1
|
Yoo TT, Baek IH, Stoletniy L, Hilliard A, Sakr A, Doycheva D. Impact of sodium-glucose transport protein-2 (SGLT2) inhibitors on the inflammasome pathway in acute myocardial infarction in type 2 diabetes mellitus: a comprehensive review. Cardiovasc Diabetol 2025; 24:227. [PMID: 40420176 PMCID: PMC12105141 DOI: 10.1186/s12933-025-02777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Sodium-glucose transport protein-2 (SGLT2) inhibitors, initially developed for glycemic control in type 2 diabetes mellitus (T2DM), have emerged as potential cardioprotective agents, reducing cardiovascular mortality and improving heart failure outcomes. Recent evidence suggests that SGLT2 inhibitors exert anti-inflammatory effects, particularly through modulating the inflammasome pathway. This review explores the role of the inflammasome in acute myocardial infarction (AMI) in T2DM and discusses the mechanisms by which SGLT2 inhibitors influence this pathway. We evaluate current studies on the impact of SGLT2 inhibitors on key inflammatory mediators, particularly the NLRP3 inflammasome, and discuss their potential therapeutic implications for reducing inflammation and myocardial injury in patients with T2DM experiencing AMI. In summary, the key novelties in this review lie in its focused mechanistic approach on the inflammasome pathway, its integration of diabetes and cardiovascular research, and its potential to influence future therapeutic strategies for AMI in T2DM patients. It offers a novel angle by tying together molecular mechanisms of inflammation with clinical implications in a specific patient population that faces high cardiovascular risk.
Collapse
Affiliation(s)
- Thomas T Yoo
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - In Hae Baek
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Liset Stoletniy
- Division of Cardiology, School of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Anthony Hilliard
- Division of Cardiology, School of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Antoine Sakr
- Division of Cardiology, School of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Desislava Doycheva
- Division of Cardiology, School of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11175 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
2
|
Pérez-Flores I, López-Pastor AR, Gómez-Pinedo U, Gómez-Infantes A, Espino-Paisán L, Calvo Romero N, Moreno de la Higuera MA, Rodríguez-Cubillo B, Gómez-Delgado I, Sánchez-Fructuoso AI, Urcelay E. Mitochondrial Changes Induced by SGLT2i in Lymphocytes from Diabetic Kidney Transplant Recipients: A Pilot Study. Int J Mol Sci 2025; 26:3351. [PMID: 40244220 PMCID: PMC11989945 DOI: 10.3390/ijms26073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) preserve cardiac and renal function by mechanisms that are not completely elucidated. Among other things, SGLT2i promote nutrient-deprivation signalling, which might affect the immune function. As the fate of immune cells is controlled by their metabolism, we aimed to study the mitochondrial integrity of lymphocytes isolated from renal transplant recipients with type 2 diabetes (T2D) upon SGLT2i therapy instauration and six-month follow up. In this real-world pilot study, the mitochondrial respiration of isolated peripheral blood mononuclear cells was monitored in a Seahorse XFp extracellular-flux analyzer and cells were photographed with a confocal microscope. Mitochondrial mass, membrane potential, and superoxide content of lymphocyte subpopulations were measured by flow cytometry (MitoTrackerTM Green, TMRM, and MitoSOXTM Red probes). Leveraging in vivo conditions of immune cells, we evaluated their metabolic profiles associated with immune activation. Herein, we identified changes in redox homeostasis with sustained membrane polarization, and an increased mitochondrial biogenesis upon PHA stimulation that significantly correlated with changes in body weight and LDL-cholesterol levels, and a resultant compensatory mitochondrial function of lymphocytes. Our data suggest novel mechanisms induced by SGLT2i to modulate immune cells, which probably underlie the observed beneficial effects in kidney transplant recipients. Nonetheless, further mechanistic studies are required to extend these exploratory findings and encourage the use of this therapeutic strategy.
Collapse
Affiliation(s)
- Isabel Pérez-Flores
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology and Advanced Therapy, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Andrea Gómez-Infantes
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
| | - Laura Espino-Paisán
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
| | - Natividad Calvo Romero
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - M. Angeles Moreno de la Higuera
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Beatriz Rodríguez-Cubillo
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Ana I. Sánchez-Fructuoso
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
- Department of Medicine, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| |
Collapse
|
3
|
Feng Q, Wu M, Mai Z. Emerging horizons: clinical applications and multifaceted benefits of SGLT-2 inhibitors beyond diabetes. Front Cardiovasc Med 2025; 12:1482918. [PMID: 40182430 PMCID: PMC11965600 DOI: 10.3389/fcvm.2025.1482918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
SGLT-2 inhibitors, initially developed for type 2 diabetes, demonstrate profound cardiorenal and metabolic benefits. This review synthesizes evidence from clinical trials and mechanistic studies to elucidate their roles in cardiovascular diseases, chronic kidney disease, and non-alcoholic fatty liver disease. Key findings include a notable reduction in cardiovascular death/heart failure hospitalization, a marked decrease in heart failure hospitalization risk, and significant improvements in renal and hepatic outcomes. Emerging mechanisms, such as autophagy induction, ketone utilization, and anti-inflammatory effects, underpin these benefits. Ongoing trials explore their potential in non-diabetic populations, positioning SGLT-2 inhibitors as transformative agents in multisystem disease management.
Collapse
Affiliation(s)
- Qing Feng
- Department of Cardiology, Kaiping Central Hospital, Kaiping, China
| | - Miaoqiong Wu
- Department of Endocrinology, Kaiping Central Hospital, Kaiping, China
| | - Zizhao Mai
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Erdogan BR, Arioglu-Inan E. SGLT2 inhibitors: how do they affect the cardiac cells. Mol Cell Biochem 2025; 480:1359-1379. [PMID: 39160356 DOI: 10.1007/s11010-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
The first sodium-glucose cotransporter-2 inhibitor (SGLT2I), canagliflozin, was approved by the U.S. Food and Drug Administration for the treatment of type 2 diabetes in 2013. Since then, other members of this drug class (such as dapagliflozin, empagliflozin, and ertugliflozin) have become widely used. Unlike classical antidiabetic agents, these drugs do not interfere with insulin secretion or action, but instead promote renal glucose excretion. Since their approval, many preclinical and clinical studies have been conducted to investigate the diverse effects of SGLT2Is. While originally introduced as antidiabetic agents, the SGLT2Is are now recognized as pillars in the treatment of heart failure and chronic kidney disease, in patients with or without diabetes. The beneficial cardiac effects of this class have been attributed to several mechanisms. Among these, SGLT2Is inhibit fibrosis, hypertrophy, apoptosis, inflammation, and oxidative stress. They regulate mitochondrial function and ion transport, and stimulate autophagy through several underlying mechanisms. This review details the potential effects of SGLT2Is on cardiac cells.
Collapse
Affiliation(s)
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Emniyet District, Dogol Street, No:4, 06560, Yenimahalle, Ankara, Turkey.
| |
Collapse
|
5
|
Takasu M, Kishi S, Nagasu H, Kidokoro K, Brooks CR, Kashihara N. The Role of Mitochondria in Diabetic Kidney Disease and Potential Therapeutic Targets. Kidney Int Rep 2025; 10:328-342. [PMID: 39990900 PMCID: PMC11843125 DOI: 10.1016/j.ekir.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetic kidney disease (DKD) is recognized worldwide as a leading cause of end-stage renal failure. Although therapies that target glomerular hemodynamics and can inhibit disease progression have been developed, there is currently no fundamental cure for the disease. Mitochondria play an important role in cellular respiration, producing adenosine triphosphate (ATP) by oxidative phosphorylation, and are essential for renal function, especially in proximal tubular cells (PTCs). In diabetic conditions, maintaining mitochondrial health is vital for preserving renal function. Under diabetic conditions, excessive reactive oxygen species (ROS) can damage mitochondrial DNA (mtDNA), leading to renal dysfunction. Strategies targeting mitochondrial function, such as AMP-activated protein kinase (AMPK) activation and modulation of nitric oxide (NO) availability, are promising for suppressing diabetic nephropathy. The immune response to DKD, initiated by detecting damage- and pathogen-associated molecular patterns, has a significant impact on the progression of DKD, including leakage of mtDNA and RNA, leading to inflammation through various pathways. This contributes to renal impairment characterized by hyperfiltration, endothelial dysfunction, and albuminuria. Mitochondrial energy metabolism and dynamics induced by hyperglycemia precede the onset of albuminuria and histological changes in the kidneys. The increased mitochondrial fission and decreased fusion that occur under diabetic conditions result in ATP depletion and exacerbate cellular dysfunction. Therapeutic strategies focused on restoring mitochondrial function are promising for slowing the progression of DKD and reduce the adverse effects on renal function. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 (GLP-1) receptor agonists, already in clinical use, have been shown to be protective for mitochondria, and nuclear factor erythroid 2-related factor 2 (Nrf2) activation and mitochondrial dynamics are promising drug discovery targets for further research.
