1
|
Khani N, Bonyadi M, Soleimani RA, Raziabad RH, Ahmadi M, Homayouni-Rad A. Postbiotics: As a Promising Tools in the Treatment of Celiac Disease. Probiotics Antimicrob Proteins 2025; 17:1513-1522. [PMID: 39673575 DOI: 10.1007/s12602-024-10416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Celiac disease (CD) can be considered an autoimmune problem, a disease caused by gluten sensitivity in the body. Gluten is found in foods such as barley, wheat, and rye. This ailment manifests in individuals with hereditary susceptibility and under the sway of environmental stimulants, counting, in addition to gluten and intestinal microbiota dysbiosis. Currently, the only recommended treatment for this condition is to follow a gluten-free diet for life. In this review, we scrutinized the studies of recent years that focused on the use of postbiotics in vitro and in vivo in CD. The investigation of postbiotics in CD could be intriguing to observe their diverse effects on several pathways. This study highlights the definitions, characteristics, and safety issues of postbiotics and their possible biological role in the prevention and treatment of CD, as well as their application in the food and drug industry.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Roya Abedi Soleimani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Ahmadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Baek JW, Lim S, Park N, Song B, Kirtipal N, Nielsen J, Mardinoglu A, Shoaie S, Kim JI, Son JW, Koh A, Lee S. Extensively acquired antimicrobial-resistant bacteria restructure the individual microbial community in post-antibiotic conditions. NPJ Biofilms Microbiomes 2025; 11:78. [PMID: 40360555 PMCID: PMC12075632 DOI: 10.1038/s41522-025-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
In recent years, the overuse of antibiotics has led to the emergence of antimicrobial-resistant (AMR) bacteria. To evaluate the spread of AMR bacteria, the reservoir of AMR genes (resistome) has been identified in environmental samples, hospital environments, and human populations, but the functional role of AMR bacteria and their persistence within individuals has not been fully investigated. Here, we performed a strain-resolved in-depth analysis of the resistome changes by reconstructing a large number of metagenome-assembled genomes from the gut microbiome of an antibiotic-treated individual. Interestingly, we identified two bacterial populations with different resistome profiles: extensively acquired antimicrobial-resistant bacteria (EARB) and sporadically acquired antimicrobial-resistant bacteria, and found that EARB showed broader drug resistance and a significant functional role in shaping individual microbiome composition after antibiotic treatment. Our findings of AMR bacteria would provide a new avenue for controlling the spread of AMR bacteria in the human community.
Collapse
Grants
- 2021R1C1C1006336, 2021M3A9G8022959, RS-2024-00419699 National Research Foundation of Korea
- 2021R1C1C1006336, 2021M3A9G8022959, RS-2024-00419699 National Research Foundation of Korea
- 2021R1C1C1006336, 2021M3A9G8022959, RS-2024-00419699 National Research Foundation of Korea
- 2021R1C1C1006336, 2021M3A9G8022959, RS-2024-00419699 National Research Foundation of Korea
- 2021R1C1C1006336, 2021M3A9G8022959, RS-2024-00419699 National Research Foundation of Korea
- 2021R1C1C1006336, 2021M3A9G8022959, RS-2024-00419699 National Research Foundation of Korea
- HR22C141105 the Korea Health Industry Development Institute
- HR22C141105 the Korea Health Industry Development Institute
- HR22C141105 the Korea Health Industry Development Institute
- HR22C141105 the Korea Health Industry Development Institute
- HR22C141105 the Korea Health Industry Development Institute
- HR22C141105 the Korea Health Industry Development Institute
- 2024-ER2108-00, 2024-ER0608-00 Korea National Institute of Health
- 2024-ER2108-00, 2024-ER0608-00 Korea National Institute of Health
- 2024-ER2108-00, 2024-ER0608-00 Korea National Institute of Health
- 2024-ER2108-00, 2024-ER0608-00 Korea National Institute of Health
- 2024-ER2108-00, 2024-ER0608-00 Korea National Institute of Health
- 2024-ER2108-00, 2024-ER0608-00 Korea National Institute of Health
- 2024-ER2108-00, 2024-ER0608-00 Korea National Institute of Health
- GIST-MIT research Collaboration grant GIST Research Institute
- GIST-MIT research Collaboration grant GIST Research Institute
- GIST-MIT research Collaboration grant GIST Research Institute
- GIST-MIT research Collaboration grant GIST Research Institute
- GIST-MIT research Collaboration grant GIST Research Institute
- GIST-MIT research Collaboration grant GIST Research Institute
Collapse
Affiliation(s)
- Jae Woo Baek
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Songwon Lim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Nayeon Park
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Byeongsop Song
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Nikhil Kirtipal
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Jae-Il Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jang Won Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sunjae Lee
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Bao M, Wu R, Li J, Tang R, Song C. Research summary, possible mechanisms and perspectives of gut microbiota changes causing precocious puberty. Front Nutr 2025; 12:1596654. [PMID: 40352262 PMCID: PMC12061974 DOI: 10.3389/fnut.2025.1596654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
The increasing global incidence of precocious puberty, linked to environmental, metabolic, and genetic factors, necessitates innovative therapies beyond gonadotropin-releasing hormone (GnRH) analogs. Accumulating evidence implicates gut microbiota dysbiosis as a pivotal regulator of pubertal timing via interactions with hormone metabolism (e.g., estrogen reactivation via β-glucuronidase), neuroendocrine pathways (nitric oxide signaling), and immune-inflammatory responses. This review delineates taxonomic alterations in central precocious puberty (CPP) and obesity-related subtypes, including Streptococcus enrichment and Alistipes depletion, alongside functional shifts in microbial metabolite production. Mechanistic insights highlight microbiota-driven modulation of the hypothalamic-pituitary-gonadal (HPG) axis, leptin/insulin dynamics, and epigenetic regulation. Emerging interventions-probiotics, fecal microbiota transplantation (FMT), and dietary modifications-demonstrate efficacy in preclinical models and early clinical studies for delaying puberty onset and restoring hormonal balance. Translational efforts to validate these strategies are critical for addressing the clinical and psychosocial challenges posed by precocious puberty, positioning gut microbiota modulation as a novel therapeutic frontier in pediatric endocrinology.
Collapse
Affiliation(s)
- Maorong Bao
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Ba’nan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Jingwei Li
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Runan Tang
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Cui Song
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Schoultz I, Claesson MJ, Dominguez-Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025. [PMID: 40270478 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical Sciences, Faculty of Medicine and Health Örebro University, Orebro, Sweden
| | | | - Maria Gloria Dominguez-Bello
- Department of Biochemistry & Microbiology and of Anthropology, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic Saalfeld, Teaching Hospital of the University Jena, Jena, Germany
| | - Katri Korpela
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - H Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Keshet A, Hochwald O, Lavon A, Borenstein-Levin L, Shoer S, Godneva A, Glantz-Gashai Y, Cohen-Dolev N, Timstut F, Lotan-Pompan M, Solt I, Weinberger A, Segal E, Shilo S. Development of antibiotic resistome in premature infants. Cell Rep 2025; 44:115515. [PMID: 40198224 DOI: 10.1016/j.celrep.2025.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/17/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Preterm birth is a major concern in neonatal care, significantly impacting infant survival and long-term health. The gut microbiome, essential for infant development, often becomes imbalanced in preterm infants, making it crucial to understand the effects of antibiotics on its development. Our study analyzed weekly, 6-month, and 1-year stool samples from 100 preterm infants, correlating clinical data on antibiotic use and feeding patterns. Comparing infants who received no antibiotics with those given empirical post-birth treatment, we observed notable alterations in the gut microbiome's composition and an increase in antibiotic resistance gene abundance early in life. Although these effects diminished over time, their long-term clinical impacts remain unclear. Human milk feeding was associated with beneficial microbiota like Actinobacteriota and reduced antibiotic resistance genes, underscoring its protective role. This highlights the importance of judicious antibiotic use and promoting human milk to foster a healthy gut microbiome in preterm infants.
