1
|
Chen C, Xu B, Li W, Chen J, Yang M, Gao L, Zhou J. New perspectives on the treatment of diabetic nephropathy: Challenges and prospects of mesenchymal stem cell therapy. Eur J Pharmacol 2025; 998:177543. [PMID: 40139419 DOI: 10.1016/j.ejphar.2025.177543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Traditional treatment methods have certain limitations and it is difficult to effectively delay the disease progression. Mesenchymal stem cells (MSCs), owing to their potential for self-renewal, multidirectional differentiation, and immunomodulatory abilities, can regulate the renal immune microenvironment and repair damaged tissues, providing a new strategy for the treatment of DN. However, MSCs face problems such as immune rejection, cell inactivation, challenges in directed differentiation, insufficient homing ability, and low cell retention rate after delivery. These issues limit their clinical application in patients with DN. This review aims to propose optimization strategies targeting DN pathological features to improve MSC effectiveness and reduce their side effects. Specifically, it involves optimizing cell culture systems and cryopreservation protocols, along with pre-transplantation pharmacological conditioning to boost the functionality and viability of MSCs. Additionally, the exploration of synergistic drug-MSC combination therapies was carried out, taking advantage of diverse mechanisms of action to improve therapeutic outcomes. The integration of biomaterials and gene editing technologies to significantly enhance cell survival, target specificity, and tissue engraftment was also pursued. Concurrently, the determination of optimal therapeutic dosages and administration routes remained crucial. These multifaceted strategies not only provide a theoretical framework for overcoming existing technical limitations but also lay a robust foundation for accelerating the clinical translation of MSC-based therapies.
Collapse
Affiliation(s)
- Canyu Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Bo Xu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jixiang Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Mingxia Yang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Lili Gao
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jiecan Zhou
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; MOE Key Laboratory of Pediatric Rare Diseases, University of South China, Hengyang, 421001, Hunan, China; Furong Laboratory, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Wang Y, Wang Z, Mao X, Zhang H, Zhang L, Yang Y, Liu B, Li X, Luo F, Sun H. Cutting-edge technologies illuminate the neural landscape of cancer: Insights into tumor development. Cancer Lett 2025; 619:217667. [PMID: 40127813 DOI: 10.1016/j.canlet.2025.217667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Neurogenesis constitutes a pivotal facet of malignant tumors, wherein cancer and its therapeutic interventions possess the ability to reconfigure the nervous system, establishing a pathologic feedback loop that exacerbates tumor progression. Recent strides in high-resolution imaging, single-cell analysis, multi-omics technologies, and experimental models have opened unprecedented avenues in cancer neuroscience. This comprehensive review summarizes the latest advancements of these emerging technologies in elucidating the biological mechanisms underlying tumor initiation, invasion, metastasis, and the dynamic heterogeneity of the tumor microenvironment(TME), with a specific focus on neuron-glial-tumor interactions in glioblastoma(GBM) and other neurophilic cancers. Moreover, we innovatively propose target screening processes based on sequencing technologies and database frameworks. It rigorously evaluates ongoing clinical trial drugs and efficacy while spotlighting characteristic cells in the central and peripheral TME, consolidating cancer biomarkers pivotal for future targeted therapies and management strategies. By integrating these cutting-edge findings, this review aims to offer fresh insights into tumor-nervous system interactions, establishing a robust foundation for forthcoming clinical advancements.
Collapse
Affiliation(s)
- Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojun Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Beibei Liu
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinxu Li
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyang Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Song S, Shi K, Fan M, Wen X, Li J, Guo Y, Lou Y, Chen F, Wang J, Huang L, Wen C, Shao T. Clostridium butyricum and its metabolites regulate macrophage polarization through miR-146a to antagonize gouty arthritis. J Adv Res 2025:S2090-1232(25)00354-6. [PMID: 40398744 DOI: 10.1016/j.jare.2025.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/30/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025] Open
Abstract
INTRODUCTION Gut microbiota modulation has recently been identified as a prospective avenue for the exploration of novel therapeutic strategies for the management of gout. Nevertheless, the application of a single specific strain or bacterial metabolite for gout intervention has rarely been explored and the underlying regulatory mechanism remains elusive. OBJECTIVES To ascertain the potential role and the molecular mechanism of Clostridium butyricum and butyrate in the management of gouty arthritis. METHODS A Uox-KO mouse model of gouty arthritis was developed and the composition of the gut microbiota was analyzed. C. butyricum and butyrate were supplemented to assess functional recovery and intestinal homeostasis. NanoString analysis identified miRNA variations. GC/MS measured butyric acid levels and qPCR detected the abundance of butyrate-producing enzymes and bacteria. Flow cytometry analyzed macrophage polarization and ELISA measured pro-inflammatory cytokine production. Agomir and antagomir were transfected and dual-luciferase reporter assay was adapted for validation of miRNA target binding. siRNA and rescue experiments were performed to validate the role of SOCS7 in macrophage polarization. In addition, a cohort of patients with gouty arthritis were assembled for the purpose of validating the molecular mechanism. RESULTS The results of our study demonstrated that a reduction of butyrate levels, resulting from a deficiency of butyrate-producing bacteria, leads to aberrant miR-146a expression. This, in turn, induces an imbalance in macrophage polarization and the onset of gouty arthritis. The administration of C. butyricum and butyrate demonstrated considerable anti-inflammatory efficacy by restoring intestinal homeostasis, modulating miR-146a expression, and skewing macrophage polarization. The SOCS7/JAK2-STAT3 signaling pathway was identified as a pivotal mediator in the skewing of macrophage polarization induced by miR-146a. CONCLUSION Our findings enrich the understanding of the regulatory mechanisms underlying macrophage polarization in gouty arthritis and highlight the potential applications of probiotics and their metabolites in clinical gout treatment.
Collapse
Affiliation(s)
- Siyue Song
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kaiyue Shi
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Moqi Fan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianghui Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiatao Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yining Guo
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu Lou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fusen Chen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jialu Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lin Huang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Innovative Basic Research in Autoimmune Diseases in Medicine, Hangzhou 310053, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Innovative Basic Research in Autoimmune Diseases in Medicine, Hangzhou 310053, China.
| | - Tiejuan Shao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Innovative Basic Research in Autoimmune Diseases in Medicine, Hangzhou 310053, China.
| |
Collapse
|
4
|
Barr SI, Abd El-Azeem EM, Bessa SS, Mohamed TM. Role of exosomes in pathogenesis, diagnosis, and treatment of diabetic nephropathy. BMC Nephrol 2025; 26:230. [PMID: 40340661 PMCID: PMC12063312 DOI: 10.1186/s12882-025-04120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication that can progress to end-stage renal disease, with its prevalence and associated mortality increasing globally. However extensive research, the precise mechanisms underlying DN pathogenesis remain unclear, and the current treatment options for DN are limited to dialysis or renal replacement therapy, although several experimental approaches have shown potential, they remain investigational and lack clinical translation. Exosomes play a pivotal role in disease diagnosis and prognosis. Urinary exosomes, originating from various kidney cells, reflect the kidney's pathological condition and are involved in cell-to-cell communication through autocrine or paracrine signaling; therefore, they could contribute to the pathogenesis of DN and potential therapeutic approaches. Additionally, due to their diverse cargo, which depend on cellular origin and pathological state, exosomes may act as biomarkers for the early prediction of DN. This review presents a comprehensive overview of the latest findings on the role of exosomes in the diagnosis, pathogenesis, and treatment of DN.
Collapse
Affiliation(s)
- Shaimaa I Barr
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Eman M Abd El-Azeem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar S Bessa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Cao H, Li Z, Ye J, Lv Y, Zhang C, Liang T, Wang Y. Emerging roles of exosomes in the diagnosis and treatment of kidney diseases. Front Pharmacol 2025; 16:1525314. [PMID: 40308771 PMCID: PMC12041035 DOI: 10.3389/fphar.2025.1525314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
The complex etiology and spectrum of kidney diseases necessitate vigilant attention; the focus on early diagnosis and intervention in kidney diseases remains a critical issue in medical research. Recently, with the expanding studies on extracellular vesicles, exosomes have garnered increasing interest as a promising tool for the diagnosis and treatment of kidney diseases. Exosomes are nano-sized extracellular vesicles that transport a diverse array of bioactive substances, which can influence various pathological processes associated with kidney diseases and exhibit detrimental or beneficial effects. Within the kidney, exosomes derived from the glomeruli and renal tubules possess the ability to enter systemic circulation or urine. The biomarkers they carry can reflect alterations in the pathological state of the kidneys, thereby offering novel avenues for early diagnosis. Furthermore, research studies have confirmed that exosomes originating from multiple cell types exhibit therapeutic potential in treating kidney disease; notably, those derived from mesenchymal stem cells (MSCs) have shown significant treatment efficacy. This comprehensive review summarizes the contributions of exosomes from different cell types within the kidneys while exploring their physiological and pathological roles therein. Additionally, we emphasize recent advancements in exosome applications for the diagnosis and treatment of various forms of kidney diseases over the past decades. We not only introduce the urinary and blood biomarkers linked to kidney diseases found within exosomes but also explore their therapeutic effects. Finally, we discuss existing challenges and future directions concerning the clinical applications of exosomes for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Huanhuan Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixi Li
- Department of Clinical Laboratory, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lv
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Li X, Li R, Huang J, Hu Y, Fan C, Wang X, Yu H. Unleashing the Potential: Exploring the Application and Mechanism of Mesenchymal Stem Cells in Autoimmune Diseases. Stem Cells Int 2025; 2025:9440377. [PMID: 40264926 PMCID: PMC12014271 DOI: 10.1155/sci/9440377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Autoimmune diseases (AIDs) occur when the immune system mistakenly attacks the body's own antigens. Traditionally, these conditions are treated with nonspecific immunosuppressive therapies, including corticosteroids, immunosuppressants, biological agents, and human immunoglobulins. However, these treatments often fail to achieve optimal outcomes, especially for patients with severe cases. Mesenchymal stem cells (MSCs) present a promising alternative due to their robust self-renewal capabilities and multidirectional differentiation potential. MSCs are easily accessible, exhibit low immunogenicity, and can help reduce graft rejection. MSCs can inhibit T cell proliferation, reduce proinflammatory T cells, inhibit B cell differentiation, induce macrophage polarization towards the anti-inflammatory M2 phenotype, and suppress activity of natural killer (NK) cells and dendritic cells (DCs). Additionally, MSCs can regulate T cells, macrophages, and fibroblast-like synoviocytes (FLS) by releasing microRNA (miRNA) through exosomes or extracellular vesicles (EVs), thus providing therapeutic benefits for various diseases. Numerous clinical trials have highlighted the therapeutic benefits of MSCs in treating various AIDs, leading to increased interest in MSC transplantation. This review summarizes the current applications and mechanisms of action of MSCs in the treatment of AIDs.
