1
|
Fishman JA, Denner J, Scobie L. International Xenotransplantation Association (IXA) Position Paper on Infectious Disease Considerations in Xenotransplantation. Transplantation 2025:00007890-990000000-01049. [PMID: 40198136 DOI: 10.1097/tp.0000000000005371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Clinical xenotransplantation has the potential to address shortages of human organs for patients with end-stage organ failure. Advances in genetic engineering, immunosuppressive regimens, and infectious disease diagnostics have improved prospects for clinical xenotransplantation. Management of the infectious risks posed by clinical xenotransplantation requires biosecure breeding and validated methods for microbiological surveillance of source animals and recipients. Novel infection control protocols may complement biosafety requirements. Infectious risks in xenotransplantation include both known human pathogens common to immunosuppressed organ recipients and from porcine organisms or xenozoonoses for which the clinical manifestations are less well defined and for which microbial assays and therapies are more limited. Some pig-specific organisms do not infect human cells but have systemic manifestations when active within the xenograft. The human risk posed by porcine endogenous retroviruses (PERV) is uncertain. There are no documented transmissions of PERV in humans and swine are available with inactivated genomic PERV loci. Metagenomic sequencing will complement more traditional diagnostic tools in the detection of any unknown pathogens in xenotransplantation recipients. Such data are required for the development of protocols for donor and recipient microbiological surveillance, infection control, and antimicrobial therapies that will enhance the safety of clinical xenotransplantation.
Collapse
Affiliation(s)
- Jay A Fishman
- Harvard Medical School, Transplant Infectious Disease and, Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston, MA
| | - Joachim Denner
- Laboratory for Virus Safety of Xenotransplantation, Institute of Virology, Free University Berlin, Berlin, Germany
| | - Linda Scobie
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
2
|
Stewart AG, Fishman JA. Surveillance and prevention of infection in clinical xenotransplantation. Clin Microbiol Rev 2025; 38:e0015023. [PMID: 39887237 PMCID: PMC11905366 DOI: 10.1128/cmr.00150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.
Collapse
Affiliation(s)
- Adam G. Stewart
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay A. Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Fishman JA, Denner J, Scobie L. International Xenotransplantation Association (IXA) Position Paper on Infectious Disease Considerations in Xenotransplantation. Xenotransplantation 2025; 32:e70001. [PMID: 40197807 DOI: 10.1111/xen.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 04/10/2025]
Abstract
Clinical xenotransplantation has the potential to address shortages of human organs for patients with end-stage organ failure. Advances in genetic engineering, immunosuppressive regimens, and infectious disease diagnostics have improved prospects for clinical xenotransplantation. Management of the infectious risks posed by clinical xenotransplantation requires biosecure breeding and validated methods for microbiological surveillance of source animals and recipients. Novel infection control protocols may complement biosafety requirements. Infectious risks in xenotransplantation include both known human pathogens common to immunosuppressed organ recipients and from porcine organisms or xenozoonoses for which the clinical manifestations are less well defined and for which microbial assays and therapies are more limited. Some pig-specific organisms do not infect human cells but have systemic manifestations when active within the xenograft. The human risk posed by porcine endogenous retroviruses (PERV) is uncertain. There are no documented transmissions of PERV in humans and swine are available with inactivated genomic PERV loci. Metagenomic sequencing will complement more traditional diagnostic tools in the detection of any unknown pathogens in xenotransplantation recipients. Such data are required for the development of protocols for donor and recipient microbiological surveillance, infection control, and antimicrobial therapies that will enhance the safety of clinical xenotransplantation.
Collapse
Affiliation(s)
- Jay A Fishman
- Harvard Medical School, Transplant Infectious Disease and, Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joachim Denner
- Laboratory for Virus Safety of Xenotransplantation, Institute of Virology, Free University Berlin, Berlin, Germany
| | - Linda Scobie
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
4
|
Jhelum H, Kunec D, Papatsiros V, Kaufer BB, Denner J. Reliable Polymerase Chain Reaction Methods for Screening for Porcine Endogenous Retroviruses-C (PERV-C) in Pigs. Viruses 2025; 17:164. [PMID: 40006919 PMCID: PMC11860680 DOI: 10.3390/v17020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells of multiple host species, including humans, thereby posing a risk for xenotransplantation when pigs are used as donor animals. Notably, PERV-C can recombine with PERV-A to produce PERV-A/C recombinants that can infect human cells and replicate to higher titers compared to the paternal PERV-A. The objective of this study is to evaluate the reliability of both existing and newly developed polymerase chain reactions (PCR) methods for detecting PERV-C, with the aim of selecting PERV-C-free pigs to be used for xenotransplantation. To detect PERV-C by PCR, specific primers targeting the region of the envelope protein gene, which differs from that of PERV-A and PERV-B due to its unique receptor binding site, must be employed. In this study, new PCR assays were developed to detect PERV-C and a total of ten PCR assays and one real-time PCR assay were evaluated for their reliability in detecting PERV-C. These assays were used to screen indigenous Greek black pigs, Auckland Island pigs, and German slaughterhouse pigs. Two of the PCR assays consistently yielded reliable results, whereas the other PCRs and the real-time PCR gave false positive results. Using the reliable assays, it was shown that one out of four indigenous Greek black pigs (using the same method in a previous publication 11 of 21 pigs were found PERV-C-negative), one out of ten German slaughterhouse pigs, the pig kidney cell line PK15, and all the Auckland Island pigs were PERV-C-negative. The reliable PCR assays will enable the screening of PERV-C-negative donor pigs to be used in xenotransplantation. Most importantly, all the Auckland Island pigs that were genetically modified in Germany for use in clinical trials were PERV-C-negative.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Dusan Kunec
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Vasileios Papatsiros
- Faculty of Veterinary Medicine, Clinic of Medicine (Farm Animal Medicine), University of Thessaly, GR 43100 Karditsa, Greece;
| | - Benedikt B. Kaufer
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| |
Collapse
|
5
|
Matsumoto S, Asari S, Nanno Y, Nakamura H, Okawa T, Fukumoto T. Donor pigs for clinical islet xenotransplantation: Review and future directions. Cell Transplant 2025; 34:9636897251332532. [PMID: 40251850 PMCID: PMC12035294 DOI: 10.1177/09636897251332532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025] Open
Abstract
Allogeneic islet transplantation becomes a viable option for patients with unstable type 1 diabetes. However, considering the huge number of patients with type 1 diabetes, human donor shortage is a serious issue. To overcome the donor shortage issue, xenotransplantation is an attractive option. In fact, clinical islet xenotransplantation has been conducted since 1990s. The first clinical trial was performed using fetal pigs and demonstrated the porcine pancreatic tissue could survive in human body with immunosuppressive strategies. To scale up the islet production, Canadian group established a method for islet isolation from neonatal pigs. Their method has been used for clinical islet xenotransplantation in New Zealand, Russian, Mexico, Argentina, and China. Recently Korean group published a clinical protocol for islet xenotransplantation using adult pigs. For the next generation of islet xenotransplantation, gene-modified pigs were created. Especially "superislets" created by Belgian group demonstrated promising preclinical outcomes. With advanced donor pigs, islet xenotransplantation might become a suitable treatment for the majority of type 1 diabetic patients.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Hepatobiliary Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Porcine Development Organization, Kobe, Japan
