1
|
Ghassemifard L, Hasanlu M, Parsamanesh N, Atkin SL, Almahmeed W, Sahebkar A. Cell Therapies and Gene Therapy for Diabetes: Current Progress. Curr Diabetes Rev 2025; 21:e130524229899. [PMID: 38747221 DOI: 10.2174/0115733998292392240425122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2025]
Abstract
The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.
Collapse
Affiliation(s)
- Leila Ghassemifard
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masumeh Hasanlu
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Bourgeois S, Coenen S, Degroote L, Willems L, Van Mulders A, Pierreux J, Heremans Y, De Leu N, Staels W. Harnessing beta cell regeneration biology for diabetes therapy. Trends Endocrinol Metab 2024; 35:951-966. [PMID: 38644094 DOI: 10.1016/j.tem.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Sophie Coenen
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Laure Degroote
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Lien Willems
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Annelore Van Mulders
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Julie Pierreux
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Yves Heremans
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nico De Leu
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Endocrinology, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium.
| | - Willem Staels
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium.
| |
Collapse
|
3
|
Li D, Donnelley M, Parsons D, Habgood MD, Schneider-Futschik EK. Extent of foetal exposure to maternal elexacaftor/tezacaftor/ivacaftor during pregnancy. Br J Pharmacol 2024; 181:2413-2428. [PMID: 38770951 DOI: 10.1111/bph.16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis (CF) patients are living longer and healthier due to improved treatments, e.g. cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI), with treatment possibly occurring in pregnancy. The risk of ETI to foetuses remain unknown. Thus the effect of maternally administered ETI on foetal genetic and structural development was investigated. EXPERIMENTAL APPROACH Pregnant Sprague Dawley rats were orally treated with ETI (6.7 mg·kg-1·day-1 elexacaftor + 3.5 mg·kg-1·day-1 tezacaftor + 25 mg·kg-1·day-1 ivacaftor) for 7 days from E12 to E19. Tissue samples collected at E19 were analysed using histology and RNA sequencing. Histological changes and differentially expressed genes (DEG) were assessed. KEY RESULTS No overt structural abnormalities were found in foetal pancreas, liver, lung and small intestine after 7-day ETI exposure. Very few non-functionally associated DEG in foetal liver, lung and small intestine were identified using RNA-seq. 29 DEG were identified in thymus (27 up-regulated and two down-regulated) and most were functionally linked to each other. Gene ontology enrichment analysis revealed that multiple muscle-related terms were significantly enriched. Many more DEG were identified in cortex (44 up-regulated and four down-regulated) and a group of these were involved in central nervous system and brain development. CONCLUSION AND IMPLICATION Sub-chronic ETI treatment in late pregnancy does not appear to pose a significant risk to the genetic and structural development of many foetal tissues. However, significant gene changes in foetal thymic myoid cells and cortical neuronal development requires future follow-up studies to assess the risk to these organs.
Collapse
Affiliation(s)
- Danni Li
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Mark D Habgood
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Elena K Schneider-Futschik
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Nemati M, Alizadeh AA, Dastghaib S, Saki F. Vitamin D supplementation affects bone marrow-derived mesenchymal stem cells differentiation into insulin-producing cells. Mol Biol Rep 2024; 51:748. [PMID: 38874843 DOI: 10.1007/s11033-024-09681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Background this study was conducted to assess the effects of vitamin D on differentiation of bone marrow- derived mesenchymal stem cells (BM-MSCs) into insulin producing cells (IPCs). Method BM-MSCs were isolated from femur and tibia of rats and incubated in low (LG) or high glucose (HG) (5mM or 25mM), or high glucose DMEM media supplemented with vitamin D (0.2nM) (HGD) for 14 days. Cells viability was analysis by MTT assay. Differentiation of SCs was confirmed using measuring genes expression level of pdx1 and insulin, and insulin secretion, glucose stimulated insulin secretion, and insulin content by ELISA method. Results Cell viability was significantly higher in HGD than LG (p < 0.05) in day 3, also, in HG and HGD than LG (p < 0.001), and HGD vs. HG (p < 0.001) in day 7. Pdx1 and insulin level was markedly higher in HGD than LG (p < 0.05 and p < 0.01). pdx1 expression was markedly higher in HGD (p < 0.05) than LG, also insulin expression the HG (p < 0.05), and HGD (p < 0.01) groups compared to the LG group. Insulin release at 5mM glucose was notably higher in the HGD group compared to LG (p < 0.05), and at 25mM glucose, both HG and HGD showed significant increases vs. LG (p < 0.05 and p < 0.01, respectively). Insulin content was significantly higher in both 5mM and 25mM glucose for HG and HGD vs. LG (p < 0.01 and p < 0.001, respectively). In conclusion, treatment BM-MSCs with vitamin D could increase their differentiation into IPCs and it can be considered as a potential supplementary agent in enhancing differentiation SCs into insulin generating cells.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Ali Akbar Alizadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Tissue Engineering, School of Advanced Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Authophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forough Saki
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
5
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Nagagata BA, Ajackson M, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. Obese mothers supplemented with melatonin during gestation and lactation ameliorate the male offspring's pancreatic islet cellular composition and beta-cell function. J Dev Orig Health Dis 2023; 14:490-500. [PMID: 37366144 DOI: 10.1017/s2040174423000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Melatonin supplementation to obese mothers during gestation and lactation might benefit the pancreatic islet cellular composition and beta-cell function in male offspring adulthood. C57BL/6 females (mothers) were assigned to two groups (n = 20/each) based on their consumption in control (C 17% kJ as fat) or high-fat diet (HF 49% kJ as fat). Mothers were supplemented with melatonin (Mel) (10 mg/kg daily) during gestation and lactation, or vehicle, forming the groups (n = 10/each): C, CMel, HF, and HFMel. The male offspring were studied, considering they only received the C diet after weaning until three months old. The HF mothers and their offspring showed higher body weight, glucose intolerance, insulin resistance, and low insulin sensitivity than the C ones. However, HFMel mothers and their offspring showed improved glucose metabolism and weight loss than the HF ones. Also, the offspring's higher expressions of pro-inflammatory markers and endoplasmic reticulum (ER) stress were observed in HF but reduced in HFMel. Contrarily, antioxidant enzymes were less expressed in HF but improved in HFMel. In addition, HF showed increased beta-cell mass and hyperinsulinemia but diminished in HFMel. Besides, the beta-cell maturity and identity gene expressions diminished in HF but enhanced in HFMel. In conclusion, obese mothers supplemented with melatonin benefit their offspring's islet cell remodeling and function. In addition, improving pro-inflammatory markers, oxidative stress, and ER stress resulted in better glucose and insulin levels control. Consequently, pancreatic islets and functioning beta cells were preserved in the offspring of obese mothers supplemented with melatonin.
Collapse
Affiliation(s)
- Brenda A Nagagata
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Ajackson
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Sun G, Qi M, Kim AS, Lizhar EM, Sun OW, Al-Abdullah IH, Riggs AD. Reassessing the Abundance of miRNAs in the Human Pancreas and Rodent Cell Lines and Its Implication. Noncoding RNA 2023; 9:ncrna9020020. [PMID: 36960965 PMCID: PMC10037588 DOI: 10.3390/ncrna9020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
miRNAs are critical for pancreas development and function. However, we found that there are discrepancies regarding pancreatic miRNA abundance in published datasets. To obtain a more relevant profile that is closer to the true profile, we profiled small RNAs from human islets cells, acini, and four rodent pancreatic cell lines routinely used in diabetes and pancreatic research using a bias reduction protocol for small RNA sequencing. In contrast to the previous notion that miR-375-3p is the most abundant pancreatic miRNA, we found that miR-148a-3p and miR-7-5p were also abundant in islets. In silico studies using predicted and validated targets of these three miRNAs revealed that they may work cooperatively in endocrine and exocrine cells. Our results also suggest, compared to the most-studied miR-375, that both miR-148a-3p and miR-7-5p may play more critical roles in the human pancreas. Moreover, according to in silico-predicted targets, we found that miR-375-3p had a much broader target spectrum by targeting the coding sequence and the 5' untranslated region, rather than the conventional 3' untranslated region, suggesting additional unexplored roles of miR-375-3p beyond the pancreas. Our study provides a valuable new resource for studying miRNAs in pancreata.
Collapse
Affiliation(s)
- Guihua Sun
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Neurodegenerative Diseases, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Meirigeng Qi
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alexis S Kim
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Elizabeth M Lizhar
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Olivia W Sun
- Department of Diabetes & Cancer Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Arthur D Riggs
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Heaton ES, Jin S. Importance of multiple endocrine cell types in islet organoids for type 1 diabetes treatment. Transl Res 2022; 250:68-83. [PMID: 35772687 PMCID: PMC11554285 DOI: 10.1016/j.trsl.2022.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis, stating that diabetes is not caused merely by the impaired insulin signaling. Instead, the presence of inappropriate level of glucagon is a prerequisite for the development of type 1 diabetes (T1D). It is widely understood that the hormones insulin and glucagon, secreted by healthy β and α cells respectively, operate in a negative feedback loop to maintain the body's blood sugar levels. Despite this fact, traditional T1D treatments rely solely on exogenous insulin injections. Furthermore, research on cell-based therapies and stem-cell derived tissues tends to focus on the replacement of β cells alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-producing β cells, glucagon-producing α cells, somatostatin-producing δ cells, and pancreatic polypeptide-producing γ cells. These distinct cell types are involved synergistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic islet organoid in vitro consisting of all these cell types that adequately replaces the function of the native islets. In this review, we describe the unique function of each pancreatic endocrine cell type and their interactions contributing to the maintenance of normoglycemia. Furthermore, we detail current sources of whole islets and techniques for their long-term expansion and culture. In addition, we highlight a vast potential of the pancreatic islet organoids for transplantation and diabetes research along with updated new approaches for successful transplantation using stem cell-derived islet organoids.