Collapse
Affiliation(s)
- Xinqi Li
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rongli Li
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuelin Hu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Wei J, Xie Z, Kuang X. Extracellular Vesicles in Renal Inflammatory Diseases: Revealing Mechanisms of Extracellular Vesicle-Mediated Macrophage Regulation. Int J Mol Sci 2025; 26:3646. [PMID: 40332144 PMCID: PMC12027779 DOI: 10.3390/ijms26083646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Renal inflammatory diseases are a group of severe conditions marked by significant morbidity and mortality. Extracellular vesicles (EVs), as facilitators of intercellular communication, have been recognized as pivotal regulators of renal inflammatory diseases, significantly contributing to these conditions by modulating immune responses among other mechanisms. This review highlights the intricate mechanisms through which EVs modulate macrophage-kidney cell interactions by regulating macrophages, the principal immune cells within the renal milieu. This regulation subsequently influences the pathophysiology of renal inflammatory diseases such as acute kidney injury and chronic kidney disease. Furthermore, understanding these mechanisms offers novel opportunities to alleviate the severe consequences associated with renal inflammatory diseases. In addition, we summarize the therapeutic landscape based on EV-mediated macrophage regulatory mechanisms, highlighting the potential of EVs as biomarkers and therapeutic targets as well as the challenges and limitations of translating therapies into clinical practice.
Collapse
Affiliation(s)
- Jiatai Wei
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Zijie Xie
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Xiaodong Kuang
- Pathology Teaching and Research Office, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Han G, Hu K, Luo T, Wang W, Zhang D, Ouyang L, Liu X, Liu J, Wu Y, Liang J, Ling J, Chen Y, Xuan R, Zhang J, Yu P. Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications. Apoptosis 2025; 30:516-536. [PMID: 39755822 DOI: 10.1007/s10495-024-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Diabetes is a chronic metabolic disease that is endemic worldwide and is characterized by persistent hyperglycemia accompanied by multiple severe complications, including cardiovascular disease, kidney dysfunction, neuropathy, and retinopathy. The pathogenesis of diabetes mellitus and its complications is multifactorial, involving various molecular and cellular pathways. In recent years, research has indicated that mechanisms of cell death play a significant role in the advancement of diabetes and its complications. PANoptosis is a complex phenomenon caused by three cell death pathways: programmed apoptosis, necroptosis and pyroptosis. The contribution of PANoptosis to diabetes and its complications remains incompletely understood. Non-coding RNA, an important molecule in gene expression regulation, has shown significant regulatory functions in a variety of diseases. This paper reviews the underlying mechanisms of diverse types of non-coding RNAs (including lncRNA, miRNA and circRNA) in regulating PANoptosis and their specific contributions in diabetes, aiming to explore how non-coding RNAs influence PANoptosis and their effects in diabetes.
Collapse
Affiliation(s)
- Guangyu Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Tianfeng Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Deju Zhang
- Ood and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liu Ouyang
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA, 30303, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rui Xuan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
9
|
Wu YK, Liu M, Zhou HL, He X, Wei J, Hua WH, Li HJ, Yuan QH, Xie YF. O-linked β-N-acetylglucosamine transferase regulates macrophage polarization in diabetic periodontitis: In vivo and in vitro study. World J Diabetes 2025; 16:95092. [PMID: 40093279 PMCID: PMC11885980 DOI: 10.4239/wjd.v16.i3.95092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/30/2024] [Accepted: 12/23/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Periodontitis, when exacerbated by diabetes, is characterized by increased M1 macrophage polarization and decreased M2 polarization. O-linked β-N-acetylglucosamine (O-GlcNAcylation), catalyzed by O-GlcNAc transferase (OGT), promotes inflammatory responses in diabetic periodontitis (DP). Additionally, p38 mitogen-activated protein kinase regulates macrophage polarization. However, the interplay between OGT, macrophage polarization, and p38 signaling in the progression of DP remains unexplored. AIM To investigate the effect of OGT on macrophage polarization in DP and its role in mediating O-GlcNAcylation of p38. METHODS For in vivo experiments, mice were divided into four groups: Control, DP model, model + short hairpin (sh) RNA-negative control, and model + sh-OGT. Diabetes was induced by streptozotocin, followed by ligation and lipopolysaccharide (LPS) administration to induce periodontitis. The impact of OGT was assessed by injecting sh-OGT lentivirus. Maxillary bone destruction was evaluated using micro-computed tomography analysis and tartrate-resistant acid phosphatase staining, while macrophage polarization was determined through quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry. For in vitro experiments, RAW264.7 cells were treated with LPS and high glucose (HG) (25 mmol/L D-glucose) to establish a cell model of DP. OGT was inhibited by OGT inhibitor (OSMI4) treatment and knocked down by sh-OGT transfection. M1/M2 polarization was analyzed using qPCR, immunofluorescence, and flow cytometry. Levels of O-GlcNAcylation were measured using immunoprecipitation and western blotting. RESULTS Our results demonstrated that M1 macrophage polarization led to maxillary bone loss in DP mice, associated with elevated O-GlcNAcylation and OGT levels. Knockdown of OGT promoted the shift from M1 to M2 macrophage polarization in both mouse periodontal tissues and LPS + HG-induced RAW264.7 cells. Furthermore, LPS + HG enhanced the O-GlcNAcylation of p38 in RAW264.7 cells. OGT interacted with p38 to promote its O-GlcNAcylation at residues A28, T241, and T347, as well as its phosphorylation at residue Y221. CONCLUSION Inhibition of OGT-mediated p38 O-GlcNAcylation deactivates the p38 pathway by suppressing its self-phosphorylation, thereby promoting M1 to M2 macrophage polarization and mitigating DP. These findings suggested that modulating macrophage polarization through regulation of O-GlcNAcylation may represent a novel therapeutic strategy for treating DP.
Collapse
Affiliation(s)
- Ye-Ke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Min Liu
- Department of Gynaecology, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Hong-Ling Zhou
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian Province, China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jing Wei
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Wei-Han Hua
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui-Jing Li
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Qiang-Hua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yun-Fei Xie
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
10
|
Huang J, Shi L, Yang Y, Zhao F, Chen R, Liao W, Zhu J, Yang D, Wu X, Han S. Mesenchymal cell-derived exosomes and miR-29a-3p mitigate renal fibrosis and vascular rarefaction after renal ischemia reperfusion injury. Stem Cell Res Ther 2025; 16:135. [PMID: 40075481 PMCID: PMC11905586 DOI: 10.1186/s13287-025-04226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Renal fibrosis and vascular rarefaction are significant complications of ischemia/reperfusion (I/R) injury. Human umbilical cord mesenchymal cell-derived exosomes (hucMSC-exos) have shown potential in mitigating these conditions. This study investigates the role of miR-29a-3p in exosomes and its therapeutic effects on I/R-induced renal damage. METHODS Male C57BL/6 mice were subjected to unilateral renal ischemia for 28 min followed by reperfusion. Exosomes and miR-29a-3p mimics/inhibitors were injected into the mice. Renal function, histological analysis, and molecular assays were performed to evaluate fibrosis and vascular integrity. RESULTS Exosome treatment significantly improved renal function and reduced fibrosis and vascular rarefaction post-I/R. MiR-29a-3p was highly expressed in hucMSC-exos but reduced in renal fibrosis models. MiR-29a-3p mimic reduced, while its inhibitor exacerbated I/R-induced renal fibrosis and vascular rarefaction. Collagen I and TNFR1 were identified as direct targets of miR-29a-3p in fibroblasts and endothelial cells, respectively. Exosomes overexpressing miR-29a-3p provided superior protection compared to unmodified hucMSC-exos. CONCLUSION HucMSC-exos, particularly those overexpressing miR-29a-3p, have potent therapeutic effects against renal fibrosis and vascular rarefaction post-I/R. MiR-29a-3p targets TNFR1 and collagen I, highlighting its potential in renal fibrosis therapy.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yifei Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fan Zhao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Rengui Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Wenliang Liao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Dingping Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Xiongfei Wu
- Department of Nephrology, Guiqian International General Hospital, Guiyang, Guizhou, China.