| | - Sadaki Asari
- Hepatobiliary Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihide Nanno
- Hepatobiliary Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Nakamura
- Hepatobiliary Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taisuke Okawa
- Hepatobiliary Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Hepatobiliary Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Porcine Development Organization, Kobe, Japan
| |
Collapse
|
6
|
Denner J, Jhelum H, Ban J, Krabben L, Kaufer BB. How to Detect Porcine Endogenous Retrovirus (PERV) Infections in Patients After Transplantation of Pig Organs. Xenotransplantation 2025; 32:e70028. [PMID: 39994944 PMCID: PMC11850954 DOI: 10.1111/xen.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated into the genome of all pigs and can infect human cells in culture. However, no PERV infections have been reported in recipients following preclinical or clinical xenotransplantation or deliberate infection experiments. Detection of PERV infection in transplanted recipients is challenging due to microchimerism, such as the presence of pig cells containing PERV proviruses in the recipient. Based on our previous publications on PERV detection in xenotransplant recipients, particularly from the first clinical trials, we developed a comprehensive strategy to screen for PERV infections. Recipients can be monitored for increasing levels of viral genomic RNA and mRNA using real-time reverse transcriptase (RT)-PCR, which can indicate PERV expression and replication. To test this strategy, explanted pig hearts and organs from baboons after pig heart transplantation were analyzed. No PERV genomic RNA or mRNA was detected in these tissues, although both were found in PERV-producing human control cells. Screening for antibodies against PERV as indirect evidence of infection is the method of choice. Recombinant viral proteins were prepared for use in Western blot assays. Animal antisera generated through immunization with recombinant PERV proteins served as positive controls. No antibodies against PERV were detected in transplanted baboons, even though microchimerism was observed in many of the animals' organs. For effective antibody screening, at least two PERV proteins should be used as antigens.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of VirologyFree University BerlinBerlinGermany
| | - Hina Jhelum
- Institute of VirologyFree University BerlinBerlinGermany
| | - Jinzhao Ban
- Institute of VirologyFree University BerlinBerlinGermany
| | - Ludwig Krabben
- Institute of VirologyFree University BerlinBerlinGermany
| | | |
Collapse
|
7
|
Denner J. Monitoring for PERV Following Xenotransplantation. Transpl Int 2024; 37:13491. [PMID: 39434857 PMCID: PMC11491343 DOI: 10.3389/ti.2024.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs. PERV-A, PERV-B and PERV-C can be released as infectious virus particles and PERV-A and PERV-B can infect human cells in culture. PERV-C does not infect human cells, but high-titer recombinant PERV-A/C can infect them. Retroviruses are able to induce immunosuppression and/or tumors in the infected host. Numerous methods have been developed to study PERV in donor pigs. No PERV infections were observed in infection experiments as well as in preclinical and clinical xenotransplantation trials. Despite this, several strategies have been developed to prevent PERV infection of the recipient. PCR-based and immunological methods are required to screen xenotransplant recipients. Since the proviruses are integrated into the pig genome, PERV infection has to be distinguished from microchimerism, e.g., the presence of pig cells in the recipient, which is common in xenotransplantation. Sensitive PCR methods using pig short interspersed nuclear elements (SINE) sequences allow to detect pig cells easily. Virus infection can also be detected by an increase of viral genomic or mRNA in human cells. The method of choice, however, is to screen for specific antibodies against PERV using different recombinant PERV proteins, purified viruses or peptides.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
8
|
Saito S, Miyagawa S, Kawamura T, Yoshioka D, Kawamura M, Kawamura A, Misumi Y, Taguchi T, Yamauchi T, Miyagawa S. How should cardiac xenotransplantation be initiated in Japan? Surg Today 2024; 54:829-838. [PMID: 38733536 PMCID: PMC11266268 DOI: 10.1007/s00595-024-02861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024]
Abstract
The world's first clinical cardiac xenotransplantation, using a genetically engineered pig heart with 10 gene modifications, prolonged the life of a 57-year-old man with no other life-saving options, by 60 days. It is foreseeable that xenotransplantation will be introduced in clinical practice in the United States. However, little clinical or regulatory progress has been made in the field of xenotransplantation in Japan in recent years. Japan seems to be heading toward a "device lag", and the over-importation of medical devices and technology in the medical field is becoming problematic. In this review, we discuss the concept of pig-heart xenotransplantation, including the pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental heart overgrowth, as well as genetic modification strategies in pigs to prevent or minimize these problems. Moreover, we summarize the necessity for and current status of xenotransplantation worldwide, and future prospects in Japan, with the aim of initiating xenotransplantation in Japan using genetically modified pigs without a global delay. It is imperative that this study prompts the initiation of preclinical xenotransplantation research using non-human primates and leads to clinical studies.
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masashi Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Misumi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | - Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
10
|
Matsumoto S, Matsumoto K. Clinical Islet Xenotransplantation: Development of Isolation Protocol, Anti-Rejection Strategies, and Clinical Outcomes. Cells 2024; 13:828. [PMID: 38786050 PMCID: PMC11120369 DOI: 10.3390/cells13100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Allogeneic islet transplantation has become a standard therapy for unstable type 1 diabetes. However, considering the large number of type 1 diabetic patients, the shortage of donors is a serious issue. To address this issue, clinical islet xenotransplantation is conducted. The first clinical islet xenotransplantation was performed by a Swedish team using fetal pancreatic tissue. Thereafter, clinical trials of islet xenotransplantation were conducted in New Zealand, Russia, Mexico, Argentina, and China using neonatal pig islets. In clinical trials, fetal or neonatal pancreata are used because of the established reliable islet isolation methods. These trials demonstrate the method's safety and efficacy. Currently, the limited number of source animal facilities is a problem in terms of promoting islet xenotransplantation. This limitation is due to the high cost of source animal facilities and the uncertain future of xenotransplantation. In the United States, the first xenogeneic heart transplantation has been performed, which could promote xenotransplantation. In Japan, to enhance xenotransplantation, the 'Medical Porcine Development Association' has been established. We hope that xenogeneic transplantation will become a clinical reality, serving to address the shortage of donors.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Medical Porcine Development Organization, Kobe 650-0017, Japan
| | - Kyohei Matsumoto
- Second Department of Surgery, Wakayama Medical University, Wakayama 641-0012, Japan;
| |
Collapse
|
11
|
Denner J. Limited availability of methods for the detection of xenotransplantation-relevant viruses in veterinary laboratories. Xenotransplantation 2024; 31:e12851. [PMID: 38747130 DOI: 10.1111/xen.12851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2025]
Abstract
BACKGROUND The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
12
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
13
|
Lange A, Medugorac I, Ali A, Kessler B, Kurome M, Zakhartchenko V, Hammer SE, Hauser A, Denner J, Dobenecker B, Wess G, Tan PLJ, Garkavenko O, Reichart B, Wolf E, Kemter E. Genetic diversity, growth and heart function of Auckland Island pigs, a potential source for organ xenotransplantation. Xenotransplantation 2024; 31:e12858. [PMID: 38646921 DOI: 10.1111/xen.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well-suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.
