure with preserved ejection fraction (HFpEF) is increasingly prevalent among individuals with obesity, primarily due to metabolic dysfunction and structural cardiac remodeling. This review explores the emerging therapeutic role of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in managing HFpEF in obese populations. RECENT FINDINGS Recent clinical trials, including the STEP-HFpEF and SUMMIT studies, have shown that GLP-1 RAs such as semaglutide and tirzepatide significantly reduce body weight (13.3% and 13.9%, respectively), enhance exercise capacity (increases of 21.5m and 26m in 6-minute walk distance), and improve quality of life (19.5 and 16.6-point increases in KCCQ-CSS scores). Additionally, both agents demonstrated marked reductions in systemic inflammation, with C-reactive protein levels decreasing by 38.8% and 43.5%, respectively. GLP-1 RAs represent a promising class of agents targeting the cardiometabolic axis in HFpEF, offering meaningful improvements in functional capacity and symptom burden among obese patients. However, current evidence is limited by short trial durations, lack of population diversity, and insufficient long-term data. Future research should focus on more inclusive cohorts and extended outcomes such as hospitalization rates and cardiovascular events to fully define the long-term safety and efficacy of GLP-1 RAs in HFpEF management.
Collapse
Affiliation(s)
- Ravi Patel
- Methodist Health System Dallas, Dallas, TX, USA
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Joan Dumebi Ukah
- National Agency for Food and Drug Administration and Control, Lagos, Nigeria
| | | | - Andrew Ndakotsu
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | | | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
2
|
Nassar M, Gill AS, Marte E. Investigating the impact of intestinal glucagon-like peptide-1 on hypoglycemia in type 1 diabetes. World J Diabetes 2025; 16:99142. [PMID: 40093284 PMCID: PMC11885982 DOI: 10.4239/wjd.v16.i3.99142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/30/2024] [Accepted: 01/02/2025] [Indexed: 01/21/2025] Open
Abstract
Recent advances in understanding type 1 diabetes (T1D) highlight the complexity of managing hypoglycemia, a frequent and perilous complication of diabetes therapy. This letter delves into a novel study by Jin et al, which elucidates the role of intestinal glucagon-like peptide-1 (GLP-1) in the counterregulatory response to hypoglycemia in T1D models. The study employed immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay to track changes in GLP-1 and its receptor expression in diabetic mice subjected to recurrent hypoglycemic episodes. Findings indicate a significant increase in intestinal GLP-1 and GLP-1 receptor expression, correlating with diminished adrenal and glucagon responses, crucial for glucose stabilization during hypoglycemic events. This letter aims to explore the implications of these findings for future therapeutic strategies and the broader understanding of T1D management.
Collapse
Affiliation(s)
- Mahmoud Nassar
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare (ASIDE), Lewes, DE 19958, United States
| | - Angad Singh Gill
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare (ASIDE), Lewes, DE 19958, United States
| | - Erlin Marte
- Department of Endocrine, WNY VA Hospital, Buffalo, NY 14215, United States
| |
Collapse
|
3
|
Stoicovy RA, Cora N, Perez A, Nagliya D, Del Calvo G, Lopez TB, Weinstein EC, Borges JI, Maning J, Lymperopoulos A. Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor's anti-inflammatory effects. Inflamm Res 2024; 73:2043-2056. [PMID: 39305297 DOI: 10.1007/s00011-024-01950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast. METHODS & RESULTS Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation. CONCLUSIONS cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.
Collapse
Affiliation(s)
- Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Emma C Weinstein
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.
- , University Dr., HPD (Terry) Bldg./Room 1350, Fort Lauderdale, FL, 33328-2018, USA.