Collapse
Affiliation(s)
- Masanobu Takasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Craig R. Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naoki Kashihara
- Department of Medical Science, Kawasaki Medical School, Kurashiki, Japan
- Kawasaki Geriatric Medical Center, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
6
|
Jaiswal A, Yadav P, Rawat PS, Kaur M, Babu SS, Khurana A, Bhatti JS, Navik U. Empagliflozin in diabetic cardiomyopathy: elucidating mechanisms, therapeutic potentials, and future directions. Mol Biol Rep 2025; 52:158. [PMID: 39853512 DOI: 10.1007/s11033-025-10260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Diabetic cardiomyopathy (DCM) represents a significant health burden, exacerbated by the global increase in type 2 diabetes mellitus (T2DM). This condition contributes substantially to the morbidity and mortality associated with diabetes, primarily through myocardial dysfunction independent of coronary artery disease. Current treatment strategies focus on managing symptoms rather than targeting the underlying pathophysiological mechanisms, highlighting a critical need for specific therapeutic interventions. This review explores the multifaceted role of empagliflozin, a sodium-glucose cotransporter 2 (SGLT-2) inhibitor, in addressing the complex etiology of DCM. We discuss the key mechanisms by which hyperglycemia contributes to cardiac dysfunction, including oxidative stress, mitochondrial impairment, and inflammation, and how empagliflozin mitigates these effects. Empagliflozin's effects on reducing hospitalization for heart failure and potentially lowering cardiovascular mortality mark it as a promising candidate for DCM management. By elucidating the underlying mechanisms through which empagliflozin operates, this review underscores its therapeutic potential and paves the way for future research into its broader applications in diabetic cardiac care. This synthesis aims to foster a deeper understanding of DCM and encourage the integration of empagliflozin into treatment paradigms, offering hope for improved outcomes in patients suffering from this debilitating condition.
Collapse
Affiliation(s)
- Aiswarya Jaiswal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Maninder Kaur
- Department of Human Anatomy, Bhojia Dental College and Hospital, Budh, Baddi, Himachal Pradesh, 173205, India
| | | | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
7
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
Pham LT, Mangmool S, Parichatikanond W. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases. ACS Pharmacol Transl Sci 2024; 7:3279-3298. [PMID: 39539254 PMCID: PMC11555527 DOI: 10.1021/acsptsci.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an innovative class of antidiabetic drugs that provide cardiovascular benefits to both diabetic and nondiabetic patients, surpassing those of other antidiabetic drugs. Although the roles of mitochondria and endoplasmic reticulum (ER) in cardiovascular research are increasingly recognized as promising therapeutic targets, the exact molecular mechanisms by which SGLT2 inhibitors influence mitochondrial and ER homeostasis in the heart remain incompletely elucidated. This review comprehensively summarizes and discusses the impacts of SGLT2 inhibitors on mitochondrial dysfunction and ER stress in heart diseases including heart failure, ischemic heart disease/myocardial infarction, and arrhythmia from preclinical and clinical studies. Based on the existing evidence, the effects of SGLT2 inhibitors may potentially involve the restoration of mitochondrial biogenesis and alleviation of ER stress. Such consequences are achieved by enhancing adenosine triphosphate (ATP) production, preserving mitochondrial membrane potential, improving the activity of electron transport chain complexes, maintaining mitochondrial dynamics, mitigating oxidative stress and apoptosis, influencing cellular calcium and sodium handling, and targeting the unfolded protein response (UPR) through three signaling pathways including inositol requiring enzyme 1α (IRE1α), protein kinase R like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Therefore, SGLT2 inhibitors have emerged as a promising target for treating heart diseases due to their potential to improve mitochondrial functions and ER stress.
Collapse
Affiliation(s)
- Linh Thi
Truc Pham
- Biopharmaceutical
Sciences Program, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
| | - Supachoke Mangmool
- Department
of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai, 50200 Thailand
| | | |
Collapse
|
10
|
Soares RR, Viggiani LF, Reis Filho JM, Joviano-Santos JV. Cardioprotection of Canagliflozin, Dapagliflozin, and Empagliflozin: Lessons from preclinical studies. Chem Biol Interact 2024; 403:111229. [PMID: 39244185 DOI: 10.1016/j.cbi.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Clinical and preclinical studies have elucidated the favorable effects of Inhibitors of Sodium-Glucose Cotransporter-2 (iSGLT2) in patients and animal models with type 2 diabetes. Notably, these inhibitors have shown significant benefits in reducing hospitalizations and mortality among patients with heart failure. However, despite their incorporation into clinical practice for indications beyond diabetes, the decision-making process regarding their use often lacks a systematic approach. The selection of iSGLT2 remains arbitrary, with only a limited number of studies simultaneously exploring the different classes of them. Currently, no unique guideline establishes their application in both clinical and basic research. This review delves into the prevalent use of iSGLT2 in animal models previously subjected to induced cardiac stress. We have compiled key findings related to cardioprotection across various animal models, encompassing diverse dosages and routes of administration. Beyond their established role in diabetes management, iSGLT2 has demonstrated utility as agents for safeguarding heart health and cardioprotection can be class-dependent among the iSGLT2. These findings may serve as valuable references for other researchers. Preclinical studies play a pivotal role in ensuring the safety of novel compounds or treatments for potential human use. By assessing side effects, toxicity, and optimal dosages, these studies offer a robust foundation for informed decisions, identifying interventions with the highest likelihood of success and minimal risk to patients. The insights gleaned from preclinical studies, which play a crucial role in highlighting areas of knowledge deficiency, can guide the exploration of novel mechanisms and strategies involving iSGLT2.
Collapse
Affiliation(s)
- Rayla Rodrigues Soares
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Freitas Viggiani
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliano Moreira Reis Filho
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Karakasis P, Fragakis N, Kouskouras K, Karamitsos T, Patoulias D, Rizzo M. Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Acute Coronary Syndrome: A Modern Cinderella? Clin Ther 2024; 46:841-850. [PMID: 38991865 DOI: 10.1016/j.clinthera.2024.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Atherosclerotic cardiovascular disease remains a prominent global cause of mortality, with coronary artery disease representing its most prevalent manifestation. Recently, a novel class of antidiabetic medication, namely sodium-glucose cotransporter-2 (SGLT2) inhibitors, has been reported to have remarkable cardiorenal advantages for individuals with type 2 diabetes mellitus (DM), and they may reduce cardiorenal risk even in individuals without pre-existing DM. Currently, there is no evidence regarding the safety and efficacy of these drugs in acute coronary syndrome (ACS), regardless of diabetes status. This review aims to comprehensively present the available preclinical and clinical evidence regarding the potential role of SGLT2 inhibitors in the context of ACS, as adjuncts to standard-of-care treatment for this patient population, while also discussing potential short- and long-term cardiovascular benefits. METHODS A literature search was performed through MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials, and Scopus until February 26, 2024. Eligible were preclinical and clinical studies, comprising randomized controlled trials (RCTs), real-world studies, and meta-analyses. FINDINGS Evidence from preclinical models indicates that the use of SGLT2 inhibitors is associated with a blunted ischemia-reperfusion injury and decreased myocardial infarct size, particularly after prior treatment. Although RCTs and real-world data hint at a potential benefit in acute ischemic settings, showing improvements in left ventricular systolic and diastolic function, decongestion, and various cardiometabolic parameters such as glycemia,body weight, and blood pressure, the recently published DAPA-MI (Dapagliflozin in Myocardial Infarction without Diabetes or Heart Failure) trial did not establish a clear advantage regarding surrogate cardiovascular end points of interest. SGLT2 inhibitors appear to provide a benefit in reducing contrast-induced acute kidney injury events in patients with ACS undergoing percutaneous coronary intervention. However, data on other safety concerns, such as treatment discontinuation because of hypotension, hypovolemia, or ketoacidosis, are currently limited. IMPLICATIONS Despite the well-established cardiovascular benefits observed in the general population with type 2 DM and, more recently, in other patient groups irrespective of diabetes status, existing evidence does not support the use of SGLT2 inhibitors in the context of ACS. Definitive answers to this intriguing research question, which could potentially expand the therapeutic indications of this novel drug class, require large-scale, well-designed RCTs.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kouskouras
- Department of Radiology, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Karamitsos
- First Department of Cardiology, Aristotle University Medical School, AHEPA University General Hospital, Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care (Promise), Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Liao L, Wang T, Zhang L, Wei Y, Fan X. Protective Mechanisms of SGLTi in Ischemic Heart Disease. J Cardiovasc Transl Res 2024; 17:1018-1035. [PMID: 38767796 DOI: 10.1007/s12265-024-10513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Ischemic heart disease (IHD) is a common clinical cardiovascular disease with high morbidity and mortality. Sodium glucose cotransporter protein inhibitor (SGLTi) is a novel hypoglycemic drug. To date, both clinical trials and animal experiments have shown that SGLTi play a protective role in IHD, including myocardial infarction (MI) and ischemia/reperfusion (I/R). The protective effects may be involved in mechanisms of energy metabolic conversion, anti-inflammation, anti-fibrosis, ionic homeostasis improvement, immune cell development, angiogenesis and functional regulation, gut microbiota regulation, and epicardial lipids. Thus, this review summarizes the above mechanisms and aims to provide theoretical evidence for therapeutic strategies for IHD.