Collapse
Affiliation(s)
- Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Andreas Hauser
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University of Berlin, Berlin, Germany
| | - Britta Dobenecker
- Chair for Animal Nutrition, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Gerhard Wess
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | | | - Bruno Reichart
- Walter-Brendel-Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Eisenson DL, Iwase H, Chen W, Hisadome Y, Cui W, Santillan MR, Schulick AC, Gu D, Maxwell A, Koenig K, Sun Z, Warren D, Yamada K. Combined islet and kidney xenotransplantation for diabetic nephropathy: an update in ongoing research for a clinically relevant application of porcine islet transplantation. Front Immunol 2024; 15:1351717. [PMID: 38476227 PMCID: PMC10927755 DOI: 10.3389/fimmu.2024.1351717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Combined islet and kidney xenotransplantation for the treatment of diabetic nephropathy represents a compelling and increasingly relevant therapeutic possibility for an ever-growing number of patients who would benefit from both durable renal replacement and cure of the underlying cause of their renal insufficiency: diabetes. Here we briefly review immune barriers to islet transplantation, highlight preclinical progress in the field, and summarize our experience with combined islet and kidney xenotransplantation, including both challenges with islet-kidney composite grafts as well as our recent success with sequential kidney followed by islet xenotransplantation in a pig-to-baboon model.
Collapse
Affiliation(s)
- Daniel L. Eisenson
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hayato Iwase
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weili Chen
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wanxing Cui
- Cell Therapy and Manufacturing, Medstar Georgetown University Hospital, Washington DC, United States
| | - Michelle R. Santillan
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander C. Schulick
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Du Gu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amanda Maxwell
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristy Koenig
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel Warren
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Xiao X, Xu J, Wang C, Jin Z, Qiang Yuan, Zhou L, Shan L. Porcine platelet lysates exert the efficacy of chondroregeneration and SMAD2-mediated anti-chondrofibrosis on knee osteoarthritis. Int Immunopharmacol 2024; 128:111509. [PMID: 38262159 DOI: 10.1016/j.intimp.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The lack of self-repairability in cartilage and the formation of fibrocartilage pose significant challenges in treating knee osteoarthritis, and there is still no ideal solution. Autologous platelet lysates have been clinically applied to treat kOA and exert satisfactory cartilage-repair efficacy, but the preparation of human PL brings damage to patients and is hardly standardized. METHODS In this study, porcine PL was developed to replace hPL, and its chondroregenerative and anti-chondrofibrosis effects were explored. Enzyme-Linked Immunosorbent Assay was applied to qualify the PL products. In vivo, partial-thickness cartilage defects were created on rats as a kOA model, and the von Frey test, histopathological observation, immunohistochemical analysis, and western blot analysis were conducted. In vitro, CCK-8 assay, real-time PCR analysis, immunofluorescence test, and WB analysis were conducted for the mechanism study of pPL. RESULTS The in vivo data showed that pPL significantly repaired the cartilage defect by improving matrix synthesis and also ameliorated the pain response in the kOA model of rats. In addition, pPL exerted an anti-fibrosis effect on cartilage by suppressing the expressions of COL1, COL3, α-SMA, VIMENTIN, SMAD2, p-SMAD2, and CTGF in cartilage. The in vitro data verified these effects and indicated that the SMAD2 pathway mediated the anti-fibrosis mechanism of pPL. Moreover, the comparable effects between pPL and rat PL indicate that there is no immune rejection from pPL. CONCLUSIONS This study firstly demonstrated the anti-kOA effects of pPL on both cartilage-repair and anti-chondrofibrosis. It developed pPL as a promising alternative to autologous PL for clinical applications.
Collapse
Affiliation(s)
- Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Chen Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Zhijiang Jin
- The 9th People's Hospital of Hangzhou, Hangzhou, Zhejiang 310012, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Li Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China.
| | - Letian Shan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China; Fuyang Research Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, Zhejiang 311200, China.
| |
Collapse
|
16
|
Saharia KK, Hall VG, Chesdachai S, Porrett P, Fishman JA, Pouch SM. Heart of the matter-infection and xenotransplantation. Transpl Infect Dis 2024; 26:e14206. [PMID: 38055610 DOI: 10.1111/tid.14206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
In this clinicopathological conference, invited experts discussed a previously published case of a patient with nonischemic cardiomyopathy who underwent heart transplantation from a genetically modified pig source animal. His complex course included detection of porcine cytomegalovirus by plasma microbial cell-free DNA and eventual xenograft failure. The objectives of the session included discussion of selection of immunosuppressive regimens and prophylactic antimicrobials for human xenograft recipients, description of infectious disease risk assessment and mitigation in potential xenograft donors and understanding of screening and therapeutic strategies for potential xenograft-related infections.
Collapse
Affiliation(s)
- Kapil K Saharia
- Institute of Human Virology, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Victoria G Hall
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Supavit Chesdachai
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paige Porrett
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie M Pouch
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Fiebig U, Krüger L, Denner J. Determination of the Copy Number of Porcine Endogenous Retroviruses (PERV) in Auckland Island Pigs Repeatedly Used for Clinical Xenotransplantation and Elimination of PERV-C. Microorganisms 2024; 12:98. [PMID: 38257925 PMCID: PMC10820294 DOI: 10.3390/microorganisms12010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in first clinical trials of porcine neonatal islet cell transplantation for the treatment of human diabetes patients. The animals do not carry any of the xenotransplantation-relevant viruses, and in the first clinical trials, no porcine viruses, including porcine endogenous retroviruses (PERVs) were transmitted to the human recipients. PERVs pose a special risk in xenotransplantation, since they are part of the pig genome. When the copy number of PERVs in these animals was analyzed using droplet digital PCR and primers binding to a conserved region of the polymerase gene (PERVpol), a copy number typical for Western pigs was found. This confirms previous phylogenetic analyses of microsatellites as well as mitochondrial analyses showing a closer relationship to European pigs than to Chinese pigs. When kidney cells from very young piglets were analyzed, only around 20 PERVpol copies were detected. Using these cells as donors in somatic cell nuclear transfer (SCNT), animals were born showing PERVpol copy numbers between 35 and 56. These data indicate that Auckland Island pigs have a similar copy number in comparison with other Western pig breeds and that the copy number is higher in adult animals compared with cells from young piglets. Most importantly, PERV-C-free animals were selected and the absence of an additional eight porcine viruses was demonstrated.