Collapse
Affiliation(s)
- Emma S Heaton
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York; Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
9
|
Hill JH, Massaquoi MS, Sweeney EG, Wall ES, Jahl P, Bell R, Kallio K, Derrick D, Murtaugh LC, Parthasarathy R, Remington SJ, Round JL, Guillemin K. BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass. Cell Metab 2022; 34:1779-1791.e9. [PMID: 36240759 PMCID: PMC9633563 DOI: 10.1016/j.cmet.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand β cells, whereas the pore-forming host defense protein, Reg3, stimulates β cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for β cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Jahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Kallio
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel Derrick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
10
|
Colarusso JL, Zhou Q. Direct Reprogramming of Different Cell Lineages into Pancreatic β-Like Cells. Cell Reprogram 2022; 24:252-258. [PMID: 35838597 PMCID: PMC9634980 DOI: 10.1089/cell.2022.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One major goal of regenerative medicine is the production of pancreatic endocrine islets to treat insulin-dependent diabetic patients. Among the different methods developed to achieve this goal, a particularly promising approach is direct lineage reprogramming, in which non-β-cells are directly converted to glucose-responsive, insulin-secreting β-like cells. Efforts by different research groups have led to critical insights in the inducing factors necessary and types of somatic tissues suitable for direct conversion to β-like cells. Nevertheless, there is limited understanding of the molecular mechanisms underlying direct cell fate conversion. Significant challenges also remain in translating discoveries into therapeutics that will eventually benefit diabetic patients. This review aims to cover the advances made in the direct reprogramming of somatic cells into β-like cells and discuss the remaining challenges.
Collapse
Affiliation(s)
- Jonathan L. Colarusso
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Abstract
Do ancient microbial irritants offer early life protection against diabetes?
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Departments of Pathology and Human Genetics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Aly RM, Aglan HA, Eldeen GN, Mahmoud NS, Aboul-Ezz EH, Ahmed HH. Efficient generation of functional pancreatic β cells from dental-derived stem cells via laminin-induced differentiation. J Genet Eng Biotechnol 2022; 20:85. [PMID: 35674918 PMCID: PMC9177930 DOI: 10.1186/s43141-022-00369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study was designed to generate functional insulin-producing cells (IPCs) from dental-derived mesenchymal stem cells (MSCs) and further explore their therapeutic potential against diabetes mellitus in vivo. MSCs were isolated from human dental pulp and periodontal ligament and were induced to differentiate into insulin-producing cells (IPCs) using laminin-based differentiation protocol for 14 days. Confirmation of IPCs was performed through real-time PCR analysis and insulin release assay. Then, the generated IPCs were labeled with PKH26 dye prior to transplantation in experimental animals. Twenty-eight days later, blood glucose, serum insulin (INS), c-peptide (CP), and visfatin (VF) levels and pancreatic glucagon (GC) level were estimated. Pancreatic forkhead box protein A2 (Foxa2) and SRY-box transcription factor 17 (Sox17), insulin-like growth factor I (IGF-1), and fibroblast growth factor10 (FGF 10) gene expression levels were analyzed. RESULTS Dental stem cells were successfully differentiated into IPCs that demonstrated increased expression of pancreatic endocrine genes. IPCs released insulin after being subjected to high levels of glucose. In vivo findings uncovered that the implanted IPCs triggered significant decrease in blood glucose, serum VF, and pancreatic GC levels with significant increase in serum INS and CP levels. Furthermore, the implanted IPCs provoked significant upregulation in the expression level of pancreatic genes. Histopathological description of the pancreas tissues revealed that transplantation of IPCs ameliorated the destabilization of pancreas tissue architecture. CONCLUSION This study demonstrates the significant role of the implantation of IPCs generated from dental-derived stem cells in treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Riham M Aly
- Basic Dental Science Department, Oral Medicine & Dentistry Research Institute, National Research Centre, Dokki, Giza, Egypt.
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt.
| | - Hadeer A Aglan
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
- Hormones Department, Medicine Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ghada Nour Eldeen
- Molecular Genetics & Enzymology Department, Human Genetic & Genome Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Nadia S Mahmoud
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
- Hormones Department, Medicine Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Eman H Aboul-Ezz
- Basic Dental Science Department, Oral Medicine & Dentistry Research Institute, National Research Centre, Dokki, Giza, Egypt
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
| | - Hanaa H Ahmed
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
- Hormones Department, Medicine Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
13
|
Glucagon-receptor-antagonism-mediated β-cell regeneration as an effective anti-diabetic therapy. Cell Rep 2022; 39:110872. [PMID: 35649369 DOI: 10.1016/j.celrep.2022.110872] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and β-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce β-cell regeneration in humans. Here, we discover the β-cell regenerative effects of glucagon receptor antibody (anti-GcgR). Treatment with anti-GcgR in mouse models of β-cell deficiency leads to reversal of hyperglycemia, increase in plasma insulin levels, and restoration of β-cell mass. We demonstrate that both β-cell proliferation and α- to β-cell transdifferentiation contribute to anti-GcgR-induced β-cell regeneration. Interestingly, anti-GcgR-induced α-cell hyperplasia can be uncoupled from β-cell regeneration after antibody clearance from the body. Importantly, we are able to show that anti-GcgR-induced β-cell regeneration is also observed in non-human primates. Furthermore, anti-GcgR and anti-CD3 combination therapy reverses diabetes and increases β-cell mass in a mouse model of autoimmune diabetes.
Collapse
|
14
|
McKimpson WM, Kuo T, Kitamoto T, Higuchi S, Mills JC, Haeusler RA, Accili D. FOXO1 Is Present in Stomach Epithelium and Determines Gastric Cell Distribution. GASTRO HEP ADVANCES 2022; 1:733-745. [PMID: 36117550 PMCID: PMC9481069 DOI: 10.1016/j.gastha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Stomach cells can be converted to insulin-producing cells by Neurog3, MafA, and Pdxl over-expression. Enteroendocrine cells can be similarly made to produce insulin by the deletion of FOXO1. Characteristics and functional properties of FOXO1-expressing stomach cells are not known. METHODS Using mice bearing a FOXO1-GFP knock-in allele and primary cell cultures, we examined the identity of FOXO1-expressing stomach cells and analyzed their features through loss-of-function studies with red-to-green fluorescent reporters. RESULTS FOXO1 localizes to a subset of Neurog3 and parietal cells. FOXO1 deletion ex vivo or in vivo using Neurog3-cre or Atp4b-cre increased numbers of parietal cells, generated insulin- and C-peptide-immunoreactive cells, and raised Neurog3 messenger RNA. Gene expression and ChIP- seq experiments identified the cell cycle regulator cyclin E1 (CCNE1) as a FOXO1 target. CONCLUSION FOXO1 is expressed in a subset of stomach cells. Its ablation increases parietal cells and yields insulin-immunoreactive cells, consistent with a role in lineage determination.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Taiyi Kuo
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Takumi Kitamoto
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Sei Higuchi
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Jason C. Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| |
Collapse
|
15
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
16
|
Heydari M, Yazdanparast R. Differentiation of PANC-1 ductal cells to β-like cells via cellular GABA modulation by Magainin and CPF-7 peptides. Biochem Biophys Res Commun 2022; 597:128-133. [PMID: 35144175 DOI: 10.1016/j.bbrc.2022.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
Abstract
Some of the antimicrobial peptides induce insulin release and improve glucose tolerance while their effects on pancreatic cell differentiation have remained unresolved. In this report, we evaluated the effects of two of these peptides, Magainin-II and CPF-7, and also GABA, on PANC-1 ductal cells' differentiation. Based on immunofluorescence and qRT-PCR analyses the expression levels of some of the Epithelial to Mesenchymal transition (EMT)-related factors such as Snai1 and Ngn3, as two biomarkers of alpha and beta cells, were increased. Our findings also revealed a drastic increase in Arx, Pax4, Dnmt-1 and Glucagon expressions associated with dedifferentiation of PANC-1 cells into pancreatic endocrine progenitor cells. Futhermore, Magainin-II and CPF-7 exerted their roles partly via influencing the GABA cellular content. These data would undoubtedly provide a suitable ground for further investigation to guide these cells toward transplantable insulin producing beta cells.
