1
|
Chattopadhyay S, Rajendran RL, Chatterjee G, Reyaz D, Prakash K, Hong CM, Ahn BC, ArulJothi KN, Gangadaran P. Mesenchymal stem cell-derived exosomes: A paradigm shift in clinical therapeutics. Exp Cell Res 2025; 450:114616. [PMID: 40414452 DOI: 10.1016/j.yexcr.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Mesenchymal stromal/stem cell (MSC)-derived exosomes are nanoscale extracellular vesicles that have emerged as promising candidates for therapeutic and diagnostic applications because of their unique bioactive cargo, including proteins, lipids, and nucleic acids. These vesicles mitigate concerns of immunogenicity and tumorigenicity associated with MSC-based therapies and offer enhanced stability, higher scalability, and ease of modification. However, the use of MSC-derived exosomes in clinical practice is associated with challenges, including difficulties in isolation, characterization, and standardization. This review explores the biogenesis and structural properties of MSC-derived exosomes and discusses the molecular mechanisms underlying their therapeutic effects. It also discusses ongoing clinical trials on their applications in cancer, cardiovascular, neurological, and regenerative medicine. Preclinical and clinical data have demonstrated the potential of MSC-derived exosomes in enhancing tissue repair, reducing inflammation, and modulating immune responses. Despite these advancements, gaps in scalable production methods, regulatory guidelines, and therapeutic consistency must be addressed. Future innovations in bioengineering, manufacturing, and regulatory frameworks are essential to realize the full potential of MSC-derived exosomes in mainstream medicine.
Collapse
Affiliation(s)
- Sayantani Chattopadhyay
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Gargii Chatterjee
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Danyal Reyaz
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Kruthika Prakash
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| | - Kandasamy Nagarajan ArulJothi
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
2
|
Lan D, Zhang D, Dai X, Cai J, Zhou H, Song T, Wang X, Kong Q, Tang Z, Tan J, Zhang J. Mesenchymal stem cells and exosomes: A novel therapeutic approach for aging. Exp Gerontol 2025; 206:112781. [PMID: 40349806 DOI: 10.1016/j.exger.2025.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Mesenchymal stem cells (MSCs), a vital component of the adult stem cell repertoire, are distinguished by their dual capacity for self-renewal and multilineage differentiation. The therapeutic effects of MSCs are primarily mediated through mechanisms such as homing, paracrine signaling, and cellular differentiation. Exosomes (Exos), a type of extracellular vesicles (EVs) secreted by MSCs via the paracrine pathway, play a pivotal role in conveying the biological functions of MSCs. Accumulating evidence from extensive research underscores the remarkable anti-aging potential of both MSCs and their Exos. This review comprehensively explores the impact of MSCs and their Exos on key hallmarks of aging, including genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Furthermore, this paper highlights emerging strategies and novel approaches for modulating the aging process, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Zhengzhen Tang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
3
|
Li JZ, Zhan X, Sun HB, Chi C, Zhang GF, Liu DH, Zhang WX, Sun LH, Kang K. L-arginine from elder human mesenchymal stem cells induces angiogenesis and enhances therapeutic effects on ischemic heart diseases. World J Stem Cells 2025; 17:103314. [PMID: 40308887 PMCID: PMC12038462 DOI: 10.4252/wjsc.v17.i4.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapy may be a future treatment for myocardial infarction (MI). However, few studies have assessed the therapeutic efficacy of adipose tissue-derived MSCs (ADSCs) obtained from elderly patients in comparison to that of bone marrow-derived MSCs (BMSCs) from the same elderly patients. The metabolomics results revealed a significantly higher L-arginine excretion from aged ADSCs vs BMSCs in hypoxic conditions. This was hypothesized as the possible mechanism that ADSCs showed an improved angiogenic capacity and enhanced the therapeutic effect on ischemic heart diseases. AIM To investigate the role of L-arginine in enhancing angiogenesis and cardiac protection by comparing ADSCs and BMSCs in hypoxic conditions for MI therapy. METHODS Metabolomic profiling of supernatants from ADSCs and BMSCs under hypoxic conditions were performed. Then, arginine succinate lyase (ASL) overexpression and short hairpin RNA plasmid were prepared and transfected into BMSCs. Subsequently, in vitro wound healing and Matrigel tube formation assays were used to verify the proangiogenetic effects of ADSC positive control, BMSCs, BMSCs ASL short hairpin RNA, BMSCs ASL overexpressed, and BMSC negative control on cocultured human umbilical vein endothelial cells. All sample sizes, which were determined to meet the statistical requirements and be greater than 3, were established on the basis of previously established literature standards. The protein levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor, etc. were detected. In vivo, the five types of cells were transplanted into the infarcted area of MI rat models, and the therapeutic effects of the transplanted cells were evaluated by echocardiography on cardiac function and by Masson's staining/terminal-deoxynucleotidyl transferase mediated nick end labeling assay/immunofluorescence detection on the infarcted area. RESULTS Metabolomic analysis showed that L-arginine was increased. Using ASL gene transfection, we upregulated the production of L-arginine in aged patient-derived BMSCs in vitro, which in turn enhanced mitogen activated protein kinase and VEGF receptor 2 protein expression, VEGF and basic fibroblast growth factor secretion, and inductive angiogenesis to levels comparable to donor-matched ADSCs. After the cell transplantation in vivo, the modified BMSCs as well as ADSCs exhibited decreased apoptotic cells, enhanced vessel formation, reduced scar size, and improved cardiac function in the MI rat model. The therapeutic efficacy decreased by inhibiting L-arginine synthesis. CONCLUSION L-arginine is important for inducing therapeutic angiogenesis for ADSCs and BMSCs in hypoxic conditions. ADSCs have higher L-arginine secretion, which leads to better angiogenesis induction and cardiac protection. ADSC transplantation is a promising autologous cell therapy strategy in the context of the present aging society.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710014, Shaanxi Province, China
| | - Xu Zhan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hao-Bo Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chao Chi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guo-Fu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dong-Hui Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Xi Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
4
|
Chen Z, Zheng X, Mu Z, Lu W, Zhang H, Yan J. Intelligent Nanomaterials Design for Osteoarthritis Managements. SMALL METHODS 2025:e2402263. [PMID: 40159773 DOI: 10.1002/smtd.202402263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disorder, characterized by progressive joint degradation, pain, and diminished mobility, all of which collectively impair patients' quality of life and escalate healthcare expenditures. Current treatment options are often inadequate due to limited efficacy, adverse side effects, and temporary symptom relief, underscoring the urgent need for more effective therapeutic strategies. Recent advancements in nanomaterials and nanomedicines offer promising solutions by improving drug bioavailability, reducing side effects and providing targeted therapeutic benefits. This review critically examines the pathogenesis of OA, highlights the limitations of existing treatments, and explores the latest innovations in intelligent nanomaterials design for OA therapy, with an emphasis on their engineered properties, therapeutic mechanisms, and translational potential in clinical application. By compiling recent findings, this work aims to inspire further exploration and innovation in nanomedicine, ultimately advancing the development of more effective and personalized OA therapies.
Collapse
Affiliation(s)
- Zhihao Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuan Zheng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Weijie Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- Department of Orthopedics, Yanjiang Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Haiyuan Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiao Yan
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
5
|
Goulian AJ, Goldstein B, Saad MA. Advancements in Regenerative Therapies for Orthopedics: A Comprehensive Review of Platelet-Rich Plasma, Mesenchymal Stem Cells, Peptide Therapies, and Biomimetic Applications. J Clin Med 2025; 14:2061. [PMID: 40142869 PMCID: PMC11943164 DOI: 10.3390/jcm14062061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Regenerative therapies have gained interest in orthopedic applications for their potential to enhance tissue regeneration, functional recovery, and pain modification. This review evaluates the clinical efficacy of platelet-rich plasma (PRP), mesenchymal stem cells (MSCs), peptide-based treatments, and biomimetic materials in orthopedic care, with a focus on pain reduction and functional outcomes. Methods: A structured literature search in PubMed (January 2009-January 2025) identified 160 studies. After applying inclusion criteria prioritizing randomized controlled trials (RCTs) and clinical trials, 59 studies were included: 20 on PRP, 20 on MSCs, 10 on peptide therapies, and 7 on biomimetics. Data extraction focused on pain reduction and functional recovery, with risk of bias assessed using the Cochrane Risk of Bias (RoB) tool and ROBINS-I tool. A random-effects meta-regression analysis was conducted to evaluate the impact of therapy type, sample size, and risk of bias on reported pain reduction outcomes. Results: Meta-regression analysis identified MSC therapy as the most effective intervention for pain reduction (β = 8.45, p < 0.05), with PRP and peptide-based therapies showing moderate improvements, and biomimetic therapies demonstrating the lowest effect. PRP provided short-term pain relief, particularly in acute injuries and tendon repair, though inconsistencies in preparation methods limited success in chronic conditions. MSC therapies demonstrated cartilage regeneration and early osteoarthritis improvement, but high costs and ethical concerns remain barriers to widespread adoption. Peptide-based therapies and biomimetic materials, including engineered scaffolds and autologous protein solutions, showed promise for infection control and wound healing, though further research is needed to optimize dosing, delivery methods, and long-term safety. Conclusions: Regenerative therapies offer significant potential in orthopedic care, with MSC therapies demonstrating the most reliable regenerative effects, PRP providing short-term symptomatic relief, and peptide-based and biomimetic treatments emerging as promising adjuncts. However, standardized protocols and large-scale clinical trials are needed to establish long-term efficacy and improve clinical translation for broader adoption.