Collapse
Affiliation(s)
- Uwe Fiebig
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
| | - Luise Krüger
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
| | - Joachim Denner
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
- Institute of Virology, Free University, 14163 Berlin, Germany
| |
Collapse
|
18
|
Krishtul S, Skitel Moshe M, Kovrigina I, Baruch L, Machluf M. ECM-based bioactive microencapsulation significantly improves islet function and graft performance. Acta Biomater 2023; 171:249-260. [PMID: 37708927 DOI: 10.1016/j.actbio.2023.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Microencapsulation is a promising strategy to prolong the survival and function of transplanted pancreatic islets for diabetes therapy, albeit its translation has been impeded by incoherent graft performance. The use of decellularized ECM has lately gained substantial research momentum due to its innate capacity to augment the function of cells originating from the same tissue type. In the present study, the advantages of both these approaches are leveraged in a porcine pancreatic ECM (pECM)-based microencapsulation platform, thus significantly enhancing murine pancreatic islet performance. pECM-encapsulated islets sustain high insulin secretion levels in vitro, surpassing those of islets encapsulated in conventional alginate microcapsules. Moreover, pECM-encapsulated islet cells proliferate and produce an enriched intra-islet ECM framework, displaying a distinctive structural rearrangement. The beneficial effect of pECM encapsulation is further reinforced by the temporary protection against cytokine-induced cytotoxicity. In-vivo, this platform significantly improves glucose tolerance and achieves glycemic correction in 100% of immunocompetent diabetic mice without any immunosuppression, compared to only 50% mice achieved glycemic correction by alginate encapsulation. Altogether, the results presented herein reveal that pECM-based microencapsulation offers a natural pancreatic niche that can restore the function of isolated pancreatic islets and deliver them safely, avoiding the need for immunosuppression. STATEMENT OF SIGNIFICANCE: Aiming to improve pancreatic islet transplantation outcomes in diabetic patients, we developed a microencapsulation platform based on pancreatic extracellular matrix (pECM). In these microcapsules the islets are entrapped within a pECM hydrogel that mimics the natural pancreatic microenvironment. We show that pECM encapsulation supports the islets' viability and function in culture, and provides temporal protection against cytokine-induced stress. In a diabetic mouse model, pECM encapsulation significantly improved glucose tolerance and achieved glycemic correction without any immunosuppression. These results reveal the potential of pECM encapsulation as a viable treatment for diabetes, providing a solid scientific basis for more advanced preclinical studies.
Collapse
Affiliation(s)
- Stasia Krishtul
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Skitel Moshe
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Inna Kovrigina
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
19
|
Otabi H, Miura H, Uryu H, Kobayashi-Harada R, Abe K, Nakano K, Umeyama K, Hasegawa K, Tsukahara T, Nagashima H, Inoue R. Development of a panel for detection of pathogens in xenotransplantation donor pigs. Xenotransplantation 2023; 30:e12825. [PMID: 37771249 DOI: 10.1111/xen.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
There have been high expectations in recent years of using xenotransplantation and regenerative medicine to treat humans, and pigs have been utilized as the donor model. Pigs used for these clinical applications must be microbiologically safe, that is, free of infectious pathogens, to prevent infections not only in livestock, but also in humans. Currently, however, the full spectrum of pathogens that can infect to the human host or cause disease in transplanted porcine organs/cells has not been fully defined. In the present study, we thus aimed to develop a larger panel for the detection of pathogens that could potentially infect xenotransplantation donor pigs. Our newly developed panel, which consisted of 76 highly sensitive PCR detection assays, was able to detect 41 viruses, 1 protozoa, and a broad range of bacteria (by use of universal 16S rRNA primers). The applicability of this panel was validated using blood samples from uterectomy-born piglets, and pathogens suspected to be vertically transmitted from sows to piglets were successfully detected. We estimate that, at least for viruses and bacteria, the number of target pathogens detected by the developed screening panel should suffice to meet the microbiological safety levels required worldwide for xenotransplantation and/or regenerative therapy. This panel provides greater diagnosis options to produce donor pigs so that it would render unnecessary to screen for all pathogens listed. Instead, the new panel could be utilized to detect only required pathogens within a given geographic range where the donor pigs for xenotransplantation have been and/or are being developed.
Collapse
Affiliation(s)
- Hikari Otabi
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Hiroto Miura
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Haruka Uryu
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | | | - Kanako Abe
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
20
|
Groenendaal H, Costard S, Ballard R, Bienhoff S, Challen DC, Dominguez BJ, Kern DR, Miller D, Noordergraaf J, Rudenko L, Schuurman HJ, Spizzo T, Sturos M, Zollers B, Fishman JA. Expert opinion on the identification, risk assessment, and mitigation of microorganisms and parasites relevant to xenotransplantation products from pigs. Xenotransplantation 2023; 30:e12815. [PMID: 37616183 DOI: 10.1111/xen.12815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023]
Abstract
Xenotransplantation has the potential to address shortages of organs available for clinical transplantation, but concerns exist regarding potential risks posed by porcine microorganisms and parasites (MP) to the health of human recipients. In this study, a risk-based framework was developed, and expert opinion was elicited to evaluate porcine MP based on swine exposure and risk to human health. Experts identified 255 MP to include in the risk assessment. These were rated by experts for five criteria regarding potential swine exposure in the USA and human health risks. MP were subsequently categorized into three risk mitigation groups according to pre-defined rules: disqualifying porcine MP (due to their pathogenic potential, n = 130); non-disqualifying porcine MP (still relevant to consider for biosecurity or monitoring efforts, n = 40); and alert/watch list (not reported in the USA or MP not in swine, n = 85). Most disqualifying (n = 126) and non-disqualifying (n = 36) porcine MP can effectively be eliminated with high biosecurity programs. This approach supports surveillance and risk mitigation strategies for porcine MP in swine produced for xenotransplantation, such as documentation of freedom from porcine MP, or use of porcine MP screening, monitoring, or elimination options. To the authors' knowledge, this is the first effort to comprehensively identify all relevant porcine MP systematically and transparently evaluate the risk of infection of both donor animals and immunosuppressed human recipients, and the potential health impacts for immunosuppressed human recipients from infected xenotransplantation products from pigs.