Collapse
Affiliation(s)
- Ayya Keshet
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amit Lavon
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Saar Shoer
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yitav Glantz-Gashai
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Noa Cohen-Dolev
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Fanny Timstut
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Solt
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
6
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. eLife 2025; 13:RP102166. [PMID: 40244653 PMCID: PMC12005720 DOI: 10.7554/elife.102166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting 'microbiome clock' predicts host chronological age. Deviations from the clock's predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual's 'microbiome age' does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
Collapse
Affiliation(s)
- Mauna R Dasari
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
- California Academy of SciencesSan FranciscoUnited States
| | - Kimberly E Roche
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
| | - David Jansen
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Canadian Institute for Advanced ResearchTorontoCanada
- Faculty of Life Sciences, Institute of Biology, Leipzig UniversityLeipzigGermany
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San DiegoSan DiegoUnited States
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics and Biostatistics, Duke UniversityDurhamUnited States
- Center for Scalable Data Analytics and Artificial Intelligence, University of LeipzigLeipzigGermany
- Max Planck Institute for Mathematics in the Natural SciencesLeipzigGermany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| |
Collapse
|
7
|
Ravizza T, Volpedo G, Riva A, Striano P, Vezzani A. Intestinal microbiome alterations in pediatric epilepsy: Implications for seizures and therapeutic approaches. Epilepsia Open 2025. [PMID: 40232107 DOI: 10.1002/epi4.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
The intestinal microbiome plays a pivotal role in maintaining host health through its involvement in gastrointestinal, immune, and central nervous system (CNS) functions. Recent evidence underscores the bidirectional communication between the microbiota, the gut, and the brain and the impact of this axis on neurological diseases, including epilepsy. In pediatric patients, alterations in gut microbiota composition-called intestinal dysbiosis-have been linked to seizure susceptibility. Preclinical models revealed that gut dysbiosis may exacerbate seizures, while microbiome-targeted therapies, including fecal microbiota transplantation, pre/pro-biotics, and ketogenic diets, show promise in reducing seizures. Focusing on clinical and preclinical studies, this review examines the role of the gut microbiota in pediatric epilepsy with the aim of exploring its implications for seizure control and management of epilepsy. We also discuss mechanisms that may underlie mutual gut-brain communication and emerging therapeutic strategies targeting the gut microbiome as a novel approach to improve outcomes in pediatric epilepsy. PLAIN LANGUAGE SUMMARY: Reciprocal communication between the brain and the gut appears to be dysfunctional in pediatric epilepsy. The composition of bacteria in the intestine -known as microbiota- and the gastrointestinal functions are altered in children with drug-resistant epilepsy and animal models of pediatric epilepsies. Microbiota-targeted interventions, such as ketogenic diets, pre-/post-biotics administration, and fecal microbiota transplantation, improve both gastrointestinal dysfunctions and seizures in pediatric epilepsy. These findings suggest that the gut and its microbiota represent potential therapeutic targets for reducing drug-resistant seizures in pediatric epilepsy.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
8
|
Ramadan YN, Alqifari SF, Alshehri K, Alhowiti A, Mirghani H, Alrasheed T, Aljohani F, Alghamdi A, Hetta HF. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol Neurobiol 2025:10.1007/s12035-025-04846-0. [PMID: 40234288 DOI: 10.1007/s12035-025-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
The current discovery that the gut microbiome, which contains roughly 100 trillion microbes, affects health and disease has catalyzed a boom in multidisciplinary research efforts focused on understanding this relationship. Also, it is commonly demonstrated that the gut and the CNS are closely related in a bidirectional pathway. A balanced gut microbiome is essential for regular brain activities and emotional responses. On the other hand, the CNS regulates the majority of GI physiology. Any disruption in this bidirectional pathway led to a progression of health problems in both directions, neurological and gastrointestinal diseases. In this review, we hope to shed light on the complicated connections of the microbiome-gut-brain axis and the critical roles of gut microbiome in the early development of the brain in order to get a deeper knowledge of microbiome-mediated pathological conditions and management options through rebalancing of gut microbiome.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Khaled Alshehri
- Department of Internal Medicine (Neurology), Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amirah Alhowiti
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Hyder Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal Aljohani
- Division of Medicine and Gastroenterology, Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of Medicine, Division of Psychiatry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
9
|
Wilson I, Perry T, Eisenhofer R, Rismiller P, Shaw M, Grutzner F. Microbiota changes in lactation in the short-beaked echidna (Tachyglossus aculeatus). FEMS Microbiol Ecol 2025; 101:fiaf036. [PMID: 40194944 PMCID: PMC12001884 DOI: 10.1093/femsec/fiaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025] Open
Abstract
Monotreme and marsupial development is characterized by a short gestation, with young exposed to the environment at an early developmental stage and supported by a long lactation in the pouch, pseudo-pouch, or burrow. The lack of a functional adaptive immune system in these altricial young raises questions about how they survive in a microbe-rich environment. Previous studies on marsupial pouches have revealed changes to pouch microbe composition during lactation, but no information is available in monotremes. We investigated changes in the echidna pseudo-pouch microbiota (n = 22) during different stages of the reproductive cycle and whether this differs between wild and zoo-managed animals. Metataxonomic profiling using 16S rRNA gene sequencing revealed that pseudo-pouch microbial communities undergo dramatic changes during lactation, with significant differences in taxonomic composition compared with samples taken outside of breeding season or during courtship and mating. This suggests that the echidna pseudo-pouch environment changes during lactation to accommodate young that lack a functional adaptive immune system. Furthermore, captivity was not found to have a significant effect on pseudo-pouch microbiota. This study pioneers pouch microbiota research in monotremes, provides new biological information on echidna reproduction, and may also provide information about the effects of captive management to inform breeding programmes in the future.
Collapse
Affiliation(s)
- Isabella Wilson
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Tahlia Perry
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide 5005, Australia
| | - Raphael Eisenhofer
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Centre for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen 1353, Denmark
| | - Peggy Rismiller
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Pelican Lagoon Research and Wildlife Centre, Penneshaw 5222, Australia
| | - Michelle Shaw
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Taronga Wildlife Nutrition Centre, Welfare, Conservation & Science, Taronga Conservation Society Australia, Mosman 2088, Australia
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
10
|
López Martí Á, Montero Palma C, López Martí H, Ranchal Sánchez A. Efficacy of probiotic, prebiotic, synbiotic and postbiotic supplementation on gastrointestinal health in cats: systematic review and meta-analysis. J Small Anim Pract 2025; 66:219-235. [PMID: 39800337 PMCID: PMC12000713 DOI: 10.1111/jsap.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 04/17/2025]
Abstract
OBJECTIVES The clinical efficacy of the use of probiotics, prebiotics, synbiotics and postbiotics (biotics) in cats is unknown, despite their use in daily practice. The objectives of the study is to evaluate the effectiveness of biotic supplementation in treating and preventing gastroenteropathies, and in reducing gastrointestinal signs associated with antibiotics in cats. MATERIALS AND METHODS A systematic review was conducted by searching four databases for publications before August 2, 2024, following a pre-registered protocol. Eligible publications were trials involving healthy cats or those with gastroenteropathies, supplemented with biotics (and an inactive control), studying outcomes such as faecal consistency, faecal microbiota or vomiting. Risk of bias and quality of reports were assessed. Effects were synthesised by meta-analyses and vote counting based on direction of effect. Certainty of evidence was rated using GRADE approach. RESULTS Twenty reports were included, presenting unclear or low risk of bias. The evidence did not permit a high-confidence evaluation of the effectiveness of biotics, although five of the seven probiotic trials showed beneficial effects on faecal consistency. Synbiotics presented no clinically relevant effect in reducing antibiotics-associated vomiting, with very low certainty, in a meta-analysis including 32 adult cats. Probiotics significantly reduce the Bacillota/Actinomycetota ratio, with low certainty, in a meta-analysis involving 34 healthy young-adult cats. Following vote counting, probiotics improved immune profile in young cats, and increased butyric acid concentration in healthy cats. CLINICAL SIGNIFICANCE Current data highlight the need for further research, especially focused on at-risk groups and sick cats, before advocating the use of biotic supplementation.
Collapse
Affiliation(s)
- Á. López Martí
- Institute of Postgraduate StudiesUniversity of CordobaCordobaSpain
| | | | - H. López Martí
- Faculty of Medicine and NursingUniversity of CordobaCordobaSpain
| | - A. Ranchal Sánchez
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and NursingUniversity of CordobaCordobaSpain
| |
Collapse
|
11
|
An JU, Mun SH, Kim WH, Seong JK, Park K, Cho S. Dynamics of the canine gut microbiota of a military dog birth cohort. Front Microbiol 2025; 16:1481567. [PMID: 40196028 PMCID: PMC11973337 DOI: 10.3389/fmicb.2025.1481567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction We systematically tracked early life stages in a military dog birth cohort to investigate canine gut microbiota dynamics related to environmental exposure during growth. This study utilized 16s rRNA amplicon sequencing-based analysis with molecular epidemiology of Enterococcus faecalis within a controlled environment at a military dog training center. Methods We examined shifts in gut microbiota diversity and taxonomic composition across four growth stages (lactation, weaning, starter, puppy) in three littermate groups. Additionally, E. faecalis dynamics was analyzed to confirm strain sharing among littermate groups. Results Gut microbiota changed rapidly during early growth, stabilizing at the puppy stage. This is supported by increased similarity in taxonomic composition among littermate groups, as they experienced an increased shared external environment and consumed the identical diets. E. faecalis strain sharing among littermate groups increased as dogs aged. Nine E. faecalis cluster types were identified; three specific types (type I, II, and IX) dominated in each littermate group during lactation. With greater exposure to the shared external environment, cluster type I gradually assumed dominance across all groups. Despite the dynamic shifts in microbiota, we found five genera within the core microbiota, Bacteroides, Peptoclostridium, Fusobacterium, Lactobacillus, and Blautia. Discussion This study is the first to explore the dynamic nature of early-life canine gut microbiota, illustrating its transition to stability and its resilience to environmental perturbations within the controlled training environment of a military dog birth cohort.
Collapse
Affiliation(s)
- Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hyun Mun
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Kyoungwan Park
- Military Working Dogs Training Center, Gangwon, Republic of Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
13
|
Redgwell TA, Thorsen J, Petit MA, Deng L, Vestergaard G, Russel J, Chawes B, Bønnelykke K, Bisgaard H, Nielsen DS, Sørensen S, Stokholm J, Shah SA. Prophages in the infant gut are pervasively induced and may modulate the functionality of their hosts. NPJ Biofilms Microbiomes 2025; 11:46. [PMID: 40108202 PMCID: PMC11923282 DOI: 10.1038/s41522-025-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Gut microbiome (GM) composition and function is pivotal for human health and disease, of which the virome's importance is increasingly recognised. However, prophages and their induction patterns in the infant gut remain understudied. Here, we identified 10645 putative prophages in 662 metagenomes from 1-year-old children in the COPSAC2010 mother-child cohort and investigated their potential functions. No core provirome was found as the most prevalent vOTU was identified in only ~70% of the samples. The most dominant cluster of vOTUs in the cohort was related to Bacteroides phage Hanky p00', and it carried both diversity generating retroelements and genes involved in capsular polysaccharide synthesis. Paired analysis of viromes and metagenomes from the same samples revealed that most prophages within the infant gut were induced and that induction was unaffected by a range of environmental perturbers. In summary, prophages are major components of the infant gut that may have far reaching influences on the microbiome and its host.