Collapse
Affiliation(s)
- Andrew J. Goulian
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.J.G.); (B.G.)
| | - Brielle Goldstein
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.J.G.); (B.G.)
| | - Maarouf A. Saad
- Department of Orthopaedic Surgery, University of California, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Zhang Y, Liu K, Ma X, Su X, Zhao L, Wu Y, Shi Y. Therapeutic Effects of Puerarin Loaded Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in a Rat Model of Osteoarthritis. Chem Biodivers 2025; 22:e202402095. [PMID: 39420681 DOI: 10.1002/cbdv.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. The primary objective of this study was to assess the therapeutic potential of puerarin loaded bone marrow mesenchymal stem cell-derived exosomes (Pue@BMSC-Exo), and reveal their inflammatory regulating mechanisms through affecting the nuclear factor kappa-B (NF-κB) signaling pathway. In this study, exosomes derived from BMSCs were isolated and identified. Cell proliferation and migration were evaluated by CCK-8 and scratch methods. Furthermore, histological and micro-computed tomography analysis were performed to assess alterations of articular cartilage in OA rats. Results showed that BMSC-Exo and Pue@BMSC-Exo conformed with the basic characteristics of exosomes. BMSC-Exo increased the solubility of Pue and enhanced drug uptake by chondrocytes. In addition, Pue@BMSC-Exo stimulated proliferation and migration of chondrocyte, and also promoted cartilage repair by reducing matrix metalloproteinase MMP13 production and increasing type II collagen (Col2) synthesis. Furthermore, Pue@BMSC-Exo, by effectively inhibiting the NF-κB signaling pathway, reduced the production of inflammatory mediators and attenuated the release of the inflammatory marker nitric oxide (NO), ultimately ameliorating the damage of chondrocyte. These findings exhibited the potential therapeutic significance of Pue@BMSC-Exo in OA and warranted further exploration in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xuejing Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Yi Wu
- Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang, 110030, P R China
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110030, P R China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| |
Collapse
|
8
|
Dawood RM, Mahdee AF. Inducing Osteogenesis in Human Pulp Stem Cells Cultured on Nano-Hydroxyapatite and Naringin-Coated 3D-Printed Poly Lactic Acid Scaffolds. Polymers (Basel) 2025; 17:596. [PMID: 40076089 PMCID: PMC11902540 DOI: 10.3390/polym17050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Regeneration dentistry demonstrates significant challenges due to the complexity of different dental structures. This study aimed to investigate osteogenic differentiation of human pulp stem cells (hDPSCs) cultured on a 3D-printed poly lactic acid (PLA) scaffold coated with nano-hydroxyapatite (nHA) and naringin (NAR) as a model for a dental regenerative. METHODS PLA scaffolds were 3D printed into circular discs (10 × 1 mm) and coated with nHA, NAR, or both. Scaffolds were cultured with hDPTCs to identify cellular morphological changes and adhesion over incubation periods of 3, 7, and 21 days using SEM. Then, the osteogenic potential of PLA, PLA/nHA/NAR, or PLA scaffolds coated with MTA elutes (PLA/MTA scaffolds) were evaluated by measuring mineralized tissue deposition using calcium concentration assays and alizarin red staining (ARS). Also, immunofluorescence labelling of alkaline phosphatase (ALP) and dentine sialophosphoprotein (DSPP) within cultured cells were evaluated. RESULTS The highest cellular attachment was identified on the PLA/nHA/NAR scaffold, with morphological changes reflecting cellular differentiation. The highest calcium deposition and ARS were recognized in the PLA/nHA/NAR culture, with statistically significant difference (p < 0.05) compared to PLA/MTA. Also, ALP and DSPP markers showed statistically significantly higher (p < 0.05) immunoreactivity in cells cultured within PLA/nHA/NAR compared to PLA/MTA. CONCLUSIONS The results confirm the osteogenic potential of PLA scaffolds coated with nHA/NAR for future animal and human investigations.
Collapse
Affiliation(s)
- Reem Mones Dawood
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad 1417, Iraq;
| | | |
Collapse
|
9
|
Feng K, Liu J, Gong L, Ye T, Chen Z, Wang Y, Li Q, Xie X. Engineered MSC-sEVs as a Versatile Nanoplatform for Enhanced Osteoarthritis Treatment via Targeted Elimination of Senescent Chondrocytes and Maintenance of Cartilage Matrix Metabolic Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413759. [PMID: 39755936 PMCID: PMC11848604 DOI: 10.1002/advs.202413759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment. In this study, versatile engineered MSC-sEVs are developed to targetedly clear senescent chondrocytes and maintain cartilage metabolic homeostasis. Specifically, MSC-sEVs are loaded with siRNA mouse double minute 2 homologue (siMDM2) and modified with cartilage-targeting peptide WYRGRL-PEG2K-DSPE (WPD), named WPD-sEVssiMDM2. The results demonstrate versatile modification improves the cellular uptake of MSC-sEVs in chondrocytes, and thus improves the antiaging effects. Importantly, multifunctional modification enhances cartilage penetration ability and extends joint retention time of MSC-sEVs. In both post-traumatic OA mice and naturally aged mice, WPD-sEVssiMDM2 more effectively eliminates senescent chondrocytes and maintained matrix metabolic homeostasis. By using the P53 phosphorylation inhibitor, the essential role MDM2-P53 pathway in the antiaging function of WPD-sEVssiMDM2 on chondrocytes is verified. In ex vivo cultured human OA cartilage explants, it is confirmed that WPD-sEVssiMDM2 alleviates senescent phenotype. Altogether, the findings suggest that WPD-sEVssiMDM2 have promising translational potential for OA treatment.
Collapse
Affiliation(s)
- Kai Feng
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jiashuo Liu
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Liangzhi Gong
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Teng Ye
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhengsheng Chen
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yang Wang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Qing Li
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Xuetao Xie
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
10
|
Sheng MHC, Rundle CH, Lau KHW. Microvesicles Released by Osteoclastic Cells Exhibited Chondrogenic, Osteogenic, and Anti-Inflammatory Activities: An Evaluation of the Feasibility of Their Use for Treatment of Osteoarthritis in a Mouse Model. Cells 2025; 14:193. [PMID: 39936984 PMCID: PMC11817440 DOI: 10.3390/cells14030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Extracellular vesicles (EVs), particularly exosomes (EXOs) of various skeletal and stem cells, were shown to delay osteoarthritis (OA) progression, and apoptotic bodies (ABs), another EV subtype, of osteoclasts showed osteoanabolic actions and were involved in the osteoclastic-regulation of local bone formation. Moreover, this study demonstrates that microvesicles (MVs) released by osteoclasts displayed potent pro-chondrogenic, pro-osteogenic, and anti-inflammatory activities. These activities were unique to osteoclastic MVs and were not shared by osteoclastic ABs and EXOs or MVs of other cell types. Because chronic synovial inflammation, progressive articular cartilage erosion, abnormal subchondral bone remodeling, and inability to regenerate articular cartilage are key etiologies of OA, we postulate that the foregoing activities of osteoclastic MVs could simultaneously target multiple etiologies of OA and could thereby be an effective therapy for OA. Accordingly, this study sought to assess the feasibility of an osteoclastic MV-based strategy for OA with a mouse tibial plateau injury model of OA. Briefly, tibial plateau injuries were created on the right knees of adult C57BL/6J mice, MVs were intraarticularly injected into the injured joints biweekly, and the OA progression was monitored histologically at five weeks post-injury. The MV treatment reduced the OA-induced losses of articular cartilage area and thickness, decreased irregularity in the articular cartilage surface, reduced loss of gliding/intermediate zone of articular cartilage, reduced osteophyte formation, suppressed synovial inflammation, and decreased the OARSI OA score. In summary, treatment with osteoclastic MVs delayed or reversed OA progression. Thus, this study supports the feasibility of an osteoclastic MV-based therapy for OA.
Collapse
Affiliation(s)
- Matilda H.-C. Sheng
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; (M.H.-C.S.); (C.H.R.)
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles H. Rundle
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; (M.H.-C.S.); (C.H.R.)
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kin-Hing William Lau
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; (M.H.-C.S.); (C.H.R.)
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
11
|
Li P, Cao L, Liu T, Lu X, Ma Y, Wang H. The Effect of Adipose-Derived Stem Cell (ADSC)-Exos on the Healing of Autologous Skin Grafts in Miniature Pigs. Int J Mol Sci 2025; 26:479. [PMID: 39859193 PMCID: PMC11764972 DOI: 10.3390/ijms26020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The skin functions as the body's primary defense barrier; when compromised, it can lead to dehydration, infection, shock, or potentially life-threatening conditions. Miniature pigs exhibit skin characteristics and healing processes highly analogous to humans. Mesenchymal stem cells contribute to skin injury repair through a paracrine mechanism involving exosomes. This research examines whether adipose-derived MSC exosomes effectively enhance healing following autologous skin grafting in miniature pigs. It also compares the roles and distinctions of ADSCs and ADSC-Exos in inflammatory responses and tissue regeneration. This study found significantly reduced levels of oxidative stress products and pro-inflammatory factors, while antioxidant factors, anti-inflammatory factors, and pro-regenerative factors were elevated, and anti-regenerative factor levels decreased. Moreover, the expression levels of key markers-namely, PI3K, Akt, and mTOR-in the regeneration-associated signaling pathway were increased. The alterations in these indicators indicate that ADSC-Exos can regulate inflammatory responses and promote regeneration. This study provides a novel theoretical foundation for the implementation of acellular therapy in clinical settings.
Collapse
Affiliation(s)
- Pujun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Lei Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| |
Collapse
|
12
|
Baheti W, Dong D, Li C, Chen X. Identification of core genes related to exosomes and screening of potential targets in periodontitis using transcriptome profiling at the single-cell level. BMC Oral Health 2025; 25:28. [PMID: 39762852 PMCID: PMC11706113 DOI: 10.1186/s12903-024-05409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level. METHODS The current study cited GSE16134, GSE10334, GSE171213 datasets and 19,643 ERGs. Initially, differential expression analysis, three machine learning (ML) models, gene expression analysis and receiver operating characteristic (ROC) analysis were proceeded to identify core genes. Subsequently, a core gene-based artificial neural network (ANN) model was built to evaluate the predictive power of core genes for PD. Gene set enrichment analysis (GSEA) and immunoinfiltration analysis were conducted based on core genes. To pinpoint key cell types influencing the progression of periodontal at the single-cell level, a series of single-cell analyses covering pseudo-time series analysis were accomplished. The expression verification of core genes was performed through quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS CKAP2, IGLL5, MZB1, CXCL6, and AADACL2 served as core genes diagnosing PD. Four core gene were elevated in the PD group in addition to down-regulated AADACL2. The core gene-based-ANN model had AUC values of 0.909 in GSE16134 dataset, which exceeded AUC of each core gene, highlighting the accurately and credibly predictive performance of ANN model. GSEA revealed that ribosome was co-enriched by 5 core genes, manifesting the expression of these genes might be critical for protein structure or function. Immunoinfiltration analysis found that CKAP2, IGLL5, MZB1, and CXCL6 exhibited positive correlations with most discrepant immune cells/discrepant stromal cells, which were highly infiltrated in PD. B cells and T cells holding crucial parts in PD were identified as key cell types. Pseudo-time series analysis revealed that the expression of IGLL5 and MZB1 increased during T cell differentiation, increased and then decreased during B cell differentiation. The qRT-PCR proved the mRNA expression levels of CKAP2 and MZB1 were increased in the blood of PD patients compared to controls. But the mRNA expression levels of AADACL2 was decreased in the PD patients compared to controls. This is consistent with the trend in the amount of expression in the dataset. CONCLUSION CKAP2, IGLL5, MZB1, CXCL6 and AADACL2 were identified as core genes associated with exosomes, helping us to understand the role of these genes in PD.