Collapse
Affiliation(s)
- Lei Liao
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tong Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lu Zhang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
13
|
Naoum I, Saliba W, Barnett-Griness O, Aker A, Zafrir B. Glucose-Lowering Drugs with Proven Cardiovascular Benefit Following Acute Coronary Syndrome in Patients with Type 2 Diabetes: Treatment Gaps and Outcomes. J Clin Med 2024; 13:5541. [PMID: 39337027 PMCID: PMC11432281 DOI: 10.3390/jcm13185541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Real-world data on the implementation and prognostic impact of glucose-lowering drugs with proven cardiovascular benefits in patients with type 2 diabetes (T2D) following acute coronary syndrome (ACS) are limited. We investigated the utilization and treatment patterns of sodium-glucose contrasporter-2 inhibitors (SGLT2Is) and glucagon-like peptide-1 recepto-agonists (GLP1RAs) in patients with T2D experiencing ACS and analyzed their association with mortality and major adverse cardiovascular events (MACEs) including recurrent ACS, acute revascularization, heart failure, or ischemic stroke. Methods: We carried out a retrospective analysis of 9756 patients with T2D from a nationwide healthcare organization in Israel who were hospitalized with ACS between 01/2019 and 01/2022. Drug prescriptions were estimated pre-hospitalization, 90 days, and 1 year following hospitalization. The association between SGLT2I and/or GLP1RA treatment with MACE and mortality was investigated using a time-dependent Cox regression analysis with multivariable adjustment. Results: The prescription rates (pre-hospitalization, 90 days, and 1 year post-hospitalization) of GLP1RAs were 13%, 13.2%, and 18%, and those of SGLT2Is were 23.9%, 33.6%, and 42.7%, respectively. At 1 year, 13.9% of patients were prescribed both treatments. The use of SGLT2Is and/or GLP1RAs was higher in younger age groups and increased from 2019 to 2021 (38.1% to 59.2%). The adjusted hazard ratio for the association of pre- or post-hospitalization SGLT2I and/or GLP1RA treatment with mortality and MACE was 0.724 (0.654-0.801) and 0.974 (0.909-1.043), respectively. Conclusions: In the real-world practice of treating patients with T2D experiencing ACS, the implementation of SGLT2Is, particularly GLP1RAs, was suboptimal when prescribed both early and 1 year following hospitalization, emphasizing the need to improve medical care. Treatment with SGLT2Is and/or GLP1RAs was associated with a favorable impact on mortality but not MACE.
Collapse
Affiliation(s)
- Ibrahim Naoum
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel; (I.N.); (A.A.)
| | - Walid Saliba
- Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
- Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Ofra Barnett-Griness
- Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
- Statistical Unit, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Amir Aker
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel; (I.N.); (A.A.)
| | - Barak Zafrir
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel; (I.N.); (A.A.)
- Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
14
|
Salvadori M, Rosati A, Rosso G. Update on Sodium Glucose Cotransporter Type 2 Inhibitors Use in Kidney Transplant Patients. TRANSPLANTOLOGY 2024; 5:224-233. [DOI: 10.3390/transplantology5030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Sodium glucose cotransporter type 2 inhibitors are a new class of drugs that act on the cardiovascular system, kidneys and metabolism in a multiple ways. Indeed, even though their principal action involves the transport of sodium and glucose in the convoluted distal tubule, they have multiple actions, such as antifibrotic and endothelial protective effects. Their principal mechanism consists of the loss of sodium and glucose. Therefore, they affect blood pressure and glucose metabolism. Their first use was in the diabetic general population; later, some studies documented their activity in the nondiabetic general population and in heart failure in chronic kidney disease patients. Only in recent years have several small studies documented the efficacy of these drugs in diabetic and nondiabetic kidney transplant patients; relatively large studies are rare, very recent, and open new routes for the development of these drugs.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Viale Pieraccini 18, 50139 Florence, Italy
| | - Alberto Rosati
- Division of Nephrology, San Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, 50143 Florence, Italy
| |
Collapse
|
15
|
Rai AK, Sanghvi S, Muthukumaran NS, Chandrasekera D, Kadam A, Kishore J, Kyriazis ID, Tomar D, Ponnalagu D, Shettigar V, Khan M, Singh H, Goukassian D, Katare R, Garikipati VNS. Role of mitochondrial ribosomal protein L7/L12 (MRPL12) in diabetic ischemic heart disease. Free Radic Biol Med 2024; 222:531-538. [PMID: 38977138 DOI: 10.1016/j.freeradbiomed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is a significant cause of death in diabetic patients. Growing evidence suggests that mitochondrial dysfunction contributes to heart failure in diabetes. However, the molecular mechanisms of mitochondrial dysfunction mediating heart failure in diabetes are still poorly understood. METHODS We examined MRPL12 levels in right atrial appendage tissues from diabetic patients undergoing coronary artery bypass graft (CABG) surgery. Using AC-16 cells overexpressing MRPL12 under normal and hyperglycemic conditions we performed mitochondrial functional assays OXPHOS, bioenergetics, mitochondrial membrane potential, ATP production and cell death. RESULTS We observed elevated MRPL12 levels in heart tissue samples from diabetic patients with ischemic heart disease compared to non-diabetic patients. Overexpression of MRPL12 under hyperglycemic conditions did not affect oxidative phosphorylation (OXPHOS) levels, cellular ATP levels, or cardiomyocyte cell death. However, notable impairment in mitochondrial membrane potential (MMP) was observed under hyperglycemic conditions, along with alterations in both basal respiration oxygen consumption rate (OCR) and maximal respiratory capacity OCR. CONCLUSIONS Overall, our results suggest that MRPL12 may have a compensatory role in the diabetic myocardium with ischemic heart disease, suggesting that MRPL12 may implicate in the pathophysiology of MI in diabetes.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Middle Aged
- Adenosine Triphosphate/metabolism
- Atrial Appendage/metabolism
- Atrial Appendage/pathology
- Coronary Artery Bypass
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Membrane Potential, Mitochondrial
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/pathology
- Myocardial Ischemia/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | | | - Dhananjie Chandrasekera
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ashlesha Kadam
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jahnavi Kishore
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Ioannis D Kyriazis
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dhanendra Tomar
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Vikram Shettigar
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Mahmood Khan
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA; Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
16
|
Chen YL, Wang HT, Lee WC, Lin PT, Liu WH, Hsueh SK. Empagliflozin Prevent High-Glucose Stimulation Inducing Apoptosis and Mitochondria Fragmentation in H9C2 Cells through the Calcium-Dependent Activation Extracellular Signal-Regulated Kinase 1/2 Pathway. Int J Mol Sci 2024; 25:8235. [PMID: 39125805 PMCID: PMC11311311 DOI: 10.3390/ijms25158235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
A previous study showed that high-glucose (HG) conditions induce mitochondria fragmentation through the calcium-mediated activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) in H9C2 cells. This study tested whether empagliflozin could prevent HG-induced mitochondria fragmentation through this pathway. We found that exposing H9C2 cells to an HG concentration decreased cell viability and increased cell apoptosis and caspase-3. Empagliflozin could reverse the apoptosis effect of HG stimulation on H9C2 cells. In addition, the HG condition caused mitochondria fragmentation, which was reduced by empagliflozin. The expression of mitochondria fission protein was upregulated, and fusion proteins were downregulated under HG stimulation. The expression of fission proteins was decreased under empagliflozin treatment. Increased calcium accumulation was observed under the HG condition, which was decreased by empagliflozin. The increased expression of ERK 1/2 under HG stimulation was also reversed by empagliflozin. Our study shows that empagliflozin could reverse the HG condition, causing a calcium-dependent activation of the ERK 1/2 pathway, which caused mitochondria fragmentation in H9C2 cells.
Collapse
Affiliation(s)
- Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-T.L.); (W.-H.L.); (S.-K.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Hui-Ting Wang
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Emergency Department, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Pei-Ting Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-T.L.); (W.-H.L.); (S.-K.H.)
| | - Wen-Hao Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-T.L.); (W.-H.L.); (S.-K.H.)
| | - Shu-Kai Hsueh
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-T.L.); (W.-H.L.); (S.-K.H.)
| |
Collapse
|
17
|
Yang C, Xiao C, Ding Z, Zhai X, Liu J, Yu M. Canagliflozin Mitigates Diabetic Cardiomyopathy through Enhanced PINK1-Parkin Mitophagy. Int J Mol Sci 2024; 25:7008. [PMID: 39000117 PMCID: PMC11241502 DOI: 10.3390/ijms25137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.
Collapse
Affiliation(s)
- Chunru Yang
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Cheng Xiao
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Zerui Ding
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Xiaojun Zhai
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Jieying Liu
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| |
Collapse
|
18
|
Chatzianagnostou K, Gaggini M, Suman Florentin A, Simonini L, Vassalle C. New Molecules in Type 2 Diabetes: Advancements, Challenges and Future Directions. Int J Mol Sci 2024; 25:6218. [PMID: 38892417 PMCID: PMC11173177 DOI: 10.3390/ijms25116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Although good glycemic control in patients with type 2 diabetes (T2D) can prevent cardiovascular complications, many diabetic patients still have poor optimal control. A new class of antidiabetic drugs (e.g., glucagon-like peptide-1-GLP-1 receptor agonists, sodium-glucose co-transporters-SGLT2 inhibitors), in addition to the low hypoglycemic effect, exert multiple beneficial effects at a metabolic and cardiovascular level, through mechanisms other than antihyperglycemic agents. This review aims to discuss the effects of these new antidiabetic drugs, highlighting cardiovascular and metabolic benefits, through the description of their action mechanisms as well as available data by preclinical and clinical studies. Moreover, new innovative tools in the T2D field will be described which may help to advance towards a better targeted T2D personalized care in future.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Adrian Suman Florentin
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
19
|
Li Y, Zhang Z, Zhang Z, Zheng N, Ding X. Empagliflozin, a sodium-glucose cotransporter inhibitor enhancing mitochondrial action and cardioprotection in metabolic syndrome. J Cell Physiol 2024; 239:e31264. [PMID: 38764242 DOI: 10.1002/jcp.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
Metabolic syndrome (MetS) has a large clinical population nowadays, usually due to excessive energy intake and lack of exercise. During MetS, excess nutrients stress the mitochondria, resulting in relative hypoxia in tissues and organs, even when blood supply is not interrupted or reduced, making mitochondrial dysfunction a central pathogenesis of cardiovascular disease in the MetS. Sodium-glucose cotransporter 2 inhibitors were designed as a hyperglycemic drug that acts on the renal tubules to block sugar reabsorption in primary urine. Recently they have been shown to have anti-inflammatory and other protective effects on cardiomyocytes in MetS, and have also been recommended in the latest heart failure guidelines as a routine therapy. Among these inhibitors, empagliflozin shows better clinical promise due to less influence from glomerular filtration rate. This review focuses on the mitochondrial mechanisms of empagliflozin, which underlie the anti-inflammatory and recover cellular functions in MetS cardiomyocytes, including stabilizing calcium concentration, mediating metabolic reprogramming, maintaining homeostasis of mitochondrial quantity and quality, stable mitochondrial DNA copy number, and repairing damaged mitochondrial DNA.