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
11
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Yu B, Wang L, Mao Y, Hu X, Lu Y, He J, Yuan X, Zhang M, Chen Z. Research progress on small extracellular vesicles in diabetic nephropathy. Front Cell Dev Biol 2025; 13:1535249. [PMID: 40109365 PMCID: PMC11920185 DOI: 10.3389/fcell.2025.1535249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Virtually all cell types are capable of secreting small extracellular vesicles (sEV), which can be internalized by recipient cells, thereby serving as vehicles for intercellular communication. The cargoes of these vesicles, such as microRNAs, circular RNAs, proteins, and lipids, play significant roles in both normal cellular functions and the pathogenesis of various diseases. Diabetic Nephropathy (DN), a complication arising from diabetes, is expected to contribute to a 54% increase in the global diabetic population between 2015 and 2030, leading to substantial economic burdens on individuals and healthcare systems. sEVs, as promising biomarkers, demonstrate diverse mechanistic responses in different types of Diabetic Kidney Disease (DKD). They also hold advantages in the early prediction of renal damage. This article reviews the functional mechanisms of sEVs in DKD and their potential as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Bingqing Yu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yiping Mao
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinyi Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yukang Lu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiahui He
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoying Yuan
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Man Zhang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Ma C, Li Y, Liu B, Deng J, Gao X, Zhang H, Zhang B, Zhou Q, Peng X, Zhang H. Exosomes derived from adipose mesenchymal stem cells promote corneal injury repair and inhibit the formation of scars by anti-apoptosis. Colloids Surf B Biointerfaces 2025; 247:114454. [PMID: 39675062 DOI: 10.1016/j.colsurfb.2024.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In the corneal wound healing process, epithelial cell re-epithelialization and migration are the critical first steps following an injury. As the disease progresses, orderly regeneration of corneal stromal collagen and mild corneal stromal fibrosis are vital for corneal function reconstruction. Exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exos) have emerged as a promising therapy due to their anti-oxidant, anti-apoptosis, and tissue repair properties. In this study, we successfully isolated exosomes via differential centrifugation and verified their effective extraction through transmission electron microscopy and nanoparticle tracking analysis. In vitro, ADSCs-Exos increased corneal epithelial cell migration by 20 % and reduced oxidative damage by 50 %. In addition, ADSCs-Exos demonstrated remarkable wound healing properties in corneal tissue. This effect was attributed to their ability to inhibit apoptosis of corneal stroma cells by upregulating Bax and downregulating Bcl2, reducing the Bax/Bcl2 protein expression ratio from 1 to 0.45. This decrease may subsequently inhibit α-SMA expression, thereby preventing corneal scarring. Overall, this research has elucidated the effects and potential targets of ADSCs-Exos in promoting corneal wound repair, offering a novel and promising approach for treating corneal injuries.
Collapse
Affiliation(s)
- Chunli Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yixiao Li
- Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Shandong University, Jinan 250100, China
| | - Baoling Liu
- Department of Oncology, Linyi People's Hospital, Linyi 276000, China
| | - Junjie Deng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China
| | - Xue Gao
- Shandong University, Jinan 250100, China; The Second Hospital of Shandong University, Jinan 250033, China
| | - Huixin Zhang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Bingqiang Zhang
- Qingdao Key Laboratory of Cancer and Immune Cells, Qingdao Restore Medical Testing Laboratory Co., Ltd., Qingdao 266111, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Xiaoting Peng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Han Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China.
| |
Collapse
|
14
|
Jin C, Wu P, Wu W, Chen W, Liu W, Zhu Y, Wu Q, Chen B, Ji C, Qian H. Therapeutic role of hucMSC-sEV-enriched miR-13896 in cisplatin-induced acute kidney injury through M2 macrophage polarization. Cell Biol Toxicol 2025; 41:50. [PMID: 39992453 PMCID: PMC11850457 DOI: 10.1007/s10565-025-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEV) have recently garnered attention as a potential therapeutic approach for kidney diseases with anti-inflammatory effects. Infiltrated macrophages play an important role in facilitating tissue regeneration. However, the intricate regulatory effects of hucMSC-sEV on macrophages during cisplatin-induced acute kidney injury (AKI) remain unknown. In this study, we uncovered that hucMSC-sEV exhibited potent anti-inflammation and effectively inhibited the polarization of M1 phenotype macrophages. Mechanically, miRNA sequencing analysis and qRT-PCR indicated that a novel miRNA, named miR-13896, was enriched in hucMSC-sEV. When transfected with miR-13896 mimic, macrophages displayed M2 phenotype with elevated levels of Arg1 and IL-10, while miR-13896 inhibitor promoted M1 phenotype. Furthermore, we firstly established that miR-13896 repressed Tradd expression by targeting its 3' untranslated region and subsequently inhibited NF-κB signaling pathway in macrophages. Additionally, to improve therapeutic effects, hucMSC-sEV were engineered with elevated levels of miR-13896 through electroporation, which resulted in promoting M2 phenotype macrophages, inhibiting inflammatory factors, and enhancing kidney repair. Conclusively, our findings provide novel insights into the mechanisms underlying the effects of hucMSC-sEV on macrophages and AKI, while also highlighting electroporation as a promising strategy for treating cisplatin-induced AKI.
Collapse
Affiliation(s)
- Can Jin
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Wu
- Department of Emergency Surgery, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai, China
| | - Wenya Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wanzhu Liu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Yuan Zhu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - QiShun Wu
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Binghai Chen
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
| | - Cheng Ji
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
- Institute of Translational Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
15
|
Xiong SX, Huang LJ, Liu HS, Zhang XX, Li M, Cui YB, Shao C, Hu XL. Dapagliflozin exerts anti-apoptotic effects by mitigating macrophage polarization via modulation of the phosphoinositide 3-kinase/protein kinase B signaling pathway. World J Diabetes 2025; 16:97287. [PMID: 39959262 PMCID: PMC11718488 DOI: 10.4239/wjd.v16.i2.97287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 11/22/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Macrophages are central to the orchestration of immune responses, inflammatory processes, and the pathogenesis of diabetic complications. The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy. Sodium-glucose cotransporter 2 inhibitors such as dapagliflozin, which are acclaimed for their efficacy in diabetes management, may influence macrophage polarization, thereby ameliorating diabetic nephropathy. This investigation delves into these mechanistic pathways, aiming to elucidate novel therapeutic strategies for diabetes. AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action. METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin. Concurrently, the human monocyte cell line cells were used for in vitro studies. Macrophage viability was assessed in a cell counting kit 8 assay, whereas apoptosis was evaluated by Annexin V/propidium iodide staining. Protein expression was examined through western blotting, and the expression levels of macrophage M1 surface markers, inflammatory cytokines, and apoptotic factors were quantified using flow cytometry, enzyme linked immunosorbent assay, and quantitative real-time polymerase chain reaction analyses. RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice, evidenced by the downregulation of proapoptotic genes (Caspase 3), inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-α, and IL-1β], and M1 surface markers (inducible nitric oxide synthase, and cluster of differentiation 86), as well as the upregulation of the antiapoptotic gene BCL2. Moreover, dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway (PI3K, AKT, phosphorylated protein kinase B). These observations were corroborated in vitro, where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P, an activator of the PI3K/AKT signaling pathway. CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype, thereby mitigating inflammation and promoting macrophage apoptosis. These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Sheng-Xi Xiong
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Lin-Juan Huang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Han-Shuang Liu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Xiao-Xiao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Min Li
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Yu-Bing Cui
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Chen Shao
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Xiao-Lei Hu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| |
Collapse
|
16
|
Wang L, Wang L, He F, Song J, Qiao J, Qin J, Chen L, Hou X. Tailoring cell therapies for diabetic metabolic phenotypes: a comparative study on the efficacy of various umbilical cord-derived cell regimens. Stem Cells Transl Med 2025; 14:szae083. [PMID: 39560969 PMCID: PMC11878779 DOI: 10.1093/stcltm/szae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Given the high heterogeneity of type 2 diabetes mellitus (T2DM), it is imperative to develop personalized stem cell infusion regimen for targeted metabolic phenotype in order to ensure optimal therapeutic efficacy. In this study, we conducted a comparative analysis of 4 infusion regimens involving single and repeated infusions of human umbilical cord Wharton's jelly-derived MSCs (hucMSCs), single infusions of umbilical cord blood mononuclear cells (UCB), and sequential infusions of hucMSCs and UCB in T2DM rats. Results showed all 4 infusion regimens exhibited comparable efficacy in lowering fasting blood glucose levels and suppressing glucagon secretion. Single and double infusions of hucMSCs exhibited a tendency to migrate to the liver, thereby better at ameliorating hepatic glucose metabolism by enhancing glycogen synthesis and storage, promoting glycolysis, inhibiting gluconeogenesis, and improving insulin signal transduction. The sequential infusion of hucMSCs and UCB demonstrated specific cell tropism toward the pancreas, leading to prolonged glucose-lowering effects following a glucose tolerance test, restoration of early-phase insulin secretion, stimulation of islet beta cell proliferation and improvement in the beta/alpha ratio. Multiple injections, regardless of cell type, reduced the expression of systemic chronic inflammatory markers such as IL-1β, IL-6, IL-17, IL-22, and IFN-γ. Finally, a single dose of UCB exhibited a greater tendency to target visceral fat and enhanced effectiveness in regulating levels of total cholesterol and triglycerides. In conclusion, our study provided personalized stem cell regimens for diverse T2DM metabolic phenotypes, thereby offering improved treatment alternatives for future clinical trials and applications.