Collapse
Affiliation(s)
- Wufanbieke Baheti
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Diwen Dong
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China
| | - Congcong Li
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China
| | - Xiaotao Chen
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China.
| |
Collapse
|
13
|
Chen J, Tan Y, Chen Z, Yang H, Li X, Long X, Han Y, Yang J. Exosomes derived from primary cartilage stem/progenitor cells promote the repair of osteoarthritic chondrocytes by modulating immune responses. Int Immunopharmacol 2024; 143:113397. [PMID: 39461237 DOI: 10.1016/j.intimp.2024.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Exosomes derived from primary chondrogenic stem/progenitor cells (CSPCs-EXOs) show promise in cartilage repair due to their immunomodulatory and regenerative properties. However, their specific therapeutic potential in osteoarthritis (OA), especially in modulating immune responses and enhancing chondrocyte function, requires further exploration. This study aims to clarify CSPCs-EXOs' effects on OA by investigating their role in chondrocyte proliferation, migration, inflammation inhibition, and cartilage regeneration. METHODS A rat model of osteoarthritis was established using monosodium iodoacetate (MIA). CSPCs-EXOs were isolated and characterized before being administered to the OA rats. Comprehensive transcriptomic analysis was conducted to identify differentially expressed genes (DEGs) and signaling pathways influenced by CSPCs-EXOs. Histopathological evaluation of cartilage tissue, immunohistochemistry, and in vitro assays were performed to assess chondrocyte proliferation, migration, inflammation, and intracellular environmental changes. RESULTS CSPCs-EXOs treatment significantly reduced OA-induced cartilage damage, shown by improved histopathological features, increased chondrocyte proliferation, migration, and enhanced cartilage matrix integrity. CSPCs-EXOs uniquely modulated immune pathways and enhanced cellular repair, setting them apart from traditional treatments. Transcriptomic analysis revealed regulation of immune response, inflammation, oxidative stress, and DNA repair pathways. CSPCs-EXOs downregulated inflammatory cytokines (TNF, IL-17) and upregulated pathways for cellular proliferation, migration, and metabolism. They also altered splicing patterns of DNA repair enzymes, indicating a role in boosting repair mechanisms. CONCLUSIONS CSPCs-EXOs promote cartilage repair in osteoarthritis by modulating immune responses, inhibiting inflammation, and improving the intracellular environment. These findings emphasize their innovative therapeutic potential and offer key insights into their regenerative mechanisms, positioning CSPCs-EXOs as a promising strategy for OA treatment and a foundation for future clinical applications in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ya Tan
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhifeng Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Hongwei Yang
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Long
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Yangyun Han
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
14
|
Cheng L, Wang X. Advancements in the treatment of osteochondral lesions of the talus. J Orthop Surg Res 2024; 19:827. [PMID: 39639331 PMCID: PMC11622651 DOI: 10.1186/s13018-024-05314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Osteochondral lesions of the talus (OLT) are common ankle joint pathologies, often caused by traumatic or non-traumatic factors. Due to the anatomical characteristics and limited blood supply of the talus, the spontaneous healing capacity of OLT is poor, posing challenges for clinical treatment. Traditional treatments include conservative therapy and surgical interventions, but their efficacy is limited. In recent years, significant advancements in OLT treatment have been achieved with developments in biomaterials science, cell biology, and tissue engineering. This article summarizes the latest research progress in various treatment methods, including conservative treatment, bone marrow stimulation, chondrocyte transplantation, and osteochondral grafting, and evaluates the role of biological augmentation agents such as platelet-rich plasma (PRP) and concentrated bone marrow aspirate (CBMA) in promoting cartilage repair. Additionally, the application of biological scaffold technology offers new prospects for cartilage regeneration. Although emerging therapies show potential in clinical practice, further research is needed to evaluate their long-term efficacy, indications, and safety. This article aims to provide valuable references for clinicians, researchers, and policymakers, promoting the development and refinement of OLT treatment strategies.
Collapse
Affiliation(s)
- Lianjie Cheng
- Department of Hand & Foot and Reconstructive Microsurgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xuena Wang
- Department of Nephropathy and Rheumatology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China.
| |
Collapse
|
15
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
16
|
Shipman WD, Fonseca R, Dominguez M, Bhayani S, Gilligan C, Diwan S, Rosenblum D, Ashina S, Tolba R, Abd-Elsayed A, Kaye AD, Hasoon J, Schatman ME, Deer T, Yong J, Robinson CL. An Update on Emerging Regenerative Medicine Applications: The Use of Extracellular Vesicles and Exosomes for the Management of Chronic Pain. Curr Pain Headache Rep 2024; 28:1289-1297. [PMID: 39495409 DOI: 10.1007/s11916-024-01309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Chronic pain affects nearly two billion people worldwide, surpassing heart disease, diabetes, and cancer in terms of economic costs. Lower back pain alone is the leading cause of years lived with disability worldwide. Despite limited treatment options, regenerative medicine, particularly extracellular vesicles (EVs) and exosomes, holds early promise for patients who have exhausted other treatment options. EVs, including exosomes, are nano-sized structures released by cells, facilitating cellular communication through bioactive molecule transfer, and offering potential regenerative properties to damaged tissues. Here, we review the potential of EVs and exosomes for the management of chronic pain. RECENT FINDINGS In osteoarthritis, various exosomes, such as those derived from synovial mesenchymal stem cells, human placental cells, dental pulp stem cells, and bone marrow-derived mesenchymal stem cells (MSCs), demonstrate the ability to reduce inflammation, promote tissue repair, and alleviate pain in animal models. In intervertebral disc disease, Wharton's jelly MSC-derived EVs enhance cell viability and reduce inflammation. In addition, various forms of exosomes have been shown to reduce signs of inflammation in neurons and alleviate pain in neuropathic conditions in animal models. Although clinical applications of EVs and exosomes are still in the early clinical stages, they offer immense potential in the future management of chronic pain conditions. Clinical trials are ongoing to explore their therapeutic potential further, and with more research the potential applicability of EVs and exosomes will be fully understood.
Collapse
Affiliation(s)
- William D Shipman
- Department of Dermatology, Yale University School of Medicine, 333 Cedar Street, LMP 5040, Box 208059, New Haven, CT, 06520, USA.
- Skin & Beauty Center, Pasadena, CA, USA.
| | - Raquel Fonseca
- Department of Neurology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Moises Dominguez
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Sadiq Bhayani
- Pain Management Department in the Anesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | | | - Sudhir Diwan
- Manhattan Spine and Pain Medicine, Lenox Hill Hospital, New York, NY, USA
| | - David Rosenblum
- Department of Anesthesiology, Division of Pain Medicine, Maimonides Medical Center, New York, NY, USA
| | - Sait Ashina
- Department of Anesthesiology, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reda Tolba
- Pain Management Department in the Anesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Jamal Hasoon
- Department of Anesthesia and Pain Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health-Division of Medical Ethics, NYU Grossman School of Medicine, New York, NY, USA
| | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Jason Yong
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher L Robinson
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Zhang H, Jin C, Hua J, Chen Z, Gao W, Xu W, Zhou L, Shan L. Roles of Microenvironment on Mesenchymal Stem Cells Therapy for Osteoarthritis. J Inflamm Res 2024; 17:7069-7079. [PMID: 39377043 PMCID: PMC11457791 DOI: 10.2147/jir.s475617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Osteoarthritis (OA) induced microenvironmental alterations are a common and unavoidable phenomenon that greatly exacerbate the pathologic process of OA. Imbalances in the synthesis and degradation of cartilage extracellular matrix (ECM) have been reported to be associated with an adverse microenvironment. Stem cell therapy is a promising treatment for OA, and mesenchymal stem cells (MSCs) are the main cell sources for this therapy. With multispectral differentiation and immunomodulation, MSCs can effectively regulate the microenvironment of articular cartilage, ameliorate inflammation, promote regeneration of damaged cartilage, and ultimately alleviate OA symptoms. However, the efficacy of MSCs in the treatment of OA is greatly influenced by articular cavity microenvironments. This article reviews the five microenvironments of OA articular cavity, including inflammatory microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvironment and high lipid environment, focus on the positive and negative effects of OA microenvironments on the fate of MSCs. In this regard, we emphasize the mechanisms of the current use of MSCs in OA treatment, as well as its limitations and challenges.
Collapse
Affiliation(s)
- Haiyan Zhang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chaoying Jin
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqing Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenxin Gao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenting Xu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Letian Shan
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
18
|
Li Y, Yang Y, Zhu L, Xie S, Guo L, Zhang Z, Zhe C, Li W, Liu F. Angelica sinensis polysaccharide facilitates chondrogenic differentiation of adipose-derived stem cells via MDK-PI3K/AKT signaling cascade. Biomed Pharmacother 2024; 179:117349. [PMID: 39191028 DOI: 10.1016/j.biopha.2024.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECT Adipose-derived mesenchymal stem cells (ADSCs) have received significant attention in the field of cartilage tissue repair. Angelica sinensis polysaccharide (ASP) can enhance both the proliferation and differentiation of mesenchymal stem cells. Therefore, we intend to explore the effect of ASP on chondrogenic differentiation of ADSCs in vitro, and elucidate the underlying mechanisms. METHOD ADSCs were treated with different concentrations of ASP to determine the optimal concentration. The chondrogenic differentiation of ADSCs was evaluated using Alcian blue staining, qRT-PCR, western blot, and IF staining. Transcriptome sequencing was performed to identify the expression profiles of ADSCs before and after ASP treatment, followed by bioinformatic analyses including differential expression analysis, enrichment analysis, and construction of PPI networks to identify differentially expressed genes (DEGs) associated with ASP and chondrogenic differentiation. RESULT Surface markers of isolated rat-derived ADSCs were identified by CD44+CD90+CD45-CD106-, and exhibited the capacity for lipogenic, osteogenic, and chondrogenic differentiation. With increasing concentration of ASP treatment, there was an upregulation in the activity and acidic mucosubstance of ADSCs. The levels of Aggrecan, COL2A1, and Sox9 showed an increase in ADSCs after 28 days of 80 µg/ml ASP treatment. Transcriptome sequencing revealed that ASP-associated DEGs regulate extracellular matrix synthesis, immune response, inflammatory response, and cell cycle, and are involved in the NF-κB, AGE-RAGE, and calcium pathways. Moreover, Edn1, Frzb, Mdk, Nog, and Sulf1 are hub genes in DEGs. Notably, ASP upregulated MDK levels in ADSCs, while knockdown of MDK mitigated ASP-induced elevations in acidic mucosubstance, chondrogenic differentiation-related markers (Aggrecan, COL2A1, and Sox9), and the activity of the PI3K/AKT pathway. CONCLUSION ASP enhances the proliferation and chondrogenic differentiation of ADSCs by activating the MDK-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yangjie Li
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Yongqiang Yang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Lina Zhu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Shukang Xie
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Ling Guo
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Zhiming Zhang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Chunyang Zhe
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Wenhui Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming City, Yunnan Province, China
| | - Feng Liu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China.