Collapse
Affiliation(s)
| | | | - Reid Ballard
- Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | - Dan Miller
- Excorp Biomedical International Pte. Ltd., Singapore
| | | | - Larisa Rudenko
- BioPolicy Solutions, LLC, Ventura, California, USA; Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Tom Spizzo
- Spring Point Project, Minneapolis, Minnesota, USA
| | - Matthew Sturos
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota, USA
| | - Bill Zollers
- Argenta Clinical US, New Brunswick, New Jersey, USA
| | - Jay A Fishman
- Transplant Center and Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Fischer N, Gulich B, Keßler B, Längin M, Fishman JA, Wolf E, Boller K, Tönjes RR, Godehardt AW. PCR and peptide based PCMV detection in pig - development and application of a combined testing procedure differentiating newly from latent infected pigs. Xenotransplantation 2023; 30:e12803. [PMID: 37120823 DOI: 10.1111/xen.12803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023]
Abstract
Porcine cytomegalovirus (PCMV) is widely distributed in pigs and difficult to detect due to latency. PCMV infection of source pigs was associated with early graft failure after cardiac and renal xenotransplantation into nonhuman primates. Importantly, PCMV infection of the first genetically modified pig heart into a human may have contributed to the reduced survival of the patient. Sensitive and reliable assays for detection of latent PCMV infection are thus indispensable. Here, we report the development of five peptide-induced rabbit antisera specific for PCMV glycoprotein B (gB) and their validation for detection of PCMV in infected pig fallopian tube (PFT) cells by immunofluorescence and electron microscopy (EM). The anti-gB antibodies were also used for detection by Western blot analysis of PCMV purified from the supernatant of infected PFT cells. Sera of infected versus non-infected pigs have been compared. In parallel, PCMV viral load in blood samples of the animals was quantified by a novel highly sensitive nested-PCR and qPCR assay. A combination of four partly overlapping peptides from the gB C-terminus was used to establish a diagnostic ELISA for PCMV gB specific pig antibodies which is able to differentiate infected from non-infected animals and to quantify maternal antibodies in neonates. The combination of a highly sensitive nested PCR for direct virus detection with a sensitive peptide-based ELISA detecting anti-PCMV gB-antibodies, supplemented by Western blot analysis and/or immunohistochemistry for virus detection will reliably differentiate pigs with active infection, latently infected pigs, and non-infected pigs. It may significantly improve the virologic safety of xenotransplantation.
Collapse
Affiliation(s)
- Nicole Fischer
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Barbara Gulich
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Barbara Keßler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | | | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Klaus Boller
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ralf R Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Antonia W Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
22
|
|
23
|
Ma X, Li S, Wang J, Xu C, Wang W. Establishment of a donor pig for xenotransplantation clinical trials based on the principle of Changsha Communiqué. HEALTH CARE SCIENCE 2023; 2:129-134. [PMID: 38938766 PMCID: PMC11080849 DOI: 10.1002/hcs2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/29/2024]
Abstract
Background Xenotransplantation is a potential way to reduce the shortage of the needed organ grafts for the end-stage disease. Immune rejection, physiological incompatibility and bio-safety are the most critical issues. Methods To ensure the safety and efficacy of gene editing, second- and third-generation sequencing technologies have allowed us to obtain a clearer genetic background of donor pigs for xenotransplantation. Based on the Changsha Communiqué, the local DPF- excluded lists and DPF donor facility were established in Changsha, China. A pig-to-human islet clinical trial was conducted and overseen by the respective Chinese governmental agency. Results The DPF standards for pig husbandry eliminated specific pathogens in donor pigs. We have established a PERV-C free, genetic information clean, DPF donor for xenotransplantation. A clinical trial of ten adult patients (9M:1F) with type 1 diabetes who received DPF porcine islet xenotransplantation via the portal vein were performed. Clinical accepted immunosuppressant drugs and autologous Treg were used for controlling immune rejection. No cross-species infection events occurred in this trial, and importantly, no cross-species transmission of PERV was found. Conclusions Xenotransplantation is a pioneer study and safety is the most important issue. The fundamental principles for establishing xenotransplantation donor pigs should follow the Changsha Communiqué (2008), the second WHO consultation,and the 2018 Changsha Communiqué which would finally help reducing the risks of xenotransplantation.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Institute for Cell Transplantation and Gene TherapyThe 3rd Xiangya Hospital of Central South UniversityChangshaChina
- Engineering and Technology Research Center for Xenotransplantation of Human ProvinceChangshaChina
| | - Sang Li
- Engineering and Technology Research Center for Xenotransplantation of Human ProvinceChangshaChina
| | - Jia Wang
- Engineering and Technology Research Center for Xenotransplantation of Human ProvinceChangshaChina
| | - Chang Xu
- Engineering and Technology Research Center for Xenotransplantation of Human ProvinceChangshaChina
| | - Wei Wang
- Institute for Cell Transplantation and Gene TherapyThe 3rd Xiangya Hospital of Central South UniversityChangshaChina
- Engineering and Technology Research Center for Xenotransplantation of Human ProvinceChangshaChina
| |
Collapse
|
24
|
Rivera NT, Baran DA. Expanding heart transplantation in 2022 and beyond. Curr Opin Cardiol 2023; 38:130-135. [PMID: 36598449 DOI: 10.1097/hco.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Despite advances in the technology of mechanical circulatory support, the need for heart transplantation continues to grow. The longevity of heart transplants continues to be superior to mechanical solutions, though the short-term differences are shrinking. In this review, we cover three timely developments and summarize the recent literature. RECENT FINDINGS After stagnant rates of heart transplant activity for some years, recently, transplant volume has increased. The developments that have ignited interest have been the use of hepatitis C infected donors, which can now be safely transplanted with the advent of curative oral regimens, and the worldwide use of donors following withdrawal of life support as opposed to traditional brain death donors. In addition, the recent experience of human cardiac xenotransplantation has been very exciting, and though it is not of clinical utility yet, it holds the promise for a virtually unlimited supply of organs at some time in the future. SUMMARY Much work remains to be done, but together, all three of these developments are exciting and important to be aware of in the future. Each will contribute to additional donors for human heart transplantation and hopefully will alleviate suffering and death on the waiting list.