| |
Collapse
|
4
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
5
|
Stringer F, Preston C, MacIsaac R, Inchley F, Rivera-Woll L, Farrell S, Sachithanandan N. A tale of two sisters - delayed diagnosis of genetic hyperinsulinaemic hypoglycaemia. Endocrinol Diabetes Metab Case Rep 2024; 2024:24-0007. [PMID: 39153498 PMCID: PMC11378141 DOI: 10.1530/edm-24-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024] Open
Abstract
Summary Congenital hyperinsulinism is the leading cause of persistent hypoglycaemia in infants and children; however, it is uncommon to be diagnosed in adulthood. We describe the cases of two sisters who presented with hyperinsulinaemic hypoglycaemia aged 47 and 57 years old, who were subsequently diagnosed with compound heterozygous likely pathogenic variants in the ABCC8 gene, a known cause of monogenic congenital hyperinsulinism. We discuss the typical presenting features, investigation findings, and treatment strategies for patients with this condition. Learning Points Congenital hyperinsulinism is a rare cause of hyperinsulinaemic hypoglycaemia diagnosed in adulthood. Clinical presentation is similar to an insulinoma, and imaging modalities may assist in differentiation. There are minimal medical therapies currently available for patients non-responsive to diazoxide (such as those with ABCC8 and KCNJ11 variants). Continuous glucose monitoring can be helpful in giving patients autonomy in managing their disease, as well as relieving anxiety and fear associated with hypoglycaemia.
Collapse
Affiliation(s)
- F Stringer
- Departments of Endocrinology and Diabetes, Surgery and General Medicine, St Vincent's Hospital Melbourne and the University of Melbourne, Victoria, Australia
| | - C Preston
- Departments of Endocrinology and Diabetes, Surgery and General Medicine, St Vincent's Hospital Melbourne and the University of Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - R MacIsaac
- Departments of Endocrinology and Diabetes, Surgery and General Medicine, St Vincent's Hospital Melbourne and the University of Melbourne, Victoria, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Victoria, Australia
| | - F Inchley
- Departments of Endocrinology and Diabetes, Surgery and General Medicine, St Vincent's Hospital Melbourne and the University of Melbourne, Victoria, Australia
| | | | - S Farrell
- Departments of Endocrinology and Diabetes, Surgery and General Medicine, St Vincent's Hospital Melbourne and the University of Melbourne, Victoria, Australia
| | - N Sachithanandan
- Departments of Endocrinology and Diabetes, Surgery and General Medicine, St Vincent's Hospital Melbourne and the University of Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
7
|
Hölzen L, Schultes B, Meyhöfer SM, Meyhöfer S. Hypoglycemia Unawareness-A Review on Pathophysiology and Clinical Implications. Biomedicines 2024; 12:391. [PMID: 38397994 PMCID: PMC10887081 DOI: 10.3390/biomedicines12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoglycemia is a particular problem in people with diabetes while it can also occur in other clinical circumstances. Hypoglycemia unawareness describes a condition in which autonomic and neuroglycopenic symptoms of hypoglycemia decrease and hence are hardly perceivable. A failure to recognize hypoglycemia in time can lead to unconsciousness, seizure, and even death. The risk factors include intensive glycemic control, prior episodes of severe hypoglycemia, long duration of diabetes, alcohol consumption, exercise, renal failure, and sepsis. The pathophysiological mechanisms are manifold, but mainly concern altered brain glucose sensing, cerebral adaptations, and an impaired hormonal counterregulation with an attenuated release of glucagon, epinephrine, growth hormone, and other hormones, as well as impaired autonomous and neuroglycopenic symptoms. Physiologically, this counterregulatory response causes blood glucose levels to rise. The impaired hormonal counterregulatory response to recurrent hypoglycemia can lead to a vicious cycle of frequent and poorly recognized hypoglycemic episodes. There is a shift in glycemic threshold to trigger hormonal counterregulation, resulting in hypoglycemia-associated autonomic failure and leading to the clinical syndrome of hypoglycemia unawareness. This clinical syndrome represents a particularly great challenge in diabetes treatment and, thus, prevention of hypoglycemia is crucial in diabetes management. This mini-review provides an overview of hypoglycemia and the associated severe complication of impaired hypoglycemia awareness and its symptoms, pathophysiology, risk factors, consequences, as well as therapeutic strategies.