Collapse
Affiliation(s)
- Morteza Heydari
- Institute of Biochemistry and Biophysics, P. O. Box, 13145-1384, University of Tehran, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, P. O. Box, 13145-1384, University of Tehran, Tehran, Iran.
| |
Collapse
|
17
|
Ezzat SM, Abdel Rahman MF, Salama MM, Mahrous EA, El Bariary A. Non-polar metabolites of green beans (Phaseolus vulgaris L.) potentiate the antidiabetic activity of mesenchymal stem cells in streptozotocin-induced diabetes in rats. J Food Biochem 2022; 46:e14083. [PMID: 35034354 DOI: 10.1111/jfbc.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
Green beans (Phaseolus vulgaris L.) are consumed as pods or mature seeds (common beans). The pods were extracted with 95% ethanol and processed to prepare non-polar and polar fractions. Comparing the antihyperglycemic activity of both fractions, non-polar fraction (NPF, 200 mg kg-1 day-1 ) lowered blood glucose in streptozotocin diabetic rats by 65% compared to 57% for the polar fraction at the same dose. When NPF treatment was combined with injection of mesenchymal stem cells (MSC) a 4.4-fold increase in serum insulin and a 73.6% reduction in blood glucose were observed compared to untreated control. Additionally, a significant decrease in malondialdehyde (76.2%), nitric oxide (68.2%), cholesterol (76.1%), and triglycerides (69.5%) and a 1.75-fold increase in HDL concentrations were observed in the group treated with this combination compared to diabetic animals. Interestingly, NPF increased homing of MSC in pancreas potentiating their antidiabetic activity. Finally, 26 compounds were identified in NPF using LC/MS analysis and four were isolated in pure form. The isolated compounds namely calotroproceryl acetate, fridelin, calotroproceryl A, and stigmasterol showed good inhibitory activity against pancreatic lipase with IC50 at 1.93, 1.07, 1.34 and 1.44-1 μg/ml, respectively. Additionally, these compounds inhibited α-amylase, albeit at higher concentration, with IC50 at 248, 212, 254, and 155 μg/ml for calotroproceryl acetate, fridelin, calotroproceryl A, and stigmasterol, respectively. Our results suggest that green beans extract can potentiate effect of MSC in diabetes directly due to its own antidiabetic effect and indirectly by increasing MSC homing in pancreatic tissues. PRACTICAL APPLICATIONS: It has been suggested in this study that green beans can improve hyperglycemia, oxidative balance in diabetes, so green beans can be promoted as a healthy nutrient for diabetic patients. Green beans also can enhance homing and differentiation of mesnchymal stem cells in the pancreas for future stem cell therapy of type I diabetes.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mohamed F Abdel Rahman
- Department of Biology and Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Engy A Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amany El Bariary
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
18
|
Goulet O, Pigneur B, Charbit-Henrion F. Congenital enteropathies involving defects in enterocyte structure or differentiation. Best Pract Res Clin Gastroenterol 2022; 56-57:101784. [PMID: 35331396 DOI: 10.1016/j.bpg.2021.101784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Congenital enteropathies (CE) are a group of rare inherited diseases with a typical onset early in life. They involve defects in enterocyte structure or differentiation. They can cause a severe condition of intestinal failure (IF). The diagnostic approach is based first on clinical presentation (consanguinity, prenatal expression, polyhydramnios, early neonatal onset, aspect of stools, persistence at bowel rest, associated extra-digestive manifestations….) and histo-pathological analyses. These rare intestinal diseases cause protracted diarrhea that might resolve, for a few, with a dietetic approach. However, protracted or permanent IF may require long term parenteral nutrition and, in limited cases, intestinal transplantation. With the progresses in both clinical nutrition and genetics, many of these CE are nowadays associated with recognized gene mutations. It improved our knowledge and the understanding in the patho-physiology of these diseases, thus, leading potentially to therapeutic perspectives. These review cover most of the early onset CE and excludes the immune related diarrhea.
Collapse
Affiliation(s)
- Olivier Goulet
- Division of Paediatric Gastroenterology Hepatology and Nutrition, University Paris-Centre, Hôpital Necker-Enfants Malades, 149, Rue de Sèvres, 75743, PARIS Cedex 15, France.
| | - Bénédicte Pigneur
- Division of Paediatric Gastroenterology Hepatology and Nutrition, University Paris-Centre, Hôpital Necker-Enfants Malades, 149, Rue de Sèvres, 75743, PARIS Cedex 15, France
| | - Fabienne Charbit-Henrion
- Department of Genetics, Hôpital Necker-Enfants Malades, 149, Rue de Sèvres, 75743, PARIS Cedex 15, France
| |
Collapse
|
19
|
Mehta V, Hopson PE, Smadi Y, Patel SB, Horvath K, Mehta DI. Development of the human pancreas and its exocrine function. Front Pediatr 2022; 10:909648. [PMID: 36245741 PMCID: PMC9557127 DOI: 10.3389/fped.2022.909648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The pancreas has both endocrine and exocrine function and plays an important role in digestion and glucose control. Understanding the development of the pancreas, grossly and microscopically, and the genetic factors regulating it provides further insight into clinical problems that arise when these processes fail. Animal models of development are known to have inherent issues when understanding human development. Therefore, in this review, we focus on human studies that have reported gross and microscopic development including acinar-, ductal-, and endocrine cells and the neural network. We review the genes and transcription factors involved in organ formation using data from animal models to bridge current understanding where necessary. We describe the development of exocrine function in the fetus and postnatally. A deeper review of the genes involved in pancreatic formation allows us to describe the development of the different groups (proteases, lipids, and amylase) of enzymes during fetal life and postnatally and describe the genetic defects. We discuss the constellation of gross anatomical, as well as microscopic defects that with genetic mutations lead to pancreatic insufficiency and disease states.
Collapse
Affiliation(s)
- Vijay Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Puanani E Hopson
- Department of Children Center, Pediatric and Adolescent Medicine, Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Yamen Smadi
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Samit B Patel
- Pediatric Gastroenterology and Nutrition of Tampa Bay, Tampa Bay, FL, United States
| | - Karoly Horvath
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Devendra I Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| |
Collapse
|
20
|
Alpha-to-beta cell trans-differentiation for treatment of diabetes. Biochem Soc Trans 2021; 49:2539-2548. [PMID: 34882233 PMCID: PMC8786296 DOI: 10.1042/bst20210244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is a significant cause of morbidity and mortality in the United States and worldwide. According to the CDC, in 2017, ∼34.2 million of the American population had diabetes. Also, in 2017, diabetes was the seventh leading cause of death and has become the number one biomedical financial burden in the United States. Insulin replacement therapy and medications that increase insulin secretion and improve insulin sensitivity are the main therapies used to treat diabetes. Unfortunately, there is currently no radical cure for the different types of diabetes. Loss of β cell mass is the end result that leads to both type 1 and type 2 diabetes. In the past decade, there has been an increased effort to develop therapeutic strategies to replace the lost β cell mass and restore insulin secretion. α cells have recently become an attractive target for replacing the lost β cell mass, which could eventually be a potential strategy to cure diabetes. This review highlights the advantages of using α cells as a source for generating new β cells, the various investigative approaches to convert α cells into insulin-producing cells, and the future prospects and problems of this promising diabetes therapeutic strategy.
Collapse
|
21
|
Tailored generation of insulin producing cells from canine mesenchymal stem cells derived from bone marrow and adipose tissue. Sci Rep 2021; 11:12409. [PMID: 34117315 PMCID: PMC8196068 DOI: 10.1038/s41598-021-91774-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 12/30/2022] Open
Abstract
The trend of regenerative therapy for diabetes in human and veterinary practices has conceptually been proven according to the Edmonton protocol and animal models. Establishing an alternative insulin-producing cell (IPC) resource for further clinical application is a challenging task. This study investigated IPC generation from two practical canine mesenchymal stem cells (cMSCs), canine bone marrow-derived MSCs (cBM-MSCs) and canine adipose-derived MSCs (cAD-MSCs). The results illustrated that cBM-MSCs and cAD-MSCs contain distinct pancreatic differentiation potential and require the tailor-made induction protocols. The effective generation of cBM-MSC-derived IPCs needs the integration of genetic and microenvironment manipulation using a hanging-drop culture of PDX1-transfected cBM-MSCs under a three-step pancreatic induction protocol. However, this protocol is resource- and time-consuming. Another study on cAD-MSC-derived IPC generation found that IPC colonies could be obtained by a low attachment culture under the three-step induction protocol. Further, Notch signaling inhibition during pancreatic endoderm/progenitor induction yielded IPC colonies through the trend of glucose-responsive C-peptide secretion. Thus, this study showed that IPCs could be obtained from cBM-MSCs and cAD-MSCs through different induction techniques. Also, further signaling manipulation studies should be conducted to maximize the protocol’s efficiency.
Collapse
|
22
|
Almeida N, Chung MWH, Drudi EM, Engquist EN, Hamrud E, Isaacson A, Tsang VSK, Watt FM, Spagnoli FM. Employing core regulatory circuits to define cell identity. EMBO J 2021; 40:e106785. [PMID: 33934382 PMCID: PMC8126924 DOI: 10.15252/embj.2020106785] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The interplay between extrinsic signaling and downstream gene networks controls the establishment of cell identity during development and its maintenance in adult life. Advances in next-generation sequencing and single-cell technologies have revealed additional layers of complexity in cell identity. Here, we review our current understanding of transcription factor (TF) networks as key determinants of cell identity. We discuss the concept of the core regulatory circuit as a set of TFs and interacting factors that together define the gene expression profile of the cell. We propose the core regulatory circuit as a comprehensive conceptual framework for defining cellular identity and discuss its connections to cell function in different contexts.