Collapse
Affiliation(s)
- Tamsin A Redgwell
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Agnès Petit
- Micalis institute, INRAE, Agroparistech, Université Paris-Saclay, Jouy en Josas, France
| | - Ling Deng
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Gisle Vestergaard
- Technical University of Denmark, Section of Bioinformatics, Department of Health Technology, 2800 Kgs, Lyngby, Denmark
| | - Jakob Russel
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Dennis S Nielsen
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Søren Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark.
| |
Collapse
|
14
|
Tang MH, Ligthart I, Varga S, Lebeer S, van Overveld FJ, Rijkers GT. Mutual Interactions Between Microbiota and the Human Immune System During the First 1000 Days of Life. BIOLOGY 2025; 14:299. [PMID: 40136555 PMCID: PMC11940030 DOI: 10.3390/biology14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
The development of the human immune system starts during the fetal period in a largely, but probably not completely, sterile environment. During and after birth, the immune system is exposed to an increasingly complex microbiota. The first microbiota encountered during passage through the birth canal colonize the infant gut and induce the tolerance of the immune system. Transplacentally derived maternal IgG as well as IgA from breast milk protect the infant from infections during the first 100 days, during which the immune system further develops and immunological memory is formed. The Weaning and introduction of solid food expose the immune system to novel (food) antigens and allow for other microbiota to colonize. The cells and molecules involved in the mutual and intricate interactions between microbiota and the developing immune system are now beginning to be recognized. These include bacterial components such as polysaccharide A from Bacteroides fragilis, as well as bacterial metabolites such as the short-chain fatty acid butyrate, indole-3-aldehyde, and indole-3-propionic acid. All these, and probably more, bacterial metabolites have specific immunoregulatory functions which shape the development of the human immune system during the first 1000 days of life.
Collapse
Affiliation(s)
- Muy Heang Tang
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ishbel Ligthart
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Samuel Varga
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Sarah Lebeer
- Lab of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Frans J. van Overveld
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ger T. Rijkers
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| |
Collapse
|
15
|
Loddo F, Laganà P, Rizzo CE, Calderone SM, Romeo B, Venuto R, Maisano D, Fedele F, Squeri R, Nicita A, Nirta A, Genovese G, Bartucciotto L, Genovese C. Intestinal Microbiota and Vaccinations: A Systematic Review of the Literature. Vaccines (Basel) 2025; 13:306. [PMID: 40266208 PMCID: PMC11946530 DOI: 10.3390/vaccines13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Vaccination constitutes a low-cost, safe, and efficient public health measure that can help prevent the spread of infectious diseases and benefit the community. The fact that vaccination effectiveness varies among populations, and that the causes of this are still unclear, indicates that several factors are involved and should be thoroughly examined. The "intestinal microbiota" is the most crucial of these elements. Numerous clinical studies demonstrate the intestinal microbiota's significance in determining the alleged "immunogenicity" and efficacy of vaccines. This systematic review aimed to review all relevant scientific literature and highlight the role of intestinal microbiota in COVID-19, Salmonella typhi, Vibrio cholerae, and rotavirus vaccinations. Materials and Methods: The MESH terms "vaccines" and "microbiota" were used to search the major scientific databases PubMed, SciVerse Scopus, Web of Knowledge, and the Cochrane Central Register of Controlled Clinical Trials. Results: Between February 2024 and October 2024, the analysis was conducted using electronic databases, yielding a total of 235 references. Finally, 24 RCTs were chosen after meeting all inclusion criteria: eight studies of COVID-19, two studies of Salmonella typhi, three studies of Vibrio cholerae, and eleven studies of rotavirus. Only six of these demonstrated good study quality with a Jadad score of three or four. Conclusions: According to the review's results, the intestinal microbiota surely plays a role in vaccinations' enhanced immunogenicity, especially in younger people. As it is still unclear what mechanisms underlie this effect, more research is needed to better understand the role of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Giovanni Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| | | | - Cristina Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| |
Collapse
|
16
|
Zhang X, Chan DCL, Zhu J, Sin DZY, Peng Y, Wong MKL, Zhu W, Tsui Y, Haqq AM, Ting JY, Kozyrskyj A, Chan FKL, Ng SC, Tun HM. Early-life antibiotic exposure aggravates hepatic steatosis through enhanced endotoxemia and lipotoxic effects driven by gut Parabacteroides. MedComm (Beijing) 2025; 6:e70104. [PMID: 39968496 PMCID: PMC11832435 DOI: 10.1002/mco2.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Compelling evidence supports a link between early-life gut microbiota and the metabolic outcomes in later life. Using an early-life antibiotic exposure model in BALB/c mice, we investigated the life-course impact of prenatal and/or postnatal antibiotic exposures on the gut microbiome of offspring and the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Compared to prenatal antibiotic exposure alone, postnatal antibiotic exposure more profoundly affected gut microbiota development and succession, which led to aggravated endotoxemia and metabolic dysfunctions. This was primarily resulted from the overblooming of gut Parabacteroides and hepatic accumulation of cytotoxic lysophosphatidyl cholines (LPCs), which acted in conjunction with LPS derived from Parabacteroides distasonis (LPS_PA) to induce cholesterol metabolic dysregulations, endoplasmic reticulum (ER) stress and apoptosis. Integrated serum metabolomics, hepatic lipidomics and transcriptomics revealed enhanced glycerophospholipid hydrolysis and LPC production in association with the upregulation of PLA2G10, the gene controlling the expression of the group X secretory Phospholipase A2s (sPLA2-X). Taken together, our results show microbial modulations on the systemic MASLD pathogenesis and hepatocellular lipotoxicity pathways following early-life antibiotic exposure, hence help inform refined clinical practices to avoid any prolonged maternal antibiotic administration in early life and potential gut microbiota-targeted intervention strategies.
Collapse
Affiliation(s)
- Xi Zhang
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- HKU‐Pasteur Research Pole, School of Public HealthLKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - Darren Chak Lun Chan
- HKU‐Pasteur Research Pole, School of Public HealthLKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - Jie Zhu
- Microbiota I‐Center (MagIC)Hong Kong SARChina
| | - Daniel Zhen Ye Sin
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
| | - Ye Peng
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
| | | | - Wenyi Zhu
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yee Tsui
- HKU‐Pasteur Research Pole, School of Public HealthLKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - Andrea M. Haqq
- Department of PediatricsUniversity of AlbertaEdmontonCanada
| | - Joseph Y. Ting
- Department of PediatricsUniversity of AlbertaEdmontonCanada
| | | | - Francis Ka Leung Chan
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Centre for Gut Microbiota ResearchThe Chinese University of Hong KongHong Kong SARChina
| | - Siew Chien Ng
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Hein Min Tun
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
17
|
Lubin JB, Planet PJ, Silverman MA. Microbial succession at weaning is guided by microbial metabolism of host glycans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639370. [PMID: 40027830 PMCID: PMC11870605 DOI: 10.1101/2025.02.20.639370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The weaning transition from a milk-based to a solid-food diet supports critical developmental changes to the intestinal microbiome and immune system. However, the specific microbial and host features that influence microbial succession at weaning are not well understood. Here, we developed a simple approach to investigate the complex dynamics of microbial succession during weaning by co-housing gnotobiotic mice colonized with the defined pre-weaning community PedsCom and the adult-derived consortium OMM12. As expected, co-housing PedsCom mice with OMM12 recapitulated microbial succession at weaning and induced immune system maturation in PedsCom mice. Unexpectedly, we found that the OMM12 microbes with the highest host glycan utilization profiles were the most adept colonizers of PedsCom mice. Genomic analysis confirmed that PedsCom is deficient in the carbohydrate-active enzymes responsible for degrading host-derived glycans, including mucins, compared to adult-derived consortia. We validated a role for glycan utilization in vivo by demonstrating that the mucus-degrading commensal microbe Akkermansia muciniphila critically depends on the metabolism of mucin glycans for colonization of PedsCom mice. These findings highlight the importance of host-derived glycans in shaping microbial communities during the weaning transition and suggest host glycans as novel targets to modulate intestinal microbial populations, introduce beneficial probiotics, and enhance immune system development during weaning.
Collapse
Affiliation(s)
- Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul J. Planet
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Kgosana LP, Seheri ML, Magwira CA. Significant Association Between Increased Abundance of Selected Bacterial Lipopolysaccharides and Norovirus Diarrhea Among South African Infants. Viruses 2025; 17:278. [PMID: 40007033 PMCID: PMC11860319 DOI: 10.3390/v17020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Bacterial lipopolysaccharides (LPS) have been shown to promote enteric viral infections. This study assessed whether possessing elevated levels of LPS was associated with norovirus infection. Fecal samples from diarrheic norovirus-positive (DNP) (n = 26), non-diarrheal norovirus-negative (NDNN) (n = 26), asymptomatic norovirus-positive (ANP) (n = 15), and diarrheic norovirus-negative (DNN) (n =15) infants were assayed for selected bacterial LPS by quantitative PCR. The mean levels of selected LPS gene targets were significantly high in DNP infants (6.17 ± 2.14 CFU/g) versus NDNN infants (4.13 ± 2.25 CFU/g), p = 0.003. So too was the abundance between DNP and DNN infants (p = 0.0023). The levels of selected LPS gene targets were high regardless of whether the infection was symptomatic or asymptomatic, p = 0.3808. The average expression of genes coding for selected LPS and their signalling molecule, Toll-like receptor 4 (TLR4), increased 7- and 2.5-fold, respectively, in DNP versus NDNN children. Infants possessing elevated levels of selected LPS-rich bacteria were 1.51 times more likely to develop norovirus diarrhea (95% CI: 1.14-2.01, p = 0.004). In conclusion, norovirus infection was associated with abundance of selected bacterial LPS, suggesting a possible role of bacterial LPS in norovirus infection.
