1
|
Munns S, Brown A, Buckberry S. Type-2 diabetes epigenetic biomarkers: present status and future directions for global and Indigenous health. Front Mol Biosci 2025; 12:1502640. [PMID: 40356723 PMCID: PMC12066322 DOI: 10.3389/fmolb.2025.1502640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/03/2025] [Indexed: 05/15/2025] Open
Abstract
Type-2 diabetes is a systemic condition with rising global prevalence, disproportionately affecting Indigenous communities worldwide. Recent advances in epigenomics methods, particularly in DNA methylation detection, have enabled the discovery of associations between epigenetic changes and Type-2 diabetes. In this review, we summarise DNA methylation profiling methods, and discuss how these technologies can facilitate the discovery of epigenomic biomarkers for Type-2 diabetes. We critically evaluate previous DNA methylation biomarker studies, particularly those using microarray platforms, and advocate for a shift towards sequencing-based approaches to improve genome-wide coverage. Furthermore, we emphasise the need for biomarker studies that include genetically diverse populations, especially Indigenous communities who are significantly impacted by Type-2 diabetes. We discuss research approaches and ethical considerations that can better facilitate Type-2 diabetes biomarker development to ensure that future genomics-based precision medicine efforts deliver equitable health outcomes. We propose that by addressing these gaps, future research can better capture the genetic and environmental complexities of Type-2 diabetes among populations at disproportionate levels of risk, ultimately leading to more effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sarah Munns
- The Kids Research Institute Australia, Perth, WA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
| | - Alex Brown
- The Kids Research Institute Australia, Perth, WA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
| | - Sam Buckberry
- The Kids Research Institute Australia, Perth, WA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Rivera-Alvarez I, Vázquez-Lizárraga R, Mendoza-Viveros L, Sotelo-Rivera I, Viveros-Ruiz TL, Morales-Maza J, Orozco L, Romano MC, Noriega LG, Tovar AR, Aguilar-Arnal L, Cruz-Bautista I, Aguilar-Salinas C, Orozco-Solis R. Transcriptional dynamics in type 2 diabetes progression is linked with circadian, thermogenic, and cellular stress in human adipose tissue. Commun Biol 2025; 8:398. [PMID: 40057615 PMCID: PMC11890630 DOI: 10.1038/s42003-025-07709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/10/2025] [Indexed: 04/03/2025] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased significantly over the past three decades, with an estimated 30-40% of cases remaining undiagnosed. Brown and beige adipose tissues are known for their remarkable catabolic capacity, and their ability to diminish blood glucose plasma concentration. Beige adipose tissue can be differentiated from adipose-derived stem cells or through transdifferentiation from white adipocytes. However, the impact of T2D progression on beige adipocytes' functional capacity remains unclear. Transcriptomic profiling of subcutaneous adipose tissue biopsies from healthy normal-weight, obese, prediabetic obese, and obese subjects diagnosed with T2D, reveals a progressive alteration in cellular processes associated with catabolic metabolism, circadian rhythms, thermogenesis-related signaling pathways, cellular stress, and inflammation. MAX is a potential transcription factor that links inflammation with the circadian clock and thermogenesis during the progression of T2D. This study unveils an unrecognized transcriptional circuit that increasingly disrupts subcutaneous adipose tissue oxidative capacity during the progression of T2D. These findings could open new research venues for developing chrono-pharmaceutical strategies to treat and prevent T2D.
Collapse
Affiliation(s)
| | - Rosa Vázquez-Lizárraga
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| | - Lucía Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, S.L.P., México
| | | | - Tannia L Viveros-Ruiz
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Jesús Morales-Maza
- Departamento de Cirugía Endocrina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Marta C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados (CINVESTAV), México City, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Carlos Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, México City, México
| | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México.
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México.
| |
Collapse
|
3
|
Diane A, Mu-U-Min RBA, Al-Siddiqi HH. Epigenetic memory as crucial contributing factor in directing the differentiation of human iPSC into pancreatic β-cells in vitro. Cell Tissue Res 2025; 399:267-276. [PMID: 39883142 PMCID: PMC11870940 DOI: 10.1007/s00441-025-03952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage. Emerging β-cell replacement with human-induced pluripotent stem cell (iPSC) provides high remedial therapy hopes. Thus, tremendous progress has been made in developing β-cell differentiation protocols in vitro; however, most of the differentiated iPSC-derived β-cells showed immature phenotypes associated with low efficiency depending on the iPSC lines used, creating a crucial barrier for their clinical implementation. Multiple mechanisms including differences in genetic, cell cycle patterns, and mitochondrial dysfunction underlie the defective differentiation propensity of iPSC into insulin-producing β-cells. Accumulating evidence recently indicated that, following the reprogramming, epigenetic memory inherited from parental cells substantially affects the differentiation capacity of many iPSC lines. Therefore, differences in epigenetic signature are likely to be essential contributing factors influencing the propensity of iPSC differentiation. In this review, we will document the impact of the epigenome on the reprogramming efficacy and differentiation potential of iPSCs and how targeting the epigenetic residual memory could be an additional strategy to improve the differentiation efficiency of existing protocols to generate fully functional hPSC-derived pancreatic β-cells for diabetes therapy and drug screening.
Collapse
Affiliation(s)
- Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| | - Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Heba Hussain Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
4
|
Alsaleem M, Sindi S, Alhazmi S, Hassan S, Ganash M, Alburae N, Alkhayyat S, Linjawi A, Elaimi A, Alharthy SA, Algothmi K, Farsi R, Alrefaei G, Alsubhi N, Hamdi N, Alkhatabi H. Deciphering the prognostic impact of aberrant DNA methylation on ANGPT1 gene in breast cancer. Sci Rep 2025; 15:6611. [PMID: 39994266 PMCID: PMC11850880 DOI: 10.1038/s41598-025-90001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer (BC) is a multifaceted disease distinguished by a range of molecular subtypes and varying clinical prognoses. The involvement of DNA methylation in the dysregulation of gene expression has been linked to the development and progression of BC. Therefore, this study aimed to investigate the association between ANGPT1 gene expression and DNA methylation in BC patients. Eight Saudi female blood samples were used to undergo for whole genome bisulfite sequencing (WGBS) and RNA sequencing for the identification of novel DNA methylation targets. Several public domain BC datasets including the METABRIC cohort, TCGA, and Kaplan Meier Plotter datasets, were used to explore the prognostic significance of ANGPT1 gene. Then, the demethylation agent 5-aza-2'-deoxycytidine was used to examine the potential association between DNA methylation and ANGPT1 expression. Finally, the validation was conducted on blood samples from 49 Saudi females using methylight techniques. Our results shows that upregulation of ANGPT1 gene expression exhibited hypomethylation pattern in BC samples. these results were confirmed by MCF7 cell line experiments. Demethylating using 5-aza in MCF7 and MCF10A showed a high expression of ANGPT1 in both cell lines. ANGPT1 mRNA expression was found to poor prognostic biomarker and lower Breast Cancer-Specific Survival (BCSS) in BC patients. The potential importance of abnormal DNA methylation in the development and advancement of BC is significant. ANGPT1 may act as an oncogene and could be extensively studied further to behave as a predictive biomarker for breast cancer.
Collapse
Affiliation(s)
- Mansour Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Samar Sindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
- Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sabah Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Magdah Ganash
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadi Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Aisha Elaimi
- Department of Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Institute of genomics Medicine Science (IGMS), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saif A Alharthy
- Department of Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud Algothmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Farsi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer Alrefaei
- Department of Biology, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf Alsubhi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Norah Hamdi
- Department of Biology, King Khalid University, Abha, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Institute of genomics Medicine Science (IGMS), King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Zheng GJ, Fang ZE, Zhou BY, Zuo L, Chen X, Liu ML, Yu L, Jing CX, Hao G. DNA methylation in the association between pesticide exposures and type 2 diabetes. World J Diabetes 2025; 16:99200. [PMID: 39959275 PMCID: PMC11718482 DOI: 10.4239/wjd.v16.i2.99200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous epidemiological studies have found that pesticide exposure is associated with the incidence of type 2 diabetes (T2D); however, the underlying mechanisms remain unknown. DNA methylation may play a role in this process. AIM To identify the genes associated with pesticide exposure and T2D by reviewing the current literature. METHODS We systematically searched PubMed and Embase for relevant studies that examined the association between pesticide exposure and DNA methylation, and studies on DNA methylation and T2D through January 15, 2024. RESULTS We identified six genes (Alu, CABLES1, CDH1, PDX1, PTEN, PTPRN2) related to pesticide exposure and T2D. We also suggested future research directions to better define the role of DNA methylation in the association between pesticide exposure and T2D. CONCLUSION DNA methylation of specific genes may play a vital role in the association between pesticide exposure and T2D.