| |
Collapse
|
19
|
Maeda S, Matsumoto M, Segawa K, Iwamoto K, Nakamura N. Development of scaffold-free tissue-engineered constructs derived from mesenchymal stem cells with serum-free media for cartilage repair and long-term preservation. Cytotechnology 2024; 76:595-612. [PMID: 39188648 PMCID: PMC11344744 DOI: 10.1007/s10616-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/18/2024] [Indexed: 08/28/2024] Open
Abstract
Synovial mesenchymal stem cells (sMSCs) have great potential for cartilage repair, but their therapeutic design to avoid adverse effects associated with unknown factors remains a challenge. In addition, because long-term preservation is indispensable to maintain high quality levels until implantation, it is necessary to reduce their fluctuations. This study aimed to investigate the properties and feasibility of novel scaffold-free tissue-engineered constructs using serum-free media and to develop long-term preservation methods. sMSCs were cultured in serum-free media, seeded at high density in a monolayer, and finally developed as a sheet-like construct called "gMSC1". The properties of frozen gMSC1 (Fro-gMSC1) were compared with those of refrigerated gMSC1 (Ref-gMSC1) and then examined by their profile. Chondrogenic differentiation potential was analyzed by quantitative real-time polymerase chain reaction and quantification of glycosaminoglycan content. Xenografts into the cartilage defect model in rats were evaluated by histological staining. gMSC1 showed nearly similar properties independent of the preservation conditions. The animal experiment demonstrated that the defect could be filled with cartilage-like tissue with good integration to the adjacent tissue, suggesting that gMSC1 was formed and replaced the cartilage. Furthermore, several chondrogenesis-related factors were significantly secreted inside and outside gMSC1. Morphological analysis of Fro-gMSC1 revealed comparable quality levels to those of fresh gMSC1. Thus, if cryopreserved, gMSC1, with no complicated materials or processes, could have sustained cartilage repair capacity. gMSC1 is a prominent candidate in novel clinical practice for cartilage repair, allowing for large quantities to be manufactured at one time and preserved for a long term by freezing. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00637-y.
Collapse
Affiliation(s)
- Satoshi Maeda
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Masaya Matsumoto
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Kotaro Segawa
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Kaori Iwamoto
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Norimasa Nakamura
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2–2 Yamadaoka, Suita, Osaka, 565–0871 Japan
| |
Collapse
|
20
|
Matsukura K, Kondo M, Metzler NF, Ford AJ, Maak TG, Hutchinson DT, Wang AA, Sato M, Grainger DW, Okano T. Regenerative Variability of Human Juvenile Chondrocyte Sheets From Different Cell Donors in an Athymic Rat Knee Chondral Defect Model. Cartilage 2024:19476035241277946. [PMID: 39319855 PMCID: PMC11556591 DOI: 10.1177/19476035241277946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
PURPOSE This study aimed to establish a combined histological assessment system of neo-cartilage outcomes and to evaluate variations in an established rat defect model treated with human juvenile cartilage-derived chondrocyte (JCC) sheets fabricated from various donors. METHODS JCCs were isolated from the polydactylous digits of eight patients. Passage 2 (P2) JCC sheets from all donors were transplanted into nude rat chondral defects for 4 weeks (27 nude rats in total). Defect-only group served as control. Histological samples were stained for safranin O, collagen 1 (COL1), and collagen 2 (COL2). (1) All samples were scored, and correlation coefficients for each score were calculated. (2) Donors were divided into "more effective" and "less effective" groups based on these scores. Then, differences between each group in each category of modified O'Driscoll scoring were evaluated. RESULTS (1) Modified O'Driscoll scores were negatively correlated with %COL1 area, and positively correlated with %COL2 area and COL2/1 ratio. (2) Four of 8 donors exhibited significantly higher modified O'Driscoll scores and %COL2 areas. JCC donors were divided into two groups by average score values. Significant differences between the two groups were observed in modified O'Driscoll categories of "Nature of predominant tissue," "Reconstruction of subchondral bone," and "Safranin O staining." CONCLUSION The combined histological evaluation method is useful for detailed in vivo efficacy assessments of cartilage defect regeneration models. Variations in histological scores among juvenile cartilage-derived chondrocyte donors were correlated to the quality of regenerated cartilage hyaline structure and subchondral bone remodeling observed in the nude rat defect model.
Collapse
Affiliation(s)
- Keisuke Matsukura
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Department of Orthopedic, Asahikawa Medical University, Asahikawa, Japan
| | - Makoto Kondo
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
| | - Nicolas F. Metzler
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Adam J. Ford
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
| | - Travis G. Maak
- Department of Orthopaedics, School of Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Douglas T. Hutchinson
- Department of Orthopaedics, School of Medicine, The University of Utah, Salt Lake City, UT, USA
- Pediatric Orthopaedic Surgery, Intermountain Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Angela A. Wang
- Department of Orthopaedics, School of Medicine, The University of Utah, Salt Lake City, UT, USA
- Pediatric Orthopaedic Surgery, Intermountain Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku-ku, Japan
| |
Collapse
|
21
|
Akbari-Gharalari N, Ghahremani-Nasab M, Naderi R, Chodari L, Nezhadshahmohammad F. The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies? AIMS Neurosci 2024; 11:374-397. [PMID: 39431275 PMCID: PMC11486621 DOI: 10.3934/neuroscience.2024023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the pathological accumulation of α-synuclein, which has driven extensive research into the role of exosomes in disease mechanisms. Exosomes are nanoscale vesicles enriched with proteins, RNA, and lipids that facilitate critical intercellular communication processes. Recent studies have elucidated the role of exosomes in transmitting misfolded proteins among neurons, which significantly impacts the progression of PD. The presence of disease-associated exosomes in cerebrospinal fluid and blood highlights their substantial diagnostic potential for PD. Specifically, exosomes derived from the central nervous system (CNS) have emerged as promising biomarkers because of their ability to accurately reflect pathological states. Furthermore, the isolation of exosomes from distinct brain cell types allows the identification of precise biomarkers, increasing diagnostic specificity and accuracy. In addition to being useful for diagnostics, exosomes hold therapeutic promise given their ability to cross the blood-brain barrier (BBB) and selectively modulate their cargo. These findings suggest that these materials could be used as delivery systems for therapeutic drugs for the treatment of neurodegenerative diseases. This review comprehensively examines the multifaceted roles of exosomes in PD pathogenesis, diagnosis, and treatment. It also addresses the associated clinical challenges and underscores the urgent need for further research and development to fully leverage exosome-based strategies in PD management.
Collapse
Affiliation(s)
- Naeimeh Akbari-Gharalari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Naderi
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
22
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
23
|
Lee S, Han J, Yang J, Lyu J, Park H, Bang J, Kim Y, Chang H, Park T. Exosomes from Human iPSC-Derived Retinal Organoids Enhance Corneal Epithelial Wound Healing. Int J Mol Sci 2024; 25:8925. [PMID: 39201611 PMCID: PMC11354741 DOI: 10.3390/ijms25168925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the therapeutic effects of exosomes derived from human-induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) on corneal epithelial wound healing. Exosomes were isolated from the culture medium of the hiPSC-derived ROs (Exo-ROs) using ultracentrifugation, and then they were characterized by a nanoparticle tracking analysis and transmission electron microscopy. In a murine model of corneal epithelial wounds, these exosomes were topically applied to evaluate their healing efficacy. The results demonstrated that the exosome-treated eyes showed significantly enhanced wound closures compared with the controls at 24 h post-injury. The 5-ethyl-2'-deoxyuridine assay and quantitative reverse transcription polymerase chain reaction revealed a substantial increase in cell proliferation and a decrease in inflammatory marker contents in the exosome-treated group. The RNA sequencing and exosomal microRNA analysis revealed that the Exo-RO treatment targeted various pathways related to inflammation and cell proliferation, including the PI3K-Akt, TNF, MAPK, and IL-17 signaling pathways. Moreover, the upregulation of genes related to retinoic acid and eicosanoid metabolism may have enhanced corneal epithelial healing in the eyes treated with the Exo-ROs. These findings suggest that hiPSC-derived RO exosomes could be novel therapeutic agents for promoting corneal epithelial wound healing.
Collapse
Affiliation(s)
- Sihyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jungwoo Han
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jinyoung Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
| | - Jungmook Lyu
- Department of Medical Science, Myung-Gok Eye Research Institute, Konyang University, Daejeon 32992, Republic of Korea;
| | - Hyosong Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jihong Bang
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
| | - Yeji Kim
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
| | - Hunsoo Chang
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Taekwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
| |
Collapse
|
24
|
Zhou JP, Peng SS, Xu J, Cheng XW, Wang XH, Tao JL, Dai HW, Cao X. Exploring the therapeutic potential of urine-derived stem cell exosomes in temporomandibular joint osteoarthritis. FASEB J 2024; 38:e23852. [PMID: 39101942 DOI: 10.1096/fj.202400448rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.
Collapse
Affiliation(s)
- Jian-Ping Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Si-Si Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xing-Wang Cheng
- Department of Orthopedic Surgery, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Hui Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jun-Li Tao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
25
|
Yang L, Li W, Zhao Y, Shang L. Magnetic Polysaccharide Mesenchymal Stem Cells Exosomes Delivery Microcarriers for Synergistic Therapy of Osteoarthritis. ACS NANO 2024; 18:20101-20110. [PMID: 39039744 DOI: 10.1021/acsnano.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease that afflicts more than 250 million people worldwide, impairing their mobility and quality of life. However, conventional drug therapy is palliative. Exosomes (Exo), although with the potential to fundamentally repair cartilage, face challenges in their efficient enrichment and delivery. In this study, we developed magnetic polysaccharide hydrogel particles as microcarriers for synergistic therapy of OA. The microcarriers were composed of modified natural polysaccharides, hyaluronic acid (HAMA), and chondroitin sulfate (CSMA), and were generated from microfluidic electrospray in combination with a cryogelation process. Magnetic nanoparticles with spiny structures capable of capturing stem cell Exo were encapsulated within the microcarriers together with an anti-inflammatory drug diclofenac sodium (DS). The released DS and Exo from the microcarriers had a synergistic effect in alleviating the OA symptoms and promoting cartilage repair. The in vitro and in vivo results demonstrated the excellent performance of the microcarrier for OA treatment. We believe this work has potential for Exo therapy of OA and other related diseases.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wenzhao Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
Chen X, Zheng J, Yin L, Li Y, Liu H. Transplantation of three mesenchymal stem cells for knee osteoarthritis, which cell and type are more beneficial? a systematic review and network meta-analysis. J Orthop Surg Res 2024; 19:366. [PMID: 38902778 PMCID: PMC11188250 DOI: 10.1186/s13018-024-04846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND In knee osteoarthritis (KOA), treatments involving knee injections of bone marrow-derived mesenchymal stem cells (BM-MSC), adipose tissue-derived mesenchymal stem cells (AD-MSC), or umbilical cord-derived mesenchymal stem cells (UC-MSC) have shown promise in alleviating symptoms. However, which types of mesenchymal stem cells (MSCs) have the best therapeutic outcomes remain uncertain. METHOD We systematically searched PubMed, OVID, Web of Science, and the Cochrane Library until January 1, 2024. The study evaluated five endpoints: Visual Analog Score (VAS) for Pain, Range of Motion (ROM), Whole-Organ Magnetic Resonance Imaging Score (WORMS), Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), and adverse events (ADs). Standard meta-analysis and network meta-analysis were performed using Stata 16.0. RESULTS Fifteen studies involving 585 patients were included in the meta-analysis. Standard meta-analysis revealed significant improvements with MSCs in VAS score (P < 0.001), knee ROM (P < 0.001), and WOMAC (P < 0.016) compared to traditional therapy. In the network meta-analysis, autologous MSCs significantly improved VAS score [SMD = 2.94, 95% CI (1.90, 4.56)] and knee ROM [SMD = 0.26, 95% CI (0.08, 0.82)] compared to traditional therapy. Similarly, BM-MSC significantly improved VAS score [SMD = 0.31, 95% CI (0.11, 0.91)] and knee ROM [SMD = 0.26, 95% CI (0.08, 0.82)] compared to hyaluronic acid. However, compared with traditional therapy, autologous or allogeneic MSCs were associated with more adverse reactions [SMD = 0.11, 95% CI (0.02, 0.59)], [SMD = 0.13, 95% CI (0.002, 0.72)]. Based on the surface under the cumulative ranking results, autologous BM-MSC showed the most improvement in ROM and pain relief in KOA patients, UC-MSC (SUCRA 94.1%) were most effective for positive WORMS, and AD-MSC (SUCRA 70.6%) were most effective for WOMAC-positive patients. CONCLUSION MSCs transplantation effectively treats KOA patients, with autologous BM-MSC potentially offering more excellent benefits.