Collapse
Affiliation(s)
- Yunhao Li
- Graduate School, China Medical University, Shenyang, China
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhanming Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zheming Zhang
- Graduate School, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
21
|
Schauer A, Adams V, Kämmerer S, Langner E, Augstein A, Barthel P, Männel A, Fabig G, Alves PKN, Günscht M, El-Armouche A, Müller-Reichert T, Linke A, Winzer EB. Empagliflozin Improves Diastolic Function in HFpEF by Restabilizing the Mitochondrial Respiratory Chain. Circ Heart Fail 2024; 17:e011107. [PMID: 38847102 PMCID: PMC11177604 DOI: 10.1161/circheartfailure.123.011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Clinical studies demonstrated beneficial effects of sodium-glucose-transporter 2 inhibitors on the risk of cardiovascular death in patients with heart failure with preserved ejection fraction (HFpEF). However, underlying processes for cardioprotection remain unclear. The present study focused on the impact of empagliflozin (Empa) on myocardial function in a rat model with established HFpEF and analyzed underlying molecular mechanisms. METHODS Obese ZSF1 (Zucker fatty and spontaneously hypertensive) rats were randomized to standard care (HFpEF, n=18) or Empa (HFpEF/Empa, n=18). ZSF1 lean rats (con, n=18) served as healthy controls. Echocardiography was performed at baseline and after 4 and 8 weeks, respectively. After 8 weeks of treatment, hemodynamics were measured invasively, mitochondrial function was assessed and myocardial tissue was collected for either molecular and histological analyses or transmission electron microscopy. RESULTS In HFpEF Empa significantly improved diastolic function (E/é: con: 17.5±2.8; HFpEF: 24.4±4.6; P<0.001 versus con; HFpEF/Empa: 19.4±3.2; P<0.001 versus HFpEF). This was accompanied by improved hemodynamics and calcium handling and by reduced inflammation, hypertrophy, and fibrosis. Proteomic analysis demonstrated major changes in proteins involved in mitochondrial oxidative phosphorylation. Cardiac mitochondrial respiration was significantly impaired in HFpEF but restored by Empa (Vmax complex IV: con: 0.18±0.07 mmol O2/s/mg; HFpEF: 0.13±0.05 mmol O2/s/mg; P<0.041 versus con; HFpEF/Empa: 0.21±0.05 mmol O2/s/mg; P=0.012 versus HFpEF) without alterations of mitochondrial content. The expression of cardiolipin, an essential stability/functionality-mediating phospholipid of the respiratory chain, was significantly decreased in HFpEF but reverted by Empa (con: 15.9±1.7 nmol/mg protein; HFpEF: 12.5±1.8 nmol/mg protein; P=0.002 versus con; HFpEF/Empa: 14.5±1.8 nmol/mg protein; P=0.03 versus HFpEF). Transmission electron microscopy revealed a reduced size of mitochondria in HFpEF, which was restored by Empa. CONCLUSIONS The study demonstrates beneficial effects of Empa on diastolic function, hemodynamics, inflammation, and cardiac remodeling in a rat model of HFpEF. These effects were mediated by improved mitochondrial respiratory capacity due to modulated cardiolipin and improved calcium handling.
Collapse
Affiliation(s)
- Antje Schauer
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Erik Langner
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Antje Augstein
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Peggy Barthel
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Anita Männel
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (G.F., T.M.-R.)
| | - Paula Ketilly Nascimento Alves
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil (P.K.N.A.)
| | - Mario Günscht
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (G.F., T.M.-R.)
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| |
Collapse
|
22
|
Cho J, Doo SW, Song N, Lee M, Lee H, Kim H, Jeon JS, Noh H, Kwon SH. Dapagliflozin Reduces Urinary Kidney Injury Biomarkers in Chronic Kidney Disease Irrespective of Albuminuria Level. Clin Pharmacol Ther 2024; 115:1441-1449. [PMID: 38451017 DOI: 10.1002/cpt.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in patients with chronic kidney disease (CKD) with low albuminuria levels have not been established. This study aimed to compare the effects of dapagliflozin on kidney injury biomarkers in patients with CKD stratified by albuminuria level. We prospectively enrolled healthy volunteers (HVs; n = 20) and patients with CKD (n = 54) with and without diabetes mellitus. Patients with CKD were divided into two age-matched and sex-matched subgroups according to urinary albumin-creatinine ratio (uACR) levels (<300 mg/g and ≥300 mg/g). The CKD group received dapagliflozin (10 mg/day). Urine samples were collected before treatment and after 3 and 6 months of dapagliflozin. Urinary kidney injury molecule-1 (KIM-1), interleukin-1β (IL-1β), and mitochondrial DNA nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND1) copy number were measured. The estimated glomerular filtration rate (eGFR) of patients with CKD was lower than that of HVs (P < 0.001). During the study period, eGFR decreased and uACR did not change in the CKD group. Kidney injury markers were significantly elevated in patients with CKD compared with those in HVs. Dapagliflozin reduced urinary KIM-1, IL-1β, and mtDNA copy number in patients with CKD after 6 months of treatment. In further, the levels of urinary KIM-1 and IL-1β, patients with CKD decreased after 6 months of dapagliflozin treatment regardless of albuminuria level. Dapagliflozin reduced urinary kidney injury biomarkers in patients with CKD, regardless of albuminuria level. These findings suggest that SGLT2 inhibitors may also attenuate the progression of low albuminuric CKD.
Collapse
Affiliation(s)
- Junghyun Cho
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Seung Whan Doo
- Department of Urology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Nayoung Song
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Minsul Lee
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyongnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
23
|
Li N, Zhu QX, Li GZ, Wang T, Zhou H. Empagliflozin ameliorates diabetic cardiomyopathy probably via activating AMPK/PGC-1α and inhibiting the RhoA/ROCK pathway. World J Diabetes 2023; 14:1862-1876. [PMID: 38222788 PMCID: PMC10784799 DOI: 10.4239/wjd.v14.i12.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) increases the risk of hospitalization for heart failure (HF) and mortality in patients with diabetes mellitus. However, no specific therapy to delay the progression of DCM has been identified. Mitochondrial dysfunction, oxidative stress, inflammation, and calcium handling imbalance play a crucial role in the pathological processes of DCM, ultimately leading to cardiomyocyte apoptosis and cardiac dysfunctions. Empagliflozin, a novel glucose-lowering agent, has been confirmed to reduce the risk of hospitalization for HF in diabetic patients. Nevertheless, the molecular mechanisms by which this agent provides cardioprotection remain unclear. AIM To investigate the effects of empagliflozin on high glucose (HG)-induced oxidative stress and cardiomyocyte apoptosis and the underlying molecular mechanism. METHODS Twelve-week-old db/db mice and primary cardiomyocytes from neonatal rats stimulated with HG (30 mmol/L) were separately employed as in vivo and in vitro models. Echocardiography was used to evaluate cardiac function. Flow cytometry and TdT-mediated dUTP-biotin nick end labeling staining were used to assess apoptosis in myocardial cells. Mitochondrial function was assessed by cellular ATP levels and changes in mitochondrial membrane potential. Furthermore, intracellular reactive oxygen species production and superoxide dismutase activity were analyzed. Real-time quantitative PCR was used to analyze Bax and Bcl-2 mRNA expression. Western blot analysis was used to measure the phosphorylation of AMP-activated protein kinase (AMPK) and myosin phosphatase target subunit 1 (MYPT1), as well as the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and active caspase-3 protein levels. RESULTS In the in vivo experiment, db/db mice developed DCM. However, the treatment of db/db mice with empagliflozin (10 mg/kg/d) for 8 wk substantially enhanced cardiac function and significantly reduced myocardial apoptosis, accompanied by an increase in the phosphorylation of AMPK and PGC-1α protein levels, as well as a decrease in the phosphorylation of MYPT1 in the heart. In the in vitro experiment, the findings indicate that treatment of cardiomyocytes with empagliflozin (10 μM) or fasudil (FA) (a ROCK inhibitor, 100 μM) or overexpression of PGC-1α significantly attenuated HG-induced mitochondrial injury, oxidative stress, and cardiomyocyte apoptosis. However, the above effects were partly reversed by the addition of compound C (CC). In cells exposed to HG, empagliflozin treatment increased the protein levels of p-AMPK and PGC-1α protein while decreasing phosphorylated MYPT1 levels, and these changes were mitigated by the addition of CC. Adding FA and overexpressing PGC-1α in cells exposed to HG substantially increased PGC-1α protein levels. In addition, no sodium-glucose cotransporter (SGLT)2 protein expression was detected in cardiomyocytes. CONCLUSION Empagliflozin partially achieves anti-oxidative stress and anti-apoptotic effects on cardiomyocytes under HG conditions by activating AMPK/PGC-1α and suppressing of the RhoA/ROCK pathway independent of SGLT2.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Qiu-Xiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Gui-Zhi Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
24
|
Su S, Ji X, Li T, Teng Y, Wang B, Han X, Zhao M. The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy. Front Cardiovasc Med 2023; 10:1291450. [PMID: 38124893 PMCID: PMC10731052 DOI: 10.3389/fcvm.2023.1291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Background/aims To investigate the specific effects of s odium-glucose transporter 2 inhibitor (SGLT2i) on cardiac energy metabolism. Methods A systematic literature search was conducted in eight databases. The retrieved studies were screened according to the inclusion and exclusion criteria, and relevant information was extracted according to the purpose of the study. Two researchers independently screened the studies, extracted information, and assessed article quality. Results The results of the 34 included studies (including 10 clinical and 24 animal studies) showed that SGLT2i inhibited cardiac glucose uptake and glycolysis, but promoted fatty acid (FA) metabolism in most disease states. SGLT2i upregulated ketone metabolism, improved the structure and functions of myocardial mitochondria, alleviated oxidative stress of cardiomyocytes in all literatures. SGLT2i increased cardiac glucose oxidation in diabetes mellitus (DM) and cardiac FA metabolism in heart failure (HF). However, the regulatory effects of SGLT2i on cardiac FA metabolism in DM and cardiac glucose oxidation in HF varied with disease types, stages, and intervention duration of SGLT2i. Conclusion SGLT2i improved the efficiency of cardiac energy production by regulating FA, glucose and ketone metabolism, improving mitochondria structure and functions, and decreasing oxidative stress of cardiomyocytes under pathological conditions. Thus, SGLT2i is deemed to exert a benign regulatory effect on cardiac metabolic disorders in various diseases. Systematic review registration https://www.crd.york.ac.uk/, PROSPERO (CRD42023484295).