Collapse
Affiliation(s)
- Laura Hölzen
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany
| | - Bernd Schultes
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- Metabolic Center St. Gallen, friendlyDocs Ltd., 9016 St. Gallen, Switzerland
| | - Sebastian M. Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Svenja Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
8
|
Lega IC, Yale JF, Chadha A, Paty B, Roscoe R, Snider M, Steier J, Bajaj HS, Barnes T, Gilbert J, Honshorst K, Kim J, Lewis J, MacDonald B, MacKay D, Mansell K, Senior P, Rabi D, Sherifali D. Hypoglycemia in Adults. Can J Diabetes 2023; 47:548-559. [PMID: 37821214 DOI: 10.1016/j.jcjd.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
|
9
|
Quarta A, Iannucci D, Guarino M, Blasetti A, Chiarelli F. Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives. Nutrients 2023; 15:3544. [PMID: 37630734 PMCID: PMC10459037 DOI: 10.3390/nu15163544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoglycemia is due to defects in the metabolic systems involved in the transition from the fed to the fasting state or in the hormone control of these systems. In children, hypoglycemia is considered a metabolic-endocrine emergency, because it may lead to brain injury, permanent neurological sequelae and, in rare cases, death. Symptoms are nonspecific, particularly in infants and young children. Diagnosis is based on laboratory investigations during a hypoglycemic event, but it may also require biochemical tests between episodes, dynamic endocrine tests and molecular genetics. This narrative review presents the age-related definitions of hypoglycemia, its pathophysiology and main causes, and discusses the current diagnostic and modern therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti—Pescara, Gabriele D’Annunzio, 66100 Chieti, Italy; (A.Q.); (D.I.); (M.G.); (A.B.)
| |
Collapse
|
10
|
Al-Ameer A, Alsomali A, Habib Z. Incidence, predictors and outcomes of redo pancreatectomy in infants with congenital hyperinsulinism: a 16-year tertiary center experience. Pediatr Surg Int 2023; 39:183. [PMID: 37079145 DOI: 10.1007/s00383-023-05470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Recurrent severe hypoglycemic attacks often persist even after performing pancreatectomy for medically unresponsive congenital hyperinsulinism (CHI). In this study, we present our experience with redo pancreatectomy for CHI. METHODS We reviewed all children who underwent pancreatectomy for CHI between January 2005 and April 2021 in our center. A comparison was made between patients whose hypoglycemia was controlled after primary pancreatectomy and patients who required reoperation. RESULTS A total of 58 patients underwent pancreatectomy for CHI. Refractory hypoglycemia after pancreatectomy occurred in 10 patients (17%), who subsequently underwent redo pancreatectomy. All patients who required redo pancreatectomy had positive family history of CHI (p = 0.0031). Median extent of initial pancreatectomy was lesser in the redo group with borderline level of statistical significance (95% vs. 98%, p = 0.0561). Aggressive pancreatectomy at the initial surgery significantly (p = 0.0279) decreased the risk for the need to redo pancreatectomy; OR 0.793 (95% CI 0.645-0.975). Incidence of diabetes was significantly higher in the redo group (40% vs. 9%, p = 0.033). CONCLUSION Pancreatectomy with 98% extent of resection for diffuse CHI, especially with positive family history of CHI, is warranted to decrease the chance of reoperation for persistent severe hypoglycemia.
Collapse
Affiliation(s)
- Ali Al-Ameer
- Department of Pediatric Surgery, King Fahad Medical City, PO Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia.
| | - Afrah Alsomali
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Zakaria Habib
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Martino M, Sartorelli J, Gragnaniello V, Burlina A. Congenital hyperinsulinism in clinical practice: From biochemical pathophysiology to new monitoring techniques. Front Pediatr 2022; 10:901338. [PMID: 36210928 PMCID: PMC9538154 DOI: 10.3389/fped.2022.901338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital hyperinsulinism comprises a group of diseases characterized by a persistent hyperinsulinemic hypoglycemia, due to mutation in the genes involved in the regulation of insulin secretion. The severity and the duration of hypoglycemic episodes, primarily in the neonatal period, can lead to neurological impairment. Detecting blood sugar is relatively simple but, unfortunately, symptoms associated with hypoglycemia may be non-specific. Research in this field has led to novel insight in diagnosis, monitoring and treatment, leading to a better neurological outcome. Given the increased availability of continuous glucose monitoring systems that allow glucose level recognition in a minimally invasive way, monitoring the glycemic trend becomes easier and there are more possibilities of a better follow-up of patients. We aim to provide an overview of new available technologies and new discoveries and their potential impact on clinical practice, convinced that only with a better awareness of the disease and available tools we can have a better impact on CHI diagnosis, prevention and clinical sequelae.
Collapse
Affiliation(s)
| | | | - Vincenza Gragnaniello
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padua, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padua, Italy
| |
Collapse
|