Collapse
Affiliation(s)
| | | | - Cliff A. Magwira
- Diarrheal Pathogens Research Unit (DPRU), Department of Medical Virology, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (L.P.K.); (M.L.S.)
| |
Collapse
|
19
|
Gong D, Gao Y, Shi R, Xu X, Yu M, Zhang S, Wang L, Dong Q. The gastric microbiome altered by A4GNT deficiency in mice. Front Microbiol 2025; 16:1541800. [PMID: 40012782 PMCID: PMC11861098 DOI: 10.3389/fmicb.2025.1541800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Background Selective antimicrobial effects have been found for α1,4-linked N-acetylglucosamine residues at the terminus of O-glycans attached to a core protein of gastric gland mucin. A4gnt encodes α1,4-N-acetylglucosaminyl transferase, which is responsible for the biosynthesis of α1,4-linked N-acetylglucosamine. The impact of A4GNT on the establishment and homeostasis of the gastric microbiome remains to be clarified. The aim of this study was to characterize the gastric microbiome in mice deficient for the production of α1,4-linked N-acetylglucosamine. Methods The gastric microbiome within A4gnt -/- mice and wild-type mice was analyzed using high-throughput sequencing of bacterial 16S rRNA. Results In A4gnt -/- mice, which spontaneously develop gastric cancer, the community structure of the gastric microbiome was altered. The relative abundance of mutagenic Desulfovibrio and proinflammatory Prevotellamassilia in these mice was significantly increased, especially 4 weeks after birth. The co-occurrence network appeared to be much more complex. Functional prediction demonstrated considerable decreases in the relative frequencies of functions associated with polysaccharide metabolism and transportation. Conclusion The distinct profile in A4gnt -/- mice demonstrated a vital role of A4GNT in the establishment of the gastric microbiome. A dysbiotic gastric microbiome may contribute to the spontaneous development of gastric cancer in mice.
Collapse
Affiliation(s)
- Dawei Gong
- Department of Gastroenterology, The Forth People's Hospital of Jinan, Jinan, China
- Central Laboratories, The Affiliated Qingdao Municipal Hospital of Dalian Medical University, Qingdao, China
| | - Yuqiang Gao
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Rui Shi
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaona Xu
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Mengchao Yu
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Shumin Zhang
- Department of Gastroenterology, The Forth People's Hospital of Jinan, Jinan, China
| | - Lili Wang
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Quanjiang Dong
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
20
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
21
|
Smatti MK, Yassine HM, Mbarek H, Boomsma DI. Understanding Heritable Variation Among Hosts in Infectious Diseases Through the Lens of Twin Studies. Genes (Basel) 2025; 16:177. [PMID: 40004506 PMCID: PMC11855666 DOI: 10.3390/genes16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Genetic factors have been hypothesized to contribute to the heterogeneity in the response to infectious diseases (IDs). The classical twin design provides a powerful tool to estimate the role of genetic contributions to variation in infection outcomes. With this design, the impact of heritability on the proneness as well as infection- and vaccine-induced immune responses have been documented for multiple infections, including tuberculosis, malaria, leprosy, otitis media, polio, mumps, measles, rubella, influenza, hepatitis B, and human papillomavirus infections, and recently, SARS-CoV-2. The current data show the heritable aspect in nearly all infections considered. In this contribution, we review and discuss human twin studies on the heritability of host characteristics in liability and response to IDs. This review emphasizes the importance of considering factors such as sex, disease stages, and disease presentation when assessing heritability and argues that the classical twin design provides a unique circumstance for exploring the genetic contribution as twins share levels of maternal antibodies, ancestral background, often the dates and number of vaccine doses, differences in vaccines' manufacturing and storage, age, family environment, and other exposures. Additionally, we highlight the value of twin studies and the usefulness of combining the twin model with contemporary genomics technologies and advanced statistical tools to grasp a comprehensive and nuanced understanding of heritability in IDs.
Collapse
Affiliation(s)
- Maria K. Smatti
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar;
| | - Hadi M. Yassine
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar;
| | - Hamdi Mbarek
- Qatar Precision Health Institute, Qatar Foundation, Doha 5825, Qatar;
| | - Dorret I. Boomsma
- Complex Trait Genetics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Amsterdam Public Health (APH) Research Institute, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Luo Y, Li M, Luo D, Tang B. Gut Microbiota: An Important Participant in Childhood Obesity. Adv Nutr 2025; 16:100362. [PMID: 39733798 PMCID: PMC11786877 DOI: 10.1016/j.advnut.2024.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
Increasing prevalence of childhood obesity has emerged as a critical global public health concern. Recent studies have challenged the previous belief that obesity was solely a result of excessive caloric intake. Alterations in early-life gut microbiota can contribute to childhood obesity through their influence on nutrient absorption and metabolism, initiation of inflammatory responses, and regulation of gut-brain communication. The gut microbiota is increasingly acknowledged to play a crucial role in human health, as certain beneficial bacteria have been scientifically proven to possess the capacity to reduce body fat content and enhance intestinal barrier function and their metabolic products to exhibit anti-inflammatory effect. Examples of such microbes include bifidobacteria, Akkermansia muciniphila, and Lactobacillus reuteri. In contrast, an increase in Enterobacteriaceae and propionate-producing bacteria (Prevotellaceae and Veillonellaceae) has been implicated in the induction of low-grade systemic inflammation and disturbances in lipid metabolism, which can predispose individuals to obesity. Studies have demonstrated that modulating the gut microbiota through diet, lifestyle changes, prebiotics, probiotics, or fecal microbiota transplantation may contribute to gut homeostasis and the management of obesity and its associated comorbidities. This review aimed to elucidate the impact of alterations in gut microbiota composition during early life on childhood obesity and explores the mechanisms by which gut microbiota contributes to the pathogenesis of obesity and specifically focused on recent advances in using short-chain fatty acids for regulating gut microbiota and ameliorating obesity. Additionally, it aimed to discuss the therapeutic strategies for childhood obesity from the perspective of gut microbiota, aiming to provide a theoretical foundation for interventions targeting pediatric obesity based on gut microbiota.
Collapse
Affiliation(s)
- Yu Luo
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maojun Li
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Luo
- Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binzhi Tang
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
23
|
Profir M, Enache RM, Roşu OA, Pavelescu LA, Creţoiu SM, Gaspar BS. Malnutrition and Its Influence on Gut sIgA-Microbiota Dynamics. Biomedicines 2025; 13:179. [PMID: 39857762 PMCID: PMC11762760 DOI: 10.3390/biomedicines13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In the current era, malnutrition is seen as both undernutrition and overweight and obesity; both conditions are caused by nutrient deficiency or excess and improper use or imbalance in the intake of macro and micronutrients. Recent evidence suggests that malnutrition alters the intestinal microbiota, known as dysbiosis. Secretory immunoglobulin A (sIgA) plays an important role in maintaining and increasing beneficial intestinal microbiota populations and protecting against pathogenic species. Depletion of beneficial bacterial populations throughout life is also conditioned by malnutrition. This review aims to synthesize the evidence that establishes an interrelationship between diet, malnutrition, changes in the intestinal flora, and sIgA levels. Targeted nutritional therapies combined with prebiotic, probiotic, and postbiotic administration can restore the immune response in the intestine and the host's homeostasis.
Collapse
Affiliation(s)
- Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
24
|
Salas-López M, Vélez-Ixta JM, Rojas-Guerrero DL, Piña-Escobedo A, Hernández-Hernández JM, Rangel-Calvillo MN, Pérez-Cruz C, Corona-Cervantes K, Juárez-Castelán CJ, García-Mena J. Human Milk Archaea Associated with Neonatal Gut Colonization and Its Co-Occurrence with Bacteria. Microorganisms 2025; 13:85. [PMID: 39858853 PMCID: PMC11767358 DOI: 10.3390/microorganisms13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Archaea have been identified as early colonizers of the human intestine, appearing from the first days of life. It is hypothesized that the origin of many of these archaea is through vertical transmission during breastfeeding. In this study, we aimed to characterize the archaeal composition in samples of mother-neonate pairs to observe the potential vertical transmission. We performed a cross-sectional study characterizing the archaeal diversity of 40 human colostrum-neonatal stool samples by next-generation sequencing of V5-V6 16S rDNA libraries. Intra- and inter-sample analyses were carried out to describe the Archaeal diversity in each sample type. Human colostrum and neonatal stools presented similar core microbiota, mainly composed of the methanogens Methanoculleus and Methanosarcina. Beta diversity and metabolic prediction results suggest homogeneity between sample types. Further, the co-occurrence network analysis showed associations between Archaea and Bacteria, which might be relevant for these organisms' presence in the human milk and neonatal stool ecosystems. According to relative abundance proportions, beta diversity, and co-occurrence analyses, the similarities found imply that there is vertical transmission of archaea through breastfeeding. Nonetheless, differential abundances between the sample types suggest other relevant sources for colonizing archaea to the neonatal gut.
Collapse
Affiliation(s)
- Maricarmen Salas-López
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Diana Laura Rojas-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - José Manuel Hernández-Hernández
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | | | - Claudia Pérez-Cruz
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico;
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
- Institute for Obesity Research, Monterrey Institute of Technology and Higher Education, Monterrey 64849, Mexico
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| |
Collapse
|
25
|
Ionescu MI, Zahiu CDM, Vlad A, Galos F, Gradisteanu Pircalabioru G, Zagrean AM, O'Mahony SM. Nurturing development: how a mother's nutrition shapes offspring's brain through the gut. Nutr Neurosci 2025; 28:50-72. [PMID: 38781488 DOI: 10.1080/1028415x.2024.2349336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Pregnancy is a transformative period marked by profound physical and emotional changes, with far-reaching consequences for both mother and child. Emerging research has illustrated the pivotal role of a mother's diet during pregnancy in influencing the prenatal gut microbiome and subsequently shaping the neurodevelopment of her offspring. The intricate interplay between maternal gut health, nutrition, and neurodevelopmental outcomes has emerged as a captivating field of investigation within developmental science. Acting as a dynamic bridge between mother and fetus, the maternal gut microbiome, directly and indirectly, impacts the offspring's neurodevelopment through diverse pathways. This comprehensive review delves into a spectrum of studies, clarifying putative mechanisms through which maternal nutrition, by modulating the gut microbiota, orchestrates the early stages of brain development. Drawing insights from animal models and human cohorts, this work underscores the profound implications of maternal gut health for neurodevelopmental trajectories and offers a glimpse into the formulation of targeted interventions able to optimize the health of both mother and offspring. The prospect of tailored dietary recommendations for expectant mothers emerges as a promising and accessible intervention to foster the growth of beneficial gut bacteria, potentially leading to enhanced cognitive outcomes and reduced risks of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mara Ioana Ionescu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adelina Vlad
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
- Department of Pediatrics, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, Section Earth, Environmental and Life Sciences, Section-ICUB, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605707. [PMID: 39131274 PMCID: PMC11312535 DOI: 10.1101/2024.08.02.605707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting "microbiome clock" predicts host chronological age. Deviations from the clock's predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual's "microbiome age" does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
Collapse
Affiliation(s)
- Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- California Academy of Sciences, San Francisco, CA, USA
| | - Kimberly E. Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Jack A. Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke University, Durham, NC, USA
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig Germany
- Max Planck Institute for Mathematics in the Natural Sciences, Leipzig, Germany
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
27
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
28
|
Colberg O, Hermes GDA, Licht TR, Wichmann A, Baker A, Laursen MF, Wellejus A. Development of an infant colon simulating in vitro model, I-TIM-2, to study the effects of modulation strategies on the infant gut microbiome composition and function. Microbiol Spectr 2024; 12:e0072424. [PMID: 39377603 PMCID: PMC11537066 DOI: 10.1128/spectrum.00724-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
The early life stages are critical for the development of the gut microbiome. Variables such as antibiotics exposure, birth-mode via Cesarean section, and formula feeding are associated with disruptions in microbiome development and are related to adverse health effects later in life. Studying the effects of microbiome-modulating strategies in infants is challenged by appropriate ethical constraints. Therefore, we developed I-TIM-2, an infant in vitro colonic model based on the validated, computer-controlled, dynamic model of the colon, TIM-2. The system, consisting of four separate compartments, was inoculated with feces from four healthy, primarily breastfed infants, displaying distinctive microbiome profiles. For each infant's fecal sample, a 96-h experiment was performed, with two compartments receiving an infant diet adapted medium and two compartments additionally receiving five human milk oligosaccharides (HMOs) in physiological concentrations and proportions. Bacterial composition was determined by shotgun metagenomics and qPCR. Concentrations of short-chain fatty acids (SCFAs) and HMOs were determined by LC-MS. Microbial diversity and high amounts of inoculum-derived species were preserved in the model throughout each experiment. Microbiome composition and SCFA concentrations were consistent with published data from infants. HMOs strongly modulated the microbiome composition by stimulating relative proportions of Bifidobacterium. This affected the metabolic output and resulted in an increased production of acetic and formic acid, characteristic of bifidobacterial HMO metabolism. In conclusion, these data demonstrate the development of a valid model to study the dynamics and modulations of the infant gut microbiome and metabolome.IMPORTANCEThe infant gut microbiome is intricately linked to the health of its host. This is partly mediated through the bacterial production of metabolites that interact with the host cells. Human milk shapes the establishment of the infant gut microbiome as it contains human milk sugars that select for primarily bifidobacteria. The establishment can be disrupted by modern interventions such as formula feeding. This can alter the microbiome composition and metabolite production profile, which can affect the host. In this article, we set up an infant in vitro colonic model to study microbiome interactions and functions. In this model, we investigated the effects of human milk sugars and their promotion of bifidobacteria at the expense of other bacteria. The model is an ideal system to assess the effects of various modulating strategies on the infant gut microbiome and its interactions with its host.
Collapse
Affiliation(s)
- Olivia Colberg
- Novonesis, Human Health Research, Hørsholm, Denmark
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | | | - Tine Rask Licht
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | | | - Adam Baker
- Novonesis, Human Health Research, Hørsholm, Denmark
| | | | | |
Collapse
|
29
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers (Basel) 2024; 16:3707. [PMID: 39518144 PMCID: PMC11545705 DOI: 10.3390/cancers16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Radiotherapy is an effective method of treating cancer and affects 50% of patients. Intensity-modulated radiotherapy (IMRT) is a modernized method of classical radiation used in the treatment of laryngeal cancer. Treatment with intent to preserve the larynx is not always safe or complication-free. The microbiome may significantly influence the effectiveness of oncological treatment, especially radiotherapy, and may also be modified by the toxic response to radiation. OBJECTIVE The aim of the study was to prospectively assess the microbiome and its influence on radiotherapy toxicity in patients with laryngeal cancer. RESULTS Statistically significant risk factors for complications after radiotherapy were the percentage of Porphyromonas of at least 6.7%, the percentage of Fusobacterium of at least 2.6% and the percentage of Catonella of at least 2.6%. CONCLUSIONS The importance of the microbiome in oncology has been confirmed in many studies. Effective radiotherapy treatment and the prevention of radiation-induced oral mucositis is a challenge in oncology. The microbiome may be an important part of personalized cancer treatment. The assessment of the microbiome of patients diagnosed with cancer may provide the opportunity to predict the response to treatment and its effectiveness. The influence of the microbiome may be important in predicting the risk group for radiotherapy treatment failure. The possibility of modifying the microbiome may become a goal to improve the prognosis of patients with laryngeal cancer. Fusobacterium, Porphyromonas and Catonella are important risk factors for radiation-induced oral mucositis in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
30
|
Wu F, Liu Y, Zhang M, Yuan X, Ji T, Jin Y, Li Y, Wang R, Hao Y, Fang B. Effects of 1-oleate-2-palmitate-3-linoleate glycerol supplementation on the small intestinal development and gut microbial composition of neonatal mice. Food Res Int 2024; 195:114993. [PMID: 39277254 DOI: 10.1016/j.foodres.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Recent studies have shown that 1-oleo-2-palmito-3-linoleyl glycerol (OPL) is the most abundant triacylglycerol in human breast milk in China. Epidemiologic studies have shown that sn-2 palmitate improves the absorption of fatty acids and calcium in infants. However, there have been few studies of the specific mechanism by which OPL affects intestinal function. In the present study, we have characterized the effects of various levels of OPL supplementation on the development of the intestinal epithelium and the intestinal microbiota of neonatal mice. OPL supplementation increased the body masses and intestinal lengths of weaned mice and promoted defecation. These positive effects were related to the effect of OPL to promote the development of intestinal villi and crypts. OPL increased the expression of the intestinal stem cell markers Olfm4 and Sox9 in the jejunum and ileum, which promoted their differentiation into goblet cells and Paneth cells. It also promoted the integrity of the epithelial barrier by increasing the secretion of mucin 2 and lysozyme 1 and the expression of the tight junction proteins occludin, ZO1, claudin 2, and claudin 3. More importantly, we found that low dose-OPL promotes the transformation of the intestinal microbiota of neonatal mice to the mature state in 3-month-old mice, increases the proportion of Firmicutes, and reduces the proportion of Bacteroidota. The proportions of anaerobic genera of bacteria, such as Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ligilactobacillus, and Bifidobacterium were higher, as were the key producers of short-chain fatty acids, such as Bacteroides and Blautia. OPL also increased the butyric acid content of the feces, which significantly correlated with the abundance of Lactobacillus. High-dose OPL tended to be more effective at promoting defecation and the development of the villi and crypts, but these effects did not significantly differ from those achieved using the lower dose. A low dose of OPL was more effective at increasing the butyric acid content and causing the maturation of microbes. In summary, the OPL supplementation of newborn mice promotes the establishment of the intestinal epithelial layer structure and barrier function, and also promotes the transformation of the intestinal microbiota to a mature state. This study lays a theoretical foundation for the inclusion of OPL in infant formula and provides a scientific basis for the development of intestinal health products.
Collapse
Affiliation(s)
- Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yaqiong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xinlei Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tengteng Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
31
|
Ren X, Clark RM, Bansah DA, Varner EN, Tiffany CR, Jaswal K, Geary JH, Todd OA, Winkelman JD, Friedman ES, Zemel BS, Wu GD, Zackular JP, DePas WH, Behnsen J, Palmer LD. Amino acid competition shapes Acinetobacter baumannii gut carriage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619093. [PMID: 39502362 PMCID: PMC11537318 DOI: 10.1101/2024.10.19.619093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Antimicrobial resistance is an urgent threat to human health. Asymptomatic colonization is often critical for persistence of antimicrobial-resistant pathogens. Gut colonization by the antimicrobial-resistant priority pathogen Acinetobacter baumannii is associated with increased risk of clinical infection. Ecological factors shaping A. baumannii gut colonization remain unclear. Here we show that A. baumannii and other pathogenic Acinetobacter evolved to utilize the amino acid ornithine, a non-preferred carbon source. A. baumannii utilizes ornithine to compete with the resident microbiota and persist in the gut in mice. Supplemental dietary ornithine promotes long-term fecal shedding of A. baumannii. By contrast, supplementation of a preferred carbon source-monosodium glutamate (MSG)-abolishes the requirement for A. baumannii ornithine catabolism. Additionally, we report evidence for diet promoting A. baumannii gut carriage in humans. Together, these results highlight that evolution of ornithine catabolism allows A. baumannii to compete with the microbiota in the gut, a reservoir for pathogen spread.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - R. Mason Clark
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Dziedzom A. Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth N. Varner
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Connor R. Tiffany
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H. Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A. Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K. Analysis of Risk Factors with Assessment of the Impact of the Microbiome on the Risk of Squamous Cell Carcinoma of the Larynx. J Clin Med 2024; 13:6101. [PMID: 39458051 PMCID: PMC11508926 DOI: 10.3390/jcm13206101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Introduction: Head and neck squamous cell carcinoma (HNSCC) ranks sixth among cancers in the world, and the 5-year survival rate ranges from 25% to 60%. The risk factors for HNSCC are primarily smoking, alcohol consumption and human papillomavirus (HPV). Data indicate that 15-20% of cancers are caused by infectious agents, 20-30% by smoking and 30-35% by unhealthy lifestyles, diet, lack of physical activity and obesity. Dysbiosis is a microbiome imbalance, which promotes oncogenesis by intensifying inflammatory processes and affecting the host's metabolism. Profiling the microbiome in various types of cancer is currently the subject of research and analysis. However, there is still little information on the correlation of the microbiome with HNSCC and its impact on oncogenesis, the course of the disease and its treatment. Objective: The aim of the study was to prospectively assess risk factors with assessment of the impact of the microbiome on the risk of squamous cell carcinoma of the larynx. The study included a group of 44 patients diagnosed with squamous cell carcinoma of the larynx and 30 patients from the control group. Results: In the control group, bacteria of the normal microbiome dominated-the genus Streptococcus, Gemella, Neisseria and Kingella. In the group of patients with laryngeal cancer, Prevotella, Clostridiales and Stomatobaculum were found significantly more often. Porphyromonas, Fusobacterium, Lactobacillus, Actinobacteria, Actinomyces and Shaalia odontolytica were also found at a higher percentage in the study group. Analyzing the phylum, Firmicutes dominated in the control group; there were statistically significantly more of them than in patients from the study group. Bacteroides and Bacillota were found significantly more often in patients with laryngeal cancer. Conclusions: The importance of the microbiome in oncology has been confirmed in many studies. Independent risk factors for laryngeal cancer were primarily a lower number of Firmicutes in the microbiome, but also an increased leukocyte level above 6.52 × 103/mm and a decreased total protein level below 6.9 g/dL. Prevotella, Clostridiales, Stomatobaculum, Porphyromonas, Fusobacterium, Lactobacillus, Actinobacteria, Actinomyces and Shaalia were considered to be the bacteria contributing to the development of laryngeal cancer. Streptococcus, Gemella, Neisserie and Kingella were considered to be protective bacteria. Moreover, the study confirmed the significant impact of smoking, alcohol consumption and poor oral hygiene on the development of laryngeal cancer. The microbiome, its identification and manipulation may constitute a breakthrough discovery for improving the diagnosis and oncological therapy of laryngeal cancer, and also of the entire group of HNSCC. Profiling the microbiome may allow for personalized therapy related to its modification. Assessing the microbiome of patients diagnosed with cancer may provide an opportunity to predict treatment response and effectiveness.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Tadeusz Dorobisz
- Department of Vascular and General Surgery, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
33
|
Ratnayani, Hegar B, Sunardi D, Fadilah F, Gunardi H, Fahmida U, Vidiawati D. Association of Gut Microbiota Composition with Stunting Incidence in Children under Five in Jakarta Slums. Nutrients 2024; 16:3444. [PMID: 39458441 PMCID: PMC11510009 DOI: 10.3390/nu16203444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Stunting can be linked to various factors, one of which is dysbiosis. This study aims to analyze the microbiota composition and related contributing factors of stunted and non-stunted children in the slum areas of Jakarta. METHODS The subjects in this study included 21 stunted (HAZ ≤ -2SD) and 21 non-stunted children (-2SD ≤ HAZ ≤ 3SD) aged 2-5 years. Microbiota analysis was performed by extracting DNA from the subjects' feces and then via 16S rRNA sequencing using next-generation sequencing (NGS). RESULTS The results of this study showed that in stunted children, the abundance of Mitsuokella (24,469 OTUs), Alloprevotella (23,952 OTUs), and Providencia alcalifaciens (861 OTUs) was higher, while in non-stunted children, that of Blautia (29,755 OTUs), Lachnospiraceae (6134 OTUs), Bilophila (12,417 OTUs), Monoglobus (484 OTUs), Akkermansia muciniphila (1116 OTUs), Odoribacter splanchnicus (42,993 OTUs), and Bacteroides clarus (8900 OTUs) was higher. Differences in microbiota composition in the two groups were influenced by nutrient intake, birth history, breastfeeding history, handwashing habits before eating, drinking water sources, and water sources for other activities. CONCLUSIONS This study highlights that stunted children have a significantly different gut microbiota composition compared to non-stunted children, with higher levels of pathogenic bacteria and lower levels of beneficial bacteria. Future research should focus on interventions that can improve the gut microbiota composition to prevent stunting in children.
Collapse
Affiliation(s)
- Ratnayani
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (R.); (D.S.); (U.F.)
- Nutrition Study Program, Faculty of Health Sciences and Technology, Binawan University, Jakarta 13630, Indonesia
| | - Badriul Hegar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia;
| | - Diana Sunardi
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (R.); (D.S.); (U.F.)
| | - Fadilah Fadilah
- Department of Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
- Bioinformatics Core Facilities, Institute of Medical Education and Research Indonesia (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Hartono Gunardi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia;
| | - Umi Fahmida
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (R.); (D.S.); (U.F.)
- Southeast Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), Jakarta 13120, Indonesia
| | - Dhanasari Vidiawati
- Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| |
Collapse
|
34
|
Yang J, Qu H, Liu Q, Wang Y, Cao J, Jiang F, Wang Q, Shu J. Global Insights and Key Trends in Gut Microbiota Research for Premature Infants: A Bibliometric and Visualization Study. J Multidiscip Healthc 2024; 17:4611-4626. [PMID: 39381419 PMCID: PMC11460277 DOI: 10.2147/jmdh.s483332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Background Premature infants, defined as those born before 37 weeks of gestation, face numerous health challenges due to their underdeveloped systems. One critical aspect of their health is the gut microbiota, which plays a vital role in their immune function and overall development. This study provides a comprehensive bibliometric analysis of research trends, influential contributors, and evolving themes in the study of gut microbiota in premature infants over the past two decades. Methods We conducted a bibliometric analysis using the Web of Science Core Collection database, covering publications from January 1, 2004, to June 17, 2024. We employed VOSviewer, the R package "bibliometrix", and Citespace for data visualization and analysis, focusing on co-authorship, co-citation, and keyword co-occurrence networks. Results The temporal analysis revealed a significant increase in research output on gut microbiota in premature infants, particularly in the last decade. Early research primarily focused on characterizing the gut microbiota of premature infants, identifying less diversity and a higher prevalence of pathogenic bacteria compared to full-term infants. Key research themes identified include probiotics, necrotizing enterocolitis (NEC), and breastfeeding. Probiotic studies highlighted the potential of strains like Bifidobacterium and Lactobacillus in reducing NEC and sepsis incidences. Breastfeeding research consistently showed the benefits of human milk in fostering a healthier gut microbiota profile. Co-authorship and co-citation analyses identified key contributors and influential studies, emphasizing strong international collaborations, particularly among researchers from the United States, China, and European countries. Conclusion This bibliometric analysis underscores the growing recognition of the gut microbiota's crucial role in the health of premature infants. The field has seen significant advancements, particularly in understanding how interventions like probiotics and breastfeeding can modulate gut microbiota to improve health outcomes. Continued research and international collaboration are essential to further unravel the complexities of gut microbiota in premature infants and develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Juanzhi Yang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Huanxia Qu
- Department of Blood Transfusion, Zhenjiang First People’s Hospital, Zhenjiang, People’s Republic of China
| | - Qi Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yixing Wang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jiaxin Cao
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
35
|