Collapse
|
25
|
Liu Y, Niu Y, Ma X, Xiang Y, Wu D, Li W, Wang T, Niu D. Porcine endogenous retrovirus: classification, molecular structure, regulation, function, and potential risk in xenotransplantation. Funct Integr Genomics 2023; 23:60. [PMID: 36790562 DOI: 10.1007/s10142-023-00984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Xenotransplantation with porcine organs has been recognized as a promising solution to alleviate the shortage of organs for human transplantation. Porcine endogenous retrovirus (PERV), whose proviral DNAs are integrated in the genome of all pig breeds, is a main microbiological risk for xenotransplantation. Over the last decades, some advances on PERVs' studies have been achieved. Here, we reviewed the current progress of PERVs including the classification, molecular structure, regulation, function in immune system, and potential risk in xenotransplantation. We also discussed the problem of insufficient study on PERVs as well as the questions need to be answered in the future work.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yifan Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, 321000, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, Zhejiang, 321000, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu, 211300, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
26
|
Reichart B, Cooper DKC, Längin M, Tönjes RR, Pierson RN, Wolf E. Cardiac xenotransplantation: from concept to clinic. Cardiovasc Res 2023; 118:3499-3516. [PMID: 36461918 PMCID: PMC9897693 DOI: 10.1093/cvr/cvac180] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
For many patients with terminal/advanced cardiac failure, heart transplantation is the most effective, durable treatment option, and offers the best prospects for a high quality of life. The number of potentially life-saving donated human organs is far fewer than the population who could benefit from a new heart, resulting in increasing numbers of patients awaiting replacement of their failing heart, high waitlist mortality, and frequent reliance on interim mechanical support for many of those deemed among the best candidates but who are deteriorating as they wait. Currently, mechanical assist devices supporting left ventricular or biventricular heart function are the only alternative to heart transplant that is in clinical use. Unfortunately, the complication rate with mechanical assistance remains high despite advances in device design and patient selection and management, and the quality of life of the patients even with good outcomes is only moderately improved. Cardiac xenotransplantation from genetically multi-modified (GM) organ-source pigs is an emerging new option as demonstrated by the consistent long-term success of heterotopic (non-life-supporting) abdominal and life-supporting orthotopic porcine heart transplantation in baboons, and by a recent 'compassionate use' transplant of the heart from a GM pig with 10 modifications into a terminally ill patient who survived for 2 months. In this review, we discuss pig heart xenotransplantation as a concept, including pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental overgrowth of the heart, as well as GM strategies in pigs to prevent or minimize these problems. Additional topics discussed include relevant results of heterotopic and orthotopic heart transplantation experiments in the pig-to-baboon model, microbiological and virologic safety concepts, and efficacy requirements for initiating formal clinical trials. An adequate regulatory and ethical framework as well as stringent criteria for the selection of patients will be critical for the safe clinical development of cardiac xenotransplantation, which we expect will be clinically tested during the next few years.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ralf R Tönjes
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Eckhard Wolf
- Gene Centre and Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
27
|
Ajima K, Tsuda N, Takaki T, Furusako S, Matsumoto S, Shinohara K, Yamashita Y, Amano S, Oyama C, Shimoda M. A porcine islet-encapsulation device that enables long-term discordant xenotransplantation in immunocompetent diabetic mice. CELL REPORTS METHODS 2023; 3:100370. [PMID: 36814843 PMCID: PMC9939365 DOI: 10.1016/j.crmeth.2022.100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Islet transplantation is an effective treatment for type 1 diabetes (T1D). However, a shortage of donors and the need for immunosuppressants are major issues. The ideal solution is to develop a source of insulin-secreting cells and an immunoprotective method. No bioartificial pancreas (BAP) devices currently meet all of the functions of long-term glycemic control, islet survival, immunoprotection, discordant xenotransplantation feasibility, and biocompatibility. We developed a device in which porcine islets were encapsulated in a highly stable and permeable hydrogel and a biocompatible immunoisolation membrane. Discordant xenotransplantation of the device into diabetic mice improved glycemic control for more than 200 days. Glycemic control was also improved in new diabetic mice "relay-transplanted" with the device after its retrieval. The easily retrieved devices exhibited almost no adhesion or fibrosis and showed sustained insulin secretion even after the two xenotransplantations. This device has the potential to be a useful BAP for T1D.
Collapse
Affiliation(s)
- Kumiko Ajima
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Naoto Tsuda
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Tadashi Takaki
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program (T-CiRA), 2-26-1 Muraoka-higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Shoji Furusako
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 1-7 Yotsuya, Shinjuku-ku, Tokyo 160-8515, Japan
| | - Shigeki Matsumoto
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Koya Shinohara
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yzumi Yamashita
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Sayaka Amano
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masayuki Shimoda
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
28
|
Denner J. Microchimerism, PERV and Xenotransplantation. Viruses 2023; 15:190. [PMID: 36680230 PMCID: PMC9862020 DOI: 10.3390/v15010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Microchimerism is the presence of cells in an individual that have originated from a genetically distinct individual. The most common form of microchimerism is fetomaternal microchimerism, i.e., cells from a fetus pass through the placenta and establish cell lineages within the mother. Microchimerism was also described after the transplantation of human organs in human recipients. Consequently, microchimerism may also be expected in xenotransplantation using pig cells or organs. Indeed, microchimerism was described in patients after xenotransplantations as well as in non-human primates after the transplantation of pig organs. Here, for the first time, a comprehensive review of microchimerism in xenotransplantation is given. Since pig cells contain porcine endogenous retroviruses (PERVs) in their genome, the detection of proviral DNA in transplant recipients may be misinterpreted as an infection of the recipient with PERV. To prevent this, methods discriminating between infection and microchimerism are described. This knowledge will be important for the interpretation of screening results in forthcoming human xenotransplantations.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
29
|
Affiliation(s)
- Jay A Fishman
- From the Transplant and Immunocompromised Host Program, Infectious Disease Division and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
30
|
Denner J. Xenotransplantation of pig islet cells: Potential adverse impact of virus infections on their functionality and insulin production. Xenotransplantation 2022; 30:e12789. [PMID: 36495163 DOI: 10.1111/xen.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology Free University Berlin Berlin Germany
| |
Collapse
|
31
|
Eisenson DL, Hisadome Y, Santillan MR, Yamada K. Progress in islet xenotransplantation: Immunologic barriers, advances in gene editing, and tolerance induction strategies for xenogeneic islets in pig-to-primate transplantation. FRONTIERS IN TRANSPLANTATION 2022; 1:989811. [PMID: 38390384 PMCID: PMC10883655 DOI: 10.3389/frtra.2022.989811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Islet transplantation has emerged as a curative therapy for diabetes in select patients but remains rare due to shortage of suitable donor pancreases. Islet transplantation using porcine islets has long been proposed as a solution to this organ shortage. There have already been several small clinical trials using porcine islets in humans, but results have been mixed and further trials limited by calls for more rigorous pre-clinical data. Recent progress in heart and kidney xenograft transplant, including three studies of pig-to-human xenograft transplant, have recaptured popular imagination and renewed interest in clinical islet xenotransplantation. This review outlines immunologic barriers to islet transplantation, summarizes current strategies to overcome these barriers with a particular focus on approaches to induce tolerance, and describes an innovative strategy for treatment of diabetic nephropathy with composite islet-kidney transplantation.