Collapse
Affiliation(s)
- Xiyang Chen
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China
| | - Jinglu Zheng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China
| | - Li Yin
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| | - Yikai Li
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Hongwen Liu
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
27
|
Visconte C, Taiana MM, Colombini A, De Luca P, Ragni E, de Girolamo L. Donor Sites and Harvesting Techniques Affect miRNA Cargos of Extracellular Vesicles Released by Human Adipose-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:6450. [PMID: 38928156 PMCID: PMC11203784 DOI: 10.3390/ijms25126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disorder characterized by the progressive deterioration of articular cartilage driven and sustained by catabolic and inflammatory processes that lead to pain and functional impairment. Adipose-derived stem cells (ASCs) have emerged as a promising therapeutic strategy for OA due to their regenerative potential, which mainly relies on the adaptive release of paracrine molecules that are soluble or encapsulated in extracellular vesicles (EVs). The biological effects of EVs specifically depend on their cargo; in particular, microRNAs (miRNAs) can specifically modulate target cell function through gene expression regulation. This study aimed to investigate the impact of collection site (abdominal vs. peri-trochanteric adipose tissue) and collection method (surgical excision vs. lipoaspiration) on the miRNAs profile in ASC-derived EVs and their potential implications for OA therapy. EV-miRNA cargo profiles from ASCs of different origins were compared. An extensive bioinformatics search through experimentally validated and OA-related targets, pathways, and tissues was conducted. Several miRNAs involved in the restoration of cartilage homeostasis and in immunomodulation were identified in all ASC types. However, EV-miRNA expression profiles were affected by both the tissue-harvesting site and procedure, leading to peculiar characteristics for each type. Our results suggest that adipose-tissue-harvesting techniques and the anatomical site of origin influence the therapeutic efficacy of ASC-EVs for tissue-specific regenerative therapies in OA, which warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Via R Galeazzi 4, 20161 Milano, Italy; (C.V.); (M.M.T.); (A.C.); (P.D.L.); (L.d.G.)
| | | |
Collapse
|
28
|
Malisetyan T, Harrison JL, Shahriari SR, Clarke TN, Rogol EV, Borah GL. Autologous Fat Transfer in Craniofacial Surgery. FACE 2024; 5:279-291. [DOI: 10.1177/27325016241238441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Over the past two decades, autologous fat transfer has garnered significant recognition and widespread adoption within esthetic and reconstructive surgical domains. In craniofacial surgery, fat transplantation is frequently employed to address soft tissue volumetric deficiencies and asymmetries that influence facial contours. While adipose tissue (AT) is widely regarded as an optimal choice for augmentation due to its abundant availability and biocompatibility, the unpredictability and heightened resorption rates observed with traditional lipofilling techniques present a challenge for clinicians. Adipose-derived stem cells (ASCs) housed within the grafted tissue play a pivotal role in graft survival and offer avenues for tissue repair due to their angiogenic, anti-inflammatory, and immunosuppressive properties. Micro Fragmentation of Adipose Tissue (MFAT), utilized in several FDA-approved processing devices, has demonstrated promising outcomes in treating osteoarthritic joints, with success primarily attributed to enhanced paracrine function of ASCs via preservation of the perivascular niche. Currently, its application for treating bone or articular defects in the craniofacial region, including abnormalities of the temporomandibular joint, remains limited. This scarcity underscores the need for further investigation prior to its widespread integration into clinical practice.
Collapse
Affiliation(s)
- Tatevik Malisetyan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | | | | | - Tegan N. Clarke
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Gregory L. Borah
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
29
|
Yan W, Li Y, Xie S, Tao WA, Hu J, Liu H, Zhang G, Liu F, Nie Y, Chen X, Zhang X, Liu Y, Wei D, Ma C, Zhang H, Xu H, Wang S. Chondrocyte-Targeted Delivery System of Sortase A-Engineered Extracellular Vesicles Silencing MMP13 for Osteoarthritis Therapy. Adv Healthc Mater 2024; 13:e2303510. [PMID: 38545904 DOI: 10.1002/adhm.202303510] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Targeted drug delivery and the reduction of off-target effects are crucial for the promising clinical application of nucleic acid drugs. To address this challenge, a new approach for treating osteoarthritis (OA) that accurately delivers antisense oligonucleotides (ASO) targeting matrix metalloproteinase-13 (ASO-MMP13) to chondrocytes, is developed. Small extracellular vesicles (exos) are ligated with chondrocyte affinity peptide (CAP) using Sortase A and subsequently incubated with cholesterol-modified ASO-MMP13 to construct a chondrocyte-targeted drug delivery exo (CAP-exoASO). Compared with exos without CAP (ExoASO), CAP-exoASOs attenuate IL-1β-induced chondrocyte damage and prolong the retention time of ASO-MMP13 in the joint without distribution in major organs following intra-articular injection. Notably, CAP-exoASOs decrease MMP13 expression (P < 0.001) and upregulate COL2A1 expression (P = 0.006), resulting in reorganization of the cartilage matrix and alleviation of progression in the OA model. Furthermore, the Osteoarthritis Research Society International (OARSI) score of articular cartilage tissues treated with CAP-exoASO is comparable with that of healthy rats (P = 0.148). A mechanistic study demonstrates that CAP-exoASO may reduce inflammation by suppressing the IL-17 and TNF signaling pathways. Based on the targeted delivery effect, CAP-exoASOs successfully accomplish cartilage repair and have considerable potential for development as a promising therapeutic modality for satisfactory OA therapy.
Collapse
Affiliation(s)
- Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Ying Li
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Epidemiology, School of Public Health of Suzhou University, Suzhou, Jiangsu, 215127, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - W Andy Tao
- Departments of Chemistry and Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hao Zhang
- EVLiXiR Biotech Inc., Nanjing, Jiangsu, 210032, China
| | - Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| |
Collapse
|
30
|
Chen J, Zhang E, Wan Y, Huang T, Wang Y, Jiang H. A quick and innovative pipeline for producing chondrocyte-homing peptide-modified extracellular vesicles by three-dimensional dynamic culture of hADSCs spheroids to modulate the fate of remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment. J Nanobiotechnology 2024; 22:300. [PMID: 38816719 PMCID: PMC11141023 DOI: 10.1186/s12951-024-02567-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs. Recent advances in regenerative medicine advocate for the use of three-dimensional culture of hADSCs to produce EVs, as it more accurately simulates their physiological state. Moreover, the successful application of EVs in tissue engineering relies on the targeted delivery of EVs to cells within biomaterial scaffolds. METHODS AND RESULTS The hADSCs spheroids and hADSCs gelatin methacrylate (GelMA) microspheres are utilized to produce three-dimensional cultured EVs, corresponding to hADSCs spheroids-EVs and hADSCs microspheres-EVs respectively. hADSCs spheroids-EVs demonstrate excellent production and functional molecule loading compared with hADSCs microspheres-EVs. The upregulation of eight miRNAs (i.e. hsa-miR-486-5p, hsa-miR-423-5p, hsa-miR-92a-3p, hsa-miR-122-5p, hsa-miR-223-3p, hsa-miR-320a, hsa-miR-126-3p, and hsa-miR-25-3p) and the downregulation of hsa-miR-146b-5p within hADSCs spheroids-EVs show the potential of improving the fate of remaining ear chondrocytes and promoting cartilage formation probably through integrated regulatory mechanisms. Additionally, a quick and innovative pipeline is developed for isolating chondrocyte homing peptide-modified EVs (CHP-EVs) from three-dimensional dynamic cultures of hADSCs spheroids. CHP-EVs are produced by genetically fusing a CHP at the N-terminus of the exosomal surface protein LAMP2B. The CHP + LAMP2B-transfected hADSCs spheroids were cultured with wave motion to promote the secretion of CHP-EVs. A harvesting method is used to enable the time-dependent collection of CHP-EVs. The pipeline is easy to set up and quick to use for the isolation of CHP-EVs. Compared with nontagged EVs, CHP-EVs penetrate the biomaterial scaffolds and specifically deliver the therapeutic miRNAs to the remaining ear chondrocytes. Functionally, CHP-EVs show a major effect on promoting cell proliferation, reducing cell apoptosis and enhancing cartilage formation in remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment. CONCLUSIONS In summary, an innovative pipeline is developed to obtain CHP-EVs from three-dimensional dynamic culture of hADSCs spheroids. This pipeline can be customized to increase EVs production and functional molecule loading, which meets the requirements for regulating remaining ear chondrocyte fate in the M1 macrophage-infiltrated microenvironment.
Collapse
Affiliation(s)
- Jianguo Chen
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Yingying Wan
- DongFang Hospital of Beijing University of Chinese Medicine, Fengtai District, Beijing, 100078, China.
| | - Tianyu Huang
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - Yuchen Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - Haiyue Jiang
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
31
|
Banimohamad-Shotorbani B, Rahbarghazi R, Jarolmasjed S, Mehdipour A, Shafaei H. Combination of mesenchymal stem cell sheet with poly-caprolactone nanofibrous mat and Gelfoam increased osteogenesis capacity in rat calvarial defect. BIOIMPACTS : BI 2024; 15:30006. [PMID: 39963571 PMCID: PMC11830138 DOI: 10.34172/bi.30006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 02/20/2025]
Abstract
Introduction To date, different strategies have been used for co-transplantation of cell-loaded biomaterials for bone tissue regeneration. This study aimed to investigate the osteogenic properties of adipose-derived-mesenchymal stem cell (AD-MSC) sheets combined with nanofibrous poly-caprolactone (PCL) mat and Gelfoam in rats with calvarial bone defect. Methods Calvarial critical-size defects were induced in male rats. Animals were classified into Control, Gelfoam, Gelfoam/PCL nanofiber, Gelfoam/AD-MSC sheet, and Gelfoam/PCL nanofiber/AD-MSC sheet groups. After 3 months, rats were sacrificed and the regeneration rate was evaluated. Results Almost all groups showed bone regeneration properties, but the volume of newly formed bone was higher in groups that received Gelfoam/AD-MSC and Gelfoam/PCL nanofiber/AD-MSC sheets (P < 0.05). The application of Gelfoam/PCL nanofiber/AD-MSC sheets not only increased bone thickness, bone volume/total bone volume (BV/TV) ratio, strong Hounsfield Unit (HU), but also led to the formation of ossified connective tissue with wrinkled patterns. Conclusion The current study indicated that the Gelfoam/PCL nanofiber/AD-MSC sheet provides a suitable platform for effective osteogenesis in calvarial bone defects.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Li B, Shen E, Wu Z, Qi H, Wu C, Liu D, Jiang X. BMSC-Derived Exosomes Attenuate Rat Osteoarthritis by Regulating Macrophage Polarization through PINK1/Parkin Signaling Pathway. Cartilage 2024:19476035241245805. [PMID: 38641989 PMCID: PMC11569690 DOI: 10.1177/19476035241245805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) may modulate the M1/M2 polarization of macrophages during osteoarthritis (OA). However, the underlying mechanisms of BMSC-Exos in this process still need to be elucidated. In this study, we explored the role of BMSC-Exos in the polarization of macrophages in vitro and the OA rats in vivo. METHODS The effects of BMSC-Exos on RAW264.7 cells were determined, including the production of reactive oxygen species (ROS) and the protein expression of Akt, PINK1, and Parkin. We prepared an OA model by resecting the anterior cruciate ligament and medial meniscus of Sprague-Dawley (SD) rats. Hematoxylin-eosin (H&E) and safranin O-fast green staining, immunohistochemistry and immunofluorescence analyses, and the examination of interleukin 6 (IL-6), interleukin 1β (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin 10 (IL-10) were performed to assess changes in cartilage and synovium. RESULTS BMSC-Exos inhibited mitochondrial membrane damage, ROS production, and the protein expression of PINK1 and Parkin. Akt phosphorylation was downregulated under lipopolysaccharide (LPS) induction but significantly recovered after treatment with BMSC-Exos. BMSC-Exos alleviated cartilage damage, inhibited M1 polarization, and promoted M2 polarization in the synovium in OA rats. The expression of PINK1 and Parkin in the synovium and the levels of IL-6, IL-1β, and TNF-α in the serum decreased, but the level of IL-10 increased when BMSC-Exos were used in OA rats. CONCLUSION BMSC-Exos ameliorate OA development by regulating synovial macrophage polarization, and one of the underlying mechanisms may be through inhibiting PINK1/Parkin signaling.
Collapse
Affiliation(s)
- Beibei Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Enpu Shen
- Shanghai Putuo District Central Hospital, Shanghai, China
| | - Zhiwen Wu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Cheng’ai Wu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Danping Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xu Jiang
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Farinelli L, Riccio M, Gigante A, De Francesco F. Pain Management Strategies in Osteoarthritis. Biomedicines 2024; 12:805. [PMID: 38672160 PMCID: PMC11048725 DOI: 10.3390/biomedicines12040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Pain is the major symptom of osteoarthritis (OA) and is an important factor in strategies to manage this disease. However, the current standard of care does not provide satisfactory pain relief for many patients. The pathophysiology of OA is complex, and its presentation as a clinical syndrome is associated with the pathologies of multiple joint tissues. Treatment options are generally classified as pharmacologic, nonpharmacologic, surgical, and complementary and/or alternative, typically used in combination to achieve optimal results. The goals of treatment are the alleviation of symptoms and improvement in functional status. Several studies are exploring various directions for OA pain management, including tissue regeneration techniques, personalized medicine, and targeted drug therapies. The aim of the present narrative review is to extensively describe all the treatments available in the current practice, further describing the most important innovative therapies. Advancements in understanding the molecular and genetic aspects of osteoarthritis may lead to more effective and tailored treatment approaches in the future.
Collapse
Affiliation(s)
- Luca Farinelli
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| | - Antonio Gigante
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
34
|
Xiao XY, Zhang NN, Long YZ, Huang GL. Repair mechanism of radiation-induced salivary gland injury by hypoxia-pretreated human urine-derived stem cell exosomes. Oral Dis 2024; 30:1234-1241. [PMID: 36546840 DOI: 10.1111/odi.14476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To explore the protective effect of human urine-derived stem cell exosomes (hUSC-Exos) on radiation-induced salivary gland (SG) injuries in Sprague Dawley rats. METHODS Fresh adult urine was collected, and primary hUSCs were isolated and identified. The hUSCs were hypoxia-pretreated with 1% oxygen for 24 h and then transferred to a normoxic culture environment for 24 h. The hUSC-Exos were collected and identified for exosomes. A radiation-induced injury model was established in the rats, and exosomes were introduced by local injection in the SG and tail vein. The submandibular gland was excised for morphological observation 1 week later. Immunohistochemical detection of the glandular tissue was conducted by α-smooth muscle actin (a-SMA), stem cell growth factor receptor (c-Kit) staining, and periodic acid-Schiff staining. Qualitative polymerase chain reaction and western blot analysis were adopted to detect the gene and protein expression of Wnt3a, GSK3β, and Axin. RESULTS In both the normoxic and hypoxic hUSC-Exo groups, microvesicular structures with bilayer membranes of approximately 80 nm in diameter were detected, and the expressions of CD9 and CD63 were detected by nanoflow cytometry. Compared with the control group, in the radiation-induced injury model group, the expression of a-SMA was significantly higher, the expression of c-Kit was significantly lower, and the expressions of Wnt3a, GSK3β, and Axin were significantly upregulated; the differences were statistically significant (p < 0.05). Compared with the model group, in the normoxic and hypoxic hUSC-Exo groups, the expression of a-SMA was significantly decreased, the expression of c-Kit was significantly increased, and the expressions of Wnt3a, GSK3β, and Axin were significantly upregulated; the differences were statistically significant (p < 0.05). CONCLUSION Hypoxia-pretreated hUSC-Exos could repair radiation-induced SG injuries by activating the Wnt3a/GSK3β pathway to suppress the expressions of a-SMA and c-Kit.
Collapse
Affiliation(s)
| | - Ni-Ni Zhang
- Department of Dentofacial Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan-Zhu Long
- School Stomatol, Key Lab Oral Disease Research, Zunyi Medical University, Zunyi, China
| | - Gui-Lin Huang
- Department of Dentofacial Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
35
|
Chen J, Ni X, Yang J, Yang H, Liu X, Chen M, Sun C, Wang Y. Cartilage stem/progenitor cells-derived exosomes facilitate knee cartilage repair in a subacute osteoarthritis rat model. J Cell Mol Med 2024; 28:e18327. [PMID: 38661437 PMCID: PMC11044818 DOI: 10.1111/jcmm.18327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Cartilage defects in the knee are often associated with the progression of degenerative osteoarthritis (OA), and cartilage repair is a useful strategy for managing this disease. However, cartilage repair is challenging because of the unique environment within the tissue. Recently, stem cell-based therapies have shed new light on this issue. In this study, we prepared exosomes (EXOs) from cartilage stem/progenitor cells (CSPCs) and found that treatment with EXOs increased the viability, migration, and proliferation of cultured primary chondrocytes. In a subacute OA rat model, the application of EXOs facilitated cartilage regeneration as evidenced by histological staining. Exosomal protein analysis together with bioinformatics suggested that cyclin-dependent kinase 9 (CDK9) is a key factor for chondrocyte growth and migration. Functional studies confirmed this prediction, that is, inhibiting CDK9 reduced the beneficial effects induced by EXOs in primary chondrocytes; while overexpression of CDK9 recapitulated the EXOs-induced phenotypes. RNA-Seq data showed that a set of genes involved in cell growth and migration were up-regulated by EXOs in chondrocytes. These changes could be partially reproduced by CDK9 overexpression. Overall, our data suggest that EXOs derived from primary CSPCs hold great therapeutic potential for treating cartilage defect-associated disorders such as degenerative OA, and that CDK9 is a key factor in this process.
Collapse
Affiliation(s)
- Jing Chen
- Department of OrthopedicsAffiliated Hospital of Nantong University, Nantong UniversityNantongJiangsu ProvinceChina
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Xiaohui Ni
- Department of OrthopedicsDafeng People's HospitalYanchengJiangsu ProvinceChina
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Hongwei Yang
- Department of OrthopedicsAffiliated Nantong Hospital 3 of Nantong UniversityNantongJiangsu ProvinceChina
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Minhao Chen
- Department of OrthopedicsAffiliated Hospital of Nantong University, Nantong UniversityNantongJiangsu ProvinceChina
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Youhua Wang
- Department of OrthopedicsAffiliated Hospital of Nantong University, Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
36
|
Anvari Y, Afrashteh A, Pourkaveh S, Salek SB, Al-Numan L, Khademnezhad S. Emerging role of mesenchymal stem cell-derived extracellular vesicles in periodontal regeneration. J Taibah Univ Med Sci 2024; 19:390-402. [PMID: 38380419 PMCID: PMC10876597 DOI: 10.1016/j.jtumed.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Periodontitis is a prevalent oral ailment that harms both hard and soft tissues of the periodontium, leading to loosening and eventual removal of the teeth. Current clinical treatments have limitations in achieving complete periodontal tissue regeneration. Mesenchymal stem cells (MSCs) have garnered attention due to their unique characteristics and potential as a promising new therapy for periodontitis. Research suggests that the role of MSCs in regenerative medicine primarily occurs through the paracrine pathway, involving the emission of particles encased by lipids called extracellular vesicles (EVs) abundant in bioactive compounds. These EVs play a vital function in controlling the activities of periodontal tissues and immune system cells, and by influencing the immediate surrounding, thus fostering the healing of periodontal damage and renewal of tissues. EVs obtained from MSCs (MSC-EVs), in the form of a cell-free treatment, offer advantages in terms of stability, reduced immune rejection, and ethical considerations, elevating their potential as a hopeful choice for broad clinical applications. This concise overview highlights the mechanisms of MSC-EVs and the possibilities they hold in clinical application for periodontal regeneration.
Collapse
Affiliation(s)
- Yaldasadat Anvari
- Department of Dentistry, School of Dentistry, Near East University, Nicosia, Cyprus
| | - Ahmad Afrashteh
- Department of Periodontics, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Pourkaveh
- Department of Periodontics, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira B. Salek
- Department of Periodontics, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lelaw Al-Numan
- Department of Dentistry, School of Dentistry, Near East University, Nicosia, Cyprus
| | - Sahar Khademnezhad
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Lee MFH, Steffens D, Chung JHY, Posniak S, Cheng K, Clark J, Wallace G, Mukherjee P. Coculture of Chondrocytes and Stem Cells: A Review of Head and Neck Cell Lines for Cartilage Regeneration. Cells Tissues Organs 2024; 214:36-51. [PMID: 38513621 DOI: 10.1159/000538461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION Bioprinting, using "bio-inks" consisting of living cells, supporting structures, and biological motifs to create customized constructs, is an emerging technique that aims to overcome the challenges of cartilaginous reconstruction of head and neck structures. Several living cell lines and culturing methods have been explored as bio-inks with varying efficacy. Coculture of primary chondrocytes and stem cells (SCs) is one technique well established for degenerative joint disease treatment, with potential for use in expanding chondrocyte populations for bio-inks. This study aimed to evaluate the techniques for coculture of primary chondrocytes and SCs for head and neck cartilage regeneration. METHODS A literature review was performed through OVID/Web of Science/MEDLINE/BIOSIS Previews/Embase. Studies reporting on chondrocytes and SCs in conjunction with coculture or cartilage regeneration were included. Studies not reporting on findings from chondrocytes/SCs of the head and neck were excluded. Extracted data included cell sources, coculture ratios, and histological, biochemical, and clinical outcomes. RESULTS Fifteen studies met inclusion criteria. Auricular cartilage was the most common chondrocyte source (n = 10), then nasal septum (n = 5), articular (n = 1), and tracheal cartilage (n = 1). Bone marrow was the most common SC source (n = 9) then adipose tissue (n = 7). Techniques varied, with coculture ratios ranging from 1:1 to 1:10. All studies reported coculture to be superior to SC monoculture by all outcomes. Most studies reported superiority or equivalence of coculture to chondrocyte monoculture by all outcomes. When comparing clinical outcomes, coculture constructs were equivalent to chondrocyte monoculture in diameter and equivalent or inferior in wet weight and height. CONCLUSION Coculture of primary chondrocytes and SCs is a promising technique for expanding chondrocyte populations, with at least equivalence to chondrocyte monoculture and superior to SC monoculture when seeded at the same chondrocyte densities. However, there remains a lack of consensus regarding the optimal cell sources and coculture ratios.
Collapse
Affiliation(s)
- Michael Fook-Ho Lee
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Steffens
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Surgical Outcomes Research Centre (SOuRCe), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Johnson H Y Chung
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Steven Posniak
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
| | - Jonathan Clark
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Payal Mukherjee
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, Health and Human Sciences, Department of Clinical Medicine, Macquarie University, Macquarie Park, New South Wales, Australia
| |
Collapse
|
38
|
Chi PL, Cheng CC, Wang MT, Liao JB, Kuo SH, Lin KC, Shen MC, Huang WC. Induced pluripotent stem cell-derived exosomes attenuate vascular remodelling in pulmonary arterial hypertension by targeting HIF-1α and Runx2. Cardiovasc Res 2024; 120:203-214. [PMID: 38252891 DOI: 10.1093/cvr/cvad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shu-Hung Kuo
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kun-Chang Lin
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Forteza-Genestra MA, Antich-Rosselló M, Ráez-Meseguer C, Sangenís AT, Calvo J, Gayà A, Monjo M, Ramis JM. Intra-articular injection of platelet lysate-derived extracellular vesicles recovers from knee osteoarthritis in an in vivo rat model. J Orthop Translat 2024; 45:1-9. [PMID: 38371711 PMCID: PMC10873568 DOI: 10.1016/j.jot.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 02/20/2024] Open
Abstract
Objective MSCs and Platelet-Rich Plasma are the main focus in the study of new regenerative treatments aimed to reverse Osteoarthritis (OA). However, extracellular vesicles (EVs) present several advantages to cell-based treatments. Thus, the aim of this study was to compare and evaluate the regenerative potential of MSC-derived EVs (cEVs) and platelet-derived EVs (pEVs) in an OA cartilage rat model. Design OA in vivo model was established through injection of 6 mg MIA in the rat knee joints. After 14 and 21 days, OA knee joints were treated with 1 × 1010 particles of pEVs or cEVs. At day 28, the animals were sacrificed, plasma was collected to quantify CTX-II and knee joints were excised to be evaluated by Cone Beam Computed Tomography (CBCT). After decalcification, histology was used to determine the OARSI score and to visualize collagen and glycosaminoglycan content. Results pEVs and cEVs samples did not show significant differences per se but they did in terms of regenerative effects on OA knee joints. pEVs-treated knee joints showed better subchondral bone integrity in CT-analysed parameters when compared to cEVs or OA group, showing similar values to the healthy control group. Moreover, OARSI score indicated that pEVs showed a greater OA reversion in knee joints, especially in female rats, and so indicated the analysed histological images. Conclusions pEVs are proposed as a viable regeneration treatment for OA since they are not only capable of exerting their regenerative potential on osteoarthritic cartilage, but also outperform cEVs in terms of efficacy, particularly in females. Significance statement Osteoarthritis (OA) is one of the most age-related diseases. It is estimated that 500 million people suffer from OA worldwide, representing the principal cause of chronic disability in adults. In the present study we evaluated the therapeutic effect of extracellular vesicles (EVs) from different sources (platelet lysate and human umbilical cord mesenchymal stromal cells) in an in vivo rat model. Our results demonstrate that platelet-derived EVs (pEVs) induce an OA reversion in knee joints, thus evidencing the therapeutic potential of pEVs as cell-free regenerative agents for OA treatment. The translational potential of this article Platelet-derived extracellular vesicles (pEVs) offer a promising cell-free therapy option for OA treatment. Their production could be easily standardized and reproduced without extensive platelet harvesting and amplification, thus paving the way for their clinical translation.
Collapse
Affiliation(s)
- Maria Antònia Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Crta Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Crta Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Carmen Ráez-Meseguer
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Crta Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Anna Tomàs Sangenís
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Javier Calvo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Crta Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), 07004, Palma, Spain
| | - Antoni Gayà
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Crta Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), 07004, Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Crta Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Departament de Biologia Fonamental i Ciències de la Salut, UIB, Palma, Spain
| | - Joana Maria Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Crta Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Departament de Biologia Fonamental i Ciències de la Salut, UIB, Palma, Spain
| |
Collapse
|
40
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
41
|
Jiang D, Guo J, Liu Y, Li W, Lu D. Glycolysis: an emerging regulator of osteoarthritis. Front Immunol 2024; 14:1327852. [PMID: 38264652 PMCID: PMC10803532 DOI: 10.3389/fimmu.2023.1327852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoarthritis (OA) has been a leading cause of disability in the elderly and there remains a lack of effective therapeutic approaches as the mechanisms of pathogenesis and progression have yet to be elucidated. As OA progresses, cellular metabolic profiles and energy production are altered, and emerging metabolic reprogramming highlights the importance of specific metabolic pathways in disease progression. As a crucial part of glucose metabolism, glycolysis bridges metabolic and inflammatory dysfunctions. Moreover, the glycolytic pathway is involved in different areas of metabolism and inflammation, and is associated with a variety of transcription factors. To date, it has not been fully elucidated whether the changes in the glycolytic pathway and its associated key enzymes are associated with the onset or progression of OA. This review summarizes the important role of glycolysis in mediating cellular metabolic reprogramming in OA and its role in inducing tissue inflammation and injury, with the aim of providing further insights into its pathological functions and proposing new targets for the treatment of OA.
Collapse
Affiliation(s)
- Dingming Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingquan Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxin Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Linping District Nanyuan Street Community Health Center, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
42
|
Feng Y, Guo K, Jiang J, Lin S. Mesenchymal stem cell-derived exosomes as delivery vehicles for non-coding RNAs in lung diseases. Biomed Pharmacother 2024; 170:116008. [PMID: 38071800 DOI: 10.1016/j.biopha.2023.116008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The burden of lung diseases is gradually increasing with an increase in the average human life expectancy. Therefore, it is necessary to identify effective methods to treat lung diseases and reduce their social burden. Currently, an increasing number of studies focus on the role of mesenchymal stem cell-derived exosomes (MSC-Exos) as a cell-free therapy in lung diseases. They show great potential for application to lung diseases as a more stable and safer option than traditional cell therapies. MSC-Exos are rich in various substances, including proteins, nucleic acids, and DNA. Delivery of Non-coding RNAs (ncRNAs) enables MSC-Exos to communicate with target cells. MSC-Exos significantly inhibit inflammatory factors, reduce oxidative stress, promote normal lung cell proliferation, and reduce apoptosis by delivering ncRNAs. Moreover, MSC-Exos carrying specific ncRNAs affect the proliferation, invasion, and migration of lung cancer cells, thereby playing a role in managing lung cancer. The detailed mechanisms of MSC-Exos in the clinical treatment of lung disease were explored by developing standardized culture, isolation, purification, and administration strategies. In summary, MSC-Exo-based delivery methods have important application prospects for treating lung diseases.
Collapse
Affiliation(s)
- Yuqian Feng
- Hangzhou School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310003, China
| | - Jing Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
43
|
Zhou Y, Zhao Y, Wu Y, Chen J, Wu H, Wei W, Yan S. Human Umbilical Cord Mesenchymal Stem Cells Alleviate Rat Knee Osteoarthritis via Activating Wnt/ β-catenin Signaling Pathway. Curr Stem Cell Res Ther 2024; 19:234-244. [PMID: 37132309 DOI: 10.2174/1574888x18666230428094400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic disease characterized by joint cartilage degeneration, destruction, and osteogenic hyperplasia. Human umbilical cord mesenchymal stem cells (hUCMSCs) have attracted increasing research interest due to their high clonogenic, proliferative, and migratory potential, as well as their improved secretion of relevant chondrogenic factors. This study evaluated the therapeutic potential and underlying mechanism of hUC-MSCs in alleviating pathological symptoms of OA. METHODS For the in vivo study, OA rats were established by the Hulth method to observe the therapeutic effect of intra-articular injection of hUC-MSCs. X-ray tests, gross observations, and histological and immunohistochemical assessments were conducted in rats. Levels of interleukin-1 beta (IL-1β), IL-6, matrix metalloproteinase-13 (MMP-13), and tissue inhibitor matrix metalloproteinase-1 in rats' synovial fluid were measured using enzyme-linked immunosorbent assay kits. For the in vitro study, hUC-MSCs and chondrocytes were cultured to explore the effect and underlying mechanisms of hUC-MSCs on OA. Apoptosis, proliferation, and glycosaminoglycan (GAG) were measured in the chondrocytes. The relative expression of aggrecan, COL-2, and SOX-9 mRNA was quantified by real-time polymerase chain reaction. Expressions of Wnt/β-catenin signaling molecules were measured by Western blot. RESULTS We found that intra-articular injection of hUC-MSCs reduced the combined score, increased the expression of collagen II, and decreased the expression of MMP-13, IL-1β, and IL-6 in rat knee joints. Additionally, hUC-MSCs increased the content of GAGs, inhibited chondrocyte apoptosis, and promoted chondrocyte proliferation. The expression of aggrecan, COL-2, and SOX-9 mRNA in chondrocytes was promoted by hUC-MSCs via activation of the Wnt/β-catenin signaling pathway. CONCLUSION Overall, this study demonstrated that hUC-MSCs induce the secretion of some cytokines via the paracrine function to activate the Wnt/β-catenin signaling pathway to reduce the pathological condition of OA and maintain the proper expression of cytokines and extracellular matrix proteins.
Collapse
Affiliation(s)
- Yue Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
- The First Hospital of Anhui University of Science and Technology, Huainan, 232007, China
| | - Yingjie Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yujiao Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
44
|
Hormozi A, Hasanzadeh S, Ebrahimi F, Daei N, Hajimortezayi Z, Mehdizadeh A, Zamani M. Treatment with Exosomes Derived from Mesenchymal Stem Cells: A New Window of Healing Science in Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:879-893. [PMID: 37622719 DOI: 10.2174/1574888x18666230824165014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
Many studies have been conducted on the potential applications of mesenchymal stem cells (MSCs) over recent years due to their growing importance in regenerative medicine. Exosomes are considered cargos capable of transporting proteins, peptides, lipids, mRNAs, and growth factors. MSCsderived exosomes are also involved in the prevention or treatment of a variety of diseases, including cardiovascular diseases, neurological diseases, skin disorders, lung diseases, osteoarthritis, damaged tissue repair, and other diseases. This review attempted to summarize the importance of employing MSCs in regenerative medicine by gathering and evaluating information from current literature. The role of MSCs and the potential applications of MSCs-derived exosomes have also been discussed.
Collapse
Affiliation(s)
- Arezoo Hormozi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajedeh Hasanzadeh
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Faezeh Ebrahimi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Narges Daei
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zahra Hajimortezayi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
45
|
Liu W, Liu A, Li X, Sun Z, Sun Z, Liu Y, Wang G, Huang D, Xiong H, Yu S, Zhang X, Fan C. Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact Mater 2023; 30:169-183. [PMID: 37593145 PMCID: PMC10429745 DOI: 10.1016/j.bioactmat.2023.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 08/19/2023] Open
Abstract
Osteoarthritis (OA) is the most common disabling joint disease with no effective disease modifying drugs. Extracellular vesicles released by several types of mesenchymal stem cells could promote cartilage repair and ameliorate OA pathology in animal models, representing a novel therapeutic strategy. In this study, we demonstrated that extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUC-EVs) could maintain chondrocyte homeostasis and alleviate OA, and further revealed a novel molecular mechanism of this therapeutic effect. miR-223, which could directly bind with the 3'UTR of NLRP3 mRNA, was found to be a key miRNA for hUC-EVs to exert beneficial effects on inflammation inhibiting and cartilage protecting. For enhancing the effect on mitigating osteoarthritis, exogenous miR-223 was loaded into hUC-EVs by electroporation, and a collagen II-targeting peptide (WYRGRL) was modified onto the surface of hUC-EVs by genetic engineering to achieve a more targeted and efficient RNA delivery to the cartilage. The dual-engineered EVs showed a maximal effect on inhibiting the NLRP3 inflammasome activation and chondrocyte pyroptosis, and offered excellent results for the treatment of OA. This study provides a novel theoretical basis and a promising therapeutic strategy for the application of engineered extracellular vesicles in OA treatment.
Collapse
Affiliation(s)
- Weixuan Liu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Anqi Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xujun Li
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ziyang Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenghua Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Yaru Liu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Gang Wang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Dan Huang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Hao Xiong
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiyang Yu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Cunyi Fan
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
46
|
Zhang H, Huang J, Alahdal M. Exosomes loaded with chondrogenic stimuli agents combined with 3D bioprinting hydrogel in the treatment of osteoarthritis and cartilage degeneration. Biomed Pharmacother 2023; 168:115715. [PMID: 37857246 DOI: 10.1016/j.biopha.2023.115715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Osteoarthritis (OA) is a challenging joint inflammatory disease that often leads to disability. Immunoregulatory Exosomes (Exos) have shown promise in OA and cartilage degeneration treatment. Engineering Exos to deliver therapeutic agents like Kartogenin (KGN) has displayed potential for restoring cartilage regeneration. However, challenges include the uneven distribution of Exos at the injury site and the release of Exos cargo out of chondrocytes. Hydrogel-loaded uMSC-Exo has demonstrated significant therapeutic effects in wound healing and tissue regeneration. Recently, a new version of three-dimensional (3D) bioprinting of hydrogel significantly restored cartilage regeneration in OA joints. Combining immune regulatory Exos with 3D bioprinting hydrogel (3D-BPH-Exos) holds the potential for immunomodulating cartilage tissue and treatment of OA. It can reduce intracellular inflammasome formation and the release of inflammatory agents like IL-1β, TNF-α, and INF-γ, while also preventing chondrocyte apoptosis by restoring mitochondrial functions and enhancing chondrogenesis in synovial MSCs, osteoprogenitor cells, and osteoclasts. Loading Exos with chondrogenic stimuli agents in the 3D-BPH-Exos approach may offer a faster and safer strategy for cartilage repair while better inhibiting joint inflammation than high doses of anti-inflammatory drugs and cell-based therapies. This review provides a comprehensive overview of hydrogel bioprinting and exosome-based therapy in OA. It emphasizes the potential of 3D-BPH-Exos loaded with chondrogenic stimuli agents for OA treatment, serving as a basis for further research.
Collapse
Affiliation(s)
- Hui Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China; Department of Orthopedics, Shangrao People's Hospital, Shangrao, Jiangxi, China
| | - Jianghong Huang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China.
| | - Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA.
| |
Collapse
|
47
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
48
|
De Francesco F, Zingaretti N, Parodi PC, Riccio M. The Evolution of Current Concept of the Reconstructive Ladder in Plastic Surgery: The Emerging Role of Translational Medicine. Cells 2023; 12:2567. [PMID: 37947645 PMCID: PMC10649097 DOI: 10.3390/cells12212567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Plastic surgeons have used the reconstructive ladder for many decades as a standard directory for complex trauma reconstruction with the goal of repairing body structures and restoring functionality. This consists of different surgical maneuvers, such as secondary intention and direct tissue closure, as well as more complex methods such as local tissue transfer and free flap. The reconstructive ladder represents widely known options achievable for tissue reconstruction and wound closure that puts at the bottom rung the simplest methods of reconstruction and strengthens the complexity by moving upward. Regenerative medicine and surgery constitute a quickly spreading area of translational research that can be employed by minimally invasive surgical strategies, with the aim of regenerating cells and tissues in vivo in order to reestablish normal function through the intrinsic potential of cells, in combination with biomaterials and appropriate biochemical stimuli. These translational procedures have the aim of creating an appropriate microenvironment capable of supporting the physiological cellular function to generate the desired cells or tissues and to generate parenchymal, stromal, and vascular components on demand, and above all to produce intelligent materials capable of determining the fate of cells. Smart technologies have been grown that give extra "rungs" on the classic reconstructive ladder to integrate a more holistic, patient-based approach with improved outcomes. This commentary presents the evolution of the traditional concept of the reconstructive ladder in the field of plastic surgery into a new course with the aim of achieving excellent results for soft tissue reconstruction by applying innovative technologies and biologically active molecules for a wide range of surgical diseases.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy;
| | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Pier Camillo Parodi
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy;
| |
Collapse
|
49
|
Li Z, Bi R, Zhu S. The Dual Role of Small Extracellular Vesicles in Joint Osteoarthritis: Their Global and Non-Coding Regulatory RNA Molecule-Based Pathogenic and Therapeutic Effects. Biomolecules 2023; 13:1606. [PMID: 38002288 PMCID: PMC10669328 DOI: 10.3390/biom13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
OA is the most common joint disease that affects approximately 7% of the global population. Current treatment methods mainly relieve its symptoms with limited repairing effect on joint destructions, which ultimately contributes to the high morbidity rate of OA. Stem cell treatment is a potential regenerative medical therapy for joint repair in OA, but the uncertainty in differentiation direction and immunogenicity limits its clinical usage. Small extracellular vesicles (sEVs), the by-products secreted by stem cells, show similar efficacy levels but have safer regenerative repair effect without potential adverse outcomes, and have recently drawn attention from the broader research community. A series of research works and reviews have been performed in the last decade, providing references for the application of various exogenous therapeutic sEVs for treating OA. However, the clinical potential of target intervention involving endogenous pathogenic sEVs in the treatment of OA is still under-explored and under-discussed. In this review, and for the first time, we emphasize the dual role of sEVs in OA and explain the effects of sEVs on various joint tissues from both the pathogenic and therapeutic aspects. Our aim is to provide a reference for future research in the field.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Ruiye Bi
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Huang L, Dong G, Peng J, Li T, Zou M, Hu K, Shu Y, Cheng T, Hao L. The role of exosomes and their enhancement strategies in the treatment of osteoarthritis. Hum Cell 2023; 36:1887-1900. [PMID: 37603220 DOI: 10.1007/s13577-023-00970-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
With the increasingly prominent problem of population aging, osteoarthritis (OA), which is closely related to aging, has become a serious illness affecting the lives and health of elderly individuals. However, effective treatments are still lacking. OA is typically considered a low-grade inflammatory state. The inflammatory infiltration of macrophages, neutrophils, T cells, and other cells is common in diseased joints. These cells create the inflammatory environment of OA and are involved in the onset and progression of the disease. Exosomes, a type of complex vesicle containing abundant RNA molecules and proteins, play a crucial role in the physiological and pathological processes of an organism. In comparison to other therapeutic methods such as stem cells, exosomes have distinct advantages of precise targeting and low immunogenicity. Moreover, research and techniques related to exosomes are more mature, indicating a promising future in disease treatment. Many studies have shown that the impact of exosomes on the inflammatory microenvironment directly or indirectly leads to the occurrence of various diseases. Furthermore, exosomes can be helpful in the management of illnesses. This article provides a comprehensive review and update on the research of exosomes, a type of extracellular vesicle, in the treatment of OA by modulating the inflammatory microenvironment. It also combines innovative studies on the modification of exosomes. In general, the application of exosomes in the treatment of OA has been validated, and the introduction of modified exosome technology holds potential for enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Linzhen Huang
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Ge Dong
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Cheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|