Wu Y, Hou D, Zhan S, Wang L, Cao J, Guo J, Li L, Zhang H, Niu L, Zhong T. Colonization profiles of gut microbiota in goat kids from neonatal to weaning period. Front Microbiol 2024; 15:1467205. [PMID: 39411440 PMCID: PMC11473314 DOI: 10.3389/fmicb.2024.1467205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Understanding the colonization and change patterns of gut microbiota is pivotal for comprehending host health. As a newly cultured breed, the studies on the gut microbiota of Tianfu goats remain limited. This study aimed to address this gap by analyzing the microbial composition and colonization patterns of fecal samples collected from goat kids from birth to weaning. Fecal samples were collected on days 0, 7, 14, 21, 28, 35, 42, 49, 53, 55, 57, and 64, and the changes and colonization patterns of microorganisms were analyzed through high-throughput 16S rRNA sequencing. The results showed that the abundance of fecal microbiota in goat kids gradually increased over time, followed by a decrease after weaning and stabilization, with reduced individual differences. The colonization of fecal microorganisms mainly presented three different stages: days 0-14, days 21-49, and days 53-64. During the suckling period, the relative abundance of Proteobacteria (72.34%) was the highest, followed by Firmicutes (21.66%). From 21 days old, the microbiota in goat kids gradually to be diverse, with Lachnospiraceae and Ruminococcaceae being dominant. During post-weaning, Ruminococcaceae (30.98-33.34%) was becoming prominence which helpful for cellulose decomposition. LEfSe analyzed three important time points (d0 vs. d7, d7 vs. d14, d49 vs. d53, LDA score > 4 and p < 0.05), 53 microbial communities with stage differences were identified. Functional prediction using PICRUSt revealed that differential microbial communities are mainly related to carbohydrate and amino acid metabolism pathways. Overall, this study addresses the intricate relationship between ages, diets, and microbiota compositions in Tianfu goat kids, and also offering insights into microorganisms-host interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
36
|
Ma Y, Zhao Y, Zhang X. Factors affecting neutrophil functions during sepsis: human microbiome and epigenetics. J Leukoc Biol 2024; 116:672-688. [PMID: 38734968 DOI: 10.1093/jleuko/qiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a severe disease that occurs when the body's immune system reacts excessively to infection. The body's response, which includes an intense antibacterial reaction, can damage its tissues and organs. Neutrophils are the major components of white blood cells in circulation, play a vital role in innate immunity while fighting against infections, and are considered a feature determining sepsis classification. There is a plethora of basic research detailing neutrophil functioning, among which, the study of neutrophil extracellular traps is providing novel insights into mechanisms and treatments of sepsis. This review explores their functions, dysfunctions, and influences in the context of sepsis. The interplay between neutrophils and the human microbiome and the impact of DNA methylation on neutrophil function in sepsis are crucial areas of study. The interaction between neutrophils and the human microbiome is complex, particularly in the context of sepsis, where dysbiosis may occur. We highlight the importance of deciphering neutrophils' functional alterations and their epigenetic features in sepsis because it is critical for defining sepsis endotypes and opening up the possibility for novel diagnostic methods and therapy. Specifically, epigenetic signatures are pivotal since they will provide a novel implication for a sepsis diagnostic method when used in combination with the cell-free DNA. Research is exploring how specific patterns of DNA methylation in neutrophils, detectable in cell-free DNA, could serve as biomarkers for the early detection of sepsis.
Collapse
Affiliation(s)
- Yina Ma
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| |
Collapse
|
37
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
38
|
Shenhav L, Fehr K, Reyna ME, Petersen C, Dai DLY, Dai R, Breton V, Rossi L, Smieja M, Simons E, Silverman MA, Levy M, Bode L, Field CJ, Marshall JS, Moraes TJ, Mandhane PJ, Turvey SE, Subbarao P, Surette MG, Azad MB. Microbial colonization programs are structured by breastfeeding and guide healthy respiratory development. Cell 2024; 187:5431-5452.e20. [PMID: 39303691 PMCID: PMC11531244 DOI: 10.1016/j.cell.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/02/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.
Collapse
Affiliation(s)
- Liat Shenhav
- Institute for Systems Genetics, New York Grossman School of Medicine, New York University, New York, NY, USA; Department of Microbiology, New York Grossman School of Medicine, New York University, New York, NY, USA; Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
| | - Kelsey Fehr
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Myrtha E Reyna
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Darlene L Y Dai
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Ruixue Dai
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vanessa Breton
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Laura Rossi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Marek Smieja
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Michael A Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maayan Levy
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA; Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Catherine J Field
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jean S Marshall
- Department of Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | | | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
39
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
40
|
Markus V. Gut bacterial quorum sensing molecules and their association with inflammatory bowel disease: Advances and future perspectives. Biochem Biophys Res Commun 2024; 724:150243. [PMID: 38857558 DOI: 10.1016/j.bbrc.2024.150243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Inflammatory Bowel Disease (IBD) is an enduring inflammatory disease of the gastrointestinal tract (GIT). The complexity of IBD, its profound impact on patient's quality of life, and its burden on healthcare systems necessitate continuing studies to elucidate its etiology, refine care strategies, improve treatment outcomes, and identify potential targets for novel therapeutic interventions. The discovery of a connection between IBD and gut bacterial quorum sensing (QS) molecules has opened exciting opportunities for research into IBD pathophysiology. QS molecules are small chemical messengers synthesized and released by bacteria based on population density. These chemicals are sensed not only by the microbial species but also by host cells and are essential in gut homeostasis. QS molecules are now known to interact with inflammatory pathways, therefore rendering them potential therapeutic targets for IBD management. Given these intriguing developments, the most recent research findings in this area are herein reviewed. First, the global burden of IBD and the disruptions of the gut microbiota and intestinal barrier associated with the disease are assessed. Next, the general QS mechanism and signaling molecules in the gut are discussed. Then, the roles of QS molecules and their connection with IBD are elucidated. Lastly, the review proposes potential QS-based therapeutic targets for IBD, offering insights into the future research trajectory in this field.
Collapse
Affiliation(s)
- Victor Markus
- Near East University, Faculty of Medicine, Department of Medical Biochemistry, Nicosia, TRNC Mersin 10, Turkey.
| |
Collapse
|
41
|
Miller C, Luu K, Mikami B, Riel J, Qin Y, Khadka V, Lee MJ. Temporal Investigation of the Maternal Origins of Fetal Gut Microbiota. Microorganisms 2024; 12:1865. [PMID: 39338539 PMCID: PMC11434507 DOI: 10.3390/microorganisms12091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In utero colonization or deposition of beneficial microorganisms and their by-products likely occurs through various mechanisms, such as hematogenous spread or ascension from the reproductive tract. With high-throughput sequencing techniques, the identification of microbial components in first-pass neonatal meconium has been achieved. While these components are low-biomass and often not abundant enough to culture, the presence of microbial DNA signatures may promote fetal immune tolerance or epigenetic regulation prior to birth. The aim of this study was to investigate the maternal source of the neonatal first-pass meconium microbiome. Maternal vaginal and anal samples collected from twenty-one maternal-infant dyad pairs were compared via principal component analysis to first-pass neonatal meconium microbial compositions. Results demonstrated the greatest degree of similarity between the maternal gut microbiome in the second and third trimesters and vaginal microbiome samples across pregnancy, suggesting that the maternal gut microbiota may translocate to the fetal gut during pregnancy. This study sheds light on the origin and timing of the potential transfer of maternal microbial species to offspring in utero.
Collapse
Affiliation(s)
- Corrie Miller
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Kayti Luu
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Brandi Mikami
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Jonathan Riel
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (Y.Q.); (V.K.)
| | - Vedbar Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (Y.Q.); (V.K.)
| | - Men-Jean Lee
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| |
Collapse
|
42
|
Rold LS, Jensen AM, Arenholt L, Leutscher PDC, Ovesen PG, Hagstrøm S, Sørensen S. Identifying microbiome-based changes and biomarkers prior to disease development in mother and child, with a focus on gestational diabetes mellitus: protocol for the DANish Maternal and Offspring Microbiome (DANMOM) cohort study. BMJ Open 2024; 14:e083358. [PMID: 39242166 PMCID: PMC11381651 DOI: 10.1136/bmjopen-2023-083358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION The human gut microbiota is associated with gestational diabetes mellitus (GDM), which imposes a risk of developing long-term health problems for mother and child. Most studies on GDM and microbiota have been cross-sectional, which makes it difficult to make any conclusions on causality. Furthermore, it is important to assess if a dysbiotic microbiota is passed from the mother to the child, and then being at risk of developing metabolic health problems later in life. The DANish Maternal and Offspring Microbiome study aims to identify gut microbiota-related factors involved in metabolic dysfunction in women with GDM and their offspring. Importantly, the study design allows for early detection of biological changes associated with later development of metabolic disease. This could provide us with unique tools to support early diagnosis or implement preventative measures. METHODS AND ANALYSIS Pregnant women are included in the study after the 11-14 weeks' prenatal ultrasound scan and followed throughout pregnancy with enrolment of the offspring at birth. 202 women and 112 children have been included from North Denmark Regional Hospital and Aalborg University Hospital in Denmark. Mother and child are followed until the children reach the age of 5 years. From the mother, we collect faeces, urine, blood, saliva, vaginal fluid and breast milk samples, in addition to faeces and a blood sample from the child. Microbiota composition in biological samples will be analysed using 16S rRNA gene sequencing and compared with demographic and clinical data from medical charts, registers and questionnaires. Sample and data collection will continue until July 2028. ETHICS AND DISSEMINATION The study protocol has been approved by the North Denmark Region Committee on Health Research Ethics (N20190007). Written informed consent is obtained from all participants prior to study participation. Study results will be published in international peer-reviewed journals and presented at international conferences. The results will also be presented to the funders of the study and study participants.
Collapse
Affiliation(s)
- Louise Søndergaard Rold
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ann-Maria Jensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
| | - Louise Arenholt
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Gynecology and Obstetrics, North Denmark Regional Hospital, Hjørring, Denmark
| | - Peter Derek Christian Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Søren Hagstrøm
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| |
Collapse
|
43
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Melki R, Litvak Y. From vacant to vivid: The nutritional landscape drives infant gut microbiota establishment. Mol Microbiol 2024; 122:347-356. [PMID: 39044538 DOI: 10.1111/mmi.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
From the moment of birth, the newborn gastrointestinal tract is infiltrated by various bacteria originating from both maternal and environmental sources. These colonizing bacteria form a complex microbiota community that undergoes continuous changes until adulthood and plays an important role in infant health. The maturation of the infant gut microbiota is driven by many factors and follows a distinct patterned trajectory, with specific bacterial taxa establish in the intestine in accordance with developmental milestones as the infant grows. In this review, we highlight how elements such as diet and host physiology select for specific microbial functions and shape the composition of the bacterial community in the large intestine.
Collapse
Affiliation(s)
- Reut Melki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Litvak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
45
|
Piper HG, Bording-Jorgensen M, Veniamin S, Zhang Z, Suarez RG, Armstrong H, Silverman JA, Wine E. Intestinal microbial and metabolite profile in infants with small bowel stomas after bowel resection. J Pediatr Gastroenterol Nutr 2024; 79:705-715. [PMID: 39046027 DOI: 10.1002/jpn3.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Infants with small bowel stomas (SBstoma) frequently struggle with absorption and rely on parenteral nutrition (PN). Intestinal absorption is difficult to predict based solely on intestinal anatomy. The purpose of this study was to characterize the microbiota and metabolic by-products within stoma effluent and correlate with clinical features and intestinal absorption. METHODS Prospective cohort study collecting stoma samples from neonates with SBstoma (N = 23) or colostomy control (N = 6) at initial enteral feed (first sample) and before stoma closure (last sample). Gut bacteriome (16S ribosomal RNA [rRNA] sequencing), short-chain fatty acids (SCFAs) and bile acids (BAs) were characterized along with volume and energy content of a 48 h collection via bomb calorimetry (last sample). Hierarchical clustering and linear regression were used to compare the bacteriome and BAs/SCFAs, to bowel length, PN, and growth. RESULTS Infants with ≤50% small bowel lost more fluid on average than those with >50% and controls (22, 18, 16 mL/kg/day, p = 0.013), but had similar energy losses (7, 10, 9 kcal/kg/day, p = 0.147). Infants growing poorly had enrichment of Proteobacteria compared to infants growing well (90% vs. 15%, p = 0.004). An increase in the ratio of secondary BAs within the small bowel over time, correlated with poor prognostic factors (≤50% small bowel, >50% of calories from PN, and poor growth). CONCLUSION Infants with SBstoma and poor growth have a unique bacteriome community and those with poor enteral tolerance have metabolic differences compared to infants with improved absorption.
Collapse
Affiliation(s)
- Hannah G Piper
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Simona Veniamin
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Zhengxiao Zhang
- College of Food and Biological Engineering, Jimei University, Fujian, Xiamen, China
| | - Ricardo G Suarez
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Heather Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jason A Silverman
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Abrahamsson T. We need more evidence about the risks and benefits of giving children faecal microbiota transplants. Acta Paediatr 2024; 113:1987-1988. [PMID: 38926934 DOI: 10.1111/apa.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Thomas Abrahamsson
- Department of Biomedical and Clinical Sciences, Linköping University, and Crown Princess Victoria Children's Hospital, Linköping, Sweden
| |
Collapse
|
47
|
Harris RA, Dabritz HA. Infant Botulism: In Search of Clostridium botulinum Spores. Curr Microbiol 2024; 81:306. [PMID: 39138824 PMCID: PMC11322261 DOI: 10.1007/s00284-024-03828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Infant botulism is now the most common form of human botulism in Canada and the United States. Infant botulism is a severe neuroparalytic disease caused by ingestion of the spore-forming neurotoxic clostridia, including Clostridium botulinum that colonize the large intestine and subsequently produce botulinum neurotoxin in situ. It has been over a century since the first surveys documenting the ubiquitous prevalence of C. botulinum in soils around the world. Since then, honey has been identified as the only well-known risk factor for infant botulism despite a multitude of international environmental surveys isolating C. botulinum spores from ground soil, aquatic sediments, and commonly available infant foods. Associations of infant botulism cases with confirmed sources of C. botulinum exposure have primarily implicated outdoor soil and indoor dust, as well as commonly ingested foods including honey, dry cereals, and even powdered infant formula. Yet the origin of infection remains unknown for most infant botulism cases. This review summarizes the various surveys from around the world for C. botulinum in environmental soils and sediments, honey, and other infant foods, as well as laboratory-confirmed associations with documented infant botulism cases. Additional factors are also discussed, including the composition of infant gut microbiota and the practice of breastfeeding. We make several recommendations to better identify sources of exposure to C. botulinum spores that could lead to effective preventive measures and help reduce the incidence of this rare but life-threatening disease.
Collapse
Affiliation(s)
- Richard A Harris
- Botulism Reference Service for Canada, Health Canada, Ottawa, ON, Canada.
| | - Haydee A Dabritz
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, CA, USA
| |
Collapse
|
48
|
Di Chiara M, Lazzaro A, Scribano D, Trancassini M, Pietropaolo V, Sonnessa M, De Luca C, Prota R, Onestà E, Laccetta G, Terrin G. Reduced Gut Bacterial Diversity in Early Life Predicts Feeding Intolerance in Preterm Neonates. Trop Med Infect Dis 2024; 9:174. [PMID: 39195612 PMCID: PMC11359060 DOI: 10.3390/tropicalmed9080174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Microbiota plays a crucial role in intestinal maturation in preterm newborns. The clinical manifestation of the immaturity of the gastro-intestinal tract is called feeding intolerance (FI). This condition may resolve spontaneously or dramatically evolve into necrotizing enterocolitis. One of the most challenging tasks for the neonatologist is to identify those neonates that will develop the disease early in order to adequately provide nutrition to these patients, from the very first hours of life. A close interplay between the maturity of the gastro-intestinal tract and gut microbiota has been described; however, in preterm neonates, this relationship is still undefined. We analyzed the bacterial composition of stool samples, collected early in life, from 30 preterm newborns classified as intolerant or tolerant according to the degree of readiness of the gastro-intestinal tract to receive enteral nutrition. The Pielou evenness index was significantly increased in intolerant compared with tolerant newborns. Data corrected for confounding variables confirmed that the occurrence of gut maturation was independently influenced by Pielou evenness at birth. A lower bacterial diversity very early in life is associated with improved feeding tolerance in preterm newborns. The abundance analysis showed that neonates not ready to receive enteral nutrition for feeding intolerance show, after birth, an increased abundance of Proteobacteria, Lachnospiracae, Enterobacter and Acinetobacter. We can argue that those are the taxa that prevent the establishment of pioneer bacteria. A lower alpha-diversity, in the first days of life, may facilitate the seeding of beneficial pioneer bacteria that, in turn, drive healthy microbial colonization during neonatal life.
Collapse
Affiliation(s)
- Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Maria Trancassini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | | | - Chiara De Luca
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Rita Prota
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Elisa Onestà
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Gianluigi Laccetta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| |
Collapse
|
49
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring Therapeutic Advances: A Comprehensive Review of Intestinal Microbiota Modulators. Antibiotics (Basel) 2024; 13:720. [PMID: 39200020 PMCID: PMC11350912 DOI: 10.3390/antibiotics13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota establishes a mutually beneficial relationship with the host starting from birth, impacting diverse metabolic and immunological processes. Dysbiosis, characterized by an imbalance of microorganisms, is linked to numerous medical conditions, including gastrointestinal disorders, cardiovascular diseases, and autoimmune disorders. This imbalance promotes the proliferation of toxin-producing bacteria, disrupts the host's equilibrium, and initiates inflammation. Genetic factors, dietary choices, and drug use can modify the gut microbiota. However, there is optimism. Several therapeutic approaches, such as probiotics, prebiotics, synbiotics, postbiotics, microbe-derived products, and microbial substrates, aim to alter the microbiome. This review thoroughly explores the therapeutic potential of these microbiota modulators, analysing recent studies to evaluate their efficacy and limitations. It underscores the promise of microbiota-based therapies for treating dysbiosis-related conditions. This article aims to ensure practitioners feel well-informed and up to date on the most influential methods in this evolving field by providing a comprehensive review of current research.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
50
|
Magnusson A, Jabbari Shiadeh SM, Ardalan M, Swolin-Eide D, Elfvin A. Gut microbiota differences in five-year-old children that were born preterm with a history of necrotizing enterocolitis: A pilot trial. iScience 2024; 27:110325. [PMID: 39055941 PMCID: PMC11269947 DOI: 10.1016/j.isci.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The study explores the long-term effects of necrotizing enterocolitis (NEC) on gut microbiota in preterm infants by analyzing stool samples from 5-year-old children using shotgun metagenomic sequencing. It compares children with a history of NEC, treated surgically or medically, to preterm controls without NEC. Findings reveal persistent gut microbiota dysbiosis in NEC children, with reduced species diversity and evenness, especially in those treated surgically. The surgical NEC group had a lower Shannon index, indicating less microbial diversity. Significant differences in taxonomic profiles were observed, mainly influenced by surgical treatment. These results underscore the lasting impact of NEC and its treatment on gut microbiota, suggesting a need for strategies addressing long-term dysbiosis.
Collapse
Affiliation(s)
- Amanda Magnusson
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Diana Swolin-Eide
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Elfvin
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|