Collapse
Affiliation(s)
- Daniel L Eisenson
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | | | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
32
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
33
|
Denner J. Virus Safety of Xenotransplantation. Viruses 2022; 14:1926. [PMID: 36146732 PMCID: PMC9503113 DOI: 10.3390/v14091926] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may be associated with the transmission of potentially zoonotic porcine viruses. In order to prevent this, we developed highly sensitive PCR-based, immunologicals and other methods for the detection of numerous xenotransplantation-relevant viruses. These methods were used for the screening of donor pigs and xenotransplant recipients. Of special interest are the porcine endogenous retroviruses (PERVs) that are integrated in the genome of all pigs, which are able to infect human cells, and that cannot be eliminated by methods that other viruses can. We showed, using droplet digital PCR, that the number of PERV proviruses is different in different pigs (usually around 60). Furthermore, the copy number is different in different organs of a single pig, indicating that PERVs are active in the living animals. We showed that in the first clinical trials treating diabetic patients with pig islet cells, no porcine viruses were transmitted. However, in preclinical trials transplanting pig hearts orthotopically into baboons, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PCMV/PRV), and porcine circovirus 3 (PCV3), but no PERVs, were transmitted. PCMV/PRV transmission resulted in a significant reduction of the survival time of the xenotransplant. PCMV/PRV was also transmitted in the first pig heart transplantation to a human patient and possibly contributed to the death of the patient. Transmission means that the virus was detected in the recipient, however it remains unclear whether it can infect primate cells, including human cells. We showed previously that PCMV/PRV can be eliminated from donor pigs by early weaning. PERVs were also not transmitted by inoculation of human cell-adapted PERV into small animals, rhesus monkey, baboons and cynomolgus monkeys, even when pharmaceutical immunosuppression was applied. Since PERVs were not transmitted in clinical, preclinical, or infection experiments, it remains unclear whether they should be inactivated in the pig genome by CRISPR/Cas. In summary, by using our sensitive methods, the safety of xenotransplantation can be ensured.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
34
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
35
|
Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M, Weldon E, Lawson N, Deterville C, Dieter RA, Sullivan B, Boulton G, Parent B, Piper G, Sommer P, Cawthon S, Duggan E, Ayares D, Dandro A, Fazio-Kroll A, Kokkinaki M, Burdorf L, Lorber M, Boeke JD, Pass H, Keating B, Griesemer A, Ali NM, Mehta SA, Stewart ZA. Results of Two Cases of Pig-to-Human Kidney Xenotransplantation. N Engl J Med 2022; 386:1889-1898. [PMID: 35584156 DOI: 10.1056/nejmoa2120238] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenografts from genetically modified pigs have become one of the most promising solutions to the dearth of human organs available for transplantation. The challenge in this model has been hyperacute rejection. To avoid this, pigs have been bred with a knockout of the alpha-1,3-galactosyltransferase gene and with subcapsular autologous thymic tissue. METHODS We transplanted kidneys from these genetically modified pigs into two brain-dead human recipients whose circulatory and respiratory activity was maintained on ventilators for the duration of the study. We performed serial biopsies and monitored the urine output and kinetic estimated glomerular filtration rate (eGFR) to assess renal function and xenograft rejection. RESULTS The xenograft in both recipients began to make urine within moments after reperfusion. Over the 54-hour study, the kinetic eGFR increased from 23 ml per minute per 1.73 m2 of body-surface area before transplantation to 62 ml per minute per 1.73 m2 after transplantation in Recipient 1 and from 55 to 109 ml per minute per 1.73 m2 in Recipient 2. In both recipients, the creatinine level, which had been at a steady state, decreased after implantation of the xenograft, from 1.97 to 0.82 mg per deciliter in Recipient 1 and from 1.10 to 0.57 mg per deciliter in Recipient 2. The transplanted kidneys remained pink and well-perfused, continuing to make urine throughout the study. Biopsies that were performed at 6, 24, 48, and 54 hours revealed no signs of hyperacute or antibody-mediated rejection. Hourly urine output with the xenograft was more than double the output with the native kidneys. CONCLUSIONS Genetically modified kidney xenografts from pigs remained viable and functioning in brain-dead human recipients for 54 hours, without signs of hyperacute rejection. (Funded by Lung Biotechnology.).
Collapse
Affiliation(s)
- Robert A Montgomery
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Jeffrey M Stern
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Bonnie E Lonze
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Vasishta S Tatapudi
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Massimo Mangiola
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Ming Wu
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Elaina Weldon
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Nikki Lawson
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Cecilia Deterville
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Rebecca A Dieter
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Brigitte Sullivan
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Gabriella Boulton
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Brendan Parent
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Greta Piper
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Philip Sommer
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Samantha Cawthon
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Erin Duggan
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - David Ayares
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Amy Dandro
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Ana Fazio-Kroll
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Maria Kokkinaki
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Lars Burdorf
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Marc Lorber
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Jef D Boeke
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Harvey Pass
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Brendan Keating
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Adam Griesemer
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Nicole M Ali
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Sapna A Mehta
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Zoe A Stewart
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| |
Collapse
|
36
|
Holdcraft RW, Graham MJ, Bemrose MA, Mutch LA, Martis PC, Janecek JL, Hall RD, Smith BH, Gazda LS. Long-term efficacy and safety of porcine islet macrobeads in nonimmunosuppressed diabetic cynomolgus macaques. Xenotransplantation 2022; 29:e12747. [PMID: 35384085 DOI: 10.1111/xen.12747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Although human islet transplantation has proven to provide clinical benefits, especially the near complete amelioration of hypoglycemia, the supply of human islets is limited and insufficient to meet the needs of all people that could benefit from islet transplantation. Porcine islets, secreting insulin nearly identical to that of human insulin, have been proposed as a viable supply of unlimited islets. Further, encapsulation of the porcine islets has been shown to reduce or eliminate the use of immunosuppressive therapy that would be required to prevent rejection of the foreign islet tissue. The goal of the current study was to determine the long-term safety and efficacy of agarose encapsulated porcine islets (macrobeads) in diabetic cynomolgus macaques, in a study emulating a proposed IND trial in which daily exogenous insulin therapy would be reduced by 50% with no loss of glucose regulation. Four of six animals implanted with macrobeads demonstrated ≥ 30% reduction in insulin requirements in year 1 of follow-up. Animals were followed for 2, 3.5, and 7.4 years with no serious adverse events, mortality or evidence of pathogen transmission. This study supports the continued pursuit of encapsulated porcine islet therapy as a promising treatment option for diabetes mellitus.
Collapse
Affiliation(s)
| | - Melanie J Graham
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Lucas A Mutch
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Jody L Janecek
- Preclinical Research Center, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
37
|
Porrett PM, Orandi BJ, Kumar V, Houp J, Anderson D, Cozette Killian A, Hauptfeld-Dolejsek V, Martin DE, Macedon S, Budd N, Stegner KL, Dandro A, Kokkinaki M, Kuravi KV, Reed RD, Fatima H, Killian JT, Baker G, Perry J, Wright ED, Cheung MD, Erman EN, Kraebber K, Gamblin T, Guy L, George JF, Ayares D, Locke JE. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant 2022; 22:1037-1053. [PMID: 35049121 DOI: 10.1111/ajt.16930] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023]
Abstract
A radical solution is needed for the organ supply crisis, and the domestic pig is a promising organ source. In preparation for a clinical trial of xenotransplantation, we developed an in vivo pre-clinical human model to test safety and feasibility tenets established in animal models. After performance of a novel, prospective compatible crossmatch, we performed bilateral native nephrectomies in a human brain-dead decedent and subsequently transplanted two kidneys from a pig genetically engineered for human xenotransplantation. The decedent was hemodynamically stable through reperfusion, and vascular integrity was maintained despite the exposure of the xenografts to human blood pressure. No hyperacute rejection was observed, and the kidneys remained viable until termination 74 h later. No chimerism or transmission of porcine retroviruses was detected. Longitudinal biopsies revealed thrombotic microangiopathy that did not progress in severity, without evidence of cellular rejection or deposition of antibody or complement proteins. Although the xenografts produced variable amounts of urine, creatinine clearance did not recover. Whether renal recovery was impacted by the milieu of brain death and/or microvascular injury remains unknown. In summary, our study suggests that major barriers to human xenotransplantation have been surmounted and identifies where new knowledge is needed to optimize xenotransplantation outcomes in humans.