Collapse
Affiliation(s)
- Nathalia Almeida
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Matthew W H Chung
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Elena M Drudi
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Elise N Engquist
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Eva Hamrud
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Abigail Isaacson
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Victoria S K Tsang
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Francesca M Spagnoli
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| |
Collapse
|
23
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
24
|
Huijbregts L, Aiello V, Soggia A, Ravassard P, Rachdi L, Scharfmann R, Albagli O. Culture, differentiation, and transduction of mouse E12.5 pancreatic spheres: an in vitro model for the secondary transition of pancreas development. Islets 2021; 13:10-23. [PMID: 33641620 PMCID: PMC8018339 DOI: 10.1080/19382014.2020.1863723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During the secondary transition of rodent pancreatic development, mainly between E12.5 and E15.5 in mice, exocrine and endocrine populations differentiate from pancreatic progenitors. Here we describe an experimental system for its study in vitro. First, we show that spheres derived from dissociated E12.5 mouse pancreases differentiate within 7 days into most pancreatic exocrine and endocrine cell types, including beta cells. The proportion and spatial repartition of the different endocrine populations mirror those observed during normal development. Thus, dissociation and culture do not impair the developmental events affecting pancreatic progenitors during the secondary transition. Moreover, dissociated cells from mouse E12.5 pancreas were transduced with ecotropic MLV-based retroviral vectors or, though less efficiently, with a mixture of ALV(A)-based retroviral vectors and gesicles containing the TVA (Tumor Virus A) receptor. As an additional improvement, we also created a transgenic mouse line expressing TVA under the control of the 4.5 kB pdx1 promoter (pdx1-TVA). We demonstrate that pancreatic progenitors from dissociated pdx1-TVA pancreas can be specifically transduced by ALV(A)-based retroviral vectors. Using this model, we expressed an activated mutant of the YAP transcriptional co-activator in pancreatic progenitors. These experiments indicate that deregulated YAP activity reduces endocrine and exocrine differentiation in the resulting spheres, confirming and extending previously published data. Thus, our experimental model recapitulates in vitro the crucial developmental decisions arising at the secondary transition and provides a convenient tool to study their genetic control.
Collapse
Affiliation(s)
- Lukas Huijbregts
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Virginie Aiello
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Andrea Soggia
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Philippe Ravassard
- Institut du Cerveau et de La Moelle Épinière (ICM), INSERM U1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| | - Latif Rachdi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Raphaël Scharfmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Olivier Albagli
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
- CONTACT Olivier Albagli Institut Cochin, INSERM U1016, 123 Bd Du Port-Royal, Paris75014, France
| |
Collapse
|
25
|
Sim EZ, Shiraki N, Kume S. Recent progress in pancreatic islet cell therapy. Inflamm Regen 2021; 41:1. [PMID: 33402224 PMCID: PMC7784351 DOI: 10.1186/s41232-020-00152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Human pluripotent stem cells (PSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising cell sources in regenerating pancreatic islets through in vitro directed differentiation. Recent progress in this research field has made it possible to generate glucose-responsive pancreatic islet cells from PSCs. Single-cell RNA sequencing techniques have been applied to analyze PSC-derived endocrine beta-cells, which are then compared with human islets. This has led to the identification of novel signaling pathways and molecules involved in lineage commitment during pancreatic differentiation and maturation processes. Single-cell transcriptomics are also used to construct a detailed map of in vivo endocrine differentiation of developing mouse embryos to study pancreatic islet development. Mimicking those occurring in vivo, it was reported that differentiating PSCs can generate similar islet cell structures, while metabolomics analysis highlighted key components involved in PSC-derived pancreatic islet cell function, providing information for the improvement of in vitro pancreatic maturation procedures. In addition, cell transplantation into diabetic animal models, together with the cell delivery system, is studied to ensure the therapeutic potentials of PSC-derived pancreatic islet cells. Combined with gene-editing technology, the engineered mutation-corrected PSC lines originated from diabetes patients could be differentiated into functional pancreatic islet cells, suggesting possible autologous cell therapy in the future. These PSC-derived pancreatic islet cells are a potential tool for studies of disease modeling and drug testing. Herein, we outlined the directed differentiation procedures of PSC-derived pancreatic islet cells, novel findings through transcriptome and metabolome studies, and recent progress in disease modeling.
Collapse
Affiliation(s)
- Erinn Zixuan Sim
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
26
|
Exosome-Mediated Differentiation of Mouse Embryonic Fibroblasts and Exocrine Cells into β-Like Cells and the Identification of Key miRNAs for Differentiation. Biomedicines 2020; 8:biomedicines8110485. [PMID: 33182285 PMCID: PMC7695333 DOI: 10.3390/biomedicines8110485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a concerning health malady worldwide. Islet or pancreas transplantation is the only long-term treatment available; however, the scarcity of transplantable tissues hampers this approach. Therefore, new cell sources and differentiation approaches are required. Apart from the genetic- and small molecule-based approaches, exosomes could induce cellular differentiation by means of their cargo, including miRNA. We developed a chemical-based protocol to differentiate mouse embryonic fibroblasts (MEFs) into β-like cells and employed mouse insulinoma (MIN6)-derived exosomes in the presence or absence of specific small molecules to encourage their differentiation into β-like cells. The differentiated β-like cells were functional and expressed pancreatic genes such as Pdx1, Nkx6.1, and insulin 1 and 2. We found that the exosome plus small molecule combination differentiated the MEFs most efficiently. Using miRNA-sequencing, we identified miR-127 and miR-709, and found that individually and in combination, the miRNAs differentiated MEFs into β-like cells similar to the exosome treatment. We also confirmed that exocrine cells can be differentiated into β-like cells by exosomes and the exosome-identified miRNAs. A new differentiation approach based on the use of exosome-identified miRNAs could help people afflicted with diabetes
Collapse
|
27
|
Scoville DW, Kang HS, Jetten AM. Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacol Ther 2020; 215:107632. [PMID: 32693112 PMCID: PMC7606550 DOI: 10.1016/j.pharmthera.2020.107632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
GLI-Similar 3 (GLIS3) is a member of the GLIS subfamily of Krüppel-like zinc finger transcription factors that functions as an activator or repressor of gene expression. Study of GLIS3-deficiency in mice and humans revealed that GLIS3 plays a critical role in the regulation of several biological processes and is implicated in the development of various diseases, including hypothyroidism and diabetes. This was supported by genome-wide association studies that identified significant associations of common variants in GLIS3 with increased risk of these pathologies. To obtain insights into the causal mechanisms underlying these diseases, it is imperative to understand the mechanisms by which this protein regulates the development of these pathologies. Recent studies of genes regulated by GLIS3 led to the identification of a number of target genes and have provided important molecular insights by which GLIS3 controls cellular processes. These studies revealed that GLIS3 is essential for thyroid hormone biosynthesis and identified a critical function for GLIS3 in the generation of pancreatic β cells and insulin gene transcription. These observations raised the possibility that the GLIS3 signaling pathway might provide a potential therapeutic target in the management of diabetes, hypothyroidism, and other diseases. To develop such strategies, it will be critical to understand the upstream signaling pathways that regulate the activity, expression and function of GLIS3. Here, we review the recent progress on the molecular mechanisms by which GLIS3 controls key functions in thyroid follicular and pancreatic β cells and how this causally relates to the development of hypothyroidism and diabetes.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
28
|
Arutyunyan IV, Fatkhudinov TK, Makarov AV, Elchaninov AV, Sukhikh GT. Regenerative medicine of pancreatic islets. World J Gastroenterol 2020; 26:2948-2966. [PMID: 32587441 PMCID: PMC7304103 DOI: 10.3748/wjg.v26.i22.2948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The pancreas became one of the first objects of regenerative medicine, since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted. The number of people living with diabetes mellitus is currently approaching half a billion, hence the crucial relevance of new methods to stimulate regeneration of the insulin-secreting β-cells of the islets of Langerhans. Natural restrictions on the islet regeneration are very tight; nevertheless, the islets are capable of physiological regeneration via β-cell self-replication, direct differentiation of multipotent progenitor cells and spontaneous α- to β- or δ- to β-cell conversion (trans-differentiation). The existing preclinical models of β-cell dysfunction or ablation (induced surgically, chemically or genetically) have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation. The ultimate goal, sufficient level of functional activity of β-cells or their substitutes can be achieved by two prospective broad strategies: β-cell replacement and β-cell regeneration. The "regeneration" strategy aims to maintain a preserved population of β-cells through in situ exposure to biologically active substances that improve β-cell survival, replication and insulin secretion, or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β- to β-cell conversion. The "replacement" strategy implies transplantation of β-cells (as non-disintegrated pancreatic material or isolated donor islets) or β-like cells obtained ex vivo from progenitors or mature somatic cells (for example, hepatocytes or α-cells) under the action of small-molecule inducers or by genetic modification. We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally active β-cells, the innermost hope of millions of people globally.
Collapse
Affiliation(s)
- Irina V Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| | - Timur Kh Fatkhudinov
- Research Institute of Human Morphology, Moscow 117418, Russia
- Peoples Friendship University of Russia, Moscow 117198, Russia
| | - Andrey V Makarov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| |
Collapse
|
29
|
Yang XF, Zhou SY, Wang C, Huang W, Li N, He F, Li FR. Inhibition of LSD1 promotes the differentiation of human induced pluripotent stem cells into insulin-producing cells. Stem Cell Res Ther 2020; 11:185. [PMID: 32430053 PMCID: PMC7238565 DOI: 10.1186/s13287-020-01694-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) represent a potentially unlimited source of pancreatic endocrine lineage cells. Although insulin-producing β cells derived from hiPSCs have been successfully induced, much work remains to be done to achieve mature β cells. Lysine-specific demethylase 1 (LSD1) plays an important role in the regulation of hiPSC self-renewal and differentiation. We propose a new strategy to acquire insulin-producing cells (IPCs) from hiPSCs by knocking down LSD1. METHODS Knockdown of LSD1 in hiPSCs with five shRNA. Assessment of the effects of shRNA on hiPSC proliferation, cell cycle, and apoptosis. Using knockdown hiPSCs with 31.33% LSD1 activity, we achieved a four-step differentiation into IPCs and test its differentiation efficiency, morphology, and marker genes and proteins. We implanted the IPCs into the renal subcapsular of SCID-Beige diabetic mice to evaluate the hypoglycemic effect in vivo. We tested LSD1 and HDAC1 whether they are present in the CoREST complex through IP-WB, and analyzed LSD1, CoREST, HDAC1, H3K4me2/me3, and H3K27me3 protein expression before and after knockdown of LSD1. RESULTS Differentiated hiPSCs were 38.32% ± 3.54% insulin-positive cells and released insulin/C-peptide in response to glucose stimulus in a manner comparable to adult human islets. Most of the IPCs co-expressed mature β cell-specific markers. When transplanted under the left renal capsule of SCID-Beige diabetic mice, these IPCs reversed hyperglycemia, leading to a significant increase in the definitive endoderm cells. IP-WB results showed that LSD1, HDAC1, and CoREST formed a complex in hiPSCs. Chip-PCR results showed that LSD1, HDAC1, and CoREST were enriched in the same district during the SOX17 and FOXA2 promoter region. Inhibition of LSD1 would not affect the level of CoREST but decreased the HDAC1 expressions. The H3K4me2/me3 and H3K9act level of SOX17 and FOXA2 promoter region increased after inhibited of LSD1, and promoted transcriptional activation. The H3K4me2/me3 and H3K9act level of OCT4 and SOX2 promoter region decreased with the transcriptional repressed. CONCLUSIONS LSD1 regulated histone methylation and acetylation in promoter regions of pluripotent or endodermal genes. Our results suggest a highly efficient approach to producing IPCs from hiPSCs.
Collapse
Affiliation(s)
- Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Ji'nan University, 1017 Dongmen North Road, Shenzhen, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Shu-Yan Zhou
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Ji'nan University, 1017 Dongmen North Road, Shenzhen, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China
| | - Ce Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Ji'nan University, 1017 Dongmen North Road, Shenzhen, 518020, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ning Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Ji'nan University, 1017 Dongmen North Road, Shenzhen, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China
| | - Fei He
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Ji'nan University, 1017 Dongmen North Road, Shenzhen, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China. .,Shenzhen Cell Therapy Public Service Platform, Shenzhen, 518020, China.
| |
Collapse
|
30
|
Leu SY, Kuo LH, Weng WT, Lien IC, Yang CC, Hsieh TT, Cheng YN, Chien PH, Ho LC, Chen SH, Shan YS, Chen YW, Chen PC, Tsai PJ, Sung JM, Tsai YS. Loss of EGR-1 uncouples compensatory responses of pancreatic β cells. Theranostics 2020; 10:4233-4249. [PMID: 32226550 PMCID: PMC7086362 DOI: 10.7150/thno.40664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale: Subjects unable to sustain β-cell compensation develop type 2 diabetes. Early growth response-1 protein (EGR-1), implicated in the regulation of cell differentiation, proliferation, and apoptosis, is induced by diverse metabolic challenges, such as glucose or other nutrients. Therefore, we hypothesized that deficiency of EGR-1 might influence β-cell compensation in response to metabolic overload. Methods: Mice deficient in EGR-1 (Egr1-/-) were used to investigate the in vivo roles of EGR-1 in regulation of glucose homeostasis and beta-cell compensatory responses. Results: In response to a high-fat diet, Egr1-/- mice failed to secrete sufficient insulin to clear glucose, which was associated with lower insulin content and attenuated hypertrophic response of islets. High-fat feeding caused a dramatic impairment in glucose-stimulated insulin secretion and downregulated the expression of genes encoding glucose sensing proteins. The cells co-expressing both insulin and glucagon were dramatically upregulated in islets of high-fat-fed Egr1-/- mice. EGR-1-deficient islets failed to maintain the transcriptional network for β-cell compensatory response. In human pancreatic tissues, EGR1 expression correlated with the expression of β-cell compensatory genes in the non-diabetic group, but not in the diabetic group. Conclusion: These results suggest that EGR-1 couples the transcriptional network to compensation for the loss of β-cell function and identity. Thus, our study highlights the early stress coupler EGR-1 as a critical factor in the development of pancreatic islet failure.
Collapse
|
31
|
Solorzano-Vargas RS, Bjerknes M, Wang J, Wu SV, Garcia-Careaga MG, Pitukcheewanont P, Cheng H, German MS, Georgia S, Martín MG. Null mutations of NEUROG3 are associated with delayed-onset diabetes mellitus. JCI Insight 2020; 5:127657. [PMID: 31805014 DOI: 10.1172/jci.insight.127657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023] Open
Abstract
Biallelic mutations of the gene encoding the transcription factor NEUROG3 are associated with a rare disorder that presents in neonates as generalized malabsorption - due to a complete absence of enteroendocrine cells - followed, in early childhood or beyond, by insulin-dependent diabetes mellitus (IDDM). The commonly delayed onset of IDDM suggests a differential requirement for NEUROG3 in endocrine cell generation in the human pancreas versus the intestine. However, previously identified human mutations were hypomorphic and, hence, may have had residual function in pancreas. We report 2 patients with biallelic functionally null variants of the NEUROG3 gene who nonetheless did not present with IDDM during infancy but instead developed permanent IDDM during middle childhood ages. The variants showed no evidence of function in traditional promoter-based assays of NEUROG3 function and also failed to exhibit function in a variety of potentially novel in vitro and in vivo molecular assays designed to discern residual NEUROG3 function. These findings imply that, unlike in mice, pancreatic endocrine cell generation in humans is not entirely dependent on NEUROG3 expression and, hence, suggest the presence of unidentified redundant in vivo pathways in human pancreas capable of yielding β cell mass sufficient to maintain euglycemia until early childhood.
Collapse
Affiliation(s)
- R Sergio Solorzano-Vargas
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Matthew Bjerknes
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jiafang Wang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - S Vincent Wu
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Pisit Pitukcheewanont
- Division of Endocrinology, Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, California, USA
| | - Hazel Cheng
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael S German
- Diabetes Center and.,Department of Medicine, UCSF, San Francisco, California, USA
| | - Senta Georgia
- Division of Endocrinology, Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, California, USA
| | - Martín G Martín
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, California, USA
| |
Collapse
|
32
|
Korchynska S, Krassnitzer M, Malenczyk K, Prasad RB, Tretiakov EO, Rehman S, Cinquina V, Gernedl V, Farlik M, Petersen J, Hannes S, Schachenhofer J, Reisinger SN, Zambon A, Asplund O, Artner I, Keimpema E, Lubec G, Mulder J, Bock C, Pollak DD, Romanov RA, Pifl C, Groop L, Hökfelt TGM, Harkany T. Life-long impairment of glucose homeostasis upon prenatal exposure to psychostimulants. EMBO J 2020; 39:e100882. [PMID: 31750562 PMCID: PMC6939201 DOI: 10.15252/embj.2018100882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic β cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.
Collapse
Affiliation(s)
- Solomiia Korchynska
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Maria Krassnitzer
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Katarzyna Malenczyk
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Rashmi B Prasad
- Department of Clinical Sciences, Diabetes and Endocrinology CRCSkåne University Hospital MalmöMalmöSweden
| | - Evgenii O Tretiakov
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sabah Rehman
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Valentina Cinquina
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Victoria Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Julian Petersen
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sophia Hannes
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Julia Schachenhofer
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sonali N Reisinger
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Alice Zambon
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Olof Asplund
- Department of Clinical Sciences, Diabetes and Endocrinology CRCSkåne University Hospital MalmöMalmöSweden
| | - Isabella Artner
- Stem Cell CenterLund UniversityLundSweden
- Endocrine Cell Differentiation and FunctionLund University Diabetes CenterLund UniversityMalmöSweden
| | - Erik Keimpema
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Gert Lubec
- Paracelsus Medical UniversitySalzburgAustria
| | - Jan Mulder
- Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Daniela D Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Roman A Romanov
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Christian Pifl
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology CRCSkåne University Hospital MalmöMalmöSweden
- Institute for Molecular Medicine Finland (FIMM)Helsinki UniversityHelsinkiFinland
| | | | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
- Department of NeuroscienceKarolinska InstitutetSolnaSweden
| |
Collapse
|
33
|
Urbanczyk M, Zbinden A, Layland SL, Duffy G, Schenke-Layland K. Controlled Heterotypic Pseudo-Islet Assembly of Human β-Cells and Human Umbilical Vein Endothelial Cells Using Magnetic Levitation. Tissue Eng Part A 2019; 26:387-399. [PMID: 31680653 PMCID: PMC7187983 DOI: 10.1089/ten.tea.2019.0158] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
β-Cell functionality and survival are highly dependent on the cells' microenvironment and cell–cell interactions. Since the pancreas is a highly vascularized organ, the crosstalk between β-cells and endothelial cells (ECs) is vital to ensure proper function. To understand the interaction of pancreatic β-cells with vascular ECs, we sought to investigate the impact of the spatial distribution on the interaction of human cell line-based β-cells (EndoC-βH3) and human umbilical vein endothelial cells (HUVECs). We focused on the evaluation of three major spatial distributions, which can be found within human islets in vivo, in tissue-engineered heterotypic cell spheroids, so-called pseudo-islets, by controlling the aggregation process using magnetic levitation. We report that heterotypic spheroids formed by spontaneous aggregation cannot be maintained in culture due to HUVEC disassembly over time. In contrast, magnetic levitation allows the formation of stable heterotypic spheroids with defined spatial distribution and significantly facilitated HUVEC integration. To the best of our knowledge, this is the first study that introduces a human-only cell line-based in vitro test system composed of a coculture of β-cells and ECs with a successful stimulation of β-cell secretory function monitored by a glucose-stimulated insulin secretion assays. In addition, we systematically investigate the impact of the spatial distribution on cocultures of human β-cells and ECs, showing that the architecture of pseudo-islets significantly affects β-cell functionality.
Collapse
Affiliation(s)
- Max Urbanczyk
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry Duffy
- Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, California
| |
Collapse
|
34
|
RNA binding protein HuD and microRNA-203a cooperatively regulate insulinoma-associated 1 mRNA. Biochem Biophys Res Commun 2019; 521:971-976. [PMID: 31722792 DOI: 10.1016/j.bbrc.2019.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/02/2023]
Abstract
RNA binding protein HuD regulates translation and turnover of target mRNAs, thereby affecting gene expression at the posttranscriptional level in mainly neuronal as well as pancreatic β-cells. Here, we identified insulinoma-associated 1 (INSM1), an essential factor governing differentiation and proliferation of neuroendocrine cells, as a novel target of HuD and demonstrated the regulatory mechanism of INSM1 expression by HuD. HuD bound to 3'untranslated region (3'UTR) of Insm1 mRNA and negatively regulated its expression; knockdown of HuD increased INSM1 expression, while HuD overexpression repressed it by destabilizing its mRNA. In addition, we further demonstrated that HuD enhanced reduction of INSM1 by miR-203a, a novel miRNA targeting Insm1 mRNA 3'UTR. These results suggest that HuD and miR-203a cooperatively regulate INSM1 expression and it provides a novel regulatory mechanism of INSM1 expression by HuD and miR-203a.
Collapse
|
35
|
Abstract
Single cell biology is currently revolutionizing developmental and evolutionary biology, revealing new cell types and states in an impressive range of biological systems. With the accumulation of data, however, the field is grappling with a central unanswered question: what exactly is a cell type? This question is further complicated by the inherently dynamic nature of developmental processes. In this Hypothesis article, we propose that a 'periodic table of cell types' can be used as a framework for distinguishing cell types from cell states, in which the periods and groups correspond to developmental trajectories and stages along differentiation, respectively. The different states of the same cell type are further analogous to 'isotopes'. We also highlight how the concept of a periodic table of cell types could be useful for predicting new cell types and states, and for recognizing relationships between cell types throughout development and evolution.
Collapse
Affiliation(s)
- Bo Xia
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
36
|
Nakayama S, Sekiguchi T, Ogasawara M. Molecular and evolutionary aspects of the protochordate digestive system. Cell Tissue Res 2019; 377:309-320. [PMID: 31049686 DOI: 10.1007/s00441-019-03035-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
The digestive system is a functional unit consisting of an endodermal tubular structure (alimentary canal) and accessory organs that function in nutrition processing in most triploblastic animals. Various morphologies and apparatuses are formed depending on the phylogenetical relationship and food habits of the specific species. Nutrition processing and morphogenesis of the alimentary canal and accessory organs have both been investigated in vertebrates, mainly humans and mammals. When attempting to understand the evolutionary processes that led to the vertebrate digestive system, however, it is useful to examine other chordates, specifically protochordates, which share fundamental functional and morphogenetic molecules with vertebrates, which also possess non-duplicated genomes. In protochordates, basic anatomical and physiological studies have mainly described the characteristic traits of suspension feeders. Recent progress in genome sequencing has allowed researchers to comprehensively detail protochordate genes and has compared the genetic backgrounds among chordate nutrition processing and alimentary canal/accessory organ systems based on genomic information. Gene expression analyses have revealed spatiotemporal gene expression profiles in protochordate alimentary canals. Additionally, to investigate the basis of morphological diversity in the chordate alimentary canal and accessory organs, evolutionary developmental research has examined developmental transcription factors related to morphogenesis and anterior-posterior pattering of the alimentary canal and accessory organs. In this review, we summarize the current knowledge of molecules involved in nutrition processing and the development of the alimentary canal and accessory organs with innate immune and endocrine roles in protochordates and we explore the molecular basis for understanding the evolution of the chordate digestive system.
Collapse
Affiliation(s)
- Satoshi Nakayama
- The Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Toshio Sekiguchi
- The Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Hosu-gun, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- The Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
37
|
Ito K, Matsuura K, Mihara Y, Sakamoto Y, Hasegawa K, Kokudo N, Shimizu T. Delivery of pancreatic digestive enzymes into the gastrointestinal tract by pancreatic exocrine tissue transplant. Sci Rep 2019; 9:5922. [PMID: 30976035 PMCID: PMC6459827 DOI: 10.1038/s41598-019-42362-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Exocrine pancreatic insufficiency, caused by disease-induced loss of pancreatic exocrine cells, may be treated through regenerative stem cell technologies that facilitate the production of pancreatic exocrine cells from induced pluripotent stem cells (iPSCs). However, delivering the digestive enzymes produced in the transplanted cells to the gastrointestinal tract remains a challenge. To generate an allogenic transplantation rat model, minced pancreas was transplanted into the gastric submucosal space with ablation of muscularis mucosa. In the allogenic transplantation, transplanted pancreatic cells were engrafted. Elevated amylase was detected in gastric juice, while transplanted cells disappeared through auto-digestion when the muscularis mucosa was not eliminated. Human iPSCs were differentiated into pancreatic exocrine cells by stage-specific treatment with growth factors and chemical compounds, and the differentiated pancreatic cells were implanted into the gastric submucosal space of nude rats. The transplanted cells were engrafted, and amylase was detected in the gastric juice in some cases. These findings suggest that transplantation of pancreatic exocrine cells into the gastric submucosal space with muscularis mucosa elimination will contribute to a regenerative approach for pancreatic exocrine insufficiency.
Collapse
Affiliation(s)
- Kyoji Ito
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.,Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yuichiro Mihara
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.,Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Sakamoto
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
38
|
Solis MA, Moreno Velásquez I, Correa R, Huang LLH. Stem cells as a potential therapy for diabetes mellitus: a call-to-action in Latin America. Diabetol Metab Syndr 2019; 11:20. [PMID: 30820250 PMCID: PMC6380040 DOI: 10.1186/s13098-019-0415-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Latin America is a fast-growing region that currently faces unique challenges in the treatment of all forms of diabetes mellitus. The burden of this disease will be even greater in the coming years due, in part, to the large proportion of young adults living in urban areas and engaging in unhealthy lifestyles. Unfortunately, the national health systems in Latin-American countries are unprepared and urgently need to reorganize their health care services to achieve diabetic therapeutic goals. Stem cell research is attracting increasing attention as a promising and fast-growing field in Latin America. As future healthcare systems will include the development of regenerative medicine through stem cell research, Latin America is urged to issue a call-to-action on stem cell research. Increased efforts are required in studies focused on stem cells for the treatment of diabetes. In this review, we aim to inform physicians, researchers, patients and funding sources about the advances in stem cell research for possible future applications in diabetes mellitus. Emerging studies are demonstrating the potential of stem cells for β cell differentiation and pancreatic regeneration. The major economic burden implicated in patients with diabetes complications suggests that stem cell research may relieve diabetic complications. Closer attention should be paid to stem cell research in the future as an alternative treatment for diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Ricardo Correa
- Department of Medicine, Warren Alpert School of Medicine, Brown University, Rhode Island, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ USA
| | - Lynn L. H. Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
39
|
Zhang N, Gao D, Liu Y, Ji S, Sha L. Effects of Neuropeptide Substance P on Proliferation and β-Cell Differentiation of Adult Pancreatic Ductal Cells. Front Neurosci 2018; 12:806. [PMID: 30455626 PMCID: PMC6230717 DOI: 10.3389/fnins.2018.00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
Purpose: The pancreas is innervated by sensory nerves, parasympathetic and sympathetic nerves. The classical neurotransmitters, acetylcholine and noradrenaline, and some kind of neuropeptides are contained in the terminals of these nerves. Neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) co-released from the primary sensory fibers have been identified as the key neurotransmitters in pancreas. Pancreatic ductal epithelium cells are one of the important sources of the pancreatic islet β-cell neogenesis. We hypothesized that SP and CGRP might play a role on proliferation of ductal cells and differentiation of ductal cells toward the β-cell neogenesis. Methods: Primary ductal cells of rat pancreas at the third passage (P3) were used. The identification of P3 cells were confirmed with flow cytometry analysis and immunostaining by CK19 (the ductal cell marker). Proliferation of ductal cells was verified by CCK-8 assay and Ki67 immunostaining. Differentiation of ductal cells was determined with immunostaining and flow cytometry. Possible mechanism was explored by testing the key proteins of Wnt signaling using Western blot analysis. Results: Our data showed that SP but not CGRP promoted proliferation of ductal cells. Moreover, NK-1 receptor antagonist L-703,606 blocked the SP-induced stimulation of proliferation. The results of Western blot analysis showed that L-703,606 attenuated the effects of substance P on NK1R, GSK-3β, and β-catenin expression. However, SP did not directly induce the differentiation of ductal cells into β-cells, and did not promote the progression of ductal cells to differentiate into more insulin-produced cells in induction medium. Conclusions: These findings suggested that SP but not CGRP promoted proliferation of adult pancreatic ductal cells. SP promoted proliferation of ductal cells but not differentiation into β-cells. NK1R and Wnt signaling pathway might be involved in the mechanism of promoting the proliferation of ductal cells by SP. Findings in this study indicated the lack of SP might be a possible indicator for the initial of diabetes. SP could also be used as a drug candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yudan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Sihan Ji
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
40
|
Srivastava A, Dadheech N, Vakani M, Gupta S. Pancreatic resident endocrine progenitors demonstrate high islet neogenic fidelity and committed homing towards diabetic mice pancreas. J Cell Physiol 2018; 234:8975-8987. [PMID: 30341903 DOI: 10.1002/jcp.27568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic progenitors have been explored for their profound characteristics and unique commitment to generate new functional islets in regenerative medicine. Pancreatic resident endocrine progenitors (PREPs) with mesenchymal stem cell (MSC) phenotype were purified from BALB/c mice pancreas and characterized. PREPs were differentiated into mature islet clusters in vitro by activin-A and swertisin and functionally characterized. A temporal gene and protein profiling was performed during differentiation. Furthermore, PREPs were labeled with green fluorescent protein (GFP) and transplanted intravenously into streptozotocin (STZ) diabetic mice while monitoring their homing and differentiation leading to amelioration in the diabetic condition. PREPs were positive for unique progenitor markers and transcription factors essential for endocrine pancreatic homeostasis along with having the multipotent MSC phenotype. These cells demonstrated high fidelity for islet neogenesis in minimum time (4 days) to generate mature functional islet clusters (shortest reported period for any isolated stem/progenitor). Furthermore, GFP-labeled PREPs transplanted in STZ diabetic mice migrated and localized within the injured pancreas without trapping in any other major organ and differentiated rapidly into insulin-producing cells without an external stimulus. A rapid decrease in fasting blood glucose levels toward normoglycemia along with significant increase in fasting serum insulin levels was observed, which ameliorated the diabetic condition. This study highlights the unique potential of PREPs to generate mature islets within the shortest period and their robust homing toward the damaged pancreas, which ameliorated the diabetic condition suggesting PREPs affinity toward their niche, which can be exploited and extended to other stem cell sources in diabetic therapeutics.
Collapse
Affiliation(s)
- Abhay Srivastava
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nidheesh Dadheech
- Dr. AM James Shapiro Laboratory, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Mitul Vakani
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Sarita Gupta
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
41
|
Danilova T, Lindahl M. Emerging Roles for Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) in Pancreatic Beta Cells and Diabetes. Front Physiol 2018; 9:1457. [PMID: 30386256 PMCID: PMC6198132 DOI: 10.3389/fphys.2018.01457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) was originally identified as a secreted trophic factor for dopamine neurons in vitro. It protects and restores damaged cells in rodent models of Parkinson's disease, brain and heart ischemia, spinocerebellar ataxia and retina in vivo. However, its exact mechanism of action is not known. MANF is widely expressed in most human and mouse organs with high levels in secretory tissues. Intracellularly, MANF localizes to the endoplasmic reticulum (ER) and ER stress increases it's expression in cells and tissues. Furthermore, increased MANF levels has been detected in the sera of young children with newly diagnosed Type 1 (T1D) diabetes and Type 2 (T2D) diabetic patients. ER stress is caused by the accumulation of misfolded and aggregated proteins in the ER. It activates a cellular defense mechanism, the unfolded protein response (UPR), a signaling cascade trying to restore ER homeostasis. However, if prolonged, unresolved ER stress leads to apoptosis. Unresolved ER stress contributes to the progressive death of pancreatic insulin-producing beta cells in both T1D and T2D. Diabetes mellitus is characterized by hyperglycemia, caused by the inability of the beta cells to maintain sufficient levels of circulating insulin. The current medications, insulin and antidiabetic drugs, alleviate diabetic symptoms but cannot reconstitute physiological insulin secretion which increases the risk of devastating vascular complications of the disease. Thus, one of the main strategies in improving current diabetes therapy is to define and validate novel approaches to protect beta cells from stress as well as activate their regeneration. Embryonic deletion of the Manf gene in mice led to gradual postnatal development of insulin-deficient diabetes caused by reduced beta cell proliferation and increased beta cell death due to increased and sustained ER stress. In vitro, recombinant MANF partly protected mouse and human beta cells from ER stress-induced beta cell death and potentiated mouse and human beta cell proliferation. Importantly, in vivo overexpression of MANF in the pancreas of T1D mice led to increased beta cell proliferation and decreased beta cell death, suggesting that MANF could be a new therapeutic candidate for beta cell protection and regeneration in diabetes.
Collapse
Affiliation(s)
- Tatiana Danilova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Anzi S, Stolovich-Rain M, Klochendler A, Fridlich O, Helman A, Paz-Sonnenfeld A, Avni-Magen N, Kaufman E, Ginzberg MB, Snider D, Ray S, Brecht M, Holmes MM, Meir K, Avivi A, Shams I, Berkowitz A, Shapiro AMJ, Glaser B, Ben-Sasson S, Kafri R, Dor Y. Postnatal Exocrine Pancreas Growth by Cellular Hypertrophy Correlates with a Shorter Lifespan in Mammals. Dev Cell 2018; 45:726-737.e3. [PMID: 29920277 DOI: 10.1016/j.devcel.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
Abstract
Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects.
Collapse
Affiliation(s)
- Shira Anzi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ori Fridlich
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aharon Helman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Avital Paz-Sonnenfeld
- The Tisch Family Zoological Gardens in Jerusalem, Box 898, Manhat, Jerusalem 91008, Israel
| | - Nili Avni-Magen
- The Tisch Family Zoological Gardens in Jerusalem, Box 898, Manhat, Jerusalem 91008, Israel
| | - Elizabeth Kaufman
- The Tisch Family Zoological Gardens in Jerusalem, Box 898, Manhat, Jerusalem 91008, Israel
| | | | - Daniel Snider
- The Hospital for Sick Children, University of Toronto, ON, Canada
| | - Saikat Ray
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Karen Meir
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Aaron Avivi
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Imad Shams
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Asaf Berkowitz
- Department of Pathology, Kimron Veterinary Institute, Beit Dagan, Israel
| | | | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shmuel Ben-Sasson
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ran Kafri
- The Hospital for Sick Children, University of Toronto, ON, Canada
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
43
|
Demirbilek H, Hatipoglu N, Gul U, Tatli ZU, Ellard S, Flanagan SE, De Franco E, Kurtoglu S. Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. Pediatr Diabetes 2018. [PMID: 29521454 DOI: 10.1111/pedi.12669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor, neuronal differentiation 1 (NEUROD1) (also known as BETA2) is involved in the development of neural elements and endocrine pancreas. Less than 10 reports of adult-onset non-insulin-dependent diabetes mellitus (NIDDM) due to heterozygous NEUROD1 mutations and 2 cases with permanent neonatal diabetes mellitus (PNDM) and neurological abnormalities due to homozygous NEUROD1 mutations have been published. A 13 year-old female was referred to endocrine department due to hyperglycemia. She was on insulin therapy following a diagnosis of neonatal diabetes mellitus (NDM) at the age of 9-weeks but missed regular follow-up. Parents are second cousin. There was a significant family history of adult onset NIDDM including patient's father. Auxological measurements were within normal ranges. On laboratory examination blood glucose was 33.2 mmol/L with undetectable c-peptide and glycosylated hemoglobin level of 8.9% (73.8 mmol/mol). She had developed difficulty in walking at the age of 4 years which had worsened over time. On further evaluation, a diagnosis of visual impairment, mental retardation, ataxic gait, retinitis pigmentosa and sensory-neural deafness were considered. Cranial magnetic resonance imaging revealed cerebellar hypoplasia. Molecular genetic analysis using targeted next generation sequencing detected a novel homozygous missense mutation, p.Ile150Asn(c.449T>A), in NEUROD1. Both parents and 2 unaffected siblings were heterozygous for the mutation. We report the third case of PNDM with neurological abnormalities caused by homozygous NEUROD1 mutation, the first caused by a missense mutation. Heterozygous carriers of the p.Ile150Asn mutation were either unaffected or diagnosed with diabetes in adulthood. It is currently unclear whether the NEUROD1 heterozygous mutation has contributed to diabetes development in these individuals.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Nihal Hatipoglu
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ulku Gul
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Zeynep U Tatli
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Sian Ellard
- Department of Molecular Genetics, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Department of Molecular Genetics, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Elisa De Franco
- Department of Molecular Genetics, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Selim Kurtoglu
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| |
Collapse
|
44
|
Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactational programming of glucose homeostasis: a window of opportunity. Reproduction 2018; 156:R23-R42. [PMID: 29752297 PMCID: PMC6668618 DOI: 10.1530/rep-17-0780] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.