Collapse
Affiliation(s)
- Lingshu Wang
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan 250012, Shandong, People’s Republic of China
- Shandong Provincial Key Laboratory of Spatiotemporal Regulation and Precision Intervention in Endocrine and Metabolic Diseases, Shandong Provincial Engineering Research Center for Advanced Technologies in Prevention and Treatment of Chromic Metabolic Diseases, Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Liming Wang
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Falian He
- Postdoctoral Innovation Base, Novolife Biomedical Technology Co., LTD, Tai’an 271000, Shandong, People’s Republic of China
| | - Jia Song
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, People’s Republic of China
| | - Jun Qin
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan 250012, Shandong, People’s Republic of China
- Shandong Provincial Key Laboratory of Spatiotemporal Regulation and Precision Intervention in Endocrine and Metabolic Diseases, Shandong Provincial Engineering Research Center for Advanced Technologies in Prevention and Treatment of Chromic Metabolic Diseases, Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Li Chen
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan 250012, Shandong, People’s Republic of China
- Shandong Provincial Key Laboratory of Spatiotemporal Regulation and Precision Intervention in Endocrine and Metabolic Diseases, Shandong Provincial Engineering Research Center for Advanced Technologies in Prevention and Treatment of Chromic Metabolic Diseases, Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Xinguo Hou
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan 250012, Shandong, People’s Republic of China
- Shandong Provincial Key Laboratory of Spatiotemporal Regulation and Precision Intervention in Endocrine and Metabolic Diseases, Shandong Provincial Engineering Research Center for Advanced Technologies in Prevention and Treatment of Chromic Metabolic Diseases, Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People’s Republic of China
| |
Collapse
|
17
|
Yadu N, Singh M, Singh D, Keshavkant S. Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems. Int J Pharm 2025; 670:125117. [PMID: 39719258 DOI: 10.1016/j.ijpharm.2024.125117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Wounds that represent one of the most critical complications can occur in individuals suffering from diabetes mellitus, and results in the need for hospitalisation and, in severe cases, require amputation. This condition is primarily characterized by infections, persistent inflammation, and delayed healing processes, which exacerbate the overall health of the patients. As per the standard mechanism, signalling pathways such as PI3K/AKT, HIF-1, TGF-β, Notch, Wnt/β-Cat, NF-κB, JAK/STAT, TLR, and Nrf2 play major roles in inflammatory, proliferative and remodelling phases of wound healing. However, dysregulation of the above pathways has been seen during the healing of diabetic wounds. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of various genes and signalling pathways which are associated with the process of wound healing. In the past few years, there has been a great deal of interest in the potential of miRNAs as biological agents in the management of a number of disorders. These miRNAs have been shown to modulate expression of genes involved in the healing process of wounds. There have been previous reviews pertaining to clinical trials examining miRNAs in several disorders, but only a few clinical studies have examined involvement of miRNAs in healing of wounds. Considering the therapeutic promise, there are several obstacles concerning their instabilities and inefficient delivery into the target cells. Therefore, this review is an attempt to discuss precise roles of signalling pathways and miRNAs in different phases of wound healing, and their aberrant regulation in diabetic wounds, particularly. It has also compiled a range of delivery mechanisms as well as an overview of the latest findings pertaining to miRNAs and associated delivery systems for improved healing of diabetic wounds.
Collapse
Affiliation(s)
- Nidhi Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
18
|
Deng Y, Wang G, Hou D, Zhang L, Pei C, Yang G. MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation. In Vitro Cell Dev Biol Anim 2025; 61:178-188. [PMID: 39644419 DOI: 10.1007/s11626-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ganlan Wang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
19
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
20
|
Guo Y, Min J, Chang B, Chen Z, Chen W. Exploring the Role of TRAF6-TAK1 Pathway in Podocyte Pyroptosis and Its Implications for Primary Membranous Nephropathy Therapy. Inflammation 2025:10.1007/s10753-025-02249-w. [PMID: 39883393 DOI: 10.1007/s10753-025-02249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis. Utilizing transcriptomic data from the gene expression omnibus database, we identified key regulatory factors involved in pyroptosis and validated these findings through the establishment of a C3a-induced podocyte injury model and a Sprague-Dawley (SD) rat model of PMN. Our findings reveal that TRAF6 is significantly upregulated in PMN, and its interaction with TAK1 is crucial for the activation of the GSDMD/Caspase-1 axis, ultimately driving podocyte pyroptosis. Further biochemical and molecular analyses confirmed the pivotal role of the TRAF6/TAK1 signaling pathway in the pathogenesis of PMN. These results underscore the importance of TRAF6-mediated signaling in the progression of PMN and suggest that targeting the TRAF6/TAK1/GSDMD/Caspase-1 axis may offer a novel therapeutic strategy for the treatment of this debilitating renal disease.
Collapse
Affiliation(s)
- Yaling Guo
- Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China.
| | - Jingliang Min
- Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Baochao Chang
- Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China
| | - Zheng Chen
- Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China
| | - Weidong Chen
- Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China
| |
Collapse
|
21
|
Oontawee S, Siriarchavatana P, Rodprasert W, Padeta I, Pamulang YV, Somparn P, Pisitkun T, Nambooppha B, Sthitmatee N, Na Nan D, Osathanon T, Egusa H, Sawangmake C. Small extracellular vesicles derived from sequential stimulation of canine adipose-derived mesenchymal stem cells enhance anti-inflammatory activity. BMC Vet Res 2025; 21:31. [PMID: 39838398 PMCID: PMC11748882 DOI: 10.1186/s12917-024-04465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol. IVFG, ES20, and IVES were applied simultaneously with a control condition. Stimulated cAD-MSCs were evaluated for morphological changes, cell viability, and gene expressions. Conditioned media were collected and purified for sEV isolation on Day1, Day2, and Day3. To validate the efficacy of IVES for sEV production, various analyses were conducted, including microscopic examination, surface marker assessment, zeta-potential measurement, protein quantification, nanoparticle tracking analysis, and determination of anti-inflammatory activity. RESULTS We found that IVES demonstrated non-cytotoxicity and induced crucial genotypic changes associated with sEV production in cAD-MSCs. Interestingly, IVFG influenced cellular adaptation, while ES20 induced hypoxia activation. By merging these stimulations, IVES enhanced sEV stability and quality profiles. The cAD-MSC-derived sEVs exhibited anti-inflammatory activity in lipopolysaccharide-induced RAW264.7 macrophages, emphasizing their improved effectiveness without cytotoxicity or immunogenicity. These effects were consistent across day 3 collection, indicating the establishment of an effective protocol for sEV production. CONCLUSIONS This research established an innovative sequential stimulation method with positive impact on sEV characteristics including stability, quality, and anti-inflammatory activity. This study not only contributes to the enhancement of sEV production but also sheds light on their functional aspects for therapeutic interventions.
Collapse
Affiliation(s)
- Saranyou Oontawee
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parkpoom Siriarchavatana
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Irma Padeta
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yudith Violetta Pamulang
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Daneeya Na Nan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Center for Advanced Stem Cell and Regenerative Research, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Wang Y, Pang Z, He W, Ren P, He Q, Jin J. LncRNA HOXB3OS improves high glucose-mediated podocyte damage and progression of diabetic kidney disease through enhancing SIRT1 mRNA stability. Biomed Pharmacother 2025; 182:117770. [PMID: 39693905 DOI: 10.1016/j.biopha.2024.117770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
High glucose (HG)-mediated podocyte damage can be ameliorated by lncRNA HOXB3OS, and exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exo) can ameliorate the progression of diabetic kidney disease (DKD) dependening on RNA. To investigate the mechanism by which HOXB3OS improves podocyte injury and the effects of engineered ADSCs-Exo with a high abundance of HOXB3OS on DKD progression, MPC5 cells stimulated with HG and db/db mice were used to develop a podocyte injury model and type II DKD mouse model, respectively. HOXB3OS expression and mRNA level of SIRT1 were detected by qRT-PCR. The protein content of SIRT1 and Ythdc2 was measured through WB, IHC, and IF assays. CCK-8 assay and flow cytometry assay were used to detect cell viability and apoptosis rate of MPC5 cells. RIP assay was used to investigate the binding capacity of Ythdc2 to HOXB3OS or SIRT1 mRNA. Albuminuria, renal function and glomerular structure were observed by kits and PAS, respectively. Consequently, we found that HOXB3OS combined with Ythdc2 and inhibited the binding of Ythdc2 to SIRT1 mRNA, hence inhibiting SIRT1 mRNA degradation. SIRT1 siRNA inhibited the effect of Ythdc2 siRNA on HOXB3OS knock-down or HG-induced podocyte injury. ADSCs-Exo with a high content of HOXB3OS ameliorated HG-mediated podocyte damage and DKD progression. This suggests that engineered ADSCs-Exo with HOXB3OS can suppress Ythdc2-mediated SIRT1 mRNA degradation by disturbing the binding of Ythdc2 to SIRT1 mRNA as well as reverse SIRT1 down-regulation induced by HG, thereby ameliorating podocyte injury and DKD progression.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Zhengyi Pang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Wenfang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Peiyao Ren
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China.
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China.
| |
Collapse
|
23
|
Chen J, Chen J, Li Q, Hu M, Zhong X, Yu L, Zhang X, Huang H, Liu J, Huang Z, Liu X, Xiong W. Astragaloside promotes the secretion of MSC-derived exosomal miR-146a-5p by regulating TRAF6/NF-κB pathway to attenuate inflammation in high glucose-impaired endothelial cells. In Vitro Cell Dev Biol Anim 2025; 61:93-106. [PMID: 39441504 DOI: 10.1007/s11626-024-00984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
This study aimed to explore the potential of using mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) pre-treated with Astragaloside IV (ASIV) to alleviate inflammation in high glucose (HG)-damaged endothelial cells. MSC-Exos were isolated from untreated MSCs and ASIV-pre-treated MSCs, and their characteristics were assessed. The expression of miR-146a-5p in MSC-Exos was determined, and it was found that ASIV treatment enhanced its expression. In order to assess the impact of highly miR-146a-5p-expressing MSC-Exos on HG-injured endothelial cells, we established a model of HG-induced inflammation using human umbilical vein endothelial cells (HUVECs). The study measured cell viability, apoptosis, tube formation, and levels of inflammatory cytokines among the different treatment groups. It was found that transferring MSC-Exos with high miR-146a-5p expression to HG-damaged HUVECs increased cell viability and tube formation ability while reducing the number of apoptotic cells. Additionally, changes in inflammatory factors indicated a reduction in the inflammatory response. Further investigation demonstrated that miR-146a-5p inhibited the expression of TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB, which are involved in the inflammatory response. This resulted in the alleviation of inflammation in HG-damaged endothelial cells. In summary, our findings indicate that ASIV treatment stimulated the secretion of MSC-Exos that exhibited increased levels of miR-146a-5p. These exosomes, in turn, regulated the TRAF6/NF-κB pathway. As a result of this modulation, the inflammatory response in HG-damaged endothelial cells was alleviated. These findings offer a fresh approach to addressing vascular complications associated with diabetes, which could lead to novel treatment strategies in the field.
Collapse
Affiliation(s)
- Jiye Chen
- Burn and Plastic Surgery Department of Yiyang Central Hospital in Hunan Province, Yiyang, 413000, China
| | - Jiayao Chen
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410003, China
| | - Qinxia Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410003, China
| | - Minxia Hu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410003, China
| | - Xingxing Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410003, China
| | - Liang Yu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410003, China
| | - Xi Zhang
- Clinical Medical School of Hunan University of Chinese Medicine, Hunan Brain Hospital, Yiyang, Changsha, 410007, China
| | - Hongyu Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410003, China
| | - Jing Liu
- Burn and Plastic Surgery Department of Yiyang Central Hospital in Hunan Province, Yiyang, 413000, China
| | - Ziyi Huang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinyi Liu
- College of Traditional Chinese Medicie, Hunan University of Chinese Medicine, Changsha, 410003, China
| | - Wu Xiong
- Department of Breast Surgery, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410003, China.
| |
Collapse
|
24
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G, Xu Y. Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med 2024; 30:265. [PMID: 39707216 DOI: 10.1186/s10020-024-01020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress. However, existing research predominantly elucidates individual modes of cell death, neglecting the intricate interplay and mutual modulation observed among various forms of PCD. In this comprehensive review, we delineate the diverse regulatory mechanisms governing PCD and elucidate the intricate crosstalk dynamics among distinct PCD pathways. Furthermore, we review recent advancements in understanding the pathogenesis of PCD and explore their implications in DKD. Additionally, we explore the potential of natural products derived primarily from botanical sources as therapeutic agents, highlighting their multifaceted effects on modulating PCD crosstalk, thereby proposing novel strategies for DKD treatment.
Collapse
Affiliation(s)
- Fengzhao Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenyu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jixin Li
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lijuan Zhao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenru Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenfei Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guangheng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
25
|
Wang Y, Luo P, Wuren T. Narrative Review of Mesenchymal Stem Cell Therapy in Renal Diseases: Mechanisms, Clinical Applications, and Future Directions. Stem Cells Int 2024; 2024:8658246. [PMID: 39698513 PMCID: PMC11655143 DOI: 10.1155/sci/8658246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Renal diseases, particularly acute kidney injury (AKI) and chronic kidney disease (CKD), are significant global health challenges. These conditions impair kidney function and can lead to serious complications, including cardiovascular diseases, which further exacerbate the public health burden. Currently, the global AKI mortality rate is alarmingly high (20%-50%); CKD is projected to emerge as a major global health burden by 2040. Existing treatments such as hemodialysis and kidney transplantation have limited effectiveness and are often associated with adverse effects. Mesenchymal stem cells (MSCs) offer considerable potential for treating renal diseases owing to their regenerative and immunomodulatory properties. Thus, this review focuses on the application of MSCs in renal disease, discusses fundamental research findings, and evaluates their application in clinical trials. Moreover, we discuss the impact and safety of MSCs as a therapeutic option and highlight challenges and potential directions for their clinical application. We selected research articles from PubMed published within the last 5 years (from 2019), focusing on high-impact journals and clinical trial data, and included a few key studies predating 2019. Considerations included the novelty of the research, sample size, experimental design, and data reliability. With advancements in single-cell sequencing, CRISPR/Cas9 gene editing, and other cutting-edge technologies, future MSC research will explore combination therapies and personalized treatments to provide more promising, safer treatments with reduced adverse reactions and enhanced therapeutic outcomes. These advances will improve kidney disease treatment methods, enhance patient quality of life, and maximize the benefits of MSC therapies.
Collapse
Affiliation(s)
- Yanjun Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining 810001, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining 810001, China
- Nephrology Department, Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Pengli Luo
- Nephrology Department, Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining 810001, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining 810001, China
| |
Collapse
|
26
|
El-Marasy SA, Farouk H, Khattab MS, Moustafa PE. Beta-carotene ameliorates diabetic nephropathy in rats: involvement of AMPK/SIRT1/autophagy pathway. Immunopharmacol Immunotoxicol 2024; 46:763-772. [PMID: 39308310 DOI: 10.1080/08923973.2024.2402347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/03/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE This study aimed to demonstrate the protective effect of beta-carotene against STZ-induced DN in rats and explore the possible underlying mechanisms that may have mediated such condition. MATERIAL AND METHODS Wistar rats were allocated into four groups. Normal group received distilled water for 3 weeks. The other three groups were rendered diabetic by an intraperitoneal dose of STZ (50 mg/kg), 48 h later, group 2: received the vehicle and served as control, groups (3 &4) received orally beta-carotene in doses of 10 and 20 mg/kg, respectively for 3 weeks. Then serum and renal tissue were collected for biochemical, molecular, immunohistopathological, and histopathological examination. RESULTS Beta-carotene ameliorated the reduction in body weight, reduced blood glucose, elevated serum insulin, reduced blood urea nitrogen, and serum creatinine levels. Beta-carotene elevated phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK)/AMPK, alleviated phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR, reduced interleukin 1 beta (IL-1β), increased Beclin 1, LC3II/LC3I, and reduced p62 renal contents. Moreover, it elevated renal SIRT1 gene expression and reduced renal tumor necrosis factor-alpha (TNF-α) and caspase-3 protein expressions. CONCLUSION Beta-carotene exerted renoprotective effect against STZ-induced DN and histopathological alterations through alleviating hyperglycemia, attenuating inflammation, activating AMPK/SIRT1/autophagy pathway, and combating apoptosis.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
27
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
28
|
Jin J, Zhang M. Research progress on the role of extracellular vesicles in the pathogenesis of diabetic kidney disease. Ren Fail 2024; 46:2352629. [PMID: 38769599 PMCID: PMC11107856 DOI: 10.1080/0886022x.2024.2352629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.
Collapse
Affiliation(s)
- Jiangyuan Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
29
|
Sheng Z, Song H, Gao X, Shu B, You Y, Liu Z. Exosomal miR-146a-5p Derived from HSCs Accelerates Sepsis-induced Liver Injury by Suppressing KLF-4. Inflammation 2024:10.1007/s10753-024-02172-6. [PMID: 39589633 DOI: 10.1007/s10753-024-02172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
This study aimed to investigate whether and how lipopolysaccharide (LPS) activated hepatic stellate cells (HSCs) regulate macrophage activity and to explore the impact of microRNAs (miRNAs) in exosomes from HSCs on this process. Mice subjected to LPS or cecal ligation and puncture (CLP) were used to explore sepsis-induced liver injury. Liver injury was evaluated using HE staining, and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. LPS-Exo or N-LPS-Exo from HSCs were added to hepatic macrophages, and iNOS, IL-1β, and TNF-α expression was detected via Western blotting. miRNA microarray analysis and PCR were used to evaluate differentially expressed miRNAs between LPS-Exo and N-LPS-Exo. Target genes were screened using the TargetScan database and verified with luciferase assays and WB. Inflammation and macrophage activity were observed in vivo using HE and CD86 staining in mice injected with PKH67-labeled LPS-Exo or N-LPS-Exo. Sepsis-related liver injury activates hepatic stellate cells, which regulate macrophage activity through exosomes. Specifically, exosomal miR-146a-5p secreted by hepatic stellate cells targets KLF-4, regulating the macrophage inflammatory response through the JNK signaling pathway. Exosomes containing miRNA-146a-5p released from HSCs following LPS treatment may increase macrophage sensitivity to LPS and trigger an inflammatory response. Exosomal miR-146a-5p derived from HSCs accelerates sepsis-induced liver injury by suppressing KLF-4 expression.
Collapse
Affiliation(s)
- Ziyi Sheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Hua Song
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Xianzhi Gao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Bian Shu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Yu You
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| |
Collapse
|
30
|
Tang S, Tan J, Yang S, Li A, Liu J, Zhang W, Zhang H, Liu Y. Paricalcitol ameliorates diabetic nephropathy by promoting EETs and M2 macrophage polarization and inhibiting inflammation by regulating VDR/CYP2J2 axis. FASEB J 2024; 38:e70108. [PMID: 39441644 DOI: 10.1096/fj.202401489r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Previous studies have shown that paricalcitol (PA) has a protective effect on the kidneys. However, the exact molecular mechanism by which PA affects diabetic nephropathy (DN) progression remains uncertain. PBMCs of patients with DN were isolated, and CYP2J2 and VDR levels were detected by qPCR. Pearson correlation analysis was utilized to detect the relationship between uACR and CYP2J2 and VDR and between CYP2J2 and VDR. The protective effects of PA on DN have been examined by TUNEL, HE staining, ELISA, and Flow cytometry assays in STZ-induced mice. Moreover, THP-1 cells were stimulated with HG/LPS for in vitro studies. ELISA, qPCR, western blot, and Flow cytometry assays were utilized to assess the effects of PA on DN progression by regulating CYP2J2. The interaction between CYP2J2 and VDR was analyzed by CHIP-qPCR and luciferase experiments. CYP2J2 and VDR levels were downregulated and uACR level was upregulated in DN patients. CYP2J2 and VDR were positively correlated in PBMCs. Both CYP2J2 and VDR are inversely correlated with uACR. Moreover, after PA treatment, 11, 12-EET levels increased, inflammatory factor levels decreased, and M2 macrophage polarization was promoted in STZ-induced mice and HG/LPS-triggered THP-1 cells. Depletion of CYP2J2 and VDR decreased 11, 12-EET level, enhanced inflammatory factor levels, and inhibited M2 macrophage polarization, which were reversed by CYP2J2 overexpression in HG/LPS-treated cells. Furthermore, VDR bound to the CYP2J2 promoter and promoted CYP2J2 transcriptional expression. The present work pointed out a new use for PA to inhibit DN progression by increasing EET level, inhibiting inflammatory response, and inducing M2 macrophage polarization via regulating the VDR/CYP2J2 axis.
Collapse
Affiliation(s)
- Shiqi Tang
- Department of Nephrology, The Third XiangYa Hospital Central South University, Changsha, Hunan, P. R. China
| | - Jun Tan
- Department of Nephrology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, P. R. China
| | - Shikun Yang
- Department of Nephrology, The Third XiangYa Hospital Central South University, Changsha, Hunan, P. R. China
| | - Aimei Li
- Department of Nephrology, The Third XiangYa Hospital Central South University, Changsha, Hunan, P. R. China
| | - Jishi Liu
- Department of Nephrology, The Third XiangYa Hospital Central South University, Changsha, Hunan, P. R. China
| | - Wei Zhang
- Department of Nephrology, The Third XiangYa Hospital Central South University, Changsha, Hunan, P. R. China
| | - Hao Zhang
- Department of Nephrology, The Third XiangYa Hospital Central South University, Changsha, Hunan, P. R. China
| | - Yan Liu
- Department of Nephrology, The Third XiangYa Hospital Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
31
|
Cheng J, Zhang C. Mesenchymal Stem Cell Therapy: Therapeutic Opportunities and Challenges for Diabetic Kidney Disease. Int J Mol Sci 2024; 25:10540. [PMID: 39408867 PMCID: PMC11477055 DOI: 10.3390/ijms251910540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), which severely affects the quality of patients' lives. However, the current therapeutic approaches can only postpone its progression to ESRD. It is therefore imperative to develop a novel therapeutic strategy for renal injury in DKD, with the objective of restoring renal function and reversing the process of ESRD. In recent years, the potential of mesenchymal stem cell (MSC) therapy for DKD has garnered increasing attention within the scientific community. Preclinical research on MSC therapy has yielded promising results, and the safety of MSC treatment in vivo has been substantiated in clinical studies. An increasing body of evidence suggests that MSC therapy has significant potential for the treatment of DKD. This article reviews the existing research on MSCs and their derived exosomes in treating DKD and analyzes the underlying mechanism of MSC-based therapy for DKD. Additionally, we discuss the potential of combining MSC therapy with conventional pharmacological treatments, along with the constraints and prospects of MSC therapy for DKD. We hope this review can provide a precise and comprehensive understanding of MSCs for the treatment of DKD.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China;
| |
Collapse
|
32
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
33
|
Liu H, Deng H, Huang H, Cao J, Wang X, Zhou Z, Zhong Z, Chen D, Peng G. Canine mesenchymal stem cell-derived exosomes attenuate renal ischemia-reperfusion injury through miR-146a-regulated macrophage polarization. Front Vet Sci 2024; 11:1456855. [PMID: 39315083 PMCID: PMC11417097 DOI: 10.3389/fvets.2024.1456855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction The most common factor leading to renal failure or death is renal IR (ischemia-reperfusion). Studies have shown that mesenchymal stem cells (MSCs) and their exosomes have potential therapeutic effects for IR injury by inhibiting M1 macrophage polarization and inflammation. In this study, the protective effect and anti-inflammatory mechanism of adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) after renal IR were investigated. Method Initially, ADMSC-Exos were intravenously injected into IR experimental beagles, and the subsequent assessment focused on inflammatory damage and macrophage phenotype. Furthermore, an in vitro inflammatory model was established by inducing DH82 cells with LPS. The impact on inflammation and macrophage phenotype was then evaluated using ADMSC and regulatory miR-146a. Results Following the administration of ADMSC-Exos in IR canines, a shift from M1 to M2 macrophage polarization was observed. Similarly, in vitro experiments demonstrated that ADMSC-Exos enhanced the transformation of LPS-induced macrophages from M1 to M2 type. Notably, the promotion of macrophage polarization by ADMSC-Exos was found to be attenuated upon the inhibition of miR-146a in ADMSC-Exos. Conclusion These findings suggest that miR-146a plays a significant role in facilitating the transition of LPS-induced macrophages from M1 to M2 phenotype. As a result, the modulation of macrophage polarization by ADMSC-Exos is achieved via the encapsulation and conveyance of miR-146a, leading to diminished infiltration of inflammatory cells in renal tissue and mitigation of the inflammatory reaction following canine renal IR.
Collapse
Affiliation(s)
- HaiFeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiahui Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
He N, Dong M, Sun Y, Yang M, Wang Y, Du L, Ji K, Wang J, Zhang M, Gu Y, Lu X, Liu Y, Wang Q, Li Z, Song H, Xu C, Liu Q. Mesenchymal stem cell-derived extracellular vesicles targeting irradiated intestine exert therapeutic effects. Theranostics 2024; 14:5492-5511. [PMID: 39310097 PMCID: PMC11413785 DOI: 10.7150/thno.97623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Radiation-induced intestinal injuries are common in patients with pelvic or abdominal cancer. However, these injuries are currently not managed effectively. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been extensively used in regenerative medicine. However, the results of MSC-EVs in the repair of radiation-induced intestinal damage have been unsatisfactory. We here investigated the nanotherapeutic functions of MSC-EVs in radiation-induced intestinal injury. Methods: We visualized the biodistribution and trend of MSC-EVs through in vivo imaging. A radiation-induced intestinal injury model was constructed, and the therapeutic effect of MSC-EVs was explored through in vivo and in vitro experiments. Immunofluorescence and qRT-PCR assays were conducted to explore the underlying mechanisms. Results: MSC-EVs exhibited a dose-dependent tendency to target radiation-injured intestines while providing spatiotemporal information for the early diagnosis of the injury by quantifying the amount of MSC-EVs in the injured intestines through molecular imaging. Meanwhile, MSC-EVs displayed superior nanotherapeutic functions by alleviating apoptosis, improving angiogenesis, and ameliorating the intestinal inflammatory environment. Moreover, MSC-EVs-derived miRNA-455-5p negatively regulated SOCS3 expression, and the activated downstream Stat3 signaling pathway was involved in the therapeutic efficacy of MSC-EVs in radiation-induced intestinal injuries. Conclusion: MSC-EVs can dose-dependently target radiation-injured intestinal tissues, allow a spatiotemporal diagnosis in different degrees of damage to help guide personalized therapy, offer data for designing EV-based theranostic strategies for promoting recovery from radiation-induced intestinal injury, and provide cell-free treatment for radiation therapy.
Collapse
Affiliation(s)
- Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Mingxin Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yeqing Gu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xinran Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
35
|
Li X, Yang L, Xu S, Tian Y, Meng X. Exosomes and Macrophages: Bidirectional Mutual Regulation in the Treatment of Diabetic Complications. Cell Mol Bioeng 2024; 17:243-261. [PMID: 39372550 PMCID: PMC11450116 DOI: 10.1007/s12195-024-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose The bidirectional regulation of macrophages and exosomes provides a meaningful research direction for the treatment of complications arising from both type 1 and type 2 diabetes mellitus. However, there is currently no comprehensive evaluation of the bidirectional regulatory role of macrophages and exosomes in diabetic complications. In this review, we aim to provide the detailed process of the bidirectional regulation mechanism of macrophages and exosomes, and how macrophage-associated exosomes use this mechanism to make it better applied to clinical practice through biotechnology. Methods Therefore, we summarized the bidirectional regulation mechanism of macrophages and exosomes and the application based on the bidirectional regulation mechanism from two aspects of inflammation and insulin resistance. Results As key regulators of the immune system, macrophages are crucial in the progression of diabetic complications due to their significant impact on the regulation of cellular metabolism, inflammation, and insulin sensitivity. Furthermore, exosomes, as innovative mediators of intercellular communication, transport miRNAs, proteins, and various bioactive molecules, influencing the occurrence and progression of diabetic complications through the regulation of inflammation and insulin resistance. The bidirectional regulation between macrophages and exosomes provides a promising pathway for the treatment of diabetic complications aimed at regulating the immune response and improving insulin sensitivity. Conclusions Understanding the complexity of the interaction between macrophages and exosomes can advance the treatment of diabetic complications and drug development, and bringing more innovative and effective treatment strategies for diabetic complications.
Collapse
Affiliation(s)
- Xue Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Lianrong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| |
Collapse
|
36
|
Xu Y, Ren Y, Zou W, Ji S, Shen W. Neutrophil extracellular traps promote erectile dysfunction in rats with diabetes mellitus by enhancing NLRP3-mediated pyroptosis. Sci Rep 2024; 14:16457. [PMID: 39014129 PMCID: PMC11252272 DOI: 10.1038/s41598-024-67281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Erectile dysfunction (ED) is the most prevalent consequences in men with diabetes mellitus (DM). Recent studies demonstrates that neutrophil extracellular traps (NETs) play important roles in DM and its complications. Nevertheless, whether NETs are involved in ED remains unknown. This work intended to explore the role and mechanisms of NETs in ED in the context of DM. Here, we observed that NET generation and pyroptosis were promoted in DM rats with ED compared with controls. Mechanistically, NETs facilitated NLRP3 inflammasome activation and subsequently triggered pyroptosis under high glucose stress, ultimately leading to ED. Intriguingly, DNase I (a NET degrading agent) alleviated ED and corpus cavernosum injury in DM rats. Overall, NETs might induce ED in DM by promoting NLRP3-mediated pyroptosis in the corpus cavernosum.
Collapse
Affiliation(s)
- Ying Xu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Ren
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wenli Zou
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Shuiyu Ji
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wei Shen
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
37
|
Zhang H, Wang X, Hu B, Li P, Abuduaini Y, Zhao H, Jieensihan A, Chen X, Wang S, Guo N, Yuan J, Li Y, Li L, Yang Y, Liu Z, Tang Z, Wang H. Human umbilical cord mesenchymal stem cells attenuate diabetic nephropathy through the IGF1R-CHK2-p53 signalling axis in male rats with type 2 diabetes mellitus. J Zhejiang Univ Sci B 2024; 25:568-580. [PMID: 39011677 PMCID: PMC11254681 DOI: 10.1631/jzus.b2300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/21/2023] [Indexed: 07/13/2024]
Abstract
Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red "O" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Xinshu Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200331, China
- Ji'an Hospital, Shanghai East Hospital, Ji'an 343000, China
| | - Bo Hu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Peicheng Li
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yierfan Abuduaini
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Hongmei Zhao
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Ayinaer Jieensihan
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Xishuang Chen
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Shiyu Wang
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Nuojin Guo
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jian Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200331, China
- Ji'an Hospital, Shanghai East Hospital, Ji'an 343000, China
| | - Yunhui Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Ji'an Hospital, Shanghai East Hospital, Ji'an 343000, China
| | - Lei Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yuntong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200331, China
| | - Zhongmin Liu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Shanghai 200120, China
| | - Zhaosheng Tang
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China. ,
| | - Hua Wang
- Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Shanghai 200120, China.
| |
Collapse
|
38
|
Liu L, Chen Y, Li X, Wang J, Yang L. Therapeutic potential: The role of mesenchymal stem cells from diverse sources and their derived exosomes in diabetic nephropathy. Biomed Pharmacother 2024; 175:116672. [PMID: 38677249 DOI: 10.1016/j.biopha.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetic patients, with its incidence continuously increasing in recent years. DN causes renal tissue damage and functional decline, expedites the aging process of the kidneys, and may ultimately progress leading to end-stage renal disease, severely impacting the patient's quality of life and prognosis. Mesenchymal stem cells (MSCs) are highly valued for their multipotent differentiation, paracrine functions, immunomodulatory effects, and capacity for tissue repair. Particularly, exosomes (Exo) derived from MSCs (MSCs-Exo) are rich in bioactive molecules and facilitate intercellular communication, participating in various physiological and pathological processes. MSCs and MSCs-Exo, in particular, have been demonstrated to have therapeutic effects in DN treatment research by encouraging tissue repair, fibrosis inhibition, and inflammation reduction. Research has shown that MSCs and MSCs-Exo have therapeutic effects in DN treatment by promoting tissue repair, inhibiting fibrosis, and reducing inflammation. Recent studies underscore the potential of MSCs and MSCs-Exo, highlighting their broad applicability in DN treatment. This review aims to provide a comprehensive summary of the scientific developments in treating DN using MSCs and MSCs-Exo from diverse sources, while also exploring their future therapeutic possibilities in detail.
Collapse
Affiliation(s)
- Lixin Liu
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Juan Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
39
|
Soufihasanabad S, Mahmoudi M, Taghavi-Farahabadi M, Mirsanei Z, Mahmoudi Lamouki R, Mirza Abdalla JK, Babaei E, Hashemi SM. In vivo polarization of M2 macrophages by mesenchymal stem cell-derived extracellular vesicles: A novel approach to macrophage polarization and its potential in treating inflammatory diseases. Med Hypotheses 2024; 187:111353. [DOI: 10.1016/j.mehy.2024.111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Ryu S, Lee EK. The Pivotal Role of Macrophages in the Pathogenesis of Pancreatic Diseases. Int J Mol Sci 2024; 25:5765. [PMID: 38891952 PMCID: PMC11171839 DOI: 10.3390/ijms25115765] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The pancreas is an organ with both exocrine and endocrine functions, comprising a highly organized and complex tissue microenvironment composed of diverse cellular and non-cellular components. The impairment of microenvironmental homeostasis, mediated by the dysregulation of cell-to-cell crosstalk, can lead to pancreatic diseases such as pancreatitis, diabetes, and pancreatic cancer. Macrophages, key immune effector cells, can dynamically modulate their polarization status between pro-inflammatory (M1) and anti-inflammatory (M2) modes, critically influencing the homeostasis of the pancreatic microenvironment and thus playing a pivotal role in the pathogenesis of the pancreatic disease. This review aims to summarize current findings and provide detailed mechanistic insights into how alterations mediated by macrophage polarization contribute to the pathogenesis of pancreatic disorders. By analyzing current research comprehensively, this article endeavors to deepen our mechanistic understanding of regulatory molecules that affect macrophage polarity and the intricate crosstalk that regulates pancreatic function within the microenvironment, thereby facilitating the development of innovative therapeutic strategies that target perturbations in the pancreatic microenvironment.
Collapse
Affiliation(s)
- Seungyeon Ryu
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
41
|
An Q, Cao Y, Guo W, Jiang Z, Luo H, Liu H, Zhan X. Identification of common genes of rhinovirus single/double‑stranded RNA‑induced asthma deterioration by bioinformatics analysis. Exp Ther Med 2024; 27:210. [PMID: 38590566 PMCID: PMC11000450 DOI: 10.3892/etm.2024.12498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Rhinovirus (RV) is the most common respiratory virus affecting humans. The majority of asthma deteriorations are triggered by RV infections. However, whether the effects of RV single- and double-stranded RNA on asthma deterioration have common target genes needs to be further studied. In the present study, two datasets (GSE51392 and GSE30326) were used to screen for common differentially expressed genes (cDEGs). The molecular function, signaling pathways, interaction networks, hub genes, key modules and regulatory molecules of cDEGs were systematically analyzed using online tools such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, STRING and NetworkAnalyst. Finally, the hub genes STAT1 and IFIH1 were verified in clinical samples using reverse transcription-quantitative PCR (RT-qPCR). A total of 85 cDEGs were identified. Function analysis revealed that cDEGs served an important role in the innate immune response to viruses and its regulation. Signal transducer and activator of transcription 1 (STAT1), interferon induced with helicase C domain 1 (IFIH1), interferon regulatory factor 7 (IRF7), DExD/H box helicase 58 (DDX58) and interferon-stimulating gene 15 (ISG15) were detected to be hub genes based on the protein-protein interactions and six topological algorithms. A key module involved in influenza A, the Toll-like receptor signaling pathway, was identified using Cytoscape software. The hub genes were regulated by GATA-binding factor 2 and microRNA-146a-5p. In addition, RT-qPCR indicated that the expression levels of the hub genes STAT1 and IFIH1 were low during asthma deterioration compared with post-treatment recovery samples. The present study enhanced the understanding of the mechanism of RV-induced asthma deterioration.
Collapse
Affiliation(s)
- Qian An
- Department of Respiratory and Critical Care Medicine, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui 241000, P.R. China
| | - Yi Cao
- Department of Medical Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Wei Guo
- Department of Medical Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Ziyun Jiang
- Department of Medical Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Hui Luo
- Department of Medical Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Hui Liu
- Department of Medical Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xiaodong Zhan
- Department of Medical Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
42
|
Li N, Hu L, Li J, Ye Y, Bao Z, Xu Z, Chen D, Tang J, Gu Y. The Immunomodulatory effect of exosomes in diabetes: a novel and attractive therapeutic tool in diabetes therapy. Front Immunol 2024; 15:1357378. [PMID: 38720885 PMCID: PMC11076721 DOI: 10.3389/fimmu.2024.1357378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.
Collapse
Affiliation(s)
- Na Li
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Lingli Hu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyang Li
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhengyang Bao
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Gu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
- Department of Obstetrics, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
43
|
Lin DW, Yang TM, Ho C, Shih YH, Lin CL, Hsu YC. Targeting Macrophages: Therapeutic Approaches in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4350. [PMID: 38673935 PMCID: PMC11050450 DOI: 10.3390/ijms25084350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes is not solely a metabolic disorder but also involves inflammatory processes. The immune response it incites is a primary contributor to damage in target organs. Research indicates that during the initial phases of diabetic nephropathy, macrophages infiltrate the kidneys alongside lymphocytes, initiating a cascade of inflammatory reactions. The interplay between macrophages and other renal cells is pivotal in the advancement of kidney disease within a hyperglycemic milieu. While M1 macrophages react to the inflammatory stimuli induced by elevated glucose levels early in the disease progression, their subsequent transition to M2 macrophages, which possess anti-inflammatory and tissue repair properties, also contributes to fibrosis in the later stages of nephropathy by transforming into myofibroblasts. Comprehending the diverse functions of macrophages in diabetic kidney disease and regulating their activity could offer therapeutic benefits for managing this condition.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi City 60069, Taiwan;
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Cheng Ho
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Chun-Liang Lin
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| |
Collapse
|
44
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
45
|
Yin N, Luo C, Wei L, Yang G, Bo L, Mao C. The mechanisms of MicroRNA 21 in premature ovarian insufficiency mice with mesenchymal stem cells transplantation : The involved molecular and immunological mechanisms. J Ovarian Res 2024; 17:75. [PMID: 38575997 PMCID: PMC10996253 DOI: 10.1186/s13048-024-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.
Collapse
Affiliation(s)
- Na Yin
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
- International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, 200030, China
| | - Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
| | - Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
| | - Guangzhao Yang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China.
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
46
|
Saleh RO, Hjazi A, Bansal P, Ahmad I, Kaur H, Ali SHJ, Deorari M, Abosaoda MK, Hamzah HF, Mohammed BA. Mysterious interactions between macrophage-derived exosomes and tumors; what do we know? Pathol Res Pract 2024; 256:155261. [PMID: 38518733 DOI: 10.1016/j.prp.2024.155261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Through their ability to modify the tumor microenvironment and cancer cells, macrophages play a crucial role in the promotion of tumorigenesis, development of tumors and metastasis, and chemotherapy resistance. A growing body of research has indicated that exosomes may be essential for coordinating the communication between cancer cells and macrophages. One type of extracellular vehicle called an exosome is utilized for delivering a variety of molecules, such as proteins, lipids, and nucleic acids, to specific cells in order to produce pleiotropic effects. Exosomes derived from macrophages exhibit heterogeneity across various cancer types and function paradoxically, suppressing tumor growth while stimulating it, primarily through post-transcriptional control and protein phosphorylation regulation in the receiving cells. Exosomes released by various macrophage phenotypes offer a variety of therapeutic alternatives in the interim. We outlined the most recent developments in this article, including our understanding of the roles that mechanisms and macrophage-derived exosomal biogenesis play in mediating the progression of cancer and their possible therapeutic uses.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India.
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Munther Kadhim Abosaoda
- College of pharmacy, the Islamic University, Najaf, Iraq; College of pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq.
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | | |
Collapse
|
47
|
Sun Y, Zhao Y, Lu Y, Li H, Xiang J, Yang D, Wang J, Gao X, Wang Y. Urinary stem cell-derived exocrine circRNA ATG7 regulates the SOCS1/STAT3 signaling pathway through miR-4500, inhibits M1 macrophage polarization, and alleviates the progression of diabetes nephropathy. Int Urol Nephrol 2024; 56:1449-1463. [PMID: 37815664 PMCID: PMC10924005 DOI: 10.1007/s11255-023-03819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE The etiopathogenesis of diabetes nephropathy (DN) has not yet been fully clarified. Finding effective treatments to prevent renal failure in DN patients has become the main focus of research in recent years. Circular RNA (circRNA) has been shown to play a momentous role in DN progression. Based on this, we aimed to investigate the potential mechanism by which urine-derived stem cell (USC)-derived exosome circRNA ATG7 (Exo-ATG7) mediates DN progression. METHODS Exosomes from USCs were isolated and identified. The DN rat model was established by intraperitoneally injecting 60 mg/kg streptozotocin. The protein expression levels were measured by Western blot and immunofluorescence. HE and Masson staining were used to evaluate renal injury, and the expression of related genes was detected by RT-qPCR. RESULTS CircRNA ATG7 was significantly downregulated in the DN rat model, and the extracellular vesicles of USCs improved renal function and reduced inflammation in DN rats. However, after knocking down the USCs-derived exosome circRNA ATG7, improvement and therapeutic effect on renal function in DN rats were lost. In addition, overexpression of ATG7 facilitated the switching of macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype both in vivo and in vitro. Mechanistically, upregulation of circRNA ATG7 expression can alleviate renal damage in DN rats. Importantly, the USCs-derived exosome circRNA ATG7 promotes macrophage M2 polarization by regulating the SOCS1/STAT3 signaling pathway through miR-4500. In addition, animal experiments also confirmed that after knocking down ATG7 in USC cells, the extracted exosome-treated DN rats could weaken the therapeutic effect of USC exosomes. CONCLUSION Our research results indicate that USC-derived exosomal circRNA ATG7 facilitates macrophage phenotype switching from M1 to M2 through the SOCS1/STAT3 signaling pathway mediated by miR-4500, thereby inhibiting DN progression.
Collapse
Affiliation(s)
- Yang Sun
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yanhong Zhao
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yongxin Lu
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Hongmei Li
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Jin Xiang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Dongmei Yang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Jinrui Wang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Xinglian Gao
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yian Wang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China.
| |
Collapse
|
48
|
Liu D, Tang W, Tang D, Yan H, Jiao F. Ocu-miR-10a-5p promotes the chondrogenic differentiation of rabbit BMSCs by targeting BTRC-mediated Wnt/β-catenin signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:343-353. [PMID: 38504085 DOI: 10.1007/s11626-024-00888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
MicroRNAs (miRNAs) play an important role in articular cartilage damage in osteoarthritis (OA). However, the biological role of miRNAs in the chondrogenic differentiation of bone marrow mesenchymal stem cell (BMSC) remains largely unclear. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated, cultured, and identified. Afterwards, rBMSCs were induced to chondrogenic differentiation, examined by Alcian Blue staining. Differentially expressed miRNAs were identified in rBMSCs between induced and non-induced groups by miRNA sequencing analysis, part of which was validated via PCR assay. Cell viability and apoptosis were assessed by CCK-8 assay and Hoechst staining. Saffron O staining was utilized to assess chondrocyte hyperplasia. The expression of specific chondrogenic markers, including COL2A1, SOX9, Runx2, MMP-13, Aggrecan, and BMP-2, were measured at mRNA and protein levels. The association between beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) and miR-10a-5p in the miRNA family from rabbit (ocu-miR-10a-5p) was determined by luciferase reporter assay. A total of 76 differentially expressed miRNAs, including 52 downregulated and 24 upregulated miRNAs, were identified in rBMSCs from the induced group. Inhibition of ocu-miR-10a-5p suppressed rBMSC viability and chondrogenic differentiation, as well as downregulated the expression of β-catenin, SOX9, COL2A1, MMP-13, and Runx2. BTRC was predicted and confirmed as a target of ocu-miR-10a-5p. Overexpression of BTRC rescued the promoting impacts of overexpressed ocu-miR-10a-5p on chondrogenic differentiation of rBMSCs and β-catenin expression. Taken together, our data suggested that ocu-miR-10a-5p facilitated rabbit BMSC survival and chondrogenic differentiation by activating Wnt/β-catenin signaling through BTRC.
Collapse
Affiliation(s)
- Donghua Liu
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Wang Tang
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Dongming Tang
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China
| | - Haixia Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Jiao
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
49
|
Lv S, Fan L, Chen X, Su X, Dong L, Wang Q, Wang Y, Zhang H, Cui H, Zhang S, Wang L. Jian-Pi-Gu-Shen-Hua-Yu Decoction Alleviated Diabetic Nephropathy in Mice through Reducing Ferroptosis. J Diabetes Res 2024; 2024:9990304. [PMID: 38523631 PMCID: PMC10960652 DOI: 10.1155/2024/9990304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN), one of the most frequent complications of diabetes mellitus, is a leading cause of end-stage renal disease. However, the current treatment methods still cannot effectively halt the progression of DN. Jian-Pi-Gu-Shen-Hua-Yu (JPGS) decoction can be used for the treatment of chronic kidney diseases such as DN, but the specific mechanism of action has not been fully elucidated yet. PURPOSE The aim of this study is to clarify whether JPGS alleviates the progression of diabetic nephropathy by inhibiting ferroptosis. MATERIALS AND METHODS We established a DN mouse model to investigate the therapeutic effect of JPGS in a DN mouse model. Subsequently, we examined the effects of JPGS on ferroptosis- and glutathione peroxidase 4 (GPX4) pathway-related indices. Finally, we validated whether JPGS inhibited ferroptosis in DN mice via the GPX4 pathway using GPX4 inhibitor and ferroptosis inhibitors. RESULTS The results indicate that JPGS has a therapeutic effect on DN mice by improving kidney function and reducing inflammation. Additionally, JPGS treatment decreased iron overload and oxidative stress levels while upregulating the expression of GPX4 pathway-related proteins. Moreover, JPGS demonstrated a similar therapeutic effect as Fer-1 in the context of DN treatment, and RSL3 was able to counteract the therapeutic effect of JPGS and antiferroptotic effect. CONCLUSION JPGS has significant therapeutic and anti-inflammatory effects on DN mice, and its mechanism is mainly achieved by upregulating the expression of GPX4 pathway-related proteins, thereby alleviating iron overload and ultimately reducing ferroptosis.
Collapse
Affiliation(s)
- Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Lirong Fan
- Botou Hospital of Traditional Chinese Medicine, Botou 062154, Hebei, China
| | - Xiaoting Chen
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Li Dong
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Qinghai Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Hui Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, China
| | - Shufang Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| | - Lixin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou 061012, Hebei, China
| |
Collapse
|
50
|
Gong ZT, Xiong YY, Ning Y, Tang RJ, Xu JY, Jiang WY, Li XS, Zhang LL, Chen C, Pan Q, Hu MJ, Xu J, Yang YJ. Nicorandil-Pretreated Mesenchymal Stem Cell-Derived Exosomes Facilitate Cardiac Repair After Myocardial Infarction via Promoting Macrophage M2 Polarization by Targeting miR-125a-5p/TRAF6/IRF5 Signaling Pathway. Int J Nanomedicine 2024; 19:2005-2024. [PMID: 38469055 PMCID: PMC10926597 DOI: 10.2147/ijn.s441307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
Background Exosomes derived from bone marrow mesenchymal stem cells (MSC-exo) have been considered as a promising cell-free therapeutic strategy for ischemic heart disease. Cardioprotective drug pretreatment could be an effective approach to improve the efficacy of MSC-exo. Nicorandil has long been used in clinical practice for cardioprotection. This study aimed to investigate whether the effects of exosomes derived from nicorandil pretreated MSC (MSCNIC-exo) could be enhanced in facilitating cardiac repair after acute myocardial infarction (AMI). Methods MSCNIC-exo and MSC-exo were collected and injected into the border zone of infarcted hearts 30 minutes after coronary ligation in rats. Macrophage polarization was detected 3 days post-infarction, cardiac function as well as histological pathology were measured on the 28th day after AMI. Macrophages were separated from the bone marrow of rats for in vitro model. Exosomal miRNA sequencing was conducted to identify differentially expressed miRNAs between MSCNIC-exo and MSC-exo. MiRNA mimics and inhibitors were transfected to MSCs or macrophages to explore the specific mechanism. Results Compared to MSC-exo, MSCNIC-exo showed superior therapeutic effects on cardiac functional and structural recovery after AMI and markedly elevated the ratio of CD68+ CD206+/ CD68+cells in infarcted hearts 3 days post-infarction. The notable ability of MSCNIC-exo to promote macrophage M2 polarization was also confirmed in vitro. Exosomal miRNA sequencing and both in vivo and in vitro experiments identified and verified that miR-125a-5p was an effector of the roles of MSCNIC-exo in vivo and in vitro. Furthermore, we found miR-125a-5p promoted macrophage M2 polarization by inhibiting TRAF6/IRF5 signaling pathway. Conclusion This study suggested that MSCNIC-exo could markedly facilitate cardiac repair post-infarction by promoting macrophage M2 polarization by upregulating miR-125a-5p targeting TRAF6/IRF5 signaling pathway, which has great potential for clinical translation.
Collapse
Affiliation(s)
- Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Jun-Yan Xu
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Wen-Yang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Xiao-Song Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Meng-Jin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| |
Collapse
|