Collapse
Affiliation(s)
- Guang-Jun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zheng-Er Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Bi-Ying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ming-Liang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chun-Xia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Guang Hao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
6
|
Jönsson J, Perfilyev A, Kugelberg U, Skog S, Lindström A, Ruhrmann S, Ofori JK, Bacos K, Rönn T, Öst A, Ling C. Impact of excess sugar on the whole genome DNA methylation pattern in human sperm. Epigenomics 2025; 17:89-104. [PMID: 39707713 PMCID: PMC11792836 DOI: 10.1080/17501911.2024.2439782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
AIMS, PATIENTS & METHODS Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure. RESULTS We identified seven nominal diet-associated differentially methylated regions in sperm (p < 0.05). The diet was nominally associated with methylation of 143 sites linked to fertility (e.g. AHRR, GNAS, and HDAC4), 313 sites in imprinted genes (e.g. GLIS3, PEG10, PEG3, and SNURF), and 42 sites in top 1%-expressed genes (e.g. CHD2) (p < 0.05). In sperm, 3'UTRs and introns had the highest levels of methylation, while 5'UTRs and CpG islands had the lowest levels. Non-expressed genes in human sperm were hypomethylated in exons compared with transcribed genes. CONCLUSIONS In human sperm, DNA methylation levels were linked to gene expression, and excess sugar had modest effects on methylation on imprinted and highly expressed genes, and genes affecting fertility.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Axel Lindström
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Liang Q, Wang Y, Li Z. Comprehensive bioinformatics analysis identifies metabolic and immune-related diagnostic biomarkers shared between diabetes and COPD using multi-omics and machine learning. Front Endocrinol (Lausanne) 2025; 15:1475958. [PMID: 39845878 PMCID: PMC11750655 DOI: 10.3389/fendo.2024.1475958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Diabetes and chronic obstructive pulmonary disease (COPD) are prominent global health challenges, each imposing significant burdens on affected individuals, healthcare systems, and society. However, the specific molecular mechanisms supporting their interrelationship have not been fully defined. Methods We identified the differentially expressed genes (DEGs) of COPD and diabetes from multi-center patient cohorts, respectively. Through cross-analysis, we identified the shared DEGs of COPD and diabetes, and investigated alterations of signaling pathways using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). By using weighted gene correlation network analysis (WGCNA), key gene modules for COPD and diabetes were identified, and various machine learning algorithms were employed to identify shared biomarkers. Using xCell, we investigated the relationship between shared biomarkers and immune infiltration in diabetes and COPD. Single-cell sequencing, clinical samples, and animal models were used to confirm the robustness of shared biomarkers. Results Cross-analysis identified 186 shared DEGs between diabetes and COPD patients. Functional enrichment results demonstrate that metabolic and immune-related pathways are common features altered in both diabetes and COPD patients. WGCNA identified 526 genes from key gene modules in COPD and diabetes. Multiple machine learning algorithms identified 4 shared biomarkers for COPD and diabetes, including CADPS, EDNRB, THBS4 and TMEM27. Finally, the 4 shared biomarkers were validated in single-cell sequencing data, clinical samples, and animal models, and their expression changes were consistent with the results of bioinformatic analysis. Conclusions Through comprehensive bioinformatics analysis, we revealed the potential connection between diabetes and COPD, providing a theoretical basis for exploring the common regulatory genes.
Collapse
Affiliation(s)
- Qianqian Liang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yide Wang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zheng Li
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Respiratory Disease Research, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
- Xinjiang Clinical Medical Research Center of Respiratory Obstructive Diseases, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Ling C, Vavakova M, Ahmad Mir B, Säll J, Perfilyev A, Martin M, Jansson PA, Davegårdh C, Asplund O, Hansson O, Vaag A, Nilsson E. Multiomics profiling of DNA methylation, microRNA, and mRNA in skeletal muscle from monozygotic twin pairs discordant for type 2 diabetes identifies dysregulated genes controlling metabolism. BMC Med 2024; 22:572. [PMID: 39623445 PMCID: PMC11613913 DOI: 10.1186/s12916-024-03789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND A large proportion of skeletal muscle insulin resistance in type 2 diabetes (T2D) is caused by environmental factors. METHODS By applying multiomics mRNA, microRNA (miRNA), and DNA methylation platforms in biopsies from 20 monozygotic twin pairs discordant for T2D, we aimed to delineate the epigenetic and transcriptional machinery underlying non-genetic muscle insulin resistance in T2D. RESULTS Using gene set enrichment analysis (GSEA), we found decreased mRNA expression of genes involved in extracellular matrix organization, branched-chain amino acid catabolism, metabolism of vitamins and cofactors, lipid metabolism, muscle contraction, signaling by receptor tyrosine kinases pathways, and translocation of glucose transporter 4 (GLUT4) to the plasma membrane in muscle from twins with T2D. Differential expression levels of one or more predicted target relevant miRNA(s) were identified for approximately 35% of the dysregulated GSEA pathways. These include miRNAs with a significant overrepresentation of targets involved in GLUT4 translocation (miR-4643 and miR-548z), signaling by receptor tyrosine kinases pathways (miR-607), and muscle contraction (miR-4658). Acquired DNA methylation changes in skeletal muscle were quantitatively small in twins with T2D compared with the co-twins without T2D. Key methylation and expression results were validated in muscle, myotubes, and/or myoblasts from unrelated subjects with T2D and controls. Finally, mimicking T2D-associated changes by overexpressing miR-548 and miR-607 in cultured myotubes decreased expression of target genes, GLUT4 and FGFR4, respectively, and impaired insulin-stimulated phosphorylation of Akt (Ser473) and TBC1D4. CONCLUSIONS Together, we show that T2D is associated with non- and epigenetically determined differential transcriptional regulation of pathways regulating skeletal muscle metabolism and contraction.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.
| | - Magdalena Vavakova
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bilal Ahmad Mir
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Melina Martin
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Bruna Straket 16, Level 2/3, Gothenburg, 413 45, Sweden
| | - Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| | - Olof Asplund
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Ola Hansson
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
- Department of Endocrinology, Scania University Hospital, Malmö, 205 02, Sweden
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden
| |
Collapse
|
9
|
Ahmed I, Chakraborty R, Faizy AF, Moin S. Exploring the key role of DNA methylation as an epigenetic modulator in oxidative stress related islet cell injury in patients with type 2 diabetes mellitus: a review. J Diabetes Metab Disord 2024; 23:1699-1718. [PMID: 39610516 PMCID: PMC11599646 DOI: 10.1007/s40200-024-01496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterised by impaired insulin secretion and action, often exacerbated by oxidative stress. Recent research has highlighted the intricate involvement of epigenetic mechanisms, particularly DNA methylation, in the pathogenesis of T2DM. This review aims to elucidate the role of DNA methylation as an epigenetic modifier in oxidative stress-mediated beta cell dysfunction, a key component of T2DM pathophysiology. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defence mechanisms, is a hallmark feature of T2DM. Beta cells, responsible for insulin secretion, are particularly vulnerable to oxidative damage due to their low antioxidant capacity. Emerging evidence suggests that oxidative stress can induce aberrant DNA methylation patterns in beta cells, leading to altered gene expression profiles associated with insulin secretion and cell survival. Furthermore, studies have identified specific genes involved in beta cell function and survival that undergo DNA methylation changes in response to oxidative stress in T2DM. These epigenetic modifications can perpetuate beta cell dysfunction by dysregulating key pathways essential for insulin secretion, such as the insulin signalling cascade and mitochondrial function. Understanding the interplay between DNA methylation, oxidative stress, and beta cell dysfunction holds promise for developing novel therapeutic strategies for T2DM. Targeting aberrant DNA methylation patterns may offer new avenues for restoring beta cell function and improving glycemic control in patients with T2DM. However, further research is needed to elucidate the complex mechanisms underlying epigenetic regulation in T2DM and to translate these findings into clinical interventions.
Collapse
Affiliation(s)
- Istiaque Ahmed
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Ritoja Chakraborty
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Abul Faiz Faizy
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
10
|
Zhu M, Huang Q, Li H, Zhao Y, Guo H, Wang T, Liu X, Huang Y, Hu J, Fang C, Huang J. The impact of site-specific DNA methylation in KCNJ11 promoter on type 2 diabetes. Heliyon 2024; 10:e39934. [PMID: 39584094 PMCID: PMC11585805 DOI: 10.1016/j.heliyon.2024.e39934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Aims This study explores the correlation between site-specific methylation levels of the KCNJ11 promoter and type 2 diabetes mellitus (T2DM), analyzing potential molecular mechanisms. Methods Thirty patients newly diagnosed with T2DM and 30 healthy controls were selected to determine the CpG methylation levels in the promoter region of the KCNJ11 gene using the bisulfite assay. The online software JASPAR was used to predict transcription factors binding to differentially methylated sites. Key transcription factors were further validated through quantitative PCR (q-PCR) and chromatin immunoprecipitation followed by PCR (ChIP-PCR). Results Methylation at multiple CpG sites within the KCNJ11 gene promoter was generally reduced in newly diagnosed T2DM patients compared with healthy individuals. The methylation status of CpG-471, a site crucial for the binding of the transcription factor TCF12, emerged as potentially influential in T2DM pathogenesis. This reduction in methylation at CpG-471 may enhance TCF12 binding, thereby altering KCNJ11 expression. Conclusion Hypomethylation of specific CpG sites in the promoter region of the KCNJ11 gene in patients with incipient T2DM potentially contributes to the disease's pathogenesis. This hypomethylation may influence TCF12 binding, with potential regulatory effects on KCNJ11 expression and pancreatic beta-cell function, though further studies are needed to confirm the exact mechanisms involved.
Collapse
Affiliation(s)
- Mengmeng Zhu
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qiaoliang Huang
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu, 215000, China
| | - Heng Li
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yujie Zhao
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Tao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xiaodan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jian Huang
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
11
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Pesticide-induced transgenerational alterations of genome-wide DNA methylation patterns in the pancreas of Xenopus tropicalis correlate with metabolic phenotypes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135455. [PMID: 39154485 DOI: 10.1016/j.jhazmat.2024.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
The unsustainable use of manmade chemicals poses significant threats to biodiversity and human health. Emerging evidence highlights the potential of certain chemicals to cause transgenerational impacts on metabolic health. Here, we investigate male transmitted epigenetic transgenerational effects of the anti-androgenic herbicide linuron in the pancreas of Xenopus tropicalis frogs, and their association with metabolic phenotypes. Reduced representation bisulfite sequencing (RRBS) was used to assess genome-wide DNA methylation patterns in the pancreas of adult male F2 generation ancestrally exposed to environmentally relevant linuron levels (44 ± 4.7 μg/L). We identified 1117 differentially methylated regions (DMRs) distributed across the X. tropicalis genome, revealing potential regulatory mechanisms underlying metabolic disturbances. DMRs were identified in genes crucial for pancreatic function, including calcium signalling (clstn2, cacna1d and cadps2), genes associated with type 2 diabetes (tcf7l2 and adcy5) and a biomarker for pancreatic ductal adenocarcinoma (plec). Correlation analysis revealed associations between DNA methylation levels in these genes and metabolic phenotypes, indicating epigenetic regulation of glucose metabolism. Moreover, differential methylation in genes related to histone modifications suggests alterations in the epigenetic machinery. These findings underscore the long-term consequences of environmental contamination on pancreatic function and raise concerns about the health risks associated with transgenerational effects of pesticides.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
12
|
Herring JA, Crabtree JE, Hill JT, Tessem JS. Loss of glucose-stimulated β-cell Nr4a1 expression impairs insulin secretion and glucose homeostasis. Am J Physiol Cell Physiol 2024; 327:C1111-C1124. [PMID: 39219449 PMCID: PMC11482045 DOI: 10.1152/ajpcell.00315.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
A central aspect of type 2 diabetes is decreased functional β-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the β-cell. Nr4a1 expression is decreased in type 2 diabetes rodent β-cells and type 2 diabetes patient islets. We have shown that Nr4a1-deficient mice have reduced β-cell mass and that Nr4a1 knockdown impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 β-cells. Here, we demonstrate that glucose concentration directly regulates β-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 β-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggest that Nr4a1 plays a critical role in the β-cells response to the fed state.NEW & NOTEWORTHY Nr4a1 has a key role in fuel metabolism and β-cell function, but its exact role is unclear. Nr4a1 expression is regulated by glucose concentration using cAMP/PKA/CREB pathway. Nr4a1 regulates Glut2, Ndufa4, Ins1, In2, Sdhb, and Idh3g expression in response to glucose treatment. These results suggest that Nr4a1 is necessary for proper insulin secretion both through glucose uptake and metabolism machinery.
Collapse
Affiliation(s)
- Jacob A Herring
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, Utah, United States
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah, United States
| | - Jeffery S Tessem
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
13
|
Wikström Shemer D, Mostafaei S, Tang B, Pedersen NL, Karlsson IK, Fall T, Hägg S. Associations between epigenetic aging and diabetes mellitus in a Swedish longitudinal study. GeroScience 2024; 46:5003-5014. [PMID: 38937415 PMCID: PMC11335983 DOI: 10.1007/s11357-024-01252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus type 2 (T2D) is associated with accelerated biological aging and the increased risk of onset of other age-related diseases. Epigenetic changes in DNA methylation levels have been found to serve as reliable biomarkers for biological aging. This study explores the relationship between various epigenetic biomarkers of aging and diabetes risk using longitudinal data. Data from the Swedish Adoption/Twin Study of Aging (SATSA) was collected from 1984 to 2014 and included 536 individuals with at least one epigenetic measurement. The following epigenetic biomarkers of aging were employed: DNAm PAI-1, DNAmTL, DunedinPACE, PCHorvath1, PCHorvath2, PCHannum, PCPhenoAge, and PCGrimAge. Firstly, longitudinal analysis of biomarker trajectories was done. Secondly, linear correlations between the biomarkers and time to diabetes were studied within individuals developing diabetes. Thirdly, Cox proportional hazards (PH) models were used to assess the associations between these biomarkers and time of diabetes diagnosis, with adjustments for chronological age, sex, education, smoking, blood glucose, and BMI. The longitudinal trajectories of the biomarkers revealed differences between individuals with and without diabetes. Smoothened average curves for DunedinPACE and DNAm PAI-1 were higher for individuals with diabetes around the age 60-70, compared to controls. Likewise, DunedinPACE and DNAm PAI-1 were higher closer to diabetes onset. However, no significant associations were found between the epigenetic biomarkers of aging and risk of diabetes in Cox PH models. Our findings suggest the potential value of developing epigenetic biomarkers specifically tailored to T2D, should we wish to model and explore the potential for predicting the disease.
Collapse
Affiliation(s)
- Daniel Wikström Shemer
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Molecular Epidemiology, Department of Medical Sciences, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shayan Mostafaei
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Bowen Tang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ida K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tove Fall
- Molecular Epidemiology, Department of Medical Sciences, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
14
|
Rönn T, Perfilyev A, Oskolkov N, Ling C. Predicting type 2 diabetes via machine learning integration of multiple omics from human pancreatic islets. Sci Rep 2024; 14:14637. [PMID: 38918439 PMCID: PMC11199577 DOI: 10.1038/s41598-024-64846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes (T2D) is the fastest growing non-infectious disease worldwide. Impaired insulin secretion from pancreatic beta-cells is a hallmark of T2D, but the mechanisms behind this defect are insufficiently characterized. Integrating multiple layers of biomedical information, such as different Omics, may allow more accurate understanding of complex diseases such as T2D. Our aim was to explore and use Machine Learning to integrate multiple sources of biological/molecular information (multiOmics), in our case RNA-sequening, DNA methylation, SNP and phenotypic data from islet donors with T2D and non-diabetic controls. We exploited Machine Learning to perform multiOmics integration of DNA methylation, expression, SNPs, and phenotypes from pancreatic islets of 110 individuals, with ~ 30% being T2D cases. DNA methylation was analyzed using Infinium MethylationEPIC array, expression was analyzed using RNA-sequencing, and SNPs were analyzed using HumanOmniExpress arrays. Supervised linear multiOmics integration via DIABLO based on Partial Least Squares (PLS) achieved an accuracy of 91 ± 15% of T2D prediction with an area under the curve of 0.96 ± 0.08 on the test dataset after cross-validation. Biomarkers identified by this multiOmics integration, including SACS and TXNIP DNA methylation, OPRD1 and RHOT1 expression and a SNP annotated to ANO1, provide novel insights into the interplay between different biological mechanisms contributing to T2D. This Machine Learning approach of multiOmics cross-sectional data from human pancreatic islets achieved a promising accuracy of T2D prediction, which may potentially find broad applications in clinical diagnostics. In addition, it delivered novel candidate biomarkers for T2D and links between them across the different Omics.
Collapse
Affiliation(s)
- Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Nikolay Oskolkov
- Science for Life Laboratory, Department of Biology, National Bioinformatics Infrastructure Sweden, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Lund University, 205 02, Malmö, Sweden.
| |
Collapse
|
15
|
Nadiger N, Veed JK, Chinya Nataraj P, Mukhopadhyay A. DNA methylation and type 2 diabetes: a systematic review. Clin Epigenetics 2024; 16:67. [PMID: 38755631 PMCID: PMC11100087 DOI: 10.1186/s13148-024-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE DNA methylation influences gene expression and function in the pathophysiology of type 2 diabetes mellitus (T2DM). Mapping of T2DM-associated DNA methylation could aid early detection and/or therapeutic treatment options for diabetics. DESIGN A systematic literature search for associations between T2DM and DNA methylation was performed. Prospero registration ID: CRD42020140436. METHODS PubMed and ScienceDirect databases were searched (till October 19, 2023). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and New Castle Ottawa scale were used for reporting the selection and quality of the studies, respectively. RESULT Thirty-two articles were selected. Four of 130 differentially methylated genes in blood, adipose, liver or pancreatic islets (TXNIP, ABCG1, PPARGC1A, PTPRN2) were reported in > 1 study. TXNIP was hypomethylated in diabetic blood across ethnicities. Gene enrichment analysis of the differentially methylated genes highlighted relevant disease pathways (T2DM, type 1 diabetes and adipocytokine signaling). Three prospective studies reported association of methylation in IGFBP2, MSI2, FTO, TXNIP, SREBF1, PHOSPHO1, SOCS3 and ABCG1 in blood at baseline with incident T2DM/hyperglycemia. Sex-specific differential methylation was reported only for HOOK2 in visceral adipose tissue (female diabetics: hypermethylated, male diabetics: hypomethylated). Gene expression was inversely associated with methylation status in 8 studies, in genes including ABCG1 (blood), S100A4 (adipose tissue), PER2 (pancreatic islets), PDGFA (liver) and PPARGC1A (skeletal muscle). CONCLUSION This review summarizes available evidence for using DNA methylation patterns to unravel T2DM pathophysiology. Further validation studies in diverse populations will set the stage for utilizing this knowledge for identifying early diagnostic markers and novel druggable pathways.
Collapse
Affiliation(s)
- Nikhil Nadiger
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Jyothisha Kana Veed
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Priyanka Chinya Nataraj
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
- Vedantu, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India.
| |
Collapse
|
16
|
Greeny A, Nair A, Sadanandan P, Satarker S, Famurewa AC, Nampoothiri M. Epigenetic Alterations in Alzheimer's Disease: Impact on Insulin Signaling and Advanced Drug Delivery Systems. BIOLOGY 2024; 13:157. [PMID: 38534427 DOI: 10.3390/biology13030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that predominantly affects the hippocampus and the entorhinal complex, leading to memory lapse and cognitive impairment. This can have a negative impact on an individual's behavior, speech, and ability to navigate their surroundings. AD is one of the principal causes of dementia. One of the most accepted theories in AD, the amyloid β (Aβ) hypothesis, assumes that the buildup of the peptide Aβ is the root cause of AD. Impaired insulin signaling in the periphery and central nervous system has been considered to have an effect on the pathophysiology of AD. Further, researchers have shifted their focus to epigenetic mechanisms that are responsible for dysregulating major biochemical pathways and intracellular signaling processes responsible for directly or indirectly causing AD. The prime epigenetic mechanisms encompass DNA methylation, histone modifications, and non-coding RNA, and are majorly responsible for impairing insulin signaling both centrally and peripherally, thus leading to AD. In this review, we provide insights into the major epigenetic mechanisms involved in causing AD, such as DNA methylation and histone deacetylation. We decipher how the mechanisms alter peripheral insulin signaling and brain insulin signaling, leading to AD pathophysiology. In addition, this review also discusses the need for newer drug delivery systems for the targeted delivery of epigenetic drugs and explores targeted drug delivery systems such as nanoparticles, vesicular systems, networks, and other nano formulations in AD. Further, this review also sheds light on the future approaches used for epigenetic drug delivery.
Collapse
Affiliation(s)
- Alosh Greeny
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo 482123, Nigeria
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
17
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
20
|
Rönn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, Volkov P, Schulze MB, Mulder H, Eliasson L, Ruhrmann S, Bacos K, Ling C. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun 2023; 14:8040. [PMID: 38086799 PMCID: PMC10716521 DOI: 10.1038/s41467-023-43719-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by β-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in β-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient β-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Hamilton
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Biology, University of Copenhagen, København, Denmark
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- HCEMM-Su, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sonia Garcia-Calzon
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Alexandros Karagiannopoulos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Hans Stenlund
- Swedish Metabolomics Centre, Umeå University, Umeå, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hindrik Mulder
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
21
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
22
|
Tatsch JM, Furman DP, Nobre RM, Wurzer KM, da Silva LC, Picheth GF, Ramos EA, Acco A, Klassen G. Dulaglutide as a demethylating agent to improve the outcome of breast cancer. Epigenomics 2023; 15:1309-1322. [PMID: 38174426 DOI: 10.2217/epi-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Background: Dulaglutide emerged as a promising therapeutic option for diabetes mellitus Type 2 (DM2). Aims: Owing to epigenetic similarities between the pathophysiology of DM2 and breast cancer (BC), we investigated the antitumor effect of dulaglutide. Materials & methods: To investigate the effect of dulaglutide, we analyzed the expression of methylated gene promoter regions in BC (ESR1, CDH1 and ADAM33). Results: Dulaglutide increased the expression of ESR1, CDH1 and ADAM33 up to fourfold in the MDA-MB-231 lineage by demethylating the gene promoter regions. This effect was translated to in vivo antitumoral activity and revealed significant tumor inhibition by combining the half-dose of methotrexate with dulaglutide. Conclusion: This therapy may mitigate the severe side effects commonly associated with chemotherapy.
Collapse
Affiliation(s)
- Júlia M Tatsch
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Diana P Furman
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Rodrigo Mb Nobre
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Karin M Wurzer
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Liziane Cm da Silva
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F Picheth
- Department of Biochemistry Federal University of Paraná, Curitiba, PR, Brazil
| | - Edneia As Ramos
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
23
|
Sharma S, Bhonde R. Applicability of mesenchymal stem cell-derived exosomes as a cell-free miRNA therapy and epigenetic modifiers for diabetes. Epigenomics 2023; 15:1323-1336. [PMID: 38018455 DOI: 10.2217/epi-2023-0302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Given that exosome nanovesicles constitute various growth factors, miRNAs and lncRNAs, they have implications for epigenetic modifications. Few studies have shown that exosomes from mesenchymal stem cells (MSCs) exhibit therapeutic effects on diabetic complications by substituting miRNAs and regulating histone modifications. Therefore, reversing epigenetic aberrations in diabetes may provide new insight into its treatment. This review discusses the impact of DNA and histone methylations on the development of diabetes and its complications. Further, we talk about miRNAs dysregulated in diabetic conditions and the possibility of utilizing mesenchymal stem cell (MSC) exosomes for the development of miRNA cell-free therapy and epigenetic modifiers in reversing diabetic-induced epigenetic alterations.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute For Stem Cell Science & Regenerative Medicine, Bangalore, 560065, India
| | - Ramesh Bhonde
- Dr D.Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
24
|
Kaimala S, Ansari SA, Emerald BS. DNA methylation in the pathogenesis of type 2 diabetes. VITAMINS AND HORMONES 2023; 122:147-169. [PMID: 36863792 DOI: 10.1016/bs.vh.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
25
|
Bacos K, Perfilyev A, Karagiannopoulos A, Cowan E, Ofori JK, Bertonnier-Brouty L, Rönn T, Lindqvist A, Luan C, Ruhrmann S, Ngara M, Nilsson Å, Gheibi S, Lyons CL, Lagerstedt JO, Barghouth M, Esguerra JL, Volkov P, Fex M, Mulder H, Wierup N, Krus U, Artner I, Eliasson L, Prasad RB, Cataldo LR, Ling C. Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets. J Clin Invest 2023; 133:163612. [PMID: 36656641 PMCID: PMC9927941 DOI: 10.1172/jci163612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to β cell dysfunction in T2D pathophysiology.
Collapse
Affiliation(s)
- Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | | | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Ludivine Bertonnier-Brouty
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Åsa Nilsson
- Human Tissue Lab, Department of Clinical Sciences
| | - Sevda Gheibi
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Claire L. Lyons
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Jens O. Lagerstedt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | | | - Jonathan L.S. Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Malin Fex
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Hindrik Mulder
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Ulrika Krus
- Human Tissue Lab, Department of Clinical Sciences
| | - Isabella Artner
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Rashmi B. Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden.,Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Luis Rodrigo Cataldo
- Molecular Metabolism Unit, Department of Clinical Sciences, and,The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| |
Collapse
|
26
|
Li K, Bian J, Xiao Y, Wang D, Han L, He C, Gong L, Wang M. Changes in Pancreatic Senescence Mediate Pancreatic Diseases. Int J Mol Sci 2023; 24:ijms24043513. [PMID: 36834922 PMCID: PMC9962587 DOI: 10.3390/ijms24043513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In recent years, there has been a significant increase in age-related diseases due to the improvement in life expectancy worldwide. The pancreas undergoes various morphological and pathological changes with aging, such as pancreatic atrophy, fatty degeneration, fibrosis, inflammatory cell infiltration, and exocrine pancreatic metaplasia. Meanwhile, these may predispose the individuals to aging-related diseases, such as diabetes, dyspepsia, pancreatic ductal adenocarcinoma, and pancreatitis, as the endocrine and exocrine functions of the pancreas are significantly affected by aging. Pancreatic senescence is associated with various underlying factors including genetic damage, DNA methylation, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and inflammation. This paper reviews the alternations of morphologies and functions in the aging pancreas, especially β-cells, closely related to insulin secretion. Finally, we summarize the mechanisms of pancreatic senescence to provide potential targets for treating pancreatic aging-related diseases.
Collapse
Affiliation(s)
- Kailin Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Da Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Caian He
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
27
|
Suárez R, Chapela SP, Álvarez-Córdova L, Bautista-Valarezo E, Sarmiento-Andrade Y, Verde L, Frias-Toral E, Sarno G. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients 2023; 15:nu15040811. [PMID: 36839169 PMCID: PMC9963127 DOI: 10.3390/nu15040811] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
A long-term complication of obesity is the development of type 2 diabetes (T2D). Patients with T2D have been described as having epigenetic modifications. Epigenetics is the post-transcriptional modification of DNA or associated factors containing genetic information. These environmentally-influenced modifications, maintained during cell division, cause stable changes in gene expression. Epigenetic modifications of T2D are DNA methylation, acetylation, ubiquitylation, SUMOylation, and phosphorylation at the lysine residue at the amino terminus of histones, affecting DNA, histones, and non-coding RNA. DNA methylation has been shown in pancreatic islets, adipose tissue, skeletal muscle, and the liver. Furthermore, epigenetic changes have been observed in chronic complications of T2D, such as diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. Recently, a new drug has been developed which acts on bromodomains and extraterminal (BET) domain proteins, which operate like epigenetic readers and communicate with chromatin to make DNA accessible for transcription by inhibiting them. This drug (apabetalone) is being studied to prevent major adverse cardiovascular events in people with T2D, low HDL cholesterol, chronic kidney failure, and recent coronary events. This review aims to describe the relationship between obesity, long-term complications such as T2D, and epigenetic modifications and their possible treatments.
Collapse
Affiliation(s)
- Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Sebastián P. Chapela
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Buenos Aires C1280AEB, Argentina
- Correspondence: ; Tel.: +54-91168188308
| | - Ludwig Álvarez-Córdova
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
- Carrera de Nutrición y Dietética, Facultad de Ciencias Médicas, Universidad Católica De Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Estefanía Bautista-Valarezo
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Yoredy Sarmiento-Andrade
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Gerardo Sarno
- “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| |
Collapse
|
28
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
30
|
Shapira SN, Naji A, Atkinson MA, Powers AC, Kaestner KH. Understanding islet dysfunction in type 2 diabetes through multidimensional pancreatic phenotyping: The Human Pancreas Analysis Program. Cell Metab 2022; 34:1906-1913. [PMID: 36206763 PMCID: PMC9742126 DOI: 10.1016/j.cmet.2022.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
In this perspective, we provide an overview of a recently established National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) initiative, the Human Pancreas Analysis Program for Type 2 Diabetes (HPAP-T2D). This program is designed to define the molecular pathogenesis of islet dysfunction by studying human pancreatic tissue samples from organ donors with T2D. HPAP-T2D generates detailed datasets of physiological, histological, transcriptomic, epigenomic, and genomic information. Importantly, all data collected, generated, and analyzed by HPAP-T2D are made immediately and freely available through a centralized database, PANC-DB, thus providing a comprehensive data resource for the diabetes research community.
Collapse
Affiliation(s)
- Suzanne N Shapira
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| |
Collapse
|
31
|
Abstract
Data generated over nearly two decades clearly demonstrate the importance of epigenetic modifications and mechanisms in the pathogenesis of type 2 diabetes. However, the role of pharmacoepigenetics in type 2 diabetes is less well established. The field of pharmacoepigenetics covers epigenetic biomarkers that predict response to therapy, therapy-induced epigenetic alterations as well as epigenetic therapies including inhibitors of epigenetic enzymes. Not all individuals with type 2 diabetes respond to glucose-lowering therapies in the same way, and there is therefore a need for clinically useful biomarkers that discriminate responders from non-responders. Blood-based epigenetic biomarkers may be useful for this purpose. There is also a need for a better understanding of whether existing glucose-lowering therapies exert their function partly through therapy-induced epigenetic alterations. Finally, epigenetic enzymes may be drug targets for type 2 diabetes. Here, I discuss whether pharmacoepigenetics is clinically relevant for type 2 diabetes based on studies addressing this topic.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
32
|
Schrader S, Perfilyev A, Ahlqvist E, Groop L, Vaag A, Martinell M, García-Calzón S, Ling C. Novel Subgroups of Type 2 Diabetes Display Different Epigenetic Patterns That Associate With Future Diabetic Complications. Diabetes Care 2022; 45:1621-1630. [PMID: 35607770 PMCID: PMC9274219 DOI: 10.2337/dc21-2489] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes (T2D) was recently reclassified into severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD), which have different risk of complications. We explored whether DNA methylation differs between these subgroups and whether subgroup-unique methylation risk scores (MRSs) predict diabetic complications. RESEARCH DESIGN AND METHODS Genome-wide DNA methylation was analyzed in blood from subjects with newly diagnosed T2D in discovery and replication cohorts. Subgroup-unique MRSs were built, including top subgroup-unique DNA methylation sites. Regression models examined whether MRSs associated with subgroups and future complications. RESULTS We found epigenetic differences between the T2D subgroups. Subgroup-unique MRSs were significantly different in those patients allocated to each respective subgroup compared with the combined group of all other subgroups. These associations were validated in an independent replication cohort, showing that subgroup-unique MRSs associate with individual subgroups (odds ratios 1.6-6.1 per 1-SD increase, P < 0.01). Subgroup-unique MRSs were also associated with future complications. Higher MOD-MRS was associated with lower risk of cardiovascular (hazard ratio [HR] 0.65, P = 0.001) and renal (HR 0.50, P < 0.001) disease, whereas higher SIRD-MRS and MARD-MRS were associated with an increased risk of these complications (HR 1.4-1.9 per 1-SD increase, P < 0.01). Of 95 methylation sites included in subgroup-unique MRSs, 39 were annotated to genes previously linked to diabetes-related traits, including TXNIP and ELOVL2. Methylation in the blood of 18 subgroup-unique sites mirrors epigenetic patterns in tissues relevant for T2D, muscle and adipose tissue. CONCLUSIONS We identified differential epigenetic patterns between T2D subgroups that associated with future diabetic complications. These data support a reclassification of diabetes and the need for precision medicine in T2D subgroups.
Collapse
Affiliation(s)
- Silja Schrader
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Leif Groop
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Allan Vaag
- Type 2 Diabetes Biology Research, Steno Diabetes Center, Copenhagen, Denmark
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.,Academic Primary Care Centre, Uppsala, Sweden
| | - Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.,Department of Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
33
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
34
|
Holzapfel C, Waldenberger M, Lorkowski S, Daniel H. Genetics and Epigenetics in Personalized Nutrition: Evidence, Expectations and Experiences. Mol Nutr Food Res 2022; 66:e2200077. [PMID: 35770348 DOI: 10.1002/mnfr.202200077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/17/2022] [Indexed: 11/10/2022]
Abstract
With the presentation of the blueprint of the first human genome in 2001 and the advent of technologies for high-throughput genetic analysis, personalized nutrition (PN) became a new scientific field and the first commercial offerings of genotype-based nutrition advice emerged at the same time. Here, we summarize the state of evidence for the effect of genetic and epigenetic factors in the development of obesity, the metabolic syndrome and resulting illnesses such as non-insulin-dependent diabetes mellitus and cardiovascular diseases. We also critically value the concepts of PN that were built around the new genetic avenue from both the academic and a commercial perspective and their effectiveness in causing sustained changes in diet, lifestyle and for improving health. Despite almost 20 years of research and commercial direct-to-consumer offerings, evidence for the success of gene-based dietary recommendations is still generally lacking. This calls for new concepts of future PN solutions that incorporate more phenotypic measures and provide a panel of instruments (e.g., self- and bio-monitoring tools, feedback systems, algorithms based on artificial intelligence) that increases compliance based on the individual´s physical and social environment and value system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christina Holzapfel
- Institute for Nutritional Medicine, Technical University of Munich, School of Medicine, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences and Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Friedrich Schiller University, Jena, Germany
| | - Hannelore Daniel
- Professor emeritus, Technical University of Munich, Freising, Germany
| |
Collapse
|
35
|
Nkambule BB, Mxinwa V, Nyambuya TM, Dludla PV. The mean platelet volume and atherosclerotic cardiovascular-risk factors in adults with obesity: a systematic review and meta-analysis of observational studies. BMC Nutr 2022; 8:47. [PMID: 35578358 PMCID: PMC9109381 DOI: 10.1186/s40795-022-00541-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is a major risk factor for atherosclerotic cardiovascular disease (ASCVD) and is associated with altered platelet function. The mean platelet volume (MPV) is a rapid measure of platelet activation and a prognostic marker in patients with cardiovascular disease. However, no meta-analysis on the association between MPV and obesity has been conducted, and the value of monitoring the MPV in patients with obesity remains unclear. OBJECTIVE To provide cumulative evidence on whether the mean platelet volume (MPV) is increased in individuals with obesity and to describe associations between the ASCVD-risk factors and the MPV in individuals with obesity. METHODS This meta-analysis was prepared following the Meta-analysis Of Observational Studies (MOOSE) guidelines. We searched the PubMed and Embase database from inception until the 31st of March 2021. Studies were included when they reported the mean platelet volume in individuals with obesity and provided a suitable non-obese comparator group. The risk of bias was independently assessed by two reviewers using the Newcastle-Ottawa scale. The primary outcome of the meta-analysis was the MPV, while we considered the atherosclerotic risk profiles as a secondary outcome. RESULTS We identified 178 citations through the PUBMED and 255 citations through EMBASE database search. In all, 13 studies met the inclusion criteria. Firstly, we report an increased mean platelet volume in individuals with obesity compared to non-obese individuals (MD 0.79; [95%CI: 0.42 to 1.16], I2 = 93.4%). Moreover, the reported increase in the MPV was inversely associated with the body mass index (Coefficient: -0.57, standard error (SE): 0.18, p < 0.001) and directly related to changes in triglyceride levels (Coefficient: 4.99, standard error (SE): 1.14, p < 0.001). CONCLUSION This meta-analysis and meta-regression showed an increased MPV in nondiabetic individuals living with obesity. Moreover, the MPV was associated with hypertriglyceridemia, an independent predictor of atherosclerotic cardiovascular disease. Overall, the findings suggest that MPV may be a valuable rapid marker for the monitoring and risk-stratification of individuals with obesity who may be at risk of developing cardiovascular disease.
Collapse
Affiliation(s)
- Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000 South Africa
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000 South Africa
| | - Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000 South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg, Cape Town, South Africa
| |
Collapse
|
36
|
Prasad M, Rajagopal P, Devarajan N, Veeraraghavan VP, Palanisamy CP, Cui B, Patil S, Jayaraman S. A comprehensive review on high fat diet-induced diabetes mellitus: An epigenetic view. J Nutr Biochem 2022; 107:109037. [PMID: 35533900 DOI: 10.1016/j.jnutbio.2022.109037] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Modern lifestyle, genetics, nutritional overload through high-fat diet attributed prevalence and diabetes outcomes with various complications primarily due to obesity in which energy-dense diets frequently affect metabolic health. One possible issue usually associated with elevated chronic fat intake is insulin resistance, and hyperglycaemia constitutes an important function in altering the carbohydrates and lipids metabolism. Similarly, in assessing human susceptibility to weight gain and obesity, genetic variations play a central role, contributing to keen interest in identifying the possible role of epigenetics as a mediator of gene-environmental interactions influencing the production of type 2 diabetes mellitus and its related concerns. Epigenetic modifications associated with the acceptance of a sedentary lifestyle and environmental stress factors in response to energy intake and expenditure imbalances complement genetic alterations and lead to the production and advancement of metabolic disorders such as diabetes and obesity. Methylation of DNA, histone modifications and increases in the expression of non-coding RNAs can result in reduced transcriptional activity of key β-cell genes thus creating insulin resistance. Epigenetics contribute to changes in the expression of the underlying insulin resistance and insufficiency gene networks, along with low-grade obesity-related inflammation, increased ROS generation and DNA damage in multi organs. This review focused on epigenetic mechanisms and metabolic regulations associated with high fat diet (HFD)-induced diabetes mellitus.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakhsi Ammal Dental College and Hospitals, Academy of Higher Education and Research, Chennai, 600 095, India
| | - Nalini Devarajan
- Central Research Laboratory, Meenakhsi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Vishnu Priya Veeraraghavan
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
37
|
Seale K, Horvath S, Teschendorff A, Eynon N, Voisin S. Making sense of the ageing methylome. Nat Rev Genet 2022; 23:585-605. [PMID: 35501397 DOI: 10.1038/s41576-022-00477-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Over time, the human DNA methylation landscape accrues substantial damage, which has been associated with a broad range of age-related diseases, including cardiovascular disease and cancer. Various age-related DNA methylation changes have been described, including at the level of individual CpGs, such as differential and variable methylation, and at the level of the whole methylome, including entropy and correlation networks. Here, we review these changes in the ageing methylome as well as the statistical tools that can be used to quantify them. We detail the evidence linking DNA methylation to ageing phenotypes and the longevity strategies aimed at altering both DNA methylation patterns and machinery to extend healthspan and lifespan. Lastly, we discuss theories on the mechanistic causes of epigenetic ageing.
Collapse
Affiliation(s)
- Kirsten Seale
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Andrew Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.,UCL Cancer Institute, University College London, London, UK
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| |
Collapse
|
38
|
Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, Buchwald P, Grilli A, Caroli J, Bicciato S, Serafini P. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun 2022; 13:1815. [PMID: 35383192 PMCID: PMC8983715 DOI: 10.1038/s41467-022-29377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
The ability to detect and target β cells in vivo can substantially refine how diabetes is studied and treated. However, the lack of specific probes still hampers a precise characterization of human β cell mass and the delivery of therapeutics in clinical settings. Here, we report the identification of two RNA aptamers that specifically and selectively recognize mouse and human β cells. The putative targets of the two aptamers are transmembrane p24 trafficking protein 6 (TMED6) and clusterin (CLUS). When given systemically in immune deficient mice, these aptamers recognize the human islet graft producing a fluorescent signal proportional to the number of human islets transplanted. These aptamers cross-react with endogenous mouse β cells and allow monitoring the rejection of mouse islet allografts. Finally, once conjugated to saRNA specific for X-linked inhibitor of apoptosis (XIAP), they can efficiently transfect non-dissociated human islets, prevent early graft loss, and improve the efficacy of human islet transplantation in immunodeficient in mice.
Collapse
Affiliation(s)
- Dimitri Van Simaeys
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana De La Fuente
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Zoso
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victoria Kuznetsova
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Grilli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jimmy Caroli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
39
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3150] [Impact Index Per Article: 1050.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
40
|
Lien YC, Pinney SE, Lu XM, Simmons RA. Identification of Novel Regulatory Regions Induced by Intrauterine Growth Restriction in Rat Islets. Endocrinology 2022; 163:6459683. [PMID: 34894232 PMCID: PMC8743043 DOI: 10.1210/endocr/bqab251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/05/2023]
Abstract
Intrauterine growth restriction (IUGR) leads to the development of type 2 diabetes in adulthood, and the permanent alterations in gene expression implicate an epigenetic mechanism. Using a rat model of IUGR, we performed TrueSeq-HELP Tagging to assess the association of DNA methylation changes and gene dysregulation in islets. We identified 511 differentially methylated regions (DMRs) and 4377 significantly altered single CpG sites. Integrating the methylome and our published transcriptome data sets resulted in the identification of pathways critical for islet function. The identified DMRs were enriched with transcription factor binding motifs, such as Elk1, Etv1, Foxa1, Foxa2, Pax7, Stat3, Hnf1, and AR. In silico analysis of 3-dimensional chromosomal interactions using human pancreas and islet Hi-C data sets identified interactions between 14 highly conserved DMRs and 35 genes with significant expression changes at an early age, many of which persisted in adult islets. In adult islets, there were far more interactions between DMRs and genes with significant expression changes identified with Hi-C, and most of them were critical to islet metabolism and insulin secretion. The methylome was integrated with our published genome-wide histone modification data sets from IUGR islets, resulting in further characterization of important regulatory regions of the genome altered by IUGR containing both significant changes in DNA methylation and specific histone marks. We identified novel regulatory regions in islets after exposure to IUGR, suggesting that epigenetic changes at key transcription factor binding motifs and other gene regulatory regions may contribute to gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sara E Pinney
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Correspondence: Rebecca A. Simmons, MD, Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, BRB II/III, 13th Fl, Rm 1308, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
42
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
43
|
Wang Z, Peng H, Gao W, Cao W, Lv J, Yu C, Huang T, Sun D, Wang B, Liao C, Pang Y, Pang Z, Cong L, Wang H, Wu X, Liu Y, Li L. Blood DNA methylation markers associated with type 2 diabetes, fasting glucose, and HbA1c levels: An epigenome-wide association study in 316 adult twin pairs. Genomics 2021; 113:4206-4213. [PMID: 34774679 DOI: 10.1016/j.ygeno.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/26/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
DNA methylation plays an important role in the development and etiology of type 2 diabetes; however, few epigenomic studies have been conducted on twins. Herein, a two-stage study was performed to explore the associations between DNA methylation and type 2 diabetes, fasting plasma glucose, and HbA1c. DNA methylation in 316 twin pairs from the Chinese National Twin Registry (CNTR) was measured using Illumina Infinium BeadChips. In the discovery sample, the results revealed that 63 CpG sites and 6 CpG sites were significantly associated with fasting plasma glucose and HbA1c, respectively. In the replication sample, cg19690313 in TXNIP was associated with both fasting plasma glucose (P = 1.23 × 10-17, FDR < 0.001) and HbA1c (P = 2.29 × 10-18, FDR < 0.001). Furthermore, cg04816311, cg08309687, and cg09249494 may provide new insight in the metabolic mechanism of HbA1c. Our study provides solid evidence that cg19690313 on TXNIP correlates with HbA1c and fasting plasma glucose levels.
Collapse
Affiliation(s)
- Zhaonian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Biqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Diseases Control and Prevention, Qingdao, China
| | - Liming Cong
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
44
|
Chen ACH, Huang W, Fong SW, Chan C, Lee KC, Yeung WSB, Lee YL. Hyperglycemia Altered DNA Methylation Status and Impaired Pancreatic Differentiation from Embryonic Stem Cells. Int J Mol Sci 2021; 22:10729. [PMID: 34639069 PMCID: PMC8509790 DOI: 10.3390/ijms221910729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of type 2 diabetes (T2D) is rapidly increasing across the globe. Fetal exposure to maternal diabetes was correlated with higher prevalence of impaired glucose tolerance and T2D later in life. Previous studies showed aberrant DNA methylation patterns in pancreas of T2D patients. However, the underlying mechanisms remained largely unknown. We utilized human embryonic stem cells (hESC) as the in vitro model for studying the effects of hyperglycemia on DNA methylome and early pancreatic differentiation. Culture in hyperglycemic conditions disturbed the pancreatic lineage potential of hESC, leading to the downregulation of expression of pancreatic markers PDX1, NKX6-1 and NKX6-2 after in vitro differentiation. Genome-wide DNA methylome profiling revealed over 2000 differentially methylated CpG sites in hESC cultured in hyperglycemic condition when compared with those in control glucose condition. Gene ontology analysis also revealed that the hypermethylated genes were enriched in cell fate commitment. Among them, NKX6-2 was validated and its hypermethylation status was maintained upon differentiation into pancreatic progenitor cells. We also established mouse ESC lines at both physiological glucose level (PG-mESC) and conventional hyperglycemia glucose level (HG-mESC). Concordantly, DNA methylome analysis revealed the enrichment of hypermethylated genes related to cell differentiation in HG-mESC, including Nkx6-1. Our results suggested that hyperglycemia dysregulated the epigenome at early fetal development, possibly leading to impaired pancreatic development.
Collapse
Affiliation(s)
- Andy Chun Hang Chen
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518000, China;
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong; (W.H.); (S.W.F.); (C.C.); (K.C.L.)
| | - Wen Huang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong; (W.H.); (S.W.F.); (C.C.); (K.C.L.)
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong; (W.H.); (S.W.F.); (C.C.); (K.C.L.)
| | - Chris Chan
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong; (W.H.); (S.W.F.); (C.C.); (K.C.L.)
| | - Kai Chuen Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong; (W.H.); (S.W.F.); (C.C.); (K.C.L.)
| | - William Shu Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518000, China;
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong; (W.H.); (S.W.F.); (C.C.); (K.C.L.)
| | - Yin Lau Lee
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518000, China;
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong; (W.H.); (S.W.F.); (C.C.); (K.C.L.)
| |
Collapse
|
45
|
Kim H, Bae JH, Park KS, Sung J, Kwak SH. DNA Methylation Changes Associated With Type 2 Diabetes and Diabetic Kidney Disease in an East Asian Population. J Clin Endocrinol Metab 2021; 106:e3837-e3851. [PMID: 34214161 DOI: 10.1210/clinem/dgab488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 01/13/2023]
Abstract
CONTEXT There is a growing body of evidence that epigenetic changes including DNA methylation influence the risk of type 2 diabetes (T2D) and its microvascular complications. OBJECTIVE We conducted a methylome-wide association study (MWAS) to identify differentially methylated sites (DMSs) of T2D and diabetic kidney disease (DKD) in a Korean population. METHODS We performed an MWAS in 232 participants with T2D and 197 nondiabetic controls with the Illumina EPIC bead chip using peripheral blood leukocytes. The T2D group was subdivided into 87 DKD patients and 80 non-DKD controls. An additional 819 individuals from 2 population-based cohorts were used to investigate the association of identified DMSs with quantitative metabolic phenotypes. A mendelian randomization (MR) approach was applied to evaluate the causal effect of metabolic phenotypes on identified DMSs. RESULTS We identified 8 DMSs (each at BMP8A, NBPF20, STX18, ZNF365, CPT1A, and TRIM37, and 2 at TXNIP) that were significantly associated with the risk of T2D (P < 9.0 × 10-8), including 3 that were previously known (DMSs in TXNIP and CPT1A). We also identified 3 DMSs (in COMMD1, TMOD1, and FHOD1) associated with DKD. With our limited sample size, we were not able to observe a significant overlap between DMSs of T2D and DKD. DMSs in TXNIP and CTP1A were associated with fasting glucose and glycated hemoglobin A1c. In MR analysis, fasting glucose was causally associated with DMS in CPT1A. CONCLUSION In an East Asian population, we identified 8 DMSs, including 5 novel CpG loci, associated with T2D and 3 DMSs associated with DKD at methylome-wide statistical significance.
Collapse
Affiliation(s)
- Hakyung Kim
- Genome & Health Big Data Branch, Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joohon Sung
- Genome & Health Big Data Branch, Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
46
|
Sun X, Wang L, Obayomi SMB, Wei Z. Epigenetic Regulation of β Cell Identity and Dysfunction. Front Endocrinol (Lausanne) 2021; 12:725131. [PMID: 34630329 PMCID: PMC8498190 DOI: 10.3389/fendo.2021.725131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023] Open
Abstract
β cell dysfunction and failure are driving forces of type 2 diabetes mellitus (T2DM) pathogenesis. Investigating the underlying mechanisms of β cell dysfunction may provide novel targets for the development of next generation therapy for T2DM. Epigenetics is the study of gene expression changes that do not involve DNA sequence changes, including DNA methylation, histone modification, and non-coding RNAs. Specific epigenetic signatures at all levels, including DNA methylation, chromatin accessibility, histone modification, and non-coding RNA, define β cell identity during embryonic development, postnatal maturation, and maintain β cell function at homeostatic states. During progression of T2DM, overnutrition, inflammation, and other types of stress collaboratively disrupt the homeostatic epigenetic signatures in β cells. Dysregulated epigenetic signatures, and the associating transcriptional outputs, lead to the dysfunction and eventual loss of β cells. In this review, we will summarize recent discoveries of the establishment and disruption of β cell-specific epigenetic signatures, and discuss the potential implication in therapeutic development.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
- Tianjin Fourth Central Hospital, Tianjin, China
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
- The Fourth Central Hospital Clinical College, Tianjin Medical University, Tianjin, China
| | - Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| |
Collapse
|
47
|
Liu C, Sun YV. Anticipation of Precision Diabetes and Promise of Integrative Multi-Omics. Endocrinol Metab Clin North Am 2021; 50:559-574. [PMID: 34399961 DOI: 10.1016/j.ecl.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Precision diabetes is a concept of customizing delivery of health practices based on variability of diabetes. The authors reviewed recent research on type 2 diabetes heterogeneity and -omic biomarkers, including genomic, epigenomic, and metabolomic markers associated with type 2 diabetes. The emerging multiomics approach integrates complementary and interconnected molecular layers to provide systems level understanding of disease mechanisms and subtypes. Although the multiomic approach is not currently ready for routine clinical applications, future studies in the context of precision diabetes, particular in populations from diverse ethnic and demographic groups, may lead to improved diagnosis, treatment, and management of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Chang Liu
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road Northeast, Atlanta, GA 30322, USA; Atlanta VA Healthcare System, 1670 Clairmont Road, Decatur, GA 30033, USA.
| |
Collapse
|
48
|
Understanding the Long-Lasting Effects of Fetal Nutrient Restriction versus Exposure to an Obesogenic Diet on Islet-Cell Mass and Function. Metabolites 2021; 11:metabo11080514. [PMID: 34436455 PMCID: PMC8401811 DOI: 10.3390/metabo11080514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Early life represents a window of phenotypic plasticity. Thus, exposure of the developing fetus to a compromised nutritional environment can have long term consequences for their health. Indeed, undernutrition or maternal intake of an obesogenic diet during pregnancy leads to a heightened risk of type 2 diabetes (T2D) and obesity in her offspring in adult life. Given that abnormalities in beta-cell function are crucial in delineating the risk of T2D, studies have investigated the impact of these exposures on islet morphology and beta-cell function in the offspring in a bid to understand why they are more at risk of T2D. Interestingly, despite the contrasting maternal metabolic phenotype and, therefore, intrauterine environment associated with undernutrition versus high-fat feeding, there are a number of similarities in the genes/biological pathways that are disrupted in offspring islets leading to changes in function. Looking to the future, it will be important to define the exact mechanisms involved in mediating changes in the gene expression landscape in islet cells to determine whether the road to T2D development is the same or different in those exposed to different ends of the nutritional spectrum.
Collapse
|
49
|
Davison GW, Irwin RE, Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radic Biol Med 2021; 170:194-206. [PMID: 33429021 DOI: 10.1016/j.freeradbiomed.2020.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) continues to rise globally. Yet the aetiology and pathophysiology of this noncommunicable, polygenic disease, is poorly understood. Lifestyle factors, such as poor dietary intake, lack of exercise, and abnormal glycaemia, are purported to play a role in disease onset and progression, and these environmental factors may disrupt specific epigenetic mechanisms, leading to a reprogramming of gene transcription. The hyperglycaemic cell per se, alters epigenetics through chemical modifications to DNA and histones via metabolic intermediates such as succinate, α-ketoglutarate and O-GlcNAc. To illustrate, α-ketoglutarate is considered a salient co-factor in the activation of the ten-eleven translocation (TET) dioxygenases, which drives DNA demethylation. On the contrary, succinate and other mitochondrial tricarboxylic acid cycle intermediates, inhibit TET activity predisposing to a state of hypermethylation. Hyperglycaemia depletes intracellular ascorbic acid, and damages DNA by enhancing the production of reactive oxygen species (ROS); this compromised cell milieu exacerbates the oxidation of 5-methylcytosine alongside a destabilisation of TET. These metabolic connections may regulate DNA methylation, affecting gene transcription and pancreatic islet β-cell function in T2DM. This complex interrelationship between metabolism and epigenetic alterations may provide a conceptual foundation for understanding how pathologic stimuli modify and control the intricacies of T2DM. As such, this narrative review will comprehensively evaluate and detail the interplay between metabolism and epigenetic modifications in T2DM.
Collapse
Affiliation(s)
- Gareth W Davison
- Ulster University, Sport and Exercise Sciences Research Institute, Newtownabbey, Northern Ireland, UK.
| | - Rachelle E Irwin
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| |
Collapse
|
50
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|