Collapse
Affiliation(s)
- Lindsay Ellsworth
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Emma Harman
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | | | - Brigid Gregg
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Amin S, Cook B, Zhou T, Ghazizadeh Z, Lis R, Zhang T, Khalaj M, Crespo M, Perera M, Xiang JZ, Zhu Z, Tomishima M, Liu C, Naji A, Evans T, Huangfu D, Chen S. Discovery of a drug candidate for GLIS3-associated diabetes. Nat Commun 2018; 9:2681. [PMID: 29992946 PMCID: PMC6041295 DOI: 10.1038/s41467-018-04918-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
GLIS3 mutations are associated with type 1, type 2, and neonatal diabetes, reflecting a key function for this gene in pancreatic β-cell biology. Previous attempts to recapitulate disease-relevant phenotypes in GLIS3−/− β-like cells have been unsuccessful. Here, we develop a “minimal component” protocol to generate late-stage pancreatic progenitors (PP2) that differentiate to mono-hormonal glucose-responding β-like (PP2-β) cells. Using this differentiation platform, we discover that GLIS3−/− hESCs show impaired differentiation, with significant death of PP2 and PP2-β cells, without impacting the total endocrine pool. Furthermore, we perform a high-content chemical screen and identify a drug candidate that rescues mutant GLIS3-associated β-cell death both in vitro and in vivo. Finally, we discovered that loss of GLIS3 causes β-cell death, by activating the TGFβ pathway. This study establishes an optimized directed differentiation protocol for modeling human β-cell disease and identifies a drug candidate for treating a broad range of GLIS3-associated diabetic patients. GLIS3 mutations are associated with type 1, type 2, and neonatal diabetes. Here, the authors generate mono-hormonal glucose-responding pancreatic β-like cells in vitro and through a screen identify a drug that rescues pancreatic β-like cell death in GLIS3 mutants by inhibiting the abnormally activated TGFβ pathway.
Collapse
Affiliation(s)
- Sadaf Amin
- Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.,Department of Surgery, 1300 York Avenue, New York, NY, 10065, USA
| | - Brandoch Cook
- Department of Surgery, 1300 York Avenue, New York, NY, 10065, USA
| | - Ting Zhou
- Department of Surgery, 1300 York Avenue, New York, NY, 10065, USA
| | | | - Raphael Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, 1300 York Avenue, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, 1300 York Avenue, New York, NY, 10065, USA
| | - Mona Khalaj
- Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Miguel Crespo
- Department of Surgery, 1300 York Avenue, New York, NY, 10065, USA
| | - Manuradhi Perera
- Department of Surgery, 1300 York Avenue, New York, NY, 10065, USA
| | | | - Zengrong Zhu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Mark Tomishima
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA.,SKI Stem Cell Research Facility, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Todd Evans
- Department of Surgery, 1300 York Avenue, New York, NY, 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA.
| | - Shuibing Chen
- Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Surgery, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
46
|
Swertisin ameliorates diabetes by triggering pancreatic progenitors for islet neogenesis in Streptozotocin treated BALB/c mice. Biomed Pharmacother 2018; 100:221-225. [DOI: 10.1016/j.biopha.2018.01.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
|
47
|
Kim DS, Song L, Wang J, Wu H, Gu G, Sugi Y, Li Z, Wang H. GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice. Endocrinology 2018; 159:1062-1073. [PMID: 29272356 PMCID: PMC5793778 DOI: 10.1210/en.2017-00685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Deficiencies in pancreatic β-cell mass contribute to both type 1 and type 2 diabetes. We investigated the role of the glucose-regulated protein (GRP) 94, an endoplasmic reticulum protein abundantly expressed in the pancreatic acini and islets, in β-cell development, survival, and function. We used a conditional knockout (KO) mouse in which the GRP94 gene, Hsp90b1, was specifically deleted in pancreatic and duodenal homeobox 1 (Pdx1)-expressing cells. These Hsp90b1 flox/flox;Pdx1Cre KO mice exhibited pancreatic hypoplasia at embryonic day (E) 16.5 to E18.5 and had significantly reduced β-cell mass at 4 weeks after birth. Further mechanistic studies showed that deletion of GRP94 reduced β-cell proliferation with increased cell apoptosis in both Pdx1+ endocrine progenitor cells and differentiated β cells. Although Hsp90b1 flox/flox;Pdx1Cre KO mice remained euglycemic at 8 weeks of age, they exhibited impaired glucose tolerance. In aggregate, these findings indicate that GRP94 is an essential regulator of pancreatic β-cell development, mass, and function.
Collapse
Affiliation(s)
- Do-sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hongju Wu
- Department of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235
| | - Yukiko Sugi
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Zihai Li
- Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
48
|
Lee SH, Rhee M, Kim JW, Yoon KH. Generation of Insulin-Expressing Cells in Mouse Small Intestine by Pdx1, MafA, and BETA2/NeuroD. Diabetes Metab J 2017; 41:405-416. [PMID: 29086539 PMCID: PMC5663680 DOI: 10.4093/dmj.2017.41.5.405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/03/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To develop surrogate insulin-producing cells for diabetes therapy, adult stem cells have been identified in various tissues and studied for their conversion into β-cells. Pancreatic progenitor cells are derived from the endodermal epithelium and formed in a manner similar to gut progenitor cells. Here, we generated insulin-producing cells from the intestinal epithelial cells that induced many of the specific pancreatic transcription factors using adenoviral vectors carrying three genes: PMB (pancreatic and duodenal homeobox 1 [Pdx1], V-maf musculoaponeurotic fibrosarcoma oncogene homolog A [MafA], and BETA2/NeuroD). METHODS By direct injection into the intestine through the cranial mesenteric artery, adenoviruses (Ad) were successfully delivered to the entire intestine. After virus injection, we could confirm that the small intestine of the mouse was appropriately infected with the Ad-Pdx1 and triple Ad-PMB. RESULTS Four weeks after the injection, insulin mRNA was expressed in the small intestine, and the insulin gene expression was induced in Ad-Pdx1 and Ad-PMB compared to control Ad-green fluorescent protein. In addition, the conversion of intestinal cells into insulin-expressing cells was detected in parts of the crypts and villi located in the small intestine. CONCLUSION These data indicated that PMB facilitate the differentiation of mouse intestinal cells into insulin-expressing cells. In conclusion, the small intestine is an accessible and abundant source of surrogate insulin-producing cells.
Collapse
Affiliation(s)
- So Hyun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
49
|
Gnatenko DA, Kopantzev EP, Sverdlov ED. [Fibroblast growth factors and their effects in pancreas organogenesis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:211-218. [PMID: 28781254 DOI: 10.18097/pbmc20176303211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.
Collapse
Affiliation(s)
- D A Gnatenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E P Kopantzev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E D Sverdlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| |
Collapse
|
50
|
Oxidative Stress in Pancreatic Beta Cell Regeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1930261. [PMID: 28845211 PMCID: PMC5560096 DOI: 10.1155/2017/1930261] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023]
Abstract
Pancreatic β cell neogenesis and proliferation during the neonatal period are critical for the generation of sufficient pancreatic β cell mass/reserve and have a profound impact on long-term protection against type 2 diabetes (T2D). Oxidative stress plays an important role in β cell neogenesis, proliferation, and survival under both physiological and pathophysiological conditions. Pancreatic β cells are extremely susceptible to oxidative stress due to a high endogenous production of reactive oxygen species (ROS) and a low expression of antioxidative enzymes. In this review, we summarize studies describing the critical roles and the mechanisms of how oxidative stress impacts β cell neogenesis and proliferation. In addition, the effects of antioxidant supplements on reduction of oxidative stress and increase of β cell proliferation are discussed. Exploring the roles and the potential therapeutic effects of antioxidants in the process of β cell regeneration would provide novel perspectives to preserve and/or expand pancreatic β cell mass for the treatment of T2D.
Collapse
|