1
|
Vives J, Casademont-Roca A, Martorell L, Nogués N. Beyond chimerism analysis: methods for tracking a new generation of cell-based medicines. Bone Marrow Transplant 2020; 55:1229-1239. [PMID: 32024991 DOI: 10.1038/s41409-020-0822-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
The analysis of chimerism is crucial to determine the status of patients receiving hematopoietic stem cell transplantation. The variety of relevant techniques available today range from those that analyse nucleic acids (i.e. polymerase chain reaction based, next generation sequencing) and cellular phenotype (i.e. flow cytometry) to sophisticated imaging (particularly multimodal imaging using labelling agents). However, current developments of advanced therapies bring chimerism studies into a new dimension in which methods for detection of donor cells in the patient need to adapt to a wider range of cell- and gene-based medicines, routes of administration, target organs and pathologies. Herein we describe and analyze the toolkit of suitable labelling and detection methodologies with actual examples along with a discussion on challenges ahead and potential solutions. Remarkably, existing methods commonly used in chimerism analysis are suitable for use with new cell- and gene-based medicines. Indeed, new developments may facilitate the evolution and combination of such methodologies to the use of non-invasive and highly informative approaches.
Collapse
Affiliation(s)
- Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
| | - Aina Casademont-Roca
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| | - Lluís Martorell
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
| | - Núria Nogués
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
- Laboratori d'Immunohematologia, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| |
Collapse
|
2
|
Burhan AM, Marlatt NM, Palaniyappan L, Anazodo UC, Prato FS. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders. Diagnostics (Basel) 2015; 5:577-614. [PMID: 26854172 PMCID: PMC4728476 DOI: 10.3390/diagnostics5040577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.
Collapse
Affiliation(s)
- Amer M Burhan
- St. Joseph's Health Care London, Parkwood Institute, 550 Wellington Road, London, ON N6C 0A7, Canada.
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6C 2R6, Canada.
| | - Nicole M Marlatt
- St. Joseph's Health Care London, Parkwood Institute, 550 Wellington Road, London, ON N6C 0A7, Canada.
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6C 2R6, Canada.
| | | | - Frank S Prato
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
3
|
Barsanti C, Lenzarini F, Kusmic C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J Diabetes 2015; 6:792-806. [PMID: 26131322 PMCID: PMC4478576 DOI: 10.4239/wjd.v6.i6.792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/23/2014] [Accepted: 04/14/2015] [Indexed: 02/05/2023] Open
Abstract
Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed.
Collapse
|
4
|
Kang J, Chang JH, Wilson BC, Veilleux I, Bai Y, DaCosta R, Kim K, Ha S, Lee JG, Kim JS, Lee SG, Kim SM, Lee HJ, Ahn YB, Han S, Yoo Y, Song TK. A prototype hand-held tri-modal instrument for in vivo ultrasound, photoacoustic, and fluorescence imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:034901. [PMID: 25832265 DOI: 10.1063/1.4915146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multi-modality imaging is beneficial for both preclinical and clinical applications as it enables complementary information from each modality to be obtained in a single procedure. In this paper, we report the design, fabrication, and testing of a novel tri-modal in vivo imaging system to exploit molecular/functional information from fluorescence (FL) and photoacoustic (PA) imaging as well as anatomical information from ultrasound (US) imaging. The same ultrasound transducer was used for both US and PA imaging, bringing the pulsed laser light into a compact probe by fiberoptic bundles. The FL subsystem is independent of the acoustic components but the front end that delivers and collects the light is physically integrated into the same probe. The tri-modal imaging system was implemented to provide each modality image in real time as well as co-registration of the images. The performance of the system was evaluated through phantom and in vivo animal experiments. The results demonstrate that combining the modalities does not significantly compromise the performance of each of the separate US, PA, and FL imaging techniques, while enabling multi-modality registration. The potential applications of this novel approach to multi-modality imaging range from preclinical research to clinical diagnosis, especially in detection/localization and surgical guidance of accessible solid tumors.
Collapse
Affiliation(s)
- Jeeun Kang
- Department of Electronic Engineering, Sogang University, Seoul 121-742, South Korea
| | - Jin Ho Chang
- Department of Electronic Engineering, Sogang University, Seoul 121-742, South Korea
| | - Brian C Wilson
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Israel Veilleux
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Yanhui Bai
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ralph DaCosta
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania 15213, USA
| | - Seunghan Ha
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania 15213, USA
| | - Jong Gun Lee
- GE Ultrasound Korea, Seongnam 462-807, South Korea
| | | | | | - Sun Mi Kim
- Department of Radiology, Seoul National University of Bundang Hospital, Kyonggi-do, South Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University of Bundang Hospital, Kyonggi-do, South Korea
| | - Young Bok Ahn
- Department of Electronic Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Seunghee Han
- Sogang Institute of Advanced Technology, Sogang University, Seoul 121-742, South Korea
| | - Yangmo Yoo
- Department of Electronic Engineering, Sogang University, Seoul 121-742, South Korea
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul 121-742, South Korea
| |
Collapse
|
5
|
Comparison of liver SUV using unenhanced CT versus contrast-enhanced CT for attenuation correction in (18)F-FDG PET/CT. Nucl Med Commun 2014; 35:472-7. [PMID: 24509519 DOI: 10.1097/mnm.0000000000000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM The aim of the study was to compare standardized uptake values (SUVs) in liver tissue obtained using whole-body unenhanced low-dose computed tomography (CT) with those obtained using contrast-enhanced high-dose CT for PET attenuation correction in PET/CT scanning. MATERIALS AND METHODS Ten patients scheduled for (18)F-FDG PET and contrast-enhanced CT of the abdomen were included in this study. PET data were corrected for attenuation using both unenhanced low-dose CT images and contrast-enhanced high-dose CT images. Differences in SUV(mean) and SUV(max) were compared in three liver regions. RESULTS The average SUV(mean) and SUV(max) of all regions were 2.43 and 2.91 g/cm in the unenhanced data set and 2.53 and 3.17 g/cm in the enhanced data set, respectively. CONCLUSION SUV(mean) and SUV(max) were significantly elevated in liver tissue when using PET images corrected for attenuation with contrast-enhanced high-dose CT compared with PET images corrected with unenhanced low-dose CT. Although the differences may not be relevant in daily clinical practice, unenhanced and contrast-enhanced CT should not be selected randomly for attenuation correction if exact quantitative results are required.
Collapse
|
6
|
Eo JS, Kim HK, Kim S, Lee YS, Jeong JM, Choi YH. Gallium-68 Neomannosylated Human Serum Albumin-Based PET/CT Lymphoscintigraphy for Sentinel Lymph Node Mapping in Non-small Cell Lung Cancer. Ann Surg Oncol 2014; 22:636-41. [DOI: 10.1245/s10434-014-3986-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/15/2022]
|