1
|
Zhang T, Meng Z, Yu H, Ding P, Kai T. An Intelligent and Conductive Hydrogel with Multiresponsive and ROS Scavenging Properties for Infection Prevention and Anti-Inflammatory Treatment Assisted by Electrical Stimulation for Diabetic Wound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500696. [PMID: 40344517 DOI: 10.1002/advs.202500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/11/2025] [Indexed: 05/11/2025]
Abstract
Diabetic wounds experience a hyperglycemic, hypoxic environment, combined with ongoing oxidative stress and inflammatory imbalances, significantly disrupts normal healing process. Advanced hydrogels have been considered one of the most exciting medical biomaterials for the potential in wounds healing. Herein, a novel conductive hydrogel (HEPP), designed to release nanozyme (PTPPG) in response to its microenvironment, was created to facilitate glucose (Glu) catabolism. Furthermore, the HEPP integrates photodynamic therapy (PDT), photothermal therapy (PTT), and self-cascading reactive oxygen species (ROS) to prevent bacterial infections while ensuring a continuous supply of oxygen (O2) to the wound. The HEPP not only adeptly controls high ROS levels, but also enhances the regulation of inflammation in the wound area via electrical stimulation (ES), thereby promoting healing that is supported by the immune response. Studies conducted in vitro, along with transcriptomic analyses, indicate that ES primarily mitigates inflammation by regulating Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The effects of HEPP combined with ES are primarily connected to their impact on TNF signaling pathways. By reducing the formation of ROS and employing ES to effectively lessen inflammation, this approach offers an innovative method to manage complicated diabetic wounds, ulcers, and a range of inflammatory conditions linked to infections.
Collapse
Affiliation(s)
- Tao Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Zongwu Meng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Haoyu Yu
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Tianhan Kai
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| |
Collapse
|
2
|
Shen Q, Chen J, Wang T, Yang Y, Huang C, Zhang W, Tian G, Cheng N, Kai S. Dual functional photocatalytic hydrogel coupled with hydrogen evolution and glucose depletion for diabetic wound therapy. J Colloid Interface Sci 2025; 695:137753. [PMID: 40344732 DOI: 10.1016/j.jcis.2025.137753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Diabetic foot ulcers (DFUs), a common and serious complication of diabetes mellitus, are exacerbated by hyperglycemia-induced chronic inflammation and oxidative stress, which collectively impede the wound-healing process. Effective management requires coordinated regulation of the pathological microenvironment through localized glucose reduction, anti-inflammatory modulation, and reactive oxygen species (ROS) scavenging. This study developed an injectable functionalized hydrogel incorporating a Bi nanocrystal-decorated bismuth tungstate/hydrogen-doped titanium dioxide (Bi2WO6/H-TiO2) heterojunction with dual photocatalytic properties: glucose degradation and hydrogen evolution. Upon exposure to light, the hydrogel exploits glucose in the wound as the sacrificial substrate to simultaneously decrease local glucose concentrations and facilitate in situ hydrogen production. The released hydrogen exhibits potent antioxidant and anti-inflammatory activities, synergizing with glucose consumption to inhibit cellular apoptosis and accelerate tissue repair. A systematic evaluation revealed enhanced cell proliferation and migration in hyperglycemic in vitro models. In vivo experiments using a diabetic murine model demonstrated 50 % wound closure within 3 days, accompanied by improved angiogenesis and collagen remodeling. This photocatalytic synergistic strategy represents a clinically promising modality for diabetic wound treatment by regulating the microenvironment and restoring redox homeostasis.
Collapse
Affiliation(s)
- Qing Shen
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Jiyu Chen
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Tao Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Yilei Yang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Changbao Huang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Guihua Tian
- Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, China.
| | - Ni Cheng
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China.
| | - Shuangshuang Kai
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
3
|
Li H, Chen X, Fan Y, Wang T, Chen X, Xu L. Advanced radiation-crosslinked CM-chitosan/gelatin hydrogel for diabetic ulcer treatment with reducing application frequency. Diabetes Res Clin Pract 2025; 223:112153. [PMID: 40185243 DOI: 10.1016/j.diabres.2025.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
AIMS The study aims to assess whether a radiation-crosslinked carboxymethyl-chitosan/gelatin hydrogel can exhibit superior healing properties in diabetic wounds through collagen synthesis, epithelial maturation, inflammation regulation and angiogenesis, and determine if it can be applied on alternate days to reduce patient compliance pressure. METHODS The study used a full-thickness diabetic wound rat model. The hydrogel was applied either daily or on alternate days. H&E, Masson's trichrome, Sirius red and immunohistochemical staining were employed. Two patients with diabetes were recruited for case studies where the hydrogel was applied on alternate days. RESULTS Under the application of the hydrogel, accelerated healing was observed, with enhanced re-epithelialization and dermal differentiation. The treated groups developed mature skin characteristics absent in the control group, and a well-organized collagen network was observed. There was also accelerated macrophage infiltration, phenotype shift and enhanced angiogenesis at different healing stages. In addition, two patients were positive with alternate-day application of the hydrogel. CONCLUSIONS The radiation-crosslinked carboxymethyl-chitosan/gelatin hydrogel shows great potential as a promising modality for diabetic wound management, with both daily and alternate-day applications having immunomodulatory and pro-angiogenic functions.
Collapse
Affiliation(s)
- Hongwei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Fujian 361102, China
| | - Xuefei Chen
- Department of Hand and Foot, Xiamen Fifth Hospital, Fujian 361102, China.
| | - Youbin Fan
- Department of Hand and Foot, Xiamen Fifth Hospital, Fujian 361102, China
| | - Tianquan Wang
- Department of Hand and Foot, Xiamen Fifth Hospital, Fujian 361102, China
| | - Xin Chen
- Department of Burn, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Fujian 361102, China.
| |
Collapse
|
4
|
López-Moral M, García-Madrid M, Molines-Barroso RJ, Sanz-Corbalán I, Tardáguila-García A, Lázaro-Martínez JL. Clinical Efficacy of a Contralateral Shoe Lift in Patients with Diabetic Foot Ulcers and Induced Limb-Length Discrepancies: A Randomized Controlled Trial. Adv Wound Care (New Rochelle) 2025; 14:251-259. [PMID: 39447017 DOI: 10.1089/wound.2024.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Objective: To evaluate the clinical efficacy of combining an offloading device with a contralateral shoe lift to compensate for induced limb-length discrepancies in participants with plantar diabetes-related foot ulcers. Approach: Between March 2021 and December 2023, 42 consecutive patients with active plantar diabetic foot ulcers (DFUs) were randomly assigned (1:1) to the treatment group (limb-length discrepancy compensation with a shoe lift in the therapeutic footwear of the contralateral limb) or a control group that did not receive limb-length discrepancy compensation. Primary outcomes included the 20-week wound-healing rate and wound area reduction. Secondary outcomes included minor amputation, new ulcers in the contralateral limb, perceived comfort, and hip pain. Results: On an intention-to-treat basis, 15 participants in the control and 19 in the treatment group showed ulcer healing (p = 0.0023). In those with >80% adherence to the offloading device, multivariate analysis showed that the shoe lifts improved ulcer healing time. The use of a shoe lift reduced the number of minor amputations and the occurrence of new ulcers in the contralateral limb (p = 0.035; p = 0.033 respectively). Hip pain and perceived comfort improved with the use of shoe lifts (p < 0.001). Innovation: It validates the use of shoe lifts for patients with DFUs, as it is the first largest study of its kind to establish a clear reference standard to guide clinician decision-making. Conclusion: The use of shoe lifts reduced healing time in participants with diabetes and active plantar foot ulcers. Shoe lifts reduce late complications, including new ulcers in the contralateral limb and minor amputations.
Collapse
Affiliation(s)
- Mateo López-Moral
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Liao YJ, Chen CY, Lin HT, Pei D, Liang YJ. The application of 3D printing technology in the treatment of diabetic foot ulcers: an integrated strategy for glycemic control and wound care. Expert Rev Endocrinol Metab 2025; 20:201-209. [PMID: 40079549 DOI: 10.1080/17446651.2025.2467658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
INTRODUCTION Diabetic foot ulcers (DFUs) are a severe complication of diabetes, often leading to amputation. Hyperglycemia induced nerve and vascular damage significantly increases DFU risk. The advent of 3D printing technology presents a revolutionary concurrently address glycemic control and wound management, potentially improving patient adherence and offering a more holistic treatment strategy. METHODS This article reviews current oral antidiabetic medications and explores the potential of innovative 3D printing technology to develop extended release tablets in two distinct release profiles. Additionally, it investigates the application of this technology in creating novel wound dressing solutions aimed at facilitating DFU healing. . RESULTS The integration of 3D printing technology enables the production of customized, extended-release oral medications that optimize glycemic control while minimizing fluctuations in blood sugar levels. Furthermore, 3D-printed wound dressings demonstrate promising potentialfor enhancing wound healing by providing personalized structural support and controlled drug delivery. CONCLUSION A multidisciplinary approach that integrates advanced wound care and diabetes management is crucial to address the escalating challenges posed by DFUs. Leveraging3D printing technology to develop sustained-release medications and innovative wound dressingsmay significantly improve DFU outcomes and improve the quality of life for individuals with diabetes.
Collapse
Affiliation(s)
- Ying-Ju Liao
- Department of Research and Development, Merdury Biopharmaceutical Corporation, New Taipei City, Taiwan, ROC
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chao-Yi Chen
- Department of Research and Development, Merdury Biopharmaceutical Corporation, New Taipei City, Taiwan, ROC
| | - Hsien-Te Lin
- Department of Research and Development, Merdury Biopharmaceutical Corporation, New Taipei City, Taiwan, ROC
| | - Dee Pei
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC
| | - Yao-Jen Liang
- Department of Research and Development, Merdury Biopharmaceutical Corporation, New Taipei City, Taiwan, ROC
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
| |
Collapse
|
6
|
Ye D, Zhu J, Su S, Yu Y, Zhang J, Yin Y, Lin C, Xie X, Xiang Q, Yu R. Natural small molecules regulating the mitophagy pathway counteract the pathogenesis of diabetes and chronic complications. Front Pharmacol 2025; 16:1571767. [PMID: 40308774 PMCID: PMC12040946 DOI: 10.3389/fphar.2025.1571767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by sustained hyperglycemia. These disturbances contribute to extensive damage across various tissues and organs, giving rise to severe complications such as vision loss, kidney failure, amputations, and higher morbidity and mortality rates. Furthermore, DM imposes a substantial economic and emotional burden on patients, families, and healthcare systems. Mitophagy, a selective process that targets the clearance of damaged or dysfunctional mitochondria, is pivotal for sustaining cellular homeostasis through mitochondrial turnover and recycling. Emerging evidence indicates that dysfunctional mitophagy acts as a key pathogenic driver in the pathogenesis of DM and its associated complications. Natural small molecules are particularly attractive in this regard, offering advantages such as low toxicity, favorable pharmacokinetic profiles, excellent biocompatibility, and a broad range of biochemical activities. This review systematically evaluates the mechanistic roles of natural small molecules-including ginsenosides, resveratrol, and berberine-in enhancing mitophagy and restoring mitochondrial homeostasis via activation of core signaling pathways (e.g., PINK1/Parkin, BNIP3/NIX, and FUNDC1). These pathways collectively ameliorate pathological hallmarks of DM, such as oxidative stress, chronic inflammation, and insulin resistance. Furthermore, the integration of nanotechnology with these compounds optimizes their bioavailability and tissue-specific targeting, thereby establishing a transformative therapeutic platform for DM management. Current evidence demonstrates that mitophagy modulation by natural small molecules not only offers novel therapeutic strategies for DM and its chronic complications but also advances the mechanistic foundation for future drug development targeting metabolic disorders.
Collapse
Affiliation(s)
- Du Ye
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junping Zhu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siya Su
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Zhang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chuanquan Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Xiang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
7
|
Zhong M, Zhang L, Wang Z, Dang W, Chen H, Li T, Liu Y, Tan W. Molecular-Cellular Two-Pronged Reprogramming of Inflammatory Soft-Tissue Interface with an Immunosuppressive Pure DNA Hydrogel. NANO LETTERS 2025; 25:5087-5096. [PMID: 40107859 DOI: 10.1021/acs.nanolett.4c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Effective modulation of persistent inflammation is crucial for chronic wound healing. However, the interaction cascade between inflammatory factors and immune cells at the soft-tissue wound interface poses an incredible challenge for this purpose. Here, we report an immunosuppressive pure DNA hydrogel (Is-pDNAgel) that reprograms inflammatory responses from both molecular and cellular dimensions. Specifically, high-density negative charges enable Is-pDNAgel to efficiently scavenge free chemokines, mitigating neutrophil and macrophage infiltration. Moreover, its immunosuppressive domain synergistically acts on activated residual immune cells and suppresses multiple proinflammatory signaling pathways, thereby creating a positive circuit to boost anti-inflammatory efficacy. Is-pDNAgel can further facilitate migration and proliferation of endogenous endothelial cells owing to its intrinsic extracellular matrix-mimicking structure, promoting re-epithelialization and neovascularization for tissue regeneration without additional bioactive components. Such an "all-in-one" hydrogel outperforms a commercial dressing to accelerate the healing of chronic wounds in a diabetic mouse model, offering a valuable tool for developing regenerative medicine.
Collapse
Affiliation(s)
- Minjuan Zhong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhiqiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Wenya Dang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
8
|
Qin S, Bie F, Chen S, Xu Y, Chen L, Shu B, Yang F, Lu Y, Li J, Zhao J. Targeting S100A12 to Improve Angiogenesis and Accelerate Diabetic Wound Healing. Inflammation 2025; 48:633-648. [PMID: 38954262 PMCID: PMC12053334 DOI: 10.1007/s10753-024-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/04/2024]
Abstract
Long-term inflammation and impaired angiogenesis are thought to be the causes of delayed healing or nonhealing of diabetic wounds. S100A12 is an essential pro-inflammatory factor involved in inflammatory reactions and serves as a biomarker for various inflammatory diseases. However, whether high level of S100A12 exists in and affects the healing of diabetic wounds, as well as the underlying molecular mechanisms, remain unclear. In this study, we found that the serum concentration of S100A12 is significantly elevated in patients with type 2 diabetes. Exposure of stratified epidermal cells to high glucose environment led to increased expression and secretion of S100A12, resulting in impaired endothelial function by binding to the advanced glycation endproducts (RAGE) or Toll-like receptor 4 (TLR4) on endothelial cell. The transcription factor Krüpple-like Factor 5 (KLF5) is highly expressed in the epidermis under high glucose conditions, activating the transcriptional activity of the S100A12 and boost its expression. By establishing diabetic wounds model in alloxan-induced diabetic rabbit, we found that local inhibition of S100A12 significantly accelerated diabetic wound healing by promoting angiogenesis. Our results illustrated the novel endothelial-specific injury function of S100A12 in diabetic wounds and suggest that S100A12 is a potential target for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Shitian Qin
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Fan Bie
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Shuying Chen
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Yingbin Xu
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Lei Chen
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Bin Shu
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Fan Yang
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Yangzhou Lu
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Jialin Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Jingling Zhao
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China.
| |
Collapse
|
9
|
Zhang Y, Zhang H, Wang K, Liu X, Li Z. Can Spinal Cord Stimulation be Considered as a Frontier for Chronic Pain in Diabetic Foot? Pain Ther 2025; 14:589-616. [PMID: 39910016 PMCID: PMC11914475 DOI: 10.1007/s40122-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic pain in the diabetic foot (DF) is a common complication of diabetes, bringing a significant burden to patients, their families, and even society. There is no very effective treatment for it, traditional treatments such as medication, lumbar sympathetic nerve block, and alternative therapies are often not very effective and have more adverse effects. The emergence of neuromodulation technology has brought new hope for the treatment of DF, among which spinal cord stimulation (SCS) is a hotspot in current research and has achieved remarkable efficacy in the study of DF treatment by blocking pain signaling and improving circulation and other mechanisms. This article reviews the SCS technique and clinical trails of SCS for chronic DF pain, and describes the prospects and current challenges of SCS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Huifeng Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China.
| |
Collapse
|
10
|
Chen L, Li Y, Zhang X, Ma L, Zhang C, Chen H. A one-two punch of inflammation and oxidative stress promotes revascularization for diabetic foot ulcers. Mater Today Bio 2025; 31:101548. [PMID: 39995578 PMCID: PMC11847733 DOI: 10.1016/j.mtbio.2025.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Patients with diabetic foot ulcers (DFU) suffering from severe lower limb ischemia face the risk of amputation. Concomitant oxidative stress and hyperinflammation commonly manifest within the tissue affected by DFU, exacerbating the deterioration of DFU wounds. One-two punch strategy of anti-oxidative damage plus anti-inflammatory is anticipated to tackle the challenge of non-healing diabetic wounds. Here, we introduced a dual-approach treatment strategy involving the probiotic Weissella cibaria (WC) modified with desferrioxamine (DFO). This engineered probiotic, known as WC@DPA, aims to ameliorate oxidative stress within the ischemic microenvironment and stimulate the formation and proliferation of endothelial tubular structures. When applied with chronic wounds and ischemic hindlimb injuries in diabetic mice, WC@DPA gel demonstrated an effective performance in modulating oxidative damage, reducing local vascular inflammation, and facilitating muscle tissue repair and vascular reconstruction. We believe that our engineered probiotic represents a promising therapeutic avenue for managing ischemic injuries associated with DFU.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yunrong Li
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi, 530201, PR China
| | - Xuanxuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Huanhuan Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
11
|
Bahati R, Kitua D, Selestine L, Mwanga A, Urio M, Mchele G, Antanamsu D. Factors influencing the severity of diabetic foot ulcers: a cross-sectional study. BMC Endocr Disord 2025; 25:76. [PMID: 40108563 PMCID: PMC11924770 DOI: 10.1186/s12902-024-01785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are prevalent among individuals with poorly controlled diabetes, and severe cases can result in increased morbidity and a poor quality of life. This study aimed to identify the factors that affect the severity of DFUs, offering insights into potential interventions that could enhance patient outcomes. METHODOLOGY A prospective cross-sectional study was conducted from August 2023 to March 2024 at Muhimbili National Hospital in Tanzania, involving 177 consecutively selected patients with DFUs. The primary outcome variable was the severity of DFUs, which was assessed using the Meggitt-Wagner severity score. Both socio-demographic and clinical characteristics were evaluated to determine their association with the outcome variable using multivariate ordinal logistic regression analysis. RESULTS The median age of the study participants was 60 years (IQR = 52-68), with a male-to-female ratio of 2 to 1. Notably, Wagner grades 4 and 5 accounted for 57.6% of the participants. Factors associated with increased severity of DFUs included age over 60 years (aOR = 1.83, 95% CI 1.05-3.23, p = 0.035) and poor adherence to diabetes medications (aOR = 2.62, 95% CI 1.36-5.09, p = 0.004). Conversely, having health insurance coverage was linked to better outcomes (aOR = 0.51, 95% CI 0.27-0.96, p = 0.036). CONCLUSION The study highlights factors that can enhance comprehensive care for diabetic patients, especially elderly individuals. Key measures include implementing educational programs to encourage medication adherence, improving healthcare access, particularly for uninsured individuals, promoting insurance coverage, and making diabetes treatments more affordable.
Collapse
Affiliation(s)
- Rickson Bahati
- Department of Surgery, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Daniel Kitua
- Department of Surgery, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Leonard Selestine
- Department of Surgery, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Ally Mwanga
- Department of Surgery, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Miriam Urio
- Department of Surgery, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Godfrey Mchele
- Department of Surgery, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - David Antanamsu
- Department of Surgery, Muhimbili National Hospital, Dar es Salaam, Tanzania
| |
Collapse
|
12
|
Tentolouris A, Stergioti A, Eleftheriadou I, Siafarikas C, Tsilingiris D. Screening tools for diabetic foot ulcers: a narrative review. Hormones (Athens) 2025; 24:71-83. [PMID: 39227550 DOI: 10.1007/s42000-024-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
The prevalence of diabetic foot ulcers (DFUs) is 4 to 10% among people with diabetes mellitus. DFUs are associated with increased morbidity and mortality as well as reduced quality of life and have a significant impact on overall healthcare expenditure. The main predisposing factors for DFU are diabetic neuropathy, peripheral arterial disease, and trauma. The fact that a range of tests can be used to identify patients at risk for DFU often causes confusion among practitioners regarding which screening tests should be implemented in clinical practice. Herein we sought to determine whether tests of somatic nerve function, such as pinprick sensation, thermal (cold/hot) test, ankle reflexes, vibration perception, 10-g monofilament, Ipswich touch test, neuropathy disability score, and nerve conduction studies, predict the development of DFUs. In addition, we examined whether sudomotor function screening tests, such as Neuropad, sympathetic skin response, and other tests, such as elevated plantar pressure or temperature measurements, can be used for DFU screening. If not treated properly, DFUs can have serious consequences, including amputation, early detection and treatment are vital for patient outcomes.
Collapse
Affiliation(s)
- Anastasios Tentolouris
- First Department of Propaedeutic Internal Medicine and Diabetes Center, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, Athens, 11527, Greece.
| | - Anastasia Stergioti
- First Department of Propaedeutic Internal Medicine and Diabetes Center, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, Athens, 11527, Greece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal Medicine and Diabetes Center, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, Athens, 11527, Greece
| | - Christos Siafarikas
- First Department of Propaedeutic Internal Medicine and Diabetes Center, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, Athens, 11527, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thracae, Dragana, Alexandroupolis, 68100, Greece
| |
Collapse
|
13
|
Chen L, Wu P, Zhu Y, Luo H, Tan Q, Chen Y, Luo D, Chen Z. Electrospinning strategies targeting fibroblast for wound healing of diabetic foot ulcers. APL Bioeng 2025; 9:011501. [PMID: 40027546 PMCID: PMC11869202 DOI: 10.1063/5.0235412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
The high incidence and prevalence of diabetic foot ulcers (DFUs) present a substantial clinical and economic burden, necessitating innovative therapeutic approaches. Fibroblasts, characterized by their intrinsic cellular plasticity and multifunctional capabilities, play key roles in the pathophysiological processes underlying DFUs. Hyperglycemic conditions lead to a cascade of biochemical alterations that culminate in the dysregulation of fibroblast phenotype and function, which is the primary cause of impaired wound healing in DFUs. Biomaterials, particularly those engineered at the nanoscale, hold significant promise for enhancing DFU treatment outcomes. Electrospun nanofiber scaffolds, with their structural and compositional similarities to the natural extracellular matrix, serve as an effective substrate for fibroblast adhesion, proliferation, and migration. This review comprehensively summarizes the biological behavior of fibroblasts in DFUs and the mechanism mediating wound healing. At the same time, the mechanism of biological materials, especially electrospun nanofiber scaffolds, to improve the therapeutic effect by regulating the activity of fibroblasts was also discussed. By highlighting the latest advancements and clinical applications, we aim to provide a clear perspective on the future direction of DFU treatment strategies centered on fibroblast-targeted therapies.
Collapse
Affiliation(s)
| | - Ping Wu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yu Zhu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Han Luo
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Qiang Tan
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yongsong Chen
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Zhiyong Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Choi D, Bakhtiari M, Pilcher W, Huang C, Thomas BE, Mumme H, Blanco G, Rajani R, Schechter MC, Fayfman M, Santamarina G, Bhasin S, Bhasin M. Single-Cell Analysis of Debrided Diabetic Foot Ulcers Reveals Dysregulated Wound Healing Environment in Non-Hispanic Black Patients. J Invest Dermatol 2025; 145:678-690. [PMID: 39127092 DOI: 10.1016/j.jid.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Diabetic foot ulcer is a critical complication of diabetes, but the wound microenvironment and its healing process are not completely understood. In this study, we optimized single-cell profiling from sharp debrided ulcers. Our findings demonstrate that healing diabetic foot ulcers were significantly enriched with distinct fibroblasts-expressing genes related to inflammation (CHI3L1, IL6) and extracellular matrix remodeling (ASPN), validating our previous studies on surgically resected ulcers. The race-focused analysis depicted lower expression of key healing-associated genes such as CHIL3L1, matrix metalloproteinase 11 gene MMP11, and SFRP4 in fibroblasts of non-Hispanic Black patients than in those of White patients. In cellular communication analysis, healing-enriched fibroblasts of non-Hispanic Black patients exhibited upregulation of signaling pathways such as WNT, whereas those of White patients showed insulin-like GF and Midkine pathways upregulation. Our findings advocate race as a risk marker of diabetic foot ulcer outcomes, likely reflecting underlying disparities in environmental exposures and access to care that profoundly influence healing markers. Using sharp debrided tissues for single-cell assays, this study highlights the need for in-depth investigations into dysregulated wound healing microenvironments of under-represented racial groups.
Collapse
Affiliation(s)
- Dahim Choi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William Pilcher
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Chenbin Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Ravi Rajani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Vascular Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcos C Schechter
- Grady Memorial Hospital, Atlanta, Georgia, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maya Fayfman
- Grady Memorial Hospital, Atlanta, Georgia, USA; Division of Endocrinology Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gabriel Santamarina
- Grady Memorial Hospital, Atlanta, Georgia, USA; Division of Vascular Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Endocrinology Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Swati Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Manoj Bhasin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Huang L, Li T, Geng W, Xie X, Wang P, Deng Y, Gao Y, Bai D, Tang T, Cheng C. Oxygen-Bonded Amorphous Transition Metal Dichalcogenides with pH-Responsive Reactive Oxygen Biocatalysis for Combined Antibacterial and Anti-inflammatory Therapies in Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407046. [PMID: 39469735 DOI: 10.1002/smll.202407046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Diabetic wound healing is a formidable challenge, often complicated by biofilms, immune dysregulation, and hindered vascularization within the wound environments. The intricate interplay of these microenvironmental factors has been a significant oversight in the evolution of therapeutic strategies. Herein, the design of an efficient and versatile oxygen-bonded amorphous transition metal dichalcogenide biocatalyst (aRuS-Or) with pH-responsive reactive oxygen biocatalysis for combined antibacterial and anti-inflammatory therapies in promoting diabetic wound healing is reported. Leveraging the incorporation of Ru─O bonds, aRuS-Or exhibits optimized adsorption/desorption behavior of oxygen intermediates, thereby enhancing both the reactive oxygen species (ROS) generation activity in acidic conditions and ROS scavenging performance in neutral environments. Remarkably, aRuS-Or demonstrates exceptional bactericidal potency within infected milieus through biocatalytic ROS generation. Beyond its antimicrobial capability, post-eradication, aRuS-Or serves a dual role in mitigating oxidative stress in inflammatory wounds, providing robust cellular protection and fostering an M2-phenotype polarization of macrophages, which is pivotal for accelerating the wound repair process. The findings underscore the multifaceted efficacy of aRuS-Or, which harmoniously integrates high antibacterial action with anti-inflammatory and pro-angiogenic properties. This triad of functionalities positions aRuS-Or as a promising candidate for the comprehensive management of complex diabetic ulcers, addressing the unmet needs in the current therapeutics.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaodong Xie
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Peiqi Wang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ding Bai
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Tang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
16
|
Wei Z, Robertson M, Qian J, Qiang Z, Ren J. In Situ Self-Assembled Naringin/ZIF-8 Nanoparticle-Embedded Bacterial Cellulose Sponges for Infected Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6103-6115. [PMID: 39804728 DOI: 10.1021/acsami.4c20399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar). This sponge is fabricated using a straightforward method that involves in situ synthesis followed by lyophilization. The as-prepared Nar/ZIF-8/BC sponge exhibits excellent mechanical properties (e.g., tensile strength reaching 2.28 MPa), high exudate management performance (water absorption approximately 70 times), and excellent antimicrobial activity (100%). Additionally, the pH-responsive properties of ZIF-8 enable the composite sponge to release naringin in response to the DFU microenvironment. The released drug promotes angiogenesis, resulting in antioxidant and anti-inflammatory effects, which further encourage the healing of infected wounds in diabetic rats. Overall, the Nar/ZIF-8/BC sponge is a promising multifunctional dressing for DFU healing, providing an efficient solution for intractable wounds by regulating the microenvironment, which meets complex clinical demands.
Collapse
Affiliation(s)
- Zhao Wei
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Mark Robertson
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, Hattiesburg, Mississippi 39406, United States
| | - Jin Qian
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
17
|
Li Y, Wang X, Chen J, Sun L, Pu D, Lin L, Luo L, Gong X, Pu J, Wu M. Structural analysis and accelerating wound healing function of a novel galactosylated glycosaminoglycan from the snail Helix lucorum. Carbohydr Polym 2025; 348:122900. [PMID: 39567167 DOI: 10.1016/j.carbpol.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Diabetic foot ulcers (DFUs) as a nonhealing wound remain a clinical challenge, and the development of pro-healing and cost-effective drugs is in urgent need. Herein, we reported a novel galactosylated glycosaminoglycan (GAG) from the snail Helix lucorum, as an effective pro-healing compound. The snail GAG is composed of a heparan sulfate-like main chain and galactose side chains at C-3 of GlcNAc residue. Its main chain has a repeating disaccharide structure of → 4)-α-D-GlcNAc-(1 → 4)-α-L-IdoA2S(1 →. This is the first example of glycosaminoglycan with galactose branches from mollusks. Pharmacological experiments showed that the H. lucorum GAG significantly promoted skin wound healing in both healthy and diabetic mice by accelerating granulation tissue regeneration, angiogenesis, and collagen deposition. The distinctive galactosylated substitution may play an important role on its pro-healing activity. Our discovery enriches the diversity of non-anticoagulant heparan sulfate-like glycosaminoglycans, and provides a potential candidate of pro-healing drug for treating diabetic wound.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xingzi Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangyan Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Luyun Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debing Pu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lisha Lin
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lan Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xi Gong
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junxue Pu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Mingyi Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Deng Z, Iwasaki K, Peng Y, Honda Y. Mesenchymal Stem Cell Extract Promotes Skin Wound Healing. Int J Mol Sci 2024; 25:13745. [PMID: 39769505 PMCID: PMC11679360 DOI: 10.3390/ijms252413745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, it has been reported that mesenchymal stem cell (MSC)-derived humoral factors promote skin wound healing. As these humoral factors are transiently stored in cytoplasm, we collected them as part of the cell extracts from MSCs (MSC-ext). This study aimed to investigate the effects of MSC-ext on skin wound healing. We examined the effects of MSC-ext on cell proliferation and migration. Additionally, the effect of MSC-ext on skin wound healing was evaluated using a mouse skin defect model. The MSC-ext enhanced the proliferation of dermal fibroblasts, epithelial cells, and endothelial cells. It also increased the number of migrating fibroblasts and epithelial cells. The skin defects treated with MSC-ext demonstrated rapid wound closure compared to those treated with phosphate-buffered saline. The MSC-ext group exhibited a thicker dermis, larger Picrosirius red-positive areas, and a higher number of Ki67-positive cells. Our results indicate that MSC-ext promotes the proliferation and/or migration of fibroblasts, epithelial cells, and endothelial cells, and enhances skin wound healing. This suggests the therapeutic potential of MSC-ext in treating skin defects as a novel cell-free treatment modality.
Collapse
Affiliation(s)
- Zi Deng
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| | - Kengo Iwasaki
- Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka 573-1121, Japan
| | - Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| |
Collapse
|
19
|
Lin Q, Zhu F, Shiye A, Liu R, Wang X, Ye Z, Ding Y, Sun X, Ma Y. Antimicrobial Effects of Thonningianin a (TA)-Loaded Chitosan Nanoparticles Encapsulated by a PF-127 hydrogel in Diabetic Wound Healing. Int J Nanomedicine 2024; 19:12835-12850. [PMID: 39651354 PMCID: PMC11624675 DOI: 10.2147/ijn.s488115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Background and Purpose Diabetic wounds are serious chronic complications of diabetes and can lead to amputation and death. Although considerable progress has been made in drugs and materials for treating it, it's still an urgent clinical problem as the materials and drugs have potential therapeutic drawbacks, such as low delivery efficiency and poor tissue permeability. To promote diabetic wound healing, a composite of thonningianin A (TA)-loaded chitosan nanoparticles (CNPS) encapsulated by a Pluronic F-127 (PF-127) hydrogel (TA-CNPS-PF) was developed in this study. Methods TA-CNPS was prepared by ionic gelation method and TA-CNPS was thoroughly dispersed into PF-127 hydrogel to prepare TA-CNPS-PF. The particle size, hydrogel structure, encapsulation ratio, release ratio, antimicrobial properties of TA-CNPS-PF were determined and the effect of TA-CNPS-PF on diabetic wounds was assessed. The effect of TA on macrophage polarization was also examined in vitro. Results The particle size was approximately 100 nm of TA-CNPS-PF and the hydrogel had a homogeneous three-dimensional reticulation structure. The encapsulation efficiency of TA in the CNPS were 99.3% and the release ratio of TA-CNPS-PF was approximately 86% and has antimicrobial properties. TA-CNPS-PF promoted diabetic wound healing significantly. Histopathology confirmed that TA-CNPS-PF promoted complete re-epithelialization and adequate collagen deposition. TA promoted the polarization of M1 macrophages into M2 macrophages via light microscopy, immunocytometry and flow cytometry. TA-CNPS-PF also promoted an increase in the number of M2 macrophages in diabetic wounds. Conclusion TA promotes diabetic wound healing by promoting the polarization of M1 macrophages into M2 macrophages and TA-CNPS-PF has good antimicrobial activity and a good drug release ratio in this study, which provides a new direction for the treatment of diabetic wounds and is expected to be highly advantageous in clinical diabetes wound therapy.
Collapse
Affiliation(s)
- Qian Lin
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Fucheng Zhu
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Aji Shiye
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Runyu Liu
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Hepatobiliary Pancreatic Vascular Surgery, the Second Affiliated Hospital of Chengdu Medical College, Chengdu, 610057, People’s Republic of China
| | - Xiaolan Wang
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zi Ye
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yinhuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, People’s Republic of China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Laboratory of Nucleic Acids in Medicine for National High-Level Talent, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, People’s Republic of China
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King’s College London, London, SE5 9NU, UK
| | - Yarong Ma
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
20
|
Zare-Gachi M, Sadeghi A, Choshali MA, Ghadimi T, Forghani SF, Pezeshki-Modaress M, Daemi H. Degree of sulfation of freeze-dried calcium alginate sulfate scaffolds dramatically influence healing rate of full-thickness diabetic wounds. Int J Biol Macromol 2024; 283:137557. [PMID: 39542337 DOI: 10.1016/j.ijbiomac.2024.137557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Diabetic foot ulcer (DFU) is a chronic and non-healing wound in all age categories with a high prevalence and mortality in the world. An ideal wound dressing for DFU should possess the ability of adsorbing high contents of exudate and actively promote wound healing. Here, we introduced the calcium alginate sulfate as a new biomaterial appropriate for use in wound dressing to promote the healing of full-thickness ulcers in a diabetic mouse model. In this regard, alginate sulfate (Alg-S) solutions with different degrees of substitution (DS) of 0.2, 0.5, and 0.9 were synthesized, freeze-dried, crosslinked by calcium cations, purified by washing and refreeze-dried. Primary analyses including swelling ratio, porosity content and mechanical properties revealed that all Alg-S scaffolds possess necessities for use as a wound dressing. After confirming the cytocompatibility of both alginate and alginate sulfate-based scaffolds by MTT assay, they were used as wound dressing for healing of full-thickness ulcers in diabetic mice. The results of wound healing process confirmed that calcium alginate sulfate scaffolds can heal the wounds faster than both alginate-treated and non-treated wounds. Furthermore, the histological analyses of healed tissues reveled normal regeneration of the skin tissue layers and collagen deposition similar to the healthy tissue.
Collapse
Affiliation(s)
- Maryam Zare-Gachi
- Zharfandishan Fanavar Zistbaspar (ZFZ) Chemical Company, Tehran, Iran
| | - Amin Sadeghi
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tayyeb Ghadimi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran; Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Farokh Forghani
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran; Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Pezeshki-Modaress
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran; Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan Institute, Tehran, Iran.
| |
Collapse
|
21
|
Lan X, Huang Z, Zheng Y, Huang Z, Tang Y, Zhou T, Wang C, Ma Y, Li D. Electrical stimulation as an adjunctive therapy for diabetic ulcers: A systematic review and meta-analysis. Int Wound J 2024; 21:e70104. [PMID: 39675776 PMCID: PMC11646635 DOI: 10.1111/iwj.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 12/17/2024] Open
Abstract
Diabetic ulcers are chronic wounds that are notoriously difficult to treat, leading to significant physical and psychological distress and increased healthcare costs. Their multifactorial aetiology necessitates long-term interdisciplinary collaboration and various complementary treatment measures. While numerous studies suggest that electrical stimulation (ES) positively impacts diabetic ulcer healing, the robustness and consistency of these findings require further evaluation to optimize clinical application. We searched databases including PubMed, the Cochrane Library, Embase, Web of Science and the China National Knowledge Infrastructure (CNKI). Only randomized clinical trials (RCTs) comparing ES treatment to placebo or conventional treatment were included. Extracted information included objective healing measures and data for assessing effect sizes. Ten RCTs involving 451 patients met inclusion criteria. ES improved ulcer healing rate compared to control or placebo (MD 20.37, 95% CI: 16.89-23.85, p <0.001) and increased the number of healed ulcers (RR 1.45, 95% CI: 1.18-1.78, p <0.001), with both results being statistically significant. The observed benefits are likely due to the positive effects of ES on the vascular and neurological functions of the lower limbs in patients with diabetic ulcers. Both low-frequency, moderate-intensity alternating current and low-intensity or high-voltage direct current have demonstrated efficacy in promoting ulcer healing. The results suggest ES may be a promising approach of managing diabetic ulcers. However, the optimal method of ES application remains undetermined; therefore, high-quality and large-scale studies are essential.
Collapse
Affiliation(s)
- Xiaodong Lan
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| | - Zhenjia Huang
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| | - Yan Zheng
- Department of Medical Plastic and Cosmetic, The Third People's Hospital of Chengdu (The Affiliated Hospital of Southwest Jiaotong University), College of MedicineSouthwest Jiaotong UniversityChengduChina
| | - Zhiyong Huang
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| | - Yong Tang
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| | - Tao Zhou
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| | - Chao Wang
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| | - Yan Ma
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| | - Dan Li
- Department of Burn and Plastic SurgeryChengdu Second People's HospitalChengduChina
| |
Collapse
|
22
|
Wang Z, Li M, Chen J, Zhang S, Wang B, Wang J. Immunomodulatory Hydrogel for Electrostatically Capturing Pro-inflammatory Factors and Chemically Scavenging Reactive Oxygen Species in Chronic Diabetic Wound Remodeling. Adv Healthc Mater 2024; 13:e2402080. [PMID: 39380409 DOI: 10.1002/adhm.202402080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Diabetic wound exhibits the complex characteristics involving continuous oxidative stress and excessive expression of pro-inflammatory cytokines to cause a long-term inflammatory microenvironment. The repair healing of chronic diabetic wounding is tremendously hindered due to persistent inflammatory reaction. To address the aforementioned issues, here, a dual-functional hydrogel is designed, consisting of N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1, 3-diaminium (TSPBA) modified polyvinyl alcohol (PVA) and methacrylamide carboxymethyl chitosan (CMCSMA) can not only electrostatically adsorb proinflammatory cytokines of IL1-β and TNF-α, but can also chemically scavenge the excessive reactive oxygen species (ROS) in situ. Both in vitro and in vivo evaluations verify that the negatively charged and ROS-responsive hydrogel (NCRH) can effectively modulate the chronic inflammatory microenvironment of diabetic wounds and significantly enhance wound remodeling. More importantly, the well-designed NCRH shows a superior skin recovery in comparison with the commercial competitor product of wound dressing. Consequently, the current work highlights the need for new strategies to expedite the healing process of diabetic wounds and offers a wound dressing material with immunomodulation.
Collapse
Affiliation(s)
- Zihao Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Mengyu Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jia Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
23
|
Anuradha U, Bhavana V, Chary PS, Rajana N, Parida KK, Kalia NP, Khatri DK, Mehra NK. Thymoquinone loaded nanoemulgel in streptozotocin induced diabetic wound. Nanomedicine (Lond) 2024; 19:2577-2604. [PMID: 39569618 DOI: 10.1080/17435889.2024.2422805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: To treat diabetic wound healing with a novel Thymoquinone (TQ) loaded nanoformulation by using combination of essentials oils.Methods: TQ nanoemulsion (NE) was developed with seabuckthorn & lavender essential oils by phase inversion method and mixture design. Further, DIAGEL is obtained by incorporating NE into 1% carbopol®934. Furthermore, particle size, polydispersity index, thermodynamic stability studies, rheology, spreadability, drug content, in-vitro drug release, ex-vivo permeation, anti-oxidant assay, antimicrobial studies, angioirritance, HAT-CAM assay, in-vitro and in-vivo studies were determined.Results: NE has a particle size of 17.79 ± 0.61 nm, 0.206 ± 0.012 PDI & found to be thermodynamically stable. DIAGEL exhibited pseudoplastic behavior, sustained drug release, better permeation of TQ and a drug content of 98.54 ± 0.08%. DIAGEL stored for 6 months at room temperature and 2-8°C showed no degradation. Further, an improved angiogenesis, absence of angio-irritancy, remarkable antioxidant and antimicrobial activities against Candida albicans & S. aureus were observed. Cytotoxicity analysis revealed nearly 2.28 -folds higher IC50 value than drug solution. Furthermore, inflammatory mediators were reduced in DIAGEL treated animal groups. The histopathological studies confirmed skin healing with regeneration and granulation of tissue.Conclusion: The novel formulation has strong anti-inflammatory, angiogenesis, antioxidant and appreciable diabetic wound healing properties.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kishan Kumar Parida
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
24
|
Sieńko D, Szabłowska-Gadomska I, Nowak-Szwed A, Rudziński S, Gofron M, Zygmunciak P, Lewandowska-Szumieł M, Zgliczyński WS, Czupryniak L, Mrozikiewicz-Rakowska B. The Potential of Mesenchymal Stem/Stromal Cells in Diabetic Wounds and Future Directions for Research and Therapy-Is It Time for Use in Everyday Practice? Int J Mol Sci 2024; 25:12171. [PMID: 39596237 PMCID: PMC11594847 DOI: 10.3390/ijms252212171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The treatment of diabetic wounds is impaired by the intricate nature of diabetes and its associated complications, necessitating novel strategies. The utilization of mesenchymal stem/stromal cells (MSCs) as a therapeutic modality for chronic and recalcitrant wounds in diabetic patients is an active area of investigation aimed at enhancing its therapeutic potential covering tissue regeneration. The threat posed to the patient and their environment by the presence of a diabetic foot ulcer (DFU) is so significant that any additional therapeutic approach that opens new pathways to halt the progression of local changes, which subsequently lead to a generalized inflammatory process, offers a chance to reduce the risk of amputation or even death. This article explores the potential of MSCs in diabetic foot ulcer treatment, examining their mechanisms of action, clinical application challenges, and future directions for research and therapy.
Collapse
Affiliation(s)
- Damian Sieńko
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (A.N.-S.); (L.C.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ilona Szabłowska-Gadomska
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.); (M.L.-S.)
| | - Anna Nowak-Szwed
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (A.N.-S.); (L.C.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stefan Rudziński
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.); (M.L.-S.)
| | - Maksymilian Gofron
- Department of Urology, Municipal Complex Hospital, 42-200 Czestochowa, Poland;
| | - Przemysław Zygmunciak
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland; (P.Z.); (W.S.Z.)
| | - Małgorzata Lewandowska-Szumieł
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.); (M.L.-S.)
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Wojciech Stanisław Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland; (P.Z.); (W.S.Z.)
| | - Leszek Czupryniak
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (A.N.-S.); (L.C.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland; (P.Z.); (W.S.Z.)
| |
Collapse
|
25
|
Cheng L, Zhuang Z, Yin M, Lu Y, Liu S, Zhan M, Zhao L, He Z, Meng F, Tian S, Luo L. A microenvironment-modulating dressing with proliferative degradants for the healing of diabetic wounds. Nat Commun 2024; 15:9786. [PMID: 39532879 PMCID: PMC11557877 DOI: 10.1038/s41467-024-54075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic wounds are usually entangled in a disorganized and self-perpetuating microenvironment and accompanied by a prolonged delay in tissue repair. Sustained and coordinated microenvironment regulation and tissue regeneration are key to the healing process of diabetic wounds, yet they continue to pose a formidable challenge. Here we report a rational double-layered dressing design based on chitosan and a degradable conjugated polymer polydiacetylene, poly(deca-4,6-diynedioic acid) (PDDA), that can meet this intricate requirement. With an alternating ene-yne backbone, PDDA degrades when reacting with various types of reactive oxygen species (ROS), and more importantly, generates proliferative succinic acid as a major degradant. Inheriting from PDDA, the developed PDDA-chitosan double layer dressing (PCD) can eliminate ROS in the microenvironment of diabetic wounds, alleviate inflammation, and downregulate gene expression of innate immune receptors. PCD degradation also triggers simultaneous release of succinic acid in a sustainable manner, enabling long-term promotion on tissue regeneration. We have validated the biocompatibility and excellent performance of PCD in expediting the wound healing on both diabetic mouse and porcine models, which underscores the significant translational potential of this microenvironment-modulating, growth-promoting wound dressing in diabetic wounds care.
Collapse
Affiliation(s)
- Lianghui Cheng
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Zhuang
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Lu
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sujuan Liu
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liyuan Zhao
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinformatics and Molecular Imaging, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinformatics and Molecular Imaging, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinformatics and Molecular Imaging, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Kumbhar S, Bhatia M. Advancements and best practices in diabetic foot Care: A comprehensive review of global progress. Diabetes Res Clin Pract 2024; 217:111845. [PMID: 39243866 DOI: 10.1016/j.diabres.2024.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Diabetic foot care has become a critical focus in global healthcare due to the rising prevalence of diabetes and its associated complications. This review aims to consolidate recent advancements and best practices in managing diabetic foot conditions, encompassing foot ulcers, neuropathy, vascular disease, and the risk of amputation. Emphasizing a multidisciplinary approach, the review advocates for collaboration among diabetologists, podiatrists, vascular surgeons, and wound care specialists to enhance patient outcomes. Key advancements highlighted include innovative wound care techniques like advanced dressings and bioengineered skin substitutes, alongside effective offloading devices to prevent pressure-related injuries. Early detection and intervention strategies for neuropathy and vascular disease are underscored, with a particular focus on vascular evaluation as a baseline investigation, including Ankle-Brachial Index (ABI) and Toe-Brachial Index (TBI) assessments by trained podiatrists and the use of arterial color Doppler/duplex scans for suspected Peripheral Artery Disease (PAD). The review also examines the impact of technological innovations such as telemedicine and wearable devices, facilitating enhanced patient monitoring and timely interventions. It stresses the importance of patient education and self-care practices in mitigating complications. Addressing global disparities, the review advocates for accessible and equitable healthcare services across diverse regions. Concluding with recommendations for future research and policy initiatives, this review serves as a vital resource for healthcare professionals, policymakers, and researchers committed to advancing diabetic foot care and improving global patient outcomes.