Collapse
Affiliation(s)
- Sha Su
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Ji
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowan Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
26
|
Boutsikos I, Beltsios E, Schmack B, Pantazopoulos I, Chatzis DG. Sodium Glucose Co-Transporter 2 Inhibitors and the Cardiovascular System: Current Knowledge and Future Expectations. Heart Int 2023; 17:12-18. [PMID: 38419717 PMCID: PMC10898587 DOI: 10.17925/hi.2023.17.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/26/2023] [Indexed: 03/02/2024] Open
Abstract
Diabetic cardiomyopathy is a well-recognized clinical entity and reflects a complex relationship between metabolic substrates and myocardial function. Sodium glucose co-transporter 2 (SGLT2) inhibitors are antidiabetic agents that are found to exert multiple cardioprotective effects. Large clinical trials showed their beneficial effects on patients with heart failure, reducing the rates of rehospitalizations and improving kidney function. The aim of this review is to summarize the latest evidence in the literature regarding the multiple effects of SGLT2 inhibitors on patients across the spectrum of cardiovascular diseases.
Collapse
Affiliation(s)
- Ioannis Boutsikos
- Department of Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Beltsios
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Bastian Schmack
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Medical School, University of Thessaly, Larissa, Greece
| | | |
Collapse
|
27
|
Zhang Y, He Y, Liu S, Deng L, Zuo Y, Huang K, Liao B, Li G, Feng J. SGLT2 Inhibitors in Aging-Related Cardiovascular Disease: A Review of Potential Mechanisms. Am J Cardiovasc Drugs 2023; 23:641-662. [PMID: 37620652 DOI: 10.1007/s40256-023-00602-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Population aging combined with higher susceptibility to cardiovascular diseases in older adults is increasing the incidence of conditions such as atherosclerosis, myocardial infarction, heart failure, myocardial hypertrophy, myocardial fibrosis, arrhythmia, and hypertension. sodium-glucose cotransporter 2 inhibitors (SGLT2i) were originally developed as a novel oral drug for patients with type 2 diabetes mellitus. Unexpectedly, recent studies have shown that, beyond their effect on hyperglycemia, SGLT2i also have a variety of beneficial effects on cardiovascular disease. Experimental models of cardiovascular disease have shown that SGLT2i ameliorate the process of aging-related cardiovascular disease by inhibiting inflammation, reducing oxidative stress, and reversing endothelial dysfunction. In this review, we discuss the role of SGLT2i in aging-related cardiovascular disease and propose the use of SGLT2i to prevent and treat these conditions in older adults.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiac Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
28
|
Manolis AA, Manolis TA, Melita H, Manolis AS. Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias. Trends Cardiovasc Med 2023; 33:418-428. [PMID: 35447305 DOI: 10.1016/j.tcm.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
Abstract
The introduction of sodium-glucose cotransporter 2 (SGLT2) inhibitors as a new and effective class of therapeutic agents for type 2 diabetes (T2D) preventing the reabsorption of glucose in the kidneys and thus facilitating glucose excretion in the urine, but also as agents with cardiovascular benefits, particularly in patients with heart failure (HF), regardless of the diabetic status, has ushered in a new era in treating patients with T2D and/or HF. In addition, data have recently emerged indicating an antiarrhythmic effect of the SGLT2 inhibitors in patients with and without diabetes. Prospective studies, randomized controlled trials and meta-analyses have provided robust evidence for a protective and beneficial effect of these agents against atrial fibrillation, ventricular arrhythmias and sudden cardiac death. The antiarrhythmic mechanisms involved include reverse atrial and ventricular remodeling, amelioration of mitochondrial function, reduction of hypoglycemic episodes with their attendant arrhythmogenic effects, attenuated sympathetic nervous system activity, regulation of sodium and calcium homeostasis, and suppression of prolonged ventricular repolarization. These new data on antiarrhythmic actions of SGLT2 inhibitors are herein reviewed, potential mechanisms involved are discussed and pictorially illustrated, and treatment results on specific arrhythmias are described and tabulated.
Collapse
Affiliation(s)
| | | | | | - Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece.
| |
Collapse
|
29
|
Ikoma T, Narumi T, Akita K, Sato R, Masuda T, Kaneko H, Toda M, Mogi S, Sano M, Suwa K, Naruse Y, Ohtani H, Saotome M, Maekawa Y. Association of an Increased Abnormal Mitochondria Ratio in Cardiomyocytes with a Prolonged Oxygen Uptake Time Constant during Cardiopulmonary Exercise Testing of Patients with Non-ischemic Cardiomyopathy. Intern Med 2023; 62:2163-2170. [PMID: 36450468 PMCID: PMC10465282 DOI: 10.2169/internalmedicine.0697-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Objective The cardiac function, blood distribution, and oxygen extraction in the muscles as well as the pulmonary function determine the oxygen uptake (VO2) kinetics at the onset of exercise. This factor is called the VO2 time constant, and its prolongation is associated with an unfavorable prognosis for heart failure (HF). The mitochondrial function of skeletal muscle is known to reflect exercise tolerance. Morphological changes and dysfunction in cardiac mitochondria are closely related to HF severity and its prognosis. Although mitochondria play an important role in generating energy in cardiomyocytes, the relationship between cardiac mitochondria and the VO2 time constant has not been elucidated. Methods We calculated the ratio of abnormal cardiac mitochondria in human myocardial biopsy samples using an electron microscope and measured the VO2 time constant during cardiopulmonary exercise testing. The VO2 time constant was normalized by the fat-free mass index (FFMI). Patients Fifteen patients with non-ischemic cardiomyopathy (NICM) were included. Patients were divided into two groups according to their median VO2 time constant/FFMI value. Results Patients with a low VO2 time constant/FFMI value had a lower abnormal mitochondria ratio than those with a high VO2 time constant/FFMI value. A multiple linear regression analysis revealed that the ratio of abnormal cardiac mitochondria was independently associated with a high VO2 time constant/FFMI. Conclusion An increased abnormal cardiac mitochondria ratio might be associated with a high VO2 time constant/FFMI value in patients with NICM.
Collapse
Affiliation(s)
- Takenori Ikoma
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Taro Narumi
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Keitaro Akita
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Ryota Sato
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Takayuki Masuda
- Department of Rehabilitation, Hamamatsu University Hospital, Japan
| | - Hanami Kaneko
- Department of Rehabilitation, Hamamatsu University Hospital, Japan
| | - Masahiro Toda
- Department of Rehabilitation, Hamamatsu University Hospital, Japan
| | - Satoshi Mogi
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Makoto Sano
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Kenichiro Suwa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Yoshihisa Naruse
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Hayato Ohtani
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Masao Saotome
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
30
|
Autophagy, a relevant process for metabolic health and type-2 diabetes. NUTR HOSP 2023; 40:457-464. [PMID: 36927007 DOI: 10.20960/nh.04555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Autophagy is a very active process that plays an important role in cell and organ differentiation and remodelling, being a crucial system to guarantee health. This physiological process is activated in starvation and inhibited in the presence of nutrients. This short review comments on the three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy, as well as different aspects that control autophagy and its relationship with health and degenerative diseases. As autophagy is highly dependent on functional autophagy (ATG) proteins integrating the phagophore, the role of some key ATG genes and epigenes are briefly commented on. The manuscript deepens discussing some central aspects of type-2 diabetes mellitus and their relationship with the cell cleaning process and mitochondria homeostasis maintenance, as well as the mechanisms through which antidiabetic drugs affect autophagy. Well-designed studies are needed to elucidate whether autophagy plays a casual or causal role in T2DM.