Collapse
Affiliation(s)
- Paige M Porrett
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Babak J Orandi
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Vineeta Kumar
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Julie Houp
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Douglas Anderson
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - A Cozette Killian
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | | | | | - Sara Macedon
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Natalie Budd
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Katherine L Stegner
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Amy Dandro
- Revivicor, Inc, Blacksburg, Virginia, USA
| | | | | | - Rhiannon D Reed
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Huma Fatima
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - John T Killian
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Gavin Baker
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Jackson Perry
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Emma D Wright
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Matthew D Cheung
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Elise N Erman
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Karl Kraebber
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Tracy Gamblin
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Linda Guy
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - James F George
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | | | - Jayme E Locke
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Ma Y, Jia J, Fan R, Lu Y, Zhao X, Zhong Y, Yang J, Ma L, Wang Y, Lv M, Yang H, Mou L, Dai Y, Feng S, Zhang J. Screening and Identification of the First Non-CRISPR/Cas9-Treated Chinese Miniature Pig With Defective Porcine Endogenous Retrovirus pol Genes. Front Immunol 2022; 12:797608. [PMID: 35126361 PMCID: PMC8807647 DOI: 10.3389/fimmu.2021.797608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pig to human xenotransplantation is considered to be a possible approach to alleviate the shortage of human allografts. Porcine endogenous retrovirus (PERV) is the most significant pathogen in xenotransplantation. We screened for pigs that consistently did not transmit human-tropic replication competent PERVs (HTRC PERVs), namely, non-transmitting pigs. Then, we conducted whole-genome resequencing and full-length transcriptome sequencing to further investigate the sequence characteristics of one non-transmitting pig. Using in vitro transmission assays, we found 5 (out of 105) pigs of the Chinese Wuzhishan minipig inbred line that did not transmit PERV to human cells, i.e., non-transmitting pigs. Whole-genome resequencing and full-length transcriptome sequencing of one non-transmitting pig showed that all of the pol genes were defective at both the genome and transcript levels. We speculate that the defective PERV pol genes in this pig might be attributable to the long-term inbreeding process. This discovery is promising for the development of a strain of highly homozygous and genetically stable pigs with defective PERV pol genes as a source animal species for xenotransplantation.
Collapse
Affiliation(s)
- Yuyuan Ma
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Junting Jia
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Rui Fan
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiong Zhao
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yadi Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jierong Yang
- Research and Development Department, Grand Life Science and Technology. Ltd., Beijing, China
| | - Limin Ma
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yanlin Wang
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Maomin Lv
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| | - Shutang Feng
- Research and Development Department, Grand Life Science and Technology. Ltd., Beijing, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| | - Jingang Zhang
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| |
Collapse
|
39
|
Hu X, Geng Z, Gonelle C, Hawthrone WJ, Deng S, Buhler L. International Human Xenotransplantation Inventory: A 10-y Follow-up. Transplantation 2022; 106:1713-1716. [PMID: 34982756 DOI: 10.1097/tp.0000000000004016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Following the recommendations by a panel of experts gathered by the World Health Organization in 2005, an inventory was established to collect practices of human xenotransplantation worldwide (www.humanxenotransplant.org). The website was activated in October 2006, in collaboration with the International Xenotransplantation Association, the University Hospital Geneva, and the World Health Organization. A first report on the collected xenotransplantation activities was published in 2010 in the journal Transplantation. In 2020, the website was redesigned, and its hosting and management were transferred to the Sichuan Provincial People's Hospital. METHODS We collected information from publications in scientific journals, presentations at international congresses, the internet, and declarations of International Xenotransplantation Association members on xenotransplantation procedures in humans performed over the past 10 y. RESULTS A total of 5 new applications of human xenotransplantation were identified, with pig as source animal in all applications. The procedures involved transplantation of islets of Langerhans, skin, cornea, and choroid plexus cells. The treatments were performed in China, United States, New Zealand, and Argentina. No major complications or deaths were reported. CONCLUSIONS Several clinical applications of cell or tissue xenotransplantation are ongoing around the world. Compared with the previous reported period (1995-2010, with 29 activities, mostly without governmental regulation), the recent number of clinical activities was reduced, and all were officially approved. This information should be used to inform healthcare officials, staff, and the public with the objective of encouraging good practices based on internationally harmonized guidelines driven by initiatives such as the Changsha Communiqué.
Collapse
Affiliation(s)
- Xiaowei Hu
- Faculty of Medicine, University of Geneva, Geneva, Switzerland. Sichuan Provincial People's Hospital, Chengdu, People's Republic of China. Cantonal Hospital Fribourg, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland. Department of Surgery, Western Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Paget MB, Murray HE, Bailey CJ, Downing R. From insulin injections to islet transplantation: An overview of the journey. Diabetes Obes Metab 2022; 24 Suppl 1:5-16. [PMID: 34431589 DOI: 10.1111/dom.14526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
When, in 1869, Paul Langerhans detected the "islands of tissue" in the pancreas, he took the first step on a journey towards islet transplantation as a treatment for type 1 diabetes. The route has embraced developments across biosciences, surgery, gene therapy and clinical research. This review highlights major milestones along that journey involving whole pancreas transplantation, islet transplantation, the creation of surrogate insulin-secreting cells and novel islet-like structures using genetic and bio-engineering technologies. To obviate the paucity of human tissue, pluripotent stem cells and non-β-cells within the pancreas have been modified to create physiologically responsive insulin-secreting cells. Before implantation, these can be co-cultured with endothelial cells to promote vascularisation and with immune defence cells such as placental amnion cells to reduce immune rejection. Scaffolds to contain grafts and facilitate surgical placement provide further opportunities to achieve physiological insulin delivery. Alternatively, xenotransplants such as porcine islets might be reconsidered as opportunities exist to circumvent safety concerns and immune rejection. Thus, despite a long and arduous journey, the prospects for increased use of tissue transplantation to provide physiological insulin replacement are drawing ever closer.
Collapse
Affiliation(s)
- Michelle B Paget
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Hilary E Murray
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | | | - Richard Downing
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
41
|
Halecker S, Metzger J, Strube C, Krabben L, Kaufer B, