1
|
Starr CR, Zhylkibayev A, Gorbatyuk O, Nuotio-Antar AM, Mobley J, Grant MB, Gorbatyuk M. Glucose-Sensing Carbohydrate Response Element-Binding Protein in the Pathogenesis of Diabetic Retinopathy. Cells 2025; 14:107. [PMID: 39851533 PMCID: PMC11763462 DOI: 10.3390/cells14020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBPRP mice with constitutively active (ca) ChREBP. These mice underwent retinal functional testing, which was followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19ChREBP) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration, as we observed diminished scotopic ERG amplitudes in caChREBPRP mice at P35. The retinal proteomic landscape revealed a decline in the KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific caChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19ChREBP cells exhibit a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprogramming triggering retinal functional loss in mice.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.R.S.); (M.B.G.)
| | - Assylbek Zhylkibayev
- Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| | - Oleg Gorbatyuk
- Department of Translational Neuroscience, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| | | | - James Mobley
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Maria B. Grant
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.R.S.); (M.B.G.)
| | - Marina Gorbatyuk
- Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| |
Collapse
|
2
|
Starr CR, Zhylkibayev A, Gorbatyuk O, Nuotio-Antar AM, Mobley J, Grant MB, Gorbatyuk M. Glucose-Sensing ChREBP Protein in the Pathogenesis of Dia-betic Retinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626828. [PMID: 39677707 PMCID: PMC11643094 DOI: 10.1101/2024.12.04.626828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBPRP mice with constitutively active (ca) ChREBP. These mice underwent retinal function testing, followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19ChREBP) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration as we observed diminished scotopic ERG amplitudes detected in caChREB-PRP mice at P35. The retinal proteomic landscape indicated a decline in KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific ca-ChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19ChREBP cells displayed a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprograming triggering retinal functional loss in mice.
Collapse
Affiliation(s)
- Christopher R. Starr
- University of Alabama at Birmingham, School of Medicine, Department of Ophthalmology
| | | | - Oleg Gorbatyuk
- Wake Forest University, School of Medicine, Department of Translational Neuroscience
| | | | - James Mobley
- University of Alabama at Birmingham, School of Medicine, Department of Anesthesiology and Perioperative Medicine
| | - Maria B. Grant
- University of Alabama at Birmingham, School of Medicine, Department of Ophthalmology
| | - Marina Gorbatyuk
- Wake Forest University, School of Medicine, Department of Biochemistry
| |
Collapse
|
3
|
Starr CR, Mobley JA, Gorbatyuk MS. Comparative proteomic study of retinal ganglion cells undergoing various types of cellular stressors. Exp Eye Res 2024; 247:110032. [PMID: 39127235 DOI: 10.1016/j.exer.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Retinal ganglion cell (RGC) damage serves as a key indicator of various retinal degenerative diseases, including diabetic retinopathy (DR), glaucoma, retinal arterial and retinal vein occlusions, as well as inflammatory and traumatic optic neuropathies. Despite the growing body of data on the RGC proteomics associated with these conditions, there has been no dedicated study conducted to compare the molecular signaling pathways involved in the mechanism of neuronal cell death. Therefore, we launched the study using two different insults leading to RGC death: glutamate excitotoxicity and optic nerve crush (ONC). C57BL/6 mice were used for the study and underwent NMDA- and ONC-induced damage. Twenty-four hours after ONC and 1 h after NMDA injection, we collected RGCs using CD90.2 coupled magnetic beads, prepared protein extracts, and employed LC-MS for the global proteomic analysis of RGCs. Statistically significant changes in proteins were analyzed to identify changes to cellular signaling resulting from the treatment. We identified unique and common alterations in protein profiles in RGCs undergoing different types of cellular stresses. Our study not only identified both unique and shared proteomic changes but also laid the groundwork for the future development of a therapeutic platform for testing gene candidates for DR and glaucoma.
Collapse
Affiliation(s)
- Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - James A Mobley
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA, 35233.
| |
Collapse
|
4
|
Starr CR, Mobley JA, Gorbatyuk MS. Comparative Proteomic Study of Retinal Ganglion Cells Undergoing Various Types of Cellular Stressors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561236. [PMID: 37873477 PMCID: PMC10592614 DOI: 10.1101/2023.10.06.561236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Retinal ganglion cell (RGC) damage serves as a key indicator of various retinal degenerative diseases, including diabetic retinopathy (DR), glaucoma, retinal arterial and retinal vein occlusions, as well as inflammatory and traumatic optic neuropathies. Despite the growing body of data on the RGC proteomics associated with these conditions, there has been no dedicated study conducted to compare the molecular signaling pathways involved in the mechanism of neuronal cell death. Therefore, we launched the study using two different insults leading to RGC death: glutamate excitotoxicity and optic nerve crush (ONC). C57BL/6 mice were used for the study and underwent NMDA- and ONC-induced damage. Twenty-four hours after ONC and 1 hour after NMDA injection, we collected RGCs using CD90.2 coupled magnetic beads, prepared protein extracts, and employed LC-MS for the global proteomic analysis of RGCs. Statistically significant changes in proteins were analyzed to identify changes to cellular signaling resulting from the treatment. We identified unique and common alterations in protein profiles in RGCs undergoing different types of cellular stresses. Our study not only identified both unique and shared proteomic changes but also laid the groundwork for the future development of a therapeutic platform for testing gene candidates for DR and glaucoma.
Collapse
Affiliation(s)
- Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA, 35233
| | - James A Mobley
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA, 35233
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA, 35233
| |
Collapse
|
5
|
Starr CR, Zhylkibayev A, Mobley JA, Gorbatyuk MS. Proteomic analysis of diabetic retinas. Front Endocrinol (Lausanne) 2023; 14:1229089. [PMID: 37693346 PMCID: PMC10486886 DOI: 10.3389/fendo.2023.1229089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As a metabolic disease, diabetes often leads to health complications such as heart failure, nephropathy, neurological disorders, and vision loss. Diabetic retinopathy (DR) affects as many as 100 million people worldwide. The mechanism of DR is complex and known to impact both neural and vascular components in the retina. While recent advances in the field have identified major cellular signaling contributing to DR pathogenesis, little has been reported on the protein post-translational modifications (PTM) - known to define protein localization, function, and activity - in the diabetic retina overall. Protein glycosylation is the enzymatic addition of carbohydrates to proteins, which can influence many protein attributes including folding, stability, function, and subcellular localization. O-linked glycosylation is the addition of sugars to an oxygen atom in amino acids with a free oxygen atom in their side chain (i.e., threonine, serine). To date, more than 100 congenital disorders of glycosylation have been described. However, no studies have identified the retinal O-linked glycoproteome in health or disease. With a critical need to expedite the discovery of PTMomics in diabetic retinas, we identified both global changes in protein levels and the retinal O-glycoproteome of control and diabetic mice. Methods We used liquid chromatography/mass spectrometry-based proteomics and high throughput screening to identify proteins differentially expressed and proteins differentially O-glycosylated in the retinas of wildtype and diabetic mice. Results Changes in both global expression levels of proteins and proteins differentially glycosylated in the retinas of wild-type and diabetic mice have been identified. We provide evidence that diabetes shifts both global expression levels and O-glycosylation of metabolic and synaptic proteins in the retina. Discussion Here we report changes in the retinal proteome of diabetic mice. We highlight alterations in global proteins involved in metabolic processes, maintaining cellular structure, trafficking, and neuronal processes. We then showed changes in O-linked glycosylation of individual proteins in the diabetic retina.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Starr CR, Gorbatyuk MS. Posttranslational modifications of proteins in diseased retina. Front Cell Neurosci 2023; 17:1150220. [PMID: 37066080 PMCID: PMC10097899 DOI: 10.3389/fncel.2023.1150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Posttranslational modifications (PTMs) are known to constitute a key step in protein biosynthesis and in the regulation of protein functions. Recent breakthroughs in protein purification strategies and current proteome technologies make it possible to identify the proteomics of healthy and diseased retinas. Despite these advantages, the research field identifying sets of posttranslationally modified proteins (PTMomes) related to diseased retinas is significantly lagging, despite knowledge of the major retina PTMome being critical to drug development. In this review, we highlight current updates regarding the PTMomes in three retinal degenerative diseases-namely, diabetic retinopathy (DR), glaucoma, and retinitis pigmentosa (RP). A literature search reveals the necessity to expedite investigations into essential PTMomes in the diseased retina and validate their physiological roles. This knowledge would accelerate the development of treatments for retinal degenerative disorders and the prevention of blindness in affected populations.