Collapse
|
31
|
Trombara F, Cosentino N, Bonomi A, Ludergnani M, Poggio P, Gionti L, Baviera M, Colacioppo P, Roncaglioni MC, Leoni O, Bortolan F, Agostoni P, Genovese S, Marenzi G. Impact of chronic GLP-1 RA and SGLT-2I therapy on in-hospital outcome of diabetic patients with acute myocardial infarction. Cardiovasc Diabetol 2023; 22:26. [PMID: 36747186 PMCID: PMC9903538 DOI: 10.1186/s12933-023-01758-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium glucose cotransporter-2 inhibitors (SGLT-2i) demonstrated cardiovascular and renal protection. Whether their benefits occur also during hospitalization for acute myocardial infarction (AMI) in patients with diabetes mellitus (DM) is not known. We evaluated in-hospital outcomes of patients hospitalized with AMI according to their chronic use of GLP-1 RA and/or SGLT-2i. METHODS Using the health administrative databases of Lombardy, patients hospitalized with AMI from 2010 to 2019 were included. They were stratified according to DM status, then grouped into three cohorts using a propensity score matching: non-DM patients; DM patients treated with GLP-1 RA and/or SGLT-2i; DM patients not treated with GLP-1 RA/SGLT-2i. The primary endpoint of the study was the composite of in-hospital mortality, acute heart failure, and acute kidney injury requiring renal replacement therapy. RESULTS We identified 146,798 patients hospitalized with AMI (mean age 71 ± 13 years, 34% females, 47% STEMI; 26% with DM). After matching, 3,090 AMI patients (1030 in each group) were included in the analysis. Overall, the primary endpoint rate was 16% (n = 502) and progressively increased from non-DM patients to DM patients treated with and without GLP-1 RA/SGLT-2i (13%, 16%, and 20%, respectively; P < 0.0001). Compared with non-DM patients, DM patients with GLP-1 RA/SGLT-2i had a 30% higher risk of the primary endpoint, while those not treated with GLP-1 RA/SGLT-2i had a 60% higher risk (P < 0.0001). CONCLUSION Chronic therapy with GLP-1 RA and/or SGLT-2i has a favorable impact on the clinical outcome of DM patients hospitalized with AMI.
Collapse
Affiliation(s)
- Filippo Trombara
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
| | - Nicola Cosentino
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alice Bonomi
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
| | - Monica Ludergnani
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
| | - Paolo Poggio
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
| | - Luigia Gionti
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
| | - Marta Baviera
- Laboratory of Cardiovascular Prevention, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Pierluca Colacioppo
- Laboratory of Cardiovascular Prevention, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria Carla Roncaglioni
- Laboratory of Cardiovascular Prevention, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Olivia Leoni
- Regional Epidemiological Observatory, Lombardy Region, Milan, Italy
| | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Genovese
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino, I.R.C.C.S, Via Parea 4, 20138, Milan, Italy.
| |
Collapse
|
32
|
Ogawa T, Kouzu H, Osanami A, Tatekoshi Y, Sato T, Kuno A, Fujita Y, Ino S, Shimizu M, Toda Y, Ohwada W, Yano T, Tanno M, Miki T, Miura T. Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts. Physiol Rep 2023; 11:e15608. [PMID: 36802195 PMCID: PMC9938007 DOI: 10.14814/phy2.15608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023] Open
Abstract
Systemic branched-chain amino acid (BCAA) metabolism is dysregulated in cardiometabolic diseases. We previously demonstrated that upregulated AMP deaminase 3 (AMPD3) impairs cardiac energetics in a rat model of obese type 2 diabetes, Otsuka Long-Evans-Tokushima fatty (OLETF). Here, we hypothesized that the cardiac BCAA levels and the activity of branched-chain α-keto acid dehydrogenase (BCKDH), a rate-limiting enzyme in BCAA metabolism, are altered by type 2 diabetes (T2DM), and that upregulated AMPD3 expression is involved in the alteration. Performing proteomic analysis combined with immunoblotting, we discovered that BCKDH localizes not only to mitochondria but also to the endoplasmic reticulum (ER), where it interacts with AMPD3. Knocking down AMPD3 in neonatal rat cardiomyocytes (NRCMs) increased BCKDH activity, suggesting that AMPD3 negatively regulates BCKDH. Compared with control rats (Long-Evans Tokushima Otsuka [LETO] rats), OLETF rats exhibited 49% higher cardiac BCAA levels and 49% lower BCKDH activity. In the cardiac ER of the OLETF rats, BCKDH-E1α subunit expression was downregulated, while AMPD3 expression was upregulated, resulting in an 80% lower AMPD3-E1α interaction compared to LETO rats. Knocking down E1α expression in NRCMs upregulated AMPD3 expression and recapitulated the imbalanced AMPD3-BCKDH expressions observed in OLETF rat hearts. E1α knockdown in NRCMs inhibited glucose oxidation in response to insulin, palmitate oxidation, and lipid droplet biogenesis under oleate loading. Collectively, these data revealed previously unrecognized extramitochondrial localization of BCKDH in the heart and its reciprocal regulation with AMPD3 and imbalanced AMPD3-BCKDH interactions in OLETF. Downregulation of BCKDH in cardiomyocytes induced profound metabolic changes that are observed in OLETF hearts, providing insight into mechanisms contributing to the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Toshifumi Ogawa
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Tatekoshi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Atsushi Kuno
- Department of PharmacologySapporo Medical University School of MedicineSapporoJapan
| | - Yugo Fujita
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Shoya Ino
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Toda
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| |
Collapse
|
33
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Sodium-glucose cotransporter 2 inhibitors and mitochondrial functions: state of the art. EXCLI JOURNAL 2023; 22:53-66. [PMID: 36814854 PMCID: PMC9939776 DOI: 10.17179/excli2022-5482] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 02/24/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are a class of newly introduced antidiabetic drugs with potent hypoglycemic effects. Recent evidence suggests that these drugs have extraglycemic impacts and are therefore able to provide additional benefits beyond glucose lowering. Mitochondrial dysfunction is a central facet of many disorders that negatively impacts many tissues and organs, especially in the setting of diabetes. Therefore, it would be hugely beneficial if an antidiabetic drug could also provide mitochondrial benefits to improve cellular function and reduce the risk of diabetic complications. In this review, we have surveyed the literature for possible mitochondrial benefits of SGLT2is and we discuss the possible mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Yang K, Cao F, Wang W, Tian Z, Yang L. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications. Front Endocrinol (Lausanne) 2023; 14:1141516. [PMID: 37065747 PMCID: PMC10090453 DOI: 10.3389/fendo.2023.1141516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels and has become the third leading threat to human health after cancer and cardiovascular disease. Recent studies have shown that autophagy is closely associated with diabetes. Under normal physiological conditions, autophagy promotes cellular homeostasis, reduces damage to healthy tissues and has bidirectional effects on regulating diabetes. However, under pathological conditions, unregulated autophagy activation leads to cell death and may contribute to the progression of diabetes. Therefore, restoring normal autophagy may be a key strategy to treat diabetes. High-mobility group box 1 protein (HMGB1) is a chromatin protein that is mainly present in the nucleus and can be actively secreted or passively released from necrotic, apoptotic, and inflammatory cells. HMGB1 can induce autophagy by activating various pathways. Studies have shown that HMGB1 plays an important role in insulin resistance and diabetes. In this review, we will introduce the biological and structural characteristics of HMGB1 and summarize the existing knowledge on the relationship between HMGB1, autophagy, diabetes, and diabetic complications. We will also summarize potential therapeutic strategies that may be useful for the prevention and treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Kun Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Cao
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture, Haidian District Shuangyushu Community Health Service Center, Beijing, China
| | - Weili Wang
- Institute of Basic Research in Clinical Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| | - Lu Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| |
Collapse
|
36
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
37
|
Pires Da Silva J, Wargny M, Raffin J, Croyal M, Duparc T, Combes G, Genoux A, Perret B, Vellas B, Guyonnet S, Thalamas C, Langin D, Moro C, Viguerie N, Rolland Y, Barreto PDS, Cariou B, Martinez LO. Plasma level of ATPase inhibitory factor 1 (IF1) is associated with type 2 diabetes risk in humans: A prospective cohort study. DIABETES & METABOLISM 2023; 49:101391. [PMID: 36174852 DOI: 10.1016/j.diabet.2022.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023]
Abstract
AIM Mitochondrial dysfunction is associated with the development of type 2 diabetes mellitus (T2DM). It is thus of clinical relevance to identify plasma biomarkers of mitochondrial dysfunction associated with the risk of T2DM. ATPase inhibitory factor 1 (IF1) endogenously inhibits mitochondrial ATP synthase activity. Here, we analyzed association of the plasma IF1 level with markers of glucose homeostasis and with the conversion to new-onset diabetes (NOD) in individuals with prediabetes. METHODS In the IT-DIAB prospective study, the baseline plasma level of IF1 was measured in 307 participants with prediabetes. The primary outcome was the incidence of NOD within five years of follow-up. Cross-sectional analysis of the IF1 level was also done in two independent interventional studies. Correlations between plasma IF1 and metabolic parameters at baseline were assessed by Spearman's correlation coefficients, and the association with the risk of NOD was determined using Cox proportional-hazards models. RESULTS In IT-DIAB, the mean IF1 plasma level was lower in participants who developed NOD than in those who did not (537 ± 248 versus 621 ± 313 ng/mL, P = 0.01). The plasma IF1 level negatively correlated with clinical variables associated with obesity and insulin resistance, including the body mass index (r = -0.20, P = 0.0005) and homeostasis model assessment of insulin resistance (HOMA-IR). (r = -0.37, P < 0.0001). Conversely, IF1 was positively associated with plasma markers of cardiometabolic health, such as HDL-C (r = 0.63, P < 0.0001) and apoA-I (r = 0.33, P < 0.0001). These correlations were confirmed in cross-sectional analyses. In IT-DIAB, the IF1 level was significantly associated with a lower risk of T2DM after adjustment for age, sex, and fasting plasma glucose (HR [95% CI] per 1 SD = 0.76 [0.62; 0.94], P = 0.012). CONCLUSION We identified for the first time the mitochondrial-related biomarker IF1 as being associated with the risk of T2DM.