Collapse
Affiliation(s)
- Smita Kumbhar
- Department of Pharmaceutical Chemistry, Sanjivani College of Pharmaceutical Education and Research (Autonomous), Kopargaon 423603, Maharashtra, India.
| | - Manish Bhatia
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| |
Collapse
|
27
|
Sun L, Wang X, Deng T, Luo L, Lin L, Yang L, Tian Y, Tian Y, Wu M. Bionic sulfated glycosaminoglycan-based hydrogel inspired by snail mucus promotes diabetic chronic wound healing via regulating macrophage polarization. Int J Biol Macromol 2024; 281:135708. [PMID: 39349331 DOI: 10.1016/j.ijbiomac.2024.135708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024]
Abstract
The treatment of diabetic foot ulcers remains a significant challenge, as their morbidity is increasing while current therapies are expensive and often ineffective. The dried mucus from the snail Achatina fulica promotes diabetic wound healing. Herein, to develop a more controllable and stable wound dressing for diabetic wound treatment, the AFG/StarPEG hydrogel mimicking snail mucus was prepared by covalently coupling of sulfated glycosaminoglycan from A. fulica (AFG) with star-shaped polyethylene glycol (StarPEG) amine. The AFG/StarPEG hydrogel reduced excessive inflammation in wound tissues by decreasing pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and increasing anti-inflammatory cytokines (IL-4 and IL-10). Moreover, it promoted the polarization of macrophages to M2 anti-inflammatory type in diabetic wound. By improving transition of diabetic chronic wound from inflammatory phase to proliferative phase, it promoted angiogenesis, collagen deposition and re-epithelialization, and thus tissue regeneration for wound healing. This work provides a convenient and effective dressing for treating chronic diabetic wound.
Collapse
Affiliation(s)
- Luyun Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzi Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuo Deng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lisha Lin
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yong Tian
- Shanghai Zhenchen Cosmetics Co., Ltd, Shanghai 201415, China; Shanghai Zhizhenzhichen Technology Co., Ltd, Shanghai 201109, China
| | - Yuncai Tian
- Shanghai Zhenchen Cosmetics Co., Ltd, Shanghai 201415, China; Shanghai Zhizhenzhichen Technology Co., Ltd, Shanghai 201109, China
| | - Mingyi Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Frykberg RG, Tunyiswa Z, Weston WW. Retention processed placental membrane versus standard of care in treating diabetic foot ulcers. Int Wound J 2024; 21:e70096. [PMID: 39402007 PMCID: PMC11473247 DOI: 10.1111/iwj.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a severe complication for diabetic patients, significantly impacting patient quality of life and healthcare system efficiency. Traditional standard of care (SOC) treatments are inadequate for many patients, necessitating the use of advanced wound care products, such as human placental membranes. We studied a real-world population of large, hard-to-heal and complicated wounds, otherwise under-studied in the wound care literature. To this end, we conducted a retrospective cohort analysis to compare the effectiveness of a human placental amnion/chorion membrane product using retention-based processing (RE-AC) and SOC in managing chronic DFUs. During the study period of September 2021 through April 2024, we collected retrospective observational data from electronic health records of 21 patients treated with RE-AC at three outpatient wound care centres. Additionally, 21 control SOC patients were matched from a wound registry using Coarsened Exact Matching. Patients were categorized into two cohorts based on whether they received RE-AC or SOC. Key metrics included wound size progression and wound closure. The analysis employed Bayesian regression and Hurdle Gamma Analysis of Covariance models. Despite their rather large size (average of 13.8 cm2), our results indicated that RE-AC achieved almost a 10% higher expected wound closure rate compared to SOC at 12 weeks (8.53% [credible interval: 5.60%-10.7%]). Further, for wounds that did not close, RE-AC resulted in a 93.6% (credible interval: 147.7%-41.6) improvement in expected Percent Area Reduction over the SOC group at 12 weeks. We noted that on average, SOC wounds stalled or grew larger. In terms of a risk ratio comparing the study group with SOC, we found a 52% benefit in the RE-AC group (RR = 1.52). The findings suggest that even with larger DFUs, R-AC is superior to SOC for wound closure and expected Percent Area Reduction by 12 weeks. This benefit likely leads to reduced treatment costs, optimized resource utilization and improved outcomes in the DFU patient population; ultimately resulting in improved patient care.
Collapse
|
29
|
Chen X, Hu Z, Zhao K, Rao X, Shen C, Chen Y, Ye X, Fang C, Zhou F, Ding Z, Zhu B. Microenvironment-responsive, multimodulated herbal polysaccharide hydrogel for diabetic foot ulcer healing. Sci Rep 2024; 14:22135. [PMID: 39333183 PMCID: PMC11436737 DOI: 10.1038/s41598-024-72972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Diabetic ulcers (DUs) usually suffer from severe infections, persistent inflammation, and excessive oxidative stress during the healing process, which led to the microenvironmental alternation and severely impede DU healing, resulting in a delayed wound healing. Therefore, it is particularly important to develop a medical dressing that can address these problems simultaneously. To this end, self-healing composite hydrogels were prepared in this study utilizing Bletilla striata polysaccharide (BSP) and Berberine (BER) with borax via borate ester bond. The chemical and mechanical properties of the BSP/BER hydrogels were characterized, and their wound healing performance was investigated in vivo and in vitro. The results showed that the BSP/BER hydrogel significantly accelerated wound healing in DU mice with the healing rate of 94.90 ± 1.81% on the 14th day by using BSP/BER5, and this outstanding performance was achieved by the multi-targeted biological functions of antibacterial, anti-inflammatory and antioxidant, which provided favorable microenvironment for orderly recovery of the wound. Aside from exhibiting the antibacterial rate of over 90% against both Escherichia coli and Staphylococcus aureus, the BSP/BER5 hydrogel could significantly reduce NO levels 4.544 ± 0.32 µmol/L to exert its anti-inflammatory effects. Additionally, it demonstrated a hemolysis rate and promotes cell migration capabilities at (34.92 ± 1.66%). With the above features, the developed BSP/BER hydrogel in this study could be the potential dressing for clinical treatment of DU wound.
Collapse
Affiliation(s)
- Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Rao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Chenjun Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Chengnan Fang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Zheng L, Song H, Li Y, Li H, Lin G, Cai Z. Insulin-Induced Gene 1-Enhance Secretion of BMSC Exosome Enriched in miR-132-3p Promoting Wound Healing in Diabetic Mice. Mol Pharm 2024; 21:4372-4385. [PMID: 39136964 DOI: 10.1021/acs.molpharmaceut.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Chronic diabetic wounds represent a significant clinical challenge because of impaired healing processes, which require innovative therapeutic strategies. This study explores the therapeutic efficacy of insulin-induced gene 1-induced bone marrow mesenchymal stem cell exosomes (Insig1-exos) in promoting wound healing in diabetic mice. We demonstrated that Insig1 enhanced the secretion of bone marrow mesenchymal stem cell-derived exosomes, which are enriched with miR-132-3p. Through a series of in vitro and in vivo experiments, these exosomes significantly promoted the proliferation, migration, and angiogenesis of dermal fibroblasts under high-glucose conditions. They also regulated key wound-healing factors, including matrix metalloproteinase-9, platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor-β1, and platelet endothelial cell adhesion molecule-1, thereby accelerating wound closure in diabetic mice. Histological analysis showed that Insig1-exos were more effective in promoting epithelialization, enhancing collagen deposition, and reducing inflammation. Additionally, inhibition of miR-132-3p notably diminished these therapeutic effects, underscoring its pivotal role in the wound-healing mechanism facilitated by Insig1-exos. This study elucidates the molecular mechanisms through which Insig1-exos promotes diabetic wound healing, highlighting miR-132-3p as a key mediator. These findings provide new strategies and theoretical foundations for treating diabetes-related skin injuries.
Collapse
Affiliation(s)
- Liming Zheng
- China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Honghong Song
- Botanical Institute, Karlsruhe Institute for Technology, Fritz Haber Weg 4, 76131 Karlsruhe, Germany
| | - Yang Li
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Hengfei Li
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Guanlin Lin
- The First Affiliated Hospital of Xiamen University, Xiamen ,Fujian 361000, China
| | - Zhenyu Cai
- The First Affiliated Hospital of Xiamen University, Xiamen ,Fujian 361000, China
| |
Collapse
|
31
|
Jupiter DC, Zhang Y, Shibuya N. Trajectories of Diabetes-Related Sequelae for Identifying Transition Probabilities, and Optimal Timepoints for Prevention of Ulceration, Infection, and Amputation. J Foot Ankle Surg 2024; 63:570-576. [PMID: 38876208 DOI: 10.1053/j.jfas.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/30/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
To reduce diabetes-related complications and to avoid futile procedures, foot and ankle surgeons need to understand the relative timings of catastrophic events, their incidence, and probabilities of transitions between disease states in diabetes in different patient populations. For this study, we tracked medical events (including an initial diagnosis of diabetes, ulcer, wound care, osteomyelitis, amputation, and reamputation, in order of severity) and the time between each such event in patients with diabetes, stratifying by sex, race, and ethnicity. We found that the longest average duration between the different lower extremity states was a diagnosis of diabetes to the occurrence of ulcer at 1137 days (38 months). The average durations of amputation to reamputation, osteomyelitis, wound care, and ulcer were 18, 49, 23, and 18 days, respectively. The length of each disease transition for females was greater, while those of the Hispanic population were shorter than in the total cohort. This knowledge may permit surgeons to time and tailor treatments to their patients, and help patients to address, delay, or avoid complications.
Collapse
Affiliation(s)
- Daniel C Jupiter
- Associate Professor, Department of Biostatistics and Data Science, Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, TX
| | - Yuanyi Zhang
- Senior Biostatistician, Department of Biostatistics and Data Science, The University of Texas Medical Branch, Galveston, TX
| | - Naohiro Shibuya
- Clinical Professor, University of Texas Rio Grande Valley, School of Podiatric Medicine, Harlingen, TX.
| |
Collapse
|
32
|
Gao Y, Deng Y, Geng W, Xiao S, Wang T, Xu X, Adeli M, Cheng L, Qiu L, Cheng C. Infectious and Inflammatory Microenvironment Self-Adaptive Artificial Peroxisomes with Synergetic Co-Ru Pair Centers for Programmed Diabetic Ulcer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408787. [PMID: 39096078 DOI: 10.1002/adma.202408787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Complex microenvironments with bacterial infection, persistent inflammation, and impaired angiogenesis are the major challenges in chronic refractory diabetic ulcers. To address this challenge, a comprehensive strategy with highly effective and integrated antimicrobial, anti-inflammatory, and accelerated angiogenesis will offer a new pathway to the rapid healing of infected diabetic ulcers. Here, inspired by the tunable reactive oxygen species (ROS) regulation properties of natural peroxisomes, this work reports the design of infectious and inflammatory microenvironments self-adaptive artificial peroxisomes with synergetic Co-Ru pair centers (APCR) for programmed diabetic ulcer therapy. Benefiting from the synergistic Co and Ru atoms, the APCR can simultaneously achieve ROS production and metabolic inhibition for bacterial sterilization in the infectious microenvironment. After disinfection, the APCR can also eliminate ROS to alleviate oxidative stress in the inflammatory microenvironment and promote wound regeneration. The data demonstrate that the APCR combines highly effective antibacterial, anti-inflammatory, and provascular regeneration capabilities, making it an efficient and safe nanomedicine for treating infectious and inflammatory diabetic foot ulcers via a programmed microenvironment self-adaptive treatment pathway. This work expects that synthesizing artificial peroxisomes with microenvironments self-adaptive and bifunctional enzyme-like ROS regulation properties will provide a promising path to construct ROS catalytic materials for treating complex diabetic ulcers, trauma, or other infection-caused diseases.
Collapse
Affiliation(s)
- Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Xu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Lorestan University, Khorramabad, 6815144316, Iran
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Li Qiu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
33
|
Jiménez-García JF, Jiménez-Abad JF, López LA, García-Fernández FP. Diabetic foot ulcers: evaluating the role of the specialist advanced practice nurse in complex chronic wounds. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2024; 33:S4-S15. [PMID: 39141327 DOI: 10.12968/bjon.2024.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
OBJECTIVES To determine the profile of diabetes patients with neuropathic and neuro-ischaemic lesions who are referred to the advanced practice nurse (APN) in complex chronic wounds; to determine whether a training strategy aimed at primary care nurses and nursing homes that care for patients with diabetic foot disease influences the performance of professionals; and to assess the extent, follow-up and evaluation of diabetic foot disease in patients with neuropathic ulcers and neuro-ischaemic ulcers referred to the specialist APN before and after the training. METHODS The characteristics of patients referred to the APN over a period of 6.5 years were analysed, as well as the numbers of amputations and deaths pre- and post-training. RESULTS of the total of 103 patients, 78 were men; across both sexes the average age was 69 years. Fifty patients had neuropathic ulcers and 53 had neuro-ischaemic ulcers, with healing rates of 59%. There were 50 amputations and 37 deaths over the study period. CONCLUSION Prevention of diabetic foot ulcers depends on having in place a fast, agile, practical clinical pathway between primary care and hospital, with the role of the APN, including the co-ordination of care between primary and secondary settings, being key.
Collapse
Affiliation(s)
- Juan F Jiménez-García
- Advanced Practice Nurse in Complex Chronic Wounds, Poniente de Almería Health District, Spain, Associate Professor, University of Almería, Spain, and Executive Member of the Spanish Pressure Ulcer Advisory Panel
| | - Juan F Jiménez-Abad
- Urology Resident Internal Physician. Jiménez Díaz Foundation University Hospital, Madrid, Spain
| | | | - Francisco Pedro García-Fernández
- Professor of Nursing, Faculty of Health Sciences, University of Jaén, Spain, Executive Member of the Spanish Pressure Ulcer Advisory Panel, and Chair of the Advanced Management in Wounds, Grupo Nacional para el Estudio y Asesoramiento en Úlceras por Presión y Heridas Crónicas (GNEAUPP)
| |
Collapse
|
34
|
Ali MS, Buddhiraju HS, Gubige M, Basa A, K GG, Veeresh B, Rengan AK. Multifunctional Nanosystem for Dual Anti-Inflammatory and Antibacterial Photodynamic Therapy in Infectious Diabetic Wounds. ACS Infect Dis 2024; 10:2978-2990. [PMID: 38990322 DOI: 10.1021/acsinfecdis.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Infectious diabetic wounds present a substantial challenge, characterized by inflammation, infection, and delayed wound healing, leading to elevated morbidity and mortality rates. In this work, we developed a multifunctional lipid nanoemulsion containing quercetin, chlorine e6, and rosemary oil (QCRLNEs) for dual anti-inflammatory and antibacterial photodynamic therapy (APDT) for treating infectious diabetic wounds. The QCRLNEs exhibited spherical morphology with a size of 51 nm with enhanced encapsulation efficiency, skin permeation, and localized delivery at the infected wound site. QCRLNEs with NIR irradiation have shown excellent wound closure and antimicrobial properties in vitro, mitigating the nonselective cytotoxic behavior of PDT. Also, excellent biocompatibility and anti-inflammatory and wound healing responses were observed in zebrafish models. The infected wound healing properties in S. aureus-infected diabetic rat models indicated re-epithelization and collagen deposition with no signs of inflammation. This multifaceted approach using QCRLNEs with NIR irradiation holds great promise for effectively combating oxidative stress and bacterial infections commonly associated with infected diabetic wounds, facilitating enhanced wound healing and improved clinical outcomes.
Collapse
Affiliation(s)
- Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | - Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | - Mounika Gubige
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | - Apoorva Basa
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | | | - Bantal Veeresh
- G Pullareddy College of Pharmacy, Mehadipatnam, Hyderabad 500028, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| |
Collapse
|
35
|
Wei T, Pan T, Peng X, Zhang M, Guo R, Guo Y, Mei X, Zhang Y, Qi J, Dong F, Han M, Kong F, Zou L, Li D, Zhi D, Wu W, Kong D, Zhang S, Zhang C. Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds. NATURE NANOTECHNOLOGY 2024; 19:1178-1189. [PMID: 38740936 DOI: 10.1038/s41565-024-01660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
Diabetic foot ulcers often become infected, leading to treatment complications and increased risk of loss of limb. Therapeutics to manage infection and simultaneously promote healing are needed. Here we report on the development of a Janus liposozyme that treats infections and promotes wound closure and re-epithelialization. The Janus liposozyme consists of liposome-like selenoenzymes for reactive oxygen species (ROS) scavenging to restore tissue redox and immune homeostasis. The liposozymes are used to encapsulate photosensitizers for photodynamic therapy of infections. We demonstrate application in methicillin-resistant Staphylococcus aureus-infected diabetic wounds showing high ROS levels for antibacterial function from the photosensitizer and nanozyme ROS scavenging from the liposozyme to restore redox and immune homeostasis. We demonstrate that the liposozyme can directly regulate macrophage polarization and induce a pro-regenerative response. By employing single-cell RNA sequencing, T cell-deficient Rag1-/- mice and skin-infiltrated immune cell analysis, we further reveal that IL-17-producing γδ T cells are critical for mediating M1/M2 macrophage transition. Manipulating the local immune homeostasis using the liposozyme is shown to be effective for skin wound repair and tissue regeneration in mice and mini pigs.
Collapse
Affiliation(s)
- Tingting Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Tiezheng Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Xiuping Peng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Mengjuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Ru Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Yuqing Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Xiaohan Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Fang Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Meijuan Han
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Fandi Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Lina Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Dan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Dengke Zhi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
- Institute for Immunology, Nankai University, Tianjin, China.
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
36
|
Lockhart M, Dinneen SF, O'Keeffe DT. Plantar pressure measurement in diabetic foot disease: A scoping review. J Diabetes Investig 2024; 15:990-999. [PMID: 38634342 PMCID: PMC11292392 DOI: 10.1111/jdi.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
AIMS/INTRODUCTION Patients with a healed diabetic foot ulcer (DFU) have a 40% risk of ulcer recurrence within a year. New and effective measures to prevent DFU recurrence are essential. We aimed to highlight emerging trends and future research opportunities in the use of plantar pressure measurement to prevent DFU recurrence. MATERIALS AND METHODS Our scoping review protocol was drafted using the Preferred Reporting Items for Systematic Reviews and Meta-analysis - Scoping Review protocol. Peer-reviewed, English-language papers were included that addressed both plantar pressure measurement and diabetic foot disease, either as primary studies that have advanced the field or as review papers that provide summaries and/or opinion on the field as a whole, as well as specific papers that provide guidelines for future research and advancement in the field. RESULTS A total of 24 eligible publications were identified in a literature search using PubMed. A further 36 eligible studies were included after searching the references sections of these publications, leaving a total of 60 publications included in this scoping review. CONCLUSIONS Plantar pressure measurement can and will play a major role in the prevention of DFU. There is already a strong, albeit limited, evidence base in place to prove its benefit in reducing DFU recurrence. More research is required in larger populations, using remote monitoring in real-world settings, and with improved technology.
Collapse
Affiliation(s)
- Michael Lockhart
- Center for Endocrinology, Diabetes and MetabolismGalway University HospitalsGalwayIreland
- Health Innovation via Engineering (HIVE) Laboratory, Lambe InstituteUniversity of GalwayGalwayIreland
| | - Sean F Dinneen
- Center for Endocrinology, Diabetes and MetabolismGalway University HospitalsGalwayIreland
- School of MedicineUniversity of GalwayGalwayIreland
| | - Derek T O'Keeffe
- Center for Endocrinology, Diabetes and MetabolismGalway University HospitalsGalwayIreland
- Health Innovation via Engineering (HIVE) Laboratory, Lambe InstituteUniversity of GalwayGalwayIreland
- School of MedicineUniversity of GalwayGalwayIreland
| |
Collapse
|
37
|
Gou D, Qiu P, Hong F, Wang Y, Ren P, Cheng X, Wang L, Liu T, Liu J, Zhao J. Polydopamine modified multifunctional carboxymethyl chitosan/pectin hydrogel loaded with recombinant human epidermal growth factor for diabetic wound healing. Int J Biol Macromol 2024; 274:132917. [PMID: 38851612 DOI: 10.1016/j.ijbiomac.2024.132917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The development of a multifunctional wound dressing that can adapt to the shape of wounds and provide controlled drug release is crucial for diabetic patients. This study developed a carboxymethyl chitosan-based hydrogel dressing with enhanced mechanical properties and tissue adherence that were achieved by incorporating pectin (PE) and polydopamine (PDA) and loading the hydrogel with recombinant human epidermal growth factor (rhEGF). This EGF@PDA-CMCS-PE hydrogel demonstrated robust tissue adhesion, enhanced mechanical properties, and superior water retention and vapor permeability. It also exhibited significant antioxidant capacity. The results showed that EGF@PDA-CMCS-PE could effectively scavenge 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate), (1,1-diphenyl-2-picrylhydrazyl), and superoxide anions and increase superoxide dismutase and catalase levels in vivo. In vitro cytotoxicity and antibacterial assays showed good biocompatibility and antimicrobial properties. The sustained release of EGF by the hydrogel was confirmed, with a gradual release profile over 120 h. In vivo studies in diabetic mice showed that the hydrogel significantly accelerated wound healing, with a wound contraction rate of 97.84% by day 14. Histopathological analysis revealed that the hydrogel promoted fibroblast proliferation, neovascularization, and orderly connective tissue formation, leading to a more uniform and compact wound-healing process. Thus, EGF@PDA-CMCS-PE hydrogel presents a promising tool for managing chronic diabetic wounds, offering a valuable strategy for future clinical applications.
Collapse
Affiliation(s)
- Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Fandi Hong
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xiaowen Cheng
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lei Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
38
|
Xie J, Liu X, Wu B, Chen B, Song Q, Guan Y, Gong Y, Yang C, Lin J, Huang M, Tan X, Lai R, Lin X, Zhang S, Xie X, Chen X, Zhang C, Yang M, Nong H, Zhao X, Xia L, Zhou W, Xiao G, Jiang Q, Zou W, Chen D, Lu D, Liu J, Bai X. Bone transport induces the release of factors with multi-tissue regenerative potential for diabetic wound healing in rats and patients. Cell Rep Med 2024; 5:101588. [PMID: 38781961 PMCID: PMC11228591 DOI: 10.1016/j.xcrm.2024.101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/08/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Tibial cortex transverse distraction is a surgical method for treating severe diabetic foot ulcers (DFUs), but the underlying mechanism is unclear. We show that antioxidant proteins and small extracellular vesicles (sEVs) with multiple-tissue regenerative potential are released during bone transport (BT) in humans and rats. These vesicles accumulate in diabetic wounds and are enriched with microRNAs (miRNAs) (e.g., miR-494-3p) that have high regenerative activities that improve the circulation of ischemic lower limbs while also promoting neovascularization, fibroblast migration, and nerve fiber regeneration. Deletion of miR-494-3p in rats reduces the beneficial effects of BT on diabetic wounds, while hydrogels containing miR-494-3p and reduced glutathione (GSH) effectively repair them. Importantly, the ginsenoside Rg1 can upregulate miR-494-3p, and a randomized controlled trial verifies that the regimen of oral Rg1 and GSH accelerates wound healing in refractory DFU patients. These findings identify potential functional factors for tissue regeneration and suggest a potential therapy for DFUs.
Collapse
Affiliation(s)
- Jing Xie
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xuhua Liu
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Biaoliang Wu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Bochong Chen
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Song
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuan Guan
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Yuanxun Gong
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Chengliang Yang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Jinbo Lin
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingfeng Huang
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinyu Tan
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ruijun Lai
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xiaozhen Lin
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Sheng Zhang
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoling Xie
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Chen
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chunyuan Zhang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Mei Yang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Huijiao Nong
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Human Tissue and Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China.
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China.
| | - Xiaochun Bai
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
39
|
Qian H, Jian Y, Chu X, Wang Y, Liu Z, Zhang N, Deng C, Shi X, Wei Z. Local Management for Diabetic Foot Ulcers: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials. Ann Surg 2024; 281:00000658-990000000-00935. [PMID: 38881456 PMCID: PMC11723489 DOI: 10.1097/sla.0000000000006398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
OBJECTIVE This study evaluated the efficacy of various local management strategies for diabetic foot ulcers (DFUs). BACKGROUND Several surgical and non-surgical local interventional approaches are available for the treatment of DFUs. The comparative effectiveness of different treatments is unknown, and it remains unclear which approach is the optimal choice for DFUs treatment due to limited direct comparisons. METHODS We did a systematic review and meta-analysis to select the optimal approach to DFUs local management. We searched Medline, Embase, Web of Science, and ClinicalTrials.gov from inception to September 1, 2023, to identify relevant randomized controlled trials (RCTs). We analysed data by pairwise meta-analyses with a random-effects model. A network meta-analysis using the surface under the cumulative ranking curve (SUCRA) was performed to evaluate the comparative efficacy of different interventional approaches in the early (within 12 wk) and late stages (over 12 wk). RESULTS 141 RCTs involving 14076 patients and exploring 14 interventional strategies were eligible for inclusion. Most studies (102/141) had at least one risk-of-bias dimension. Good consistency was observed during the analysis. Local pairwise comparisons demonstrated obvious differences in the early-stage healing rate and early- and late-stage healing times, while no significant difference in the late-stage healing rate or adverse events were noted. SUCRAs identified the standard of care (SOC) + decellularized dressing (DD), off-loading (OL), and autogenous graft (AG) as the three most effective interventions within 12 weeks for both healing rate (97%, mean rank: 1.4; 90%, mean rank: 2.3; 80.8%, mean rank: 3.5, respectively) and healing time (96.7%, mean rank: 1.4; 83.0%, mean rank: 3.0; 76.8%, mean rank: 3.8, respectively). After 12 weeks, local drug therapy (LDT) (89.5%, mean rank: 2.4) and OL (82.4%, mean rank: 3.3) ranked the highest for healing rate, and OL (100.0%, mean rank: 1.0) for healing time. With respect to adverse events, moderate and high risks were detected in the SOC + DD (53.7%, mean rank: 7.0) and OL (24.4%, mean rank: 10.8) groups, respectively. CONCLUSION The findings suggest that OL provided considerable benefits for DFU healing in both the early and late stages, but the high risk of adverse events warrants caution. SOC+DD may be the preferred option in the early stages, with an acceptable risk of adverse events.
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiangyuan Chu
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanliang Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhu Liu
- Guizhou Children’s Hospital, Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chenliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiuquan Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
40
|
Samakidou G, Eleftheriadou I, Anastasiou IA, Kosta O, Tentolouris A, Evangelou K, Tentolouris N. A Single Center, Randomized Controlled Trial on the Efficacy of Topical Application of ReGenerating Tissue Agents (RGTA) Technology in Diabetic Foot Ulcers. INT J LOW EXTR WOUND 2024:15347346241259893. [PMID: 38832415 DOI: 10.1177/15347346241259893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Diabetic foot ulcers (DFUs) are a serious complication of diabetes mellitus. Clinical data from the use of ReGenerating Tissue Agents (RGTA) technology in patients with DFUs are scarce. The objective of this randomized controlled study was to evaluate the efficacy of RGTA technology in the management of DFUs. Patients with chronic, neuroischemic diabetic foot ulcers were randomized 1:1 to the control group, that received the standard of care, and to the intervention group, that additionally received RGTA twice per week. The duration of the intervention was 12 weeks. Skin biopsies for histological and immunohistochemical analyses from a sample of participants were also performed. About 31 patients completed the study. Five (31.2%) patients in the intervention group achieved complete healing at the end of the intervention period versus 0 patients in the control group (P = .043), [RR: 0.688 (95% CI: 0.494-0.957)]. The intervention group had more ulcers with at least 80% healing of their surface [10 (66.7%) versus 2 (13.3%), P = .008, RR: 0.385 (95% CI: 0.183-0.808)], higher absolute surface reduction [1.5 (0.7, 5.2) versus 0.6 (0.3, 1.0), P = .026] and higher percentages of surface reduction [94 (67, 100) versus 40 (26, 75), P = .001] at the end of the intervention period. More patients in the intervention group achieved at least 50% healing at the fourth week of the study [9 (64.3%) versus 2 (14.3%) P = .018, RR: 0.417 (95% CI: 0.200-0.869)]. Immunohistochemical analyses were performed in a sample of participants that revealed higher expression of CD163, COL3 and VEGFR in the intervention group. The adverse effects were similar between the 2 groups. The data from the present study suggest that the adjunction of RGTA technology in the management of diabetic foot ulcers is a safe practice that promotes wound healing.
Collapse
Affiliation(s)
- Georgia Samakidou
- First Department of Propaedeutic Internal Medicine, Diabetes Centre, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal Medicine, Diabetes Centre, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Ioanna A Anastasiou
- First Department of Propaedeutic Internal Medicine, Diabetes Centre, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Ourania Kosta
- First Department of Propaedeutic Internal Medicine, Diabetes Centre, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Centre, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Konstantinos Evangelou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Centre, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
41
|
Sun M, Tian Y, Liu J, Yan Y, Zhang X, Xiao C, Jiang R. Proanthocyanidins-based tandem dynamic covalent cross-linking hydrogel for diabetic wound healing. Int J Biol Macromol 2024; 272:132741. [PMID: 38825292 DOI: 10.1016/j.ijbiomac.2024.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Wound healing in diabetic patients presents significant challenges in clinical wound care due to high oxidative stress, excessive inflammation, and a microenvironment prone to infection. In this study, we successfully developed a multifunctional tandem dynamic covalently cross-linked hydrogel dressing aimed at diabetic wound healing. This hydrogel was constructed using cyanoacetic acid functionalized dextran (Dex-CA), 2-formylbenzoylboric acid (2-FPBA) and natural oligomeric proanthocyanidins (OPC), catalyzed by histidine. The resulting Dex-CA/OPC/2-FPBA (DPOPC) hydrogel can be dissolved triggered by cysteine, thereby achieving "controllable and non-irritating" dressing change. Furthermore, the incorporation of OPC as a hydrogel building block endowed the hydrogel with antioxidant and anti-inflammatory properties. The cross-linked network of the DPOPC hydrogel circumvents the burst release of OPC, enhancing its biosafety. In vivo studies demonstrated that the DPOPC hydrogel significantly accelerated the wound healing process in diabetic mice compared to a commercial hydrogel, achieving an impressive wound closure rate of 98 % by day 14. The DPOPC hydrogel effectively balanced the disrupted inflammatory state during the healing process. This dynamic hydrogel based on natural polyphenols is expected to be an ideal candidate for dressings intended for chronic wounds.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Dermatology China-Japan Union Hospital of Jilin University, Changchun 130033, PR China; Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yongchang Tian
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Jiaying Liu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Yan
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Rihua Jiang
- Department of Dermatology China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| |
Collapse
|
42
|
Vrátná E, Husáková J, Králová K, Kratochvílová S, Girman P, Saudek F, Dubský M, Bém R, Wosková V, Jirkovská A, Dad'ová K, Vařeková J, Lánská V, Fejfarová V. Incidence and Risk Factors of Diabetic Foot Syndrome in Patients Early After Pancreas or Kidney/Pancreas Transplantation and its Association with Preventive Measures. INT J LOW EXTR WOUND 2024; 23:283-290. [PMID: 34723678 DOI: 10.1177/15347346211052155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diabetic foot (DF) can develop in diabetic patients after organ transplantation (Tx) due to several factors including peripheral arterial disease (PAD), diabetic neuropathy and inappropriate DF prevention. Aim: To assess the occurrence of DF and associated risk factors in transplant patients. Methods: Fifty-seven diabetic patients were enrolled as part of this prospective study. All patients underwent organ Tx (01/2013-12/2015) and were followed up for minimum of 12 months up to a maximum of 50 months. Over the study period we evaluated DF incidence and identified a number of factors likely to influence DF development, including organ function, presence of late complications, PAD, history of DF, levels of physical activity before and after Tx, patient education and standards of DF prevention. Results: Active DF developed in 31.6% (18/57) of patients after organ Tx within 11 months on average (10.7 ± 8 months). The following factors significantly correlated with DF development: diabetes control (p = .0065), PAD (p<0.0001), transcutaneous oxygen pressure (TcPO2;p = .01), history of DF (p = .0031), deformities (p = .0021) and increased leisure-time physical activity (LTPA) before Tx (p = .037). However, based on logistic stepwise regression analysis, the only factors significantly associated with DF during the post-transplant period were: PAD, deformities and increased LTPA. Education was provided to patients periodically (2.6 ± 2.5 times) during the observation period. Although 94.7% of patients regularly inspected their feet (4.5 ± 2.9 times/week), only 26.3% of transplant patients used appropriate footwear. Conclusions: Incidence of DF was relatively high, affecting almost 1/3 of pancreas and kidney/pancreas recipients. The predominant risk factors were: presence of PAD, foot deformities and higher LTPA before Tx. Therefore, we recommend a programme involving more detailed vascular and physical examinations and more intensive education focusing on physical activity and DF prevention in at-risk patients before transplantation.
Collapse
Affiliation(s)
- E Vrátná
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
- Division of Clinical Rehabilitation, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - K Králová
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - S Kratochvílová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - P Girman
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - F Saudek
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Dubský
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - R Bém
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - V Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - A Jirkovská
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - K Dad'ová
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - J Vařeková
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - V Lánská
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - V Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
43
|
Fallah Huseini H, Yaghoobi M, Fallahi F, Boroumand F, Ezzati MH, Tabatabaei SM, Sotvan H, Ahvazi M, Badiee Aval S, Ziaee M. Topical Administration of Teucrium polium on Diabetic Foot Ulcers Accelerates Healing: A Placebo-Controlled Randomized Clinical Study. INT J LOW EXTR WOUND 2024; 23:238-246. [PMID: 34719966 DOI: 10.1177/15347346211048371] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diabetic foot ulcer is one of the most devastating complications of uncontrolled diabetes. Although there have been advances in the management of diabetic foot ulcers, still diabetic foot ulcers are a major cause of many amputations in diabetic patients. Teucrium polium (T. polium) is widely used by folk medicine practitioners in Iran for the treatment of diabetic ulcers.The present study was designed to evaluate the safety and efficacy of topical T. polium ointment besides the standard treatment in diabetic foot ulcers.A total of 70 diabetic patients with foot ulcers grade 1 or 2 according to Wagner's scale were enrolled in this study. Patients were randomly divided into two groups. Patients in both groups received standard treatment for diabetic foot ulcers. In addition, group 1 received topical T. polium ointment, and group 2 received topical placebo ointment for 4 weeks. The T. polium and placebo ointments were rubbed twice daily two hours before the conventional dressing. The ulcer size, healing time, and laboratory tests were measured in both groups at baseline and end of the study after 4 weeks.Twenty-nine patients remained in the T. polium group and 26 in the placebo group until the end of the study. The mean surface area of ulcers was 3.52 ± 1.47 and 3.21 ± 1.67 cm2 in T. polium group and placebo group respectively at baseline which decrease to .717 ± .19 and 1.63 ± .72 cm2 respectively at the endpoint. The mean ulcer surface area was significantly lower in T. polium compared with the placebo group (p < .0001) at end of the study. Also, the number of patients that completely recovered in the T. polium group was significantly higher than the placebo group (p < .001) at the end of the study.The addition of topical T. polium ointment to standard treatment significantly improves the healing time of diabetic non-infected foot ulcers.
Collapse
Affiliation(s)
- Hasan Fallah Huseini
- Medicinal Plants Research Center, Institute of Medicinal Plants , ACECR, Karaj, Iran
| | - Maryam Yaghoobi
- Department of Epidemiology, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Imam Reza Hospital, University of Medical Sciences, Mashhad, Iran
| | - Farhad Fallahi
- Diabetic Clinic, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Boroumand
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyyed Mohammad Tabatabaei
- Clinical Research Development Unit, Imam Reza Hospital, University of Medical Sciences, Mashhad, Iran
- Medical Informatics Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homa Sotvan
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ahvazi
- Medicinal Plants Research Center, Institute of Medicinal Plants , ACECR, Karaj, Iran
| | - Shapour Badiee Aval
- Department of Complementary and Chinese Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
44
|
Ennion L, Hijmans JM. Retention of Improved Plantar Sensation in Patients with Type II Diabetes Mellitus and Sensory Peripheral Neuropathy after One Month of Vibrating Insole Therapy: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:3131. [PMID: 38793985 PMCID: PMC11125190 DOI: 10.3390/s24103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Sensory peripheral neuropathy is a common complication of diabetes mellitus and the biggest risk factor for diabetic foot ulcers. There is currently no available treatment that can reverse sensory loss in the diabetic population. The application of mechanical noise has been shown to improve vibration perception threshold or plantar sensation (through stochastic resonance) in the short term, but the therapeutic use, and longer-term effects have not been explored. In this study, vibrating insoles were therapeutically used by 22 participants, for 30 min per day, on a daily basis, for a month by persons with diabetic sensory peripheral neuropathy. The therapeutic application of vibrating insoles in this cohort significantly improved VPT by an average of 8.5 V (p = 0.001) post-intervention and 8.2 V (p < 0.001) post-washout. This statistically and clinically relevant improvement can play a role in protection against diabetic foot ulcers and the delay of subsequent lower-extremity amputation.
Collapse
Affiliation(s)
- Liezel Ennion
- Department of Physiotherapy, University of the Western Cape (UWC), 10 Blanckenberg Road, Bellville, Cape Town 7530, South Africa
| | - Juha M. Hijmans
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
45
|
Li Z, Qian C, Zheng X, Qi X, Bi J, Wang H, Cao J. Collagen/chitosan/genipin hydrogel loaded with phycocyanin nanoparticles and ND-336 for diabetic wound healing. Int J Biol Macromol 2024; 266:131220. [PMID: 38554920 DOI: 10.1016/j.ijbiomac.2024.131220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Diabetic wound healing remains a healthcare challenge due to the overexpression of matrix metalloproteinase-9 (MMP-9) and the imbalance between angiogenic factors and vascular inhibitory factors. In this study, we developed a nanocomposite injectable collagen/chitosan hydrogel for the treatment of delayed diabetic wound healing, which can promote cell migration to the wound site (through the addition of phycocyanin) and reduce the expression of MMP-9 (through the use of ND-336) to improve the therapeutic effect of diabetic wound healing. Furthermore, different weight ratios of collagen and chitosan hydrogels were prepared to select the hydrogel with proper mechanical properties. In vitro experiments confirmed that all hydrogels have favorable biocompatibility and hemocompatibility. Notably, Gel 2, with a weight ratio of collagen and chitosan at 25:75, was found to have an excellent capability to facilitate cell migration and in vivo studies further proved that Gel 2 nanocomposite hydrogel had the best ability to improve diabetic wound healing by promoting cell migration and decreasing MMP-9 expression. The collagen/chitosan/genipin hydrogel loaded phycocyanin and ND-336 can be harnessed for non-toxic and efficient treatment of wound healing management of diabetes.
Collapse
Affiliation(s)
- Zhiye Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Chenyao Qian
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Xiaodan Zheng
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Jingyue Bi
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Huan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China.
| |
Collapse
|
46
|
Liu L, Zheng J, Li S, Deng Y, Zhao S, Tao N, Chen W, Li J, Liu YN. Nitric oxide-releasing multifunctional catechol-modified chitosan/oxidized dextran hydrogel with antibacterial, antioxidant, and pro-angiogenic properties for MRSA-infected diabetic wound healing. Int J Biol Macromol 2024; 263:130225. [PMID: 38368973 DOI: 10.1016/j.ijbiomac.2024.130225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The study presents a multifunctional catechol-modified chitosan (Chi-Ca)/oxidized dextran (Dex-CHO) hydrogel (CDP-PB) that possesses antibacterial, antioxidant, and pro-angiogenic properties, aimed at improving the healing of diabetic wounds. The achievement of the as-prepared CDP-PB hydrogel with superb antibacterial property (99.9 %) can be realized through the synergistic effect of phenylboronic acid-modified polyethyleneimine (PEI-PBA) and photothermal therapy (PTT) of polydopamine nanoparticles loaded with the nitric oxide (NO) donor BNN6 (PDA@BNN6). Notably, CDP-PB hydrogel achieves ∼3.6 log10 CFU/mL MRSA of inactivation efficiency under 808 nm NIR laser irradiation. In order to mitigate oxidative stress, the Chi-Ca was synthesized and afterward subjected to a reaction with Dex-CHO via a Schiff-base reaction. The catechol-containing hydrogel demonstrated its effectiveness in scavenging DPPH, •OH, and ABTS radicals (> 85 %). In addition, the cellular experiment illustrates the increased migration and proliferation of cells by the treatment of CDP-PB hydrogel in the presence of oxidative stress conditions. Moreover, the findings from the animal model experiments provide evidence that the CDP-PB hydrogel exhibited efficacy in the eradication of wound infection, facilitation of angiogenesis, stimulation of granulation, and augmentation of collagen deposition. These results indicate the potential of the CDP-PB hydrogel for use in clinical applications.
Collapse
Affiliation(s)
- Longhai Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jia Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shaohua Li
- Institute of Environment Protection, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, PR China.
| | - Yuanyuan Deng
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China
| | - Senfeng Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianghua Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
47
|
Xu J, Lin Y, Wang Y, Gao H, Li Y, Zhang C, Chen Q, Chen S, Peng Q. Multifunctional Regeneration Silicon-Loaded Chitosan Hydrogels for MRSA-Infected Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303501. [PMID: 37956229 DOI: 10.1002/adhm.202303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Repeated microbial infection, excess reactive oxygen species (ROS) accumulation, cell dysfunction, and impaired angiogenesis under hyperglycemia severely inhibit diabetic wound healing. Therefore, developing multifunctional wound dressings accommodating the complex microenvironment of diabetic wounds is of great significance. Here, a multifunctional hydrogel (Regesi-CS) is prepared by loading regeneration silicon (Regesi) in the non-crosslinked chitosan (CS) solution, followed by freeze-drying and hydration. As expected, the blank non-crosslinked CS hydrogel (1%) shows great antibacterial activity against Escherichia coli, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA), improves fibroblast migration, and scavenges intracellular ROS. Interestingly, after loading 1% Regesi, the Regesi-CS (1%-1%) hydrogel shows greater antibacterial activity, significantly promotes fibroblasts proliferation and migration, scavenges much more ROS, and substantially protects fibroblasts under oxidative stress, yet Regesi alone has no or even negative effects. In the MRSA-infected diabetic wound model, Regesi-CS (1%-1%) hydrogel effectively promotes wound healing by eliminating bacterial infection, enhancing granulation tissue formation, promoting collagen deposition, and improving angiogenesis. In conclusion, Regesi-CS hydrogel may be a potential wound dressing for the effective treatment and management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuanhong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
48
|
Jiang F, Zhang Y, Cheng S, Yang X, Bai M, Zhang M. Quality of evidence supporting the role of hyperbaric oxygen therapy for diabetic foot ulcers. Int Wound J 2024; 21:e14530. [PMID: 38053520 PMCID: PMC10961030 DOI: 10.1111/iwj.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
The goal of this overview of systematic reviews (SRs) and meta-analyses (MAs) was to methodically gather, evaluate and summarize the data supporting the use of hyperbaric oxygen therapy (HBOT) to treat diabetic foot ulcers (DFUs). The Cochrane Library, Embase, PubMed, Web of Science and Embase were all searched thoroughly to identify SRs/MAs that qualified. AMSTAR-2 tool, PRISMA checklists and GRADE system were applied by two reviewers independently to assess the methodological quality, reporting and evidence quality of the included SRs/MAs, respectively. Eleven SRs/MAs were enrolled in this overview. According to AMSTAR-2, a very low methodological quality assessment was given to the included SRs/MAs due to the limitations of items 2, 4 and 7. For the PRISMA, the overall quality of reporting is not satisfactory due to missing reporting on protocol, search, as well as additional analysis. The majority of outcomes had low- to moderate-quality evidence, and no high-quality evidence was found to support the role of HBOT for DFUs, according to GRADE. To conclude, the potential of HBOT in treating DFUs is supported by evidence of low to moderate quality. More rigorously designed, high-level studies are needed in the future to determine the evidence for HBOT for DFU, including the timing, frequency and duration of HBOT interventions.
Collapse
Affiliation(s)
- Fuxin Jiang
- General Medicine DepartmentXigu Hospital of Lanzhou University Second HospitalLanzhouChina
| | - Yalan Zhang
- The Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Shijin Cheng
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaohui Yang
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Min Bai
- General Medicine DepartmentXigu Hospital of Lanzhou University Second HospitalLanzhouChina
| | - Ming Zhang
- Endocrinology DepartmentLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
49
|
Silva-Tinoco R, Cuatecontzi-Xochitiotzi T, Reyes-Paz Y, Vidal-Santos B, Galíndez-Fuentes A, Castillo-Martínez L. Improving foot ulcer risk assessment and identifying associated factors: Results of an initiative enhancing diabetes care in primary settings. DIABETES EPIDEMIOLOGY AND MANAGEMENT 2024; 14:100195. [DOI: 10.1016/j.deman.2023.100195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Haghdoost A, Mobayen M, Baghi I, Haghani‐Dogahe Z, Zarei R, Pirooz A, Balou HA, Feizkhah A. Potassium permanganate in treatment of diabetic foot ulcer: A randomized clinical trial. Health Sci Rep 2024; 7:e2073. [PMID: 38650725 PMCID: PMC11033332 DOI: 10.1002/hsr2.2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Background and Aims Diabetic foot ulcers (DFU) are a severe complication in diabetes patients, often resulting in significant morbidity and mortality due to non-healing. This study investigated the effectiveness of 5% topical potassium permanganate on these ulcers. Methods A clinical trial was conducted on 23 patients with Wagner grade I and II DFU. Patients in the control group received standard treatment, while those in the intervention group also received 5% potassium permanganate topically. Data were recorded at 0, 7, 14, and 21 days for analysis. Results Among 23 patients studied, 7 (30.4%) were male and 16 (43.7%) female, with an average age of 59 ± 4 years. Both groups showed a statistically significant decrease in wound size and infection over time (p < 0.001). The intervention group, however, had a more substantial reduction in wound size and infection rate (p < 0.05). Conclusion Potassium permanganate, when applied topically, is both well-tolerated and effective in enhancing wound healing and reducing infection in DFU, suggesting its potential as a complementary treatment.
Collapse
Affiliation(s)
- Afrooz Haghdoost
- General Surgery DepartmentGuilan University of Medical SciencesRashtIran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research CenterGuilan University of Medical SciencesRashtIran
| | - Iraj Baghi
- General Surgery DepartmentGuilan University of Medical SciencesRashtIran
| | - Zahra Haghani‐Dogahe
- Burn and Regenerative Medicine Research CenterGuilan University of Medical SciencesRashtIran
| | - Reza Zarei
- Department of Statistics, Faculty of Mathematical SciencesUniversity of GuilanRashtIran
| | - Amir Pirooz
- Clinical Research Development Unit of Poursina HospitalGuilan University of Medical SciencesRashtIran
| | - Heydar Ali Balou
- School of Medicine, Razi HospitalGuilan University of Medical SciencesRashtIran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research CenterGuilan University of Medical SciencesRashtIran
| |
Collapse
|