Collapse
Affiliation(s)
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Jia Y, Lin Q, Xiao Y, Zhou X, Zou H, Yang C. Are we overlooking the neurodegeneration in the early stage of Type 1 Diabetes Mellitus without Visual Impairment or Diabetic Retinopathy: is it probably occurred before retinal vasculature dysfunction? Curr Eye Res 2022; 48:433-440. [PMID: 36420789 DOI: 10.1080/02713683.2022.2152056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Using electrophysiology (ERG) to investigate the early alterations of retinal function in diabetic children and adolescents without diabetic retinopathy (DR) or visual impairment (VI). METHODS We recorded and compared the data of full-field flicker ERGs between 59 normal subjects and 60 children and adolescents with type 1 diabetes mellitus (T1DM) from the Children's Hospital of Fudan University in Shanghai. RESULTS In both groups, patients with diabetes and healthy controls were matched for age, gender, weight, height, BMI, intraocular pressure (IOP), and best-corrected visual acuity (BCVA). Among the parameters of the outcomes of ERG, the implicit time in eyes in DM patients was significantly prolonged compared to normal eyes (p = .008, 16 Td-s; p = .000, 32 Td-s). In the case group, we found significantly positive correlation between implicit time and BMI (p < .05), as well as implicit time and axial length (AL). CONCLUSIONS The study reveals that the dysfunction of retina in DM children can be detected with ERGs. It also shows that hyperglycemia has an impact on the occurrence of neurodegeneration in the early stage of DM.
Collapse
Affiliation(s)
- Yan Jia
- Department of Ophthalmology, Children’s Hospital of Fudan University, Shanghai, China
| | - Qiurong Lin
- Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Ying Xiao
- Department of Ophthalmology, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaohong Zhou
- Department of Ophthalmology, Children’s Hospital of Fudan University, Shanghai, China
| | - Haidong Zou
- Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Chenhao Yang
- Department of Ophthalmology, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Gorbatyuk OS, Pitale PM, Saltykova IV, Dorofeeva IB, Zhylkibayev AA, Athar M, Fuchs PA, Samuels BC, Gorbatyuk MS. A Novel Tree Shrew Model of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:799711. [PMID: 35046899 PMCID: PMC8762304 DOI: 10.3389/fendo.2021.799711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Existing animal models with rod-dominant retinas have shown that hyperglycemia injures neurons, but it is not yet clearly understood how blue cone photoreceptors and retinal ganglion cells (RGCs) deteriorate in patients because of compromised insulin tolerance. In contrast, northern tree shrews (Tupaia Belangeri), one of the closest living relatives of primates, have a cone-dominant retina with short wave sensitivity (SWS) and long wave sensitivity (LWS) cones. Therefore, we injected animals with a single streptozotocin dose (175 mg/kg i.p.) to investigate whether sustained hyperglycemia models the features of human diabetic retinopathy (DR). We used the photopic electroretinogram (ERG) to measure the amplitudes of A and B waves and the photopic negative responses (PhNR) to evaluate cone and RGC function. Retinal flat mounts were prepared for immunohistochemical analysis to count the numbers of neurons with antibodies against cone opsins and RGC specific BRN3a proteins. The levels of the proteins TRIB3, ISR-1, and p-AKT/p-mTOR were measured with western blot. The results demonstrated that tree shrews manifested sustained hyperglycemia leading to a slight but significant loss of SWS cones (12%) and RGCs (20%) 16 weeks after streptozotocin injection. The loss of BRN3a-positive RGCs was also reflected by a 30% decline in BRN3a protein expression. These were accompanied by reduced ERG amplitudes and PhNRs. Importantly, the diabetic retinas demonstrated increased expression of TRIB3 and level of p-AKT/p-mTOR axis but reduced level of IRS-1 protein. Therefore, a new non-primate model of DR with SWS cone and RGC dysfunction lays the foundation to better understand retinal pathophysiology at the molecular level and opens an avenue for improving the research on the treatment of human eye diseases.
Collapse
Affiliation(s)
- Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Iuliia B Dorofeeva
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek A Zhylkibayev
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preston A Fuchs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Morphology of Inner Retina in Rhesus Monkeys of Various Ages: A Comparative Study. J Ophthalmol 2019; 2019:7089342. [PMID: 30944733 PMCID: PMC6421773 DOI: 10.1155/2019/7089342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/22/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To investigate the changes of thickness in each layer, the morphology and density of inner neurons in rhesus monkeys' retina at various growth stages, thus contribute useful data for further biological studies. Methods The thickness of nerve fiber layer (NFL), the whole retina, inner plexiform layer (IPL), and outer plexiform layer (OPL) of rhesus monkeys at different ages were observed with hematoxylin and eosin (H&E) staining. The morphology and the density of inner neurons of rhesus monkey retina were detected by immunofluorescence. Results The retina showed the well-known ten layers, the thickness of each retinal layer in rhesus monkeys at various ages increased rapidly after infant, and the retina was the thickest in adulthood, but the retinal thickness stop growing in senescent. Quantitative analysis showed that the maximum density of inner neurons was reached in adolescent, and then, the density of inner neurons decreased in adults and senescent retinas. And some changes in the morphology of rod bipolar cells have occurred in senescent. Conclusions The structure of retina in rhesus monkeys is relatively immature at infant, and the inner retina of rhesus monkeys is mature in adolescent, while the thickness of each retinal layer was the most developed in the adult group. There was no significant change in senescence for the thickness of each retinal layer, but the number of the neurons in our study has a decreasing trend and the morphological structure has changed.
Collapse
|
10
|
Heo MG, Byun JH, Kim J, Choung SY. Treatment of Dendropanax morbifera leaves extract improves diabetic phenotype and inhibits diabetes induced retinal degeneration in db/db mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Rong L, Gu X, Xie J, Zeng Y, Li Q, Chen S, Zou T, Xue L, Xu H, Yin ZQ. Bone Marrow CD133 + Stem Cells Ameliorate Visual Dysfunction in Streptozotocin-induced Diabetic Mice with Early Diabetic Retinopathy. Cell Transplant 2018; 27:916-936. [PMID: 29717657 PMCID: PMC6050916 DOI: 10.1177/0963689718759463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of vision loss worldwide, is characterized by neurovascular disorders. Emerging evidence has demonstrated retinal neurodegeneration in the early pathogenesis of DR, and no treatment has been developed to prevent the early neurodegenerative changes that precede detectable microvascular disorders. Bone marrow CD133+ stem cells with revascularization properties exhibit neuroregenerative potential. However, whether CD133+ cells can ameliorate the neurodegeneration at the early stage of DR remains unclear. In this study, mouse bone marrow CD133+ stem cells were immunomagnetically isolated and analyzed for the phenotypic characteristics, capacity for neural differentiation, and gene expression of neurotrophic factors. After being labeled with enhanced green fluorescent protein, CD133+ cells were intravitreally transplanted into streptozotocin (STZ)-induced diabetic mice to assess the outcomes of visual function and retina structure and the mechanism underlying the therapeutic effect. We found that CD133+ cells co-expressed typical hematopoietic/endothelial stem/progenitor phenotypes, could differentiate to neural lineage cells, and expressed genes of robust neurotrophic factors in vitro. Functional analysis demonstrated that the transplantation of CD133+ cells prevented visual dysfunction for 56 days. Histological analysis confirmed such a functional improvement and showed that transplanted CD133+ cells survived, migrated into the inner retina (IR) over time and preserved IR degeneration, including retina ganglion cells (RGCs) and rod-on bipolar cells. In addition, a subset of transplanted CD133+ cells in the ganglion cell layer differentiated to express RGC markers in STZ-induced diabetic retina. Moreover, transplanted CD133+ cells expressed brain-derived neurotrophic factors (BDNFs) in vivo and increased the BDNF level in STZ-induced diabetic retina to support the survival of retinal cells. Based on these findings, we suggest that transplantation of bone marrow CD133+ stem cells represents a novel approach to ameliorate visual dysfunction and the underlying IR neurodegeneration at the early stage of DR.
Collapse
Affiliation(s)
- Liyuan Rong
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Xianliang Gu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Jing Xie
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Yuxiao Zeng
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Qiyou Li
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Siyu Chen
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Ting Zou
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Langyue Xue
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Haiwei Xu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| | - Zheng Qin Yin
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical
University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing,
Chongqing, China
| |
Collapse
|
12
|
The corneal subbasal nerve plexus and thickness of the retinal layers in pediatric type 1 diabetes and matched controls. Sci Rep 2018; 8:14. [PMID: 29311586 PMCID: PMC5758564 DOI: 10.1038/s41598-017-18284-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/05/2017] [Indexed: 11/08/2022] Open
Abstract
Optical coherence tomography (OCT) of the retina and corneal confocal laser scanning microscopy (CLSM) of the subbasal nerve plexus (SBP) are noninvasive techniques for quantification of the ocular neurodegenerative changes in individuals with type 1 diabetes mellitus (T1DM). In adult T1DM patients these changes are hardly related to T1DM only. Instead, ageing and/or lifestyle associated comorbidities have to be considered as putative confounding variables. Therefore, we investigated pediatric T1DM patients (n = 28; 14.2 ± 2.51 y; duration of disease: 5.39 ± 4.16 y) without clinical signs of diabetic retina disease, neuropathy, vasculopathy or nephropathy and compared our findings with those obtained in healthy controls (n = 46; 14.8 ± 1.89 y). The SBP was characterized by the averaged length, thickness, and tortuosity of nerve fibers as well as the number of branching and connecting points. OCT was used to determine the total thickness of the retina (ALL) and the thickness of each retinal layer. Both methods revealed signs of early neurodegenerative changes, e.g. thinning of distinct retinal layers at the pericentral ring and shortening of corneal nerve fibers that are already present in pediatric T1DM patients. Standardization of instruments and algorithms are urgently required to enable uniform comparison between different groups and define normative values to introduce in the clinical setting.
Collapse
|
13
|
Li S, Wang X, Yang J, Lei H, Wang X, Xiang Y. Metabolic profile of visual cortex in diabetic rats measured with in vivo proton MRS. NMR IN BIOMEDICINE 2017; 30:e3783. [PMID: 28915340 DOI: 10.1002/nbm.3783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The purpose of the present study was to characterize the metabolic profile of the visual cortex in streptozotocin-induced Type 1 diabetic rats by means of in vivo proton MRS. Several metabolite concentration ratios in the visual cortex were calculated. In addition, postmortem histologic analyses for retinal ganglion cell (RGC) loss, optic nerve injury and visual cortex alterations were monitored. The results showed that diabetes induced several changes in visual cortex metabolites, such as reduced N-acetylaspartate, glutamate, γ-aminobutyric acid, taurine and choline-containing compound levels. Nevertheless, myo-inositol levels increased significantly as compared with controls. Remarkable RGC loss and optic nerve degeneration were observed by morphological analysis. Moreover, the results showed significant neuronal loss and glial activation in the visual cortex. These findings indicated that, besides vascular abnormalities, neuronal loss and degeneration in the visual pathway were induced due to disrupted glucose homeostasis in diabetes. Metabolic or functional abnormalities were induced in cerebral neurons of the visual cortex by diabetes.
Collapse
Affiliation(s)
- Shuang Li
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junjie Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yi Xiang
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
14
|
Moran EP, Wang Z, Chen J, Sapieha P, Smith LEH, Ma JX. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol 2016; 311:H738-49. [PMID: 27473938 DOI: 10.1152/ajpheart.00005.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications.
Collapse
Affiliation(s)
- Elizabeth P Moran
- Depatment of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Harold Hamm Diabetes Center, Oklahoma City, Oklahoma
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Przemyslaw Sapieha
- Departments of Ophthalmology, Biochemistry & Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jian-Xing Ma
- Depatment of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Harold Hamm Diabetes Center, Oklahoma City, Oklahoma;
| |
Collapse
|
15
|
Nentwich MM, Ulbig MW. Diabetic retinopathy - ocular complications of diabetes mellitus. World J Diabetes 2015; 6:489-499. [PMID: 25897358 PMCID: PMC4398904 DOI: 10.4239/wjd.v6.i3.489] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/03/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023] Open
Abstract
In industrialized nations diabetic retinopathy is the most frequent microvascular complication of diabetes mellitus and the most common cause of blindness in the working-age population. In the next 15 years, the number of patients suffering from diabetes mellitus is expected to increase significantly. By the year 2030, about 440 million people in the age-group 20-79 years are estimated to be suffering from diabetes mellitus worldwide (prevalence 7.7%), while in 2010 there were 285 million people with diabetes mellitus (prevalence 6.4%). This accounts for an increase in patients with diabetes in industrialized nations by 20% and in developing countries by 69% until the year 2030. Due to the expected rise in diabetic patients, the need for ophthalmic care of patients (i.e., exams and treatments) will also increase and represents a challenge for eye-care providers. Development of optimized screening programs, which respect available resources of the ophthalmic infrastructure, will become even more important. Main reasons for loss of vision in patients with diabetes mellitus are diabetic macular edema and proliferative diabetic retinopathy. Incidence or progression of these potentially blinding complications can be greatly reduced by adequate control of blood glucose and blood pressure levels. Additionally, regular ophthalmic exams are mandatory for detecting ocular complications and initiating treatments such as laser photocoagulation in case of clinical significant diabetic macular edema or early proliferative diabetic retinopathy. In this way, the risk of blindness can considerably be reduced. In advanced stages of diabetic retinopathy, pars-plana vitrectomy is performed to treat vitreous hemorrhage and tractional retinal detachment. In recent years, the advent of intravitreal medication has improved therapeutic options for patients with advanced diabetic macular edema.
Collapse
|