Collapse
Affiliation(s)
- Julie Pires Da Silva
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Matthieu Wargny
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France; Nantes Université, CHU Nantes, Pôle Hospitalo-Universitaire 11 : Santé Publique, Clinique des données, INSERM, CIC 1413, F-44000 Nantes, France
| | - Jérémy Raffin
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, F-44000 Nantes, France; CRNH-Ouest Mass Spectrometry Core Facility, 44000 Nantes, France
| | - Thibaut Duparc
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Annelise Genoux
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bruno Vellas
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Sophie Guyonnet
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Claire Thalamas
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Clinical Investigation Center, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Toulouse University Hospitals, CIC1436, F-CRIN/FORCE Network, Toulouse, France
| | - Dominique Langin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France; Institut Universitaire de France (IUF), Paris, France
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Nathalie Viguerie
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Yves Rolland
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Philipe de Souto Barreto
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France.
| | -
- Members are listed in the acknowledgements
| |
Collapse
|
38
|
Katano S, Yano T, Kouzu H, Nagaoka R, Numazawa R, Yamano K, Fujisawa Y, Ohori K, Nagano N, Fujito T, Nishikawa R, Ohwada W, Katayose M, Sato T, Kuno A, Furuhashi M. Elevated circulating level of β-aminoisobutyric acid (BAIBA) in heart failure patients with type 2 diabetes receiving sodium-glucose cotransporter 2 inhibitors. Cardiovasc Diabetol 2022; 21:285. [PMID: 36539818 PMCID: PMC9768967 DOI: 10.1186/s12933-022-01727-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS The mechanism by which a sodium-glucose cotransporter inhibitor (SGLT2i) induces favorable effects on diabetes and cardiovascular diseases including heart failure (HF) remains poorly understood. Metabolomics including amino acid profiling enables detection of alterations in whole body metabolism. The aim of this study was to determine whether plasma amino acid profiles are modulated by SGLT2i use in HF patients with type 2 diabetes mellitus (T2DM). METHODS We retrospectively examined 81 HF patients with T2DM (68 ± 11 years old; 78% male). Plasma amino acid concentrations in a fasting state after stabilization of HF were determined using ultraperformance liquid chromatography. To minimize potential selection bias in the retrospective analyses, the differences in baseline characteristics between patients receiving an SGLT2i and patients not receiving an SGLT2i were controlled by using an inverse probability of treatment weighting (IPTW)-adjusted analysis. RESULTS Of amino acids measurable in the present assay, plasma β-aminoisobutyric acid (BAIBA), an exercise-induced myokine-like molecule also known as 3-aminoisobutyric acid or 3-amino-2-methyproponic acid, was detected in 77% of all patients and the proportion of patients in whom plasma BAIBA was detected was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i (93% vs. 67%, p = 0.01). Analyses in patients in whom plasma BAIBA was detected showed that plasma BAIBA concentration was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i (6.76 ± 4.72 vs. 4.56 ± 2.93 nmol/ml, p = 0.03). In multivariate logistic regression analyses that were adjusted for age and sex, SGLT2i use was independently associated with BAIBA detection. The independent association between BAIBA and SGLT2i use remained after inclusion of body mass index, HF with reduced ejection fraction, ischemic etiology, renal function, NT-proBNP, albumin, hemoglobin, and HbA1c into the Cox proportional hazards model. When the differences in baseline characteristics between patients receiving an SGLT2i and patients not receiving an SGLT2i were controlled by using an IPTW-adjusted analysis, least squares mean of plasma BAIBA concentration was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i. CONCLUSION SGLT2i use is closely associated with increased circulating BAIBA concentration in HF patients with T2DM.
Collapse
Affiliation(s)
- Satoshi Katano
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Ryohei Nagaoka
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Ryo Numazawa
- Graduate School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Kotaro Yamano
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Yusuke Fujisawa
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Cardiology, Hokkaido Cardiovascular Hospital, Sapporo, Japan
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Takefumi Fujito
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masaki Katayose
- Second Division of Physical Therapy, Sapporo Medical University School of Health Science, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
39
|
Chang X, Li Y, Cai C, Wu F, He J, Zhang Y, Zhong J, Tan Y, Liu R, Zhu H, Zhou H. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism 2022; 137:155313. [PMID: 36126721 DOI: 10.1016/j.metabol.2022.155313] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been regarded as a hallmark of diabetic cardiomyopathy. In addition to their canonical metabolic actions, mitochondria influence various other aspects of cardiomyocyte function, including oxidative stress, iron regulation, metabolic reprogramming, intracellular signaling transduction and cell death. These effects depend on the mitochondrial quality control (MQC) system, which includes mitochondrial dynamics, mitophagy and mitochondrial biogenesis. Mitochondria are not static entities, but dynamic units that undergo fission and fusion cycles to maintain their structural integrity. Increased mitochondrial fission elevates the number of mitochondria within cardiomyocytes, a necessary step for cardiomyocyte metabolism. Enhanced mitochondrial fusion promotes communication and cooperation between pairs of mitochondria, thus facilitating mitochondrial genomic repair and maintenance. On the contrary, erroneous fission or reduced fusion promotes the formation of mitochondrial fragments that contain damaged mitochondrial DNA and exhibit impaired oxidative phosphorylation. Under normal/physiological conditions, injured mitochondria can undergo mitophagy, a degradative process that delivers poorly structured mitochondria to lysosomes. However, defective mitophagy promotes the accumulation of nonfunctional mitochondria, which may induce cardiomyocyte death. A decline in the mitochondrial population due to mitophagy can stimulate mitochondrial biogenesis), which generates new mitochondrial offspring to maintain an adequate mitochondrial number. Energy crises or ATP deficiency also increase mitochondrial biogenesis, because mitochondrial DNA encodes 13 subunits of the electron transport chain (ETC) complexes. Disrupted mitochondrial biogenesis diminishes the mitochondrial mass, accelerates mitochondrial senescence and promotes mitochondrial dysfunction. In this review, we describe the involvement of MQC in the pathogenesis of diabetic cardiomyopathy. Besides, the potential targeted therapies that could be applied to improve MQC during diabetic cardiomyopathy are also discussed and accelerate the development of cardioprotective drugs for diabetic patients.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruxiu Liu
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China.
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China.
| |
Collapse
|
40
|
Lee H, Kim H, Jeon JS, Noh H, Park R, Byun DW, Kim HJ, Suh K, Park HK, Kwon SH. Empagliflozin suppresses urinary mitochondrial DNA copy numbers and interleukin-1β in type 2 diabetes patients. Sci Rep 2022; 12:19103. [PMID: 36351983 PMCID: PMC9646895 DOI: 10.1038/s41598-022-22083-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular and renal outcomes in type 2 diabetes mellitus (T2DM) patients. However, the mechanisms by which SGLT2 inhibitors improve the clinical outcomes remain elusive. We evaluated whether empagliflozin, an SGLT2 inhibitor, ameliorates mitochondrial dysfunction and inflammatory milieu of the kidneys in T2DM patients. We prospectively measured copy numbers of urinary and serum mitochondrial DNA (mtDNA) nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) and urinary interleukin-1β (IL-1β) in healthy volunteers (n = 22), in SGLT2 inhibitor-naïve T2DM patients (n = 21) at baseline, and in T2DM patients after 3 months of treatment with empagliflozin (10 mg, n = 17 or 25 mg, n = 4). Both urinary mtDNA copy numbers and IL-1β levels were higher in the T2DM group than in healthy volunteers. Baseline copy numbers of serum mtCOX-3 in the T2DM group were lower than those in healthy volunteers. Empagliflozin induced marked reduction in both urinary and serum mtND-1 and mtCOX-3 copy numbers, as well as in urinary IL-1β. Empagliflozin could attenuate mitochondrial damage and inhibit inflammatory response in T2DM patients. This would explain the beneficial effects of SGLT2 inhibitors on cardiovascular and renal outcomes.
Collapse
Affiliation(s)
- Haekyung Lee
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyoungnae Kim
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Jin Seok Jeon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyunjin Noh
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Rojin Park
- grid.412678.e0000 0004 0634 1623Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Dong Won Byun
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hye Jeong Kim
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Kyoil Suh
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyeong Kyu Park
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Soon Hyo Kwon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| |
Collapse
|
41
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
42
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
43
|
Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiol 2022; 18:867-882. [PMID: 36111579 DOI: 10.2217/fca-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SGLT2 inhibitors have been developed as a novel class of glucose-lowering drugs affecting reabsorption of glucose and metabolic processes. They have been recently identified to be remarkably favorable in treating cardiovascular diseases, especially heart failure. Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction and alleviate cardiac remodeling by mechanisms of metabolism influence, autophagy induction, inflammation attenuation and fibrosis reduction. Here we summarize the direct mechanism of SGLT2 inhibitors on myocardial infarction and investigate whether it could be applied to the clinic in improving cardiac function and healing after myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
44
|
Hao M, Jiao K. Jatrorrhizine reduces myocardial infarction-induced apoptosis and fibrosis through inhibiting p53 and TGF-β1/Smad2/3 pathways in mice. Acta Cir Bras 2022; 37:e370705. [PMID: 36327404 PMCID: PMC9633009 DOI: 10.1590/acb370705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To explore the mechanism of jatrorrhizine on apoptosis and fibrosis induced by myocardial infarction (MI) in an animal model. METHODS The left anterior descending branch of coronary artery was surgically ligated to duplicate the mouse model of MI. The sham and infarcted mice were treated with normal saline once a day, while mice in experimental groups received low-dose (LD) and high-dose (HD) jatrorrhizine once a day respectively. Two weeks later, cardiac function was detected by echocardiography, and histopathological examination was performed using hematoxylin and eosin (H&E) and Masson staining. The expressions of p53, TGF-β1, Smad/2/3, Bax, Bcl-2, collagen I and collagen III were quantified using qRT-PCR and western blot assays. RESULTS Jatrorrhizine significantly improved left ventricular ejection fraction (LVEF) and left ventricle end-systolic (LVES) in mice. Histopathological, administration of jatrorrhizine weakened infiltration of inflammatory cells and cardiac fibrosis in myocardium of mice caused by MI. Additionally, jatrorrhizine suppressed cardiomyocyte apoptosis exhibited as its capability to reverse changes of Bax and Bcl-2 levels in myocardium caused by MI. Jatrorrhizine statistically significantly downregulated expression of collagen I and collagen III, as well as TGF-β1, Smad2/3 and p53. CONCLUSIONS Jatrorrhizine reduce cardiomyocyte apoptosis and fibrosis through inhibiting p53/Bax/Bcl-2 and TGF-β1/Smad2/3 signaling pathways.
Collapse
Affiliation(s)
- Mingxiu Hao
- MD. Shanghai Jiao Tong University – School of Medicine – Ren Ji Hospital – Department of Geriatrics – Shanghai, China
| | - Kunli Jiao
- MD. Shanghai Jiao Tong University – School of Medicine – Ren Ji Hospital – Department of Cardiology – Shanghai, China.,Corresponding author:
- +86 189-20363075
| |
Collapse
|
45
|
Repurposing SGLT-2 Inhibitors to Target Aging: Available Evidence and Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012325. [PMID: 36293181 PMCID: PMC9604287 DOI: 10.3390/ijms232012325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.
Collapse
|
46
|
Chang X, Toan S, Li R, Zhou H. Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance. EBioMedicine 2022; 84:104260. [PMID: 36122552 PMCID: PMC9490489 DOI: 10.1016/j.ebiom.2022.104260] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Despite considerable efforts to prevent and treat ischemic cardiomyopathy (ICM), effective therapies remain lacking, in part owing to the complexity of the underlying molecular mechanisms, which are not completely understood yet. It is now widely thought that mitochondria serve as “sentinel” organelles that are capable of detecting cellular injury and integrating multiple stress signals. These pathophysiological activities are temporally and spatially governed by the mitochondrial quality surveillance (MQS) system, involving mitochondrial dynamics, mitophagy, and biogenesis. Dysregulation of MQS is an early and critical process contributing to mitochondrial bioenergetic dysfunction and sublethal injury to cardiomyocytes during ICM. An improved understanding of the pathogenesis of ICM may enable the development of novel preventive and therapeutic strategies aimed at overcoming the challenge of myocardial ischemia and its cardiovascular sequelae. This review describes recent research on the protective effects of MQS in ICM and highlights promising therapeutic targets.
Collapse
|
47
|
Empagliflozin Preserves Skeletal Muscle Function in a HFpEF Rat Model. Int J Mol Sci 2022; 23:ijms231910989. [PMID: 36232292 PMCID: PMC9570453 DOI: 10.3390/ijms231910989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Besides structural alterations in the myocardium, heart failure with preserved ejection fraction (HFpEF) is also associated with molecular and physiological alterations of the peripheral skeletal muscles (SKM) contributing to exercise intolerance often seen in HFpEF patients. Recently, the use of Sodium-Glucose-Transporter 2 inhibitors (SGLT2i) in clinical studies provided evidence for a significant reduction in the combined risk of cardiovascular death or hospitalization for HFpEF. The present study aimed to further elucidate the impact of Empagliflozin (Empa) on: (1) SKM function and metabolism and (2) mitochondrial function in an established HFpEF rat model. At the age of 24 weeks, obese ZSF1 rats were randomized either receiving standard care or Empa in the drinking water. ZSF1 lean animals served as healthy controls. After 8 weeks of treatment, echocardiography and SKM contractility were performed. Mitochondrial function was assessed in saponin skinned fibers and SKM tissue was snap frozen for molecular analyses. HFpEF was evident in the obese animals when compared to lean—increased E/é and preserved left ventricular ejection fraction. Empa treatment significantly improved E/é and resulted in improved SKM contractility with reduced intramuscular lipid content. Better mitochondrial function (mainly in complex IV) with only minor modulation of atrophy-related proteins was seen after Empa treatment. The results clearly documented a beneficial effect of Empa on SKM function in the present HFpEF model. These effects were accompanied by positive effects on mitochondrial function possibly modulating SKM function.
Collapse
|
48
|
Li J, Zhou L, Gong H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front Cardiovasc Med 2022; 9:903902. [PMID: 36186974 PMCID: PMC9520058 DOI: 10.3389/fcvm.2022.903902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging insulin-independent anti-hyperglycemic agents that work independently of β-cells. Quite a few large-scale clinical trials have proven the cardiovascular protective function of SGLT2is in both diabetic and non-diabetic patients. By searching all relevant terms related to our topics over the previous 3 years, including all the names of agents and their brands in PubMed, here we review the mechanisms underlying the improvement of heart failure. We also discuss the interaction of various mechanisms proposed by diverse works of literature, including corresponding and opposing viewpoints to support each subtopic. The regulation of diuresis, sodium excretion, weight loss, better blood pressure control, stimulation of hematocrit and erythropoietin, metabolism remodeling, protection from structural dysregulation, and other potential mechanisms of SGLT2i contributing to heart failure improvement have all been discussed in this manuscript. Although some remain debatable or even contradictory, those newly emerging agents hold great promise for the future in cardiology-related therapies, and more research needs to be conducted to confirm their functionality, particularly in metabolism, Na+-H+ exchange protein, and myeloid angiogenic cells.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Hui Gong
| |
Collapse
|
49
|
Zhang Y, Han Q. A review of cardiovascular benefits of SGLT2 inhibitors. Medicine (Baltimore) 2022; 101:e30310. [PMID: 36086785 PMCID: PMC10980435 DOI: 10.1097/md.0000000000030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2I) is a new type of hypoglycemic drug that targets the kidney. As research continues to advance on this topic, it has been found that SGLT2I has multiple protective effects, such as hypoglycemic, cardio-renal protective, antihypertensive, and lipid-lowering effects. This review discusses the current concepts and possible mechanisms of SGLT2I in the treatment of heart failure, myocardial infarction, hypertension, cardiomyopathy and arrhythmia to provide a reference for clinicians to use drugs more reasonably and scientifically.
Collapse
Affiliation(s)
- Yingxia Zhang
- First Department of Clinical Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, China
| | - Qinghua Han
- Department of Cardiology, The 1st Hospital of Shanxi Medical University, Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, China
| |
Collapse
|
50
|
Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors—Perspectives from metabolic reprogramming. EBioMedicine 2022; 83:104215. [PMID: 35973390 PMCID: PMC9396537 DOI: 10.1016/j.ebiom.2022.104215] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, initially developed as a novel class of anti-hyperglycaemic drugs, have been shown to significantly improve metabolic indicators and protect the kidneys and heart of patients with or without type 2 diabetes mellitus. The possible mechanisms mediating these unexpected cardiorenal benefits are being extensively investigated because they cannot solely be attributed to improvements in glycaemic control. Notably, emerging data indicate that metabolic reprogramming is involved in the progression of cardiorenal metabolic diseases. SGLT2 inhibitors reprogram systemic metabolism to a fasting-like metabolic paradigm, involving the metabolic switch from carbohydrates to other energetic substrates and regulation of the related nutrient-sensing pathways, which might explain some of their cardiorenal protective effects. In this review, we will focus on the current understanding of cardiorenal protection by SGLT2 inhibitors, specifically its relevance to metabolic reprogramming.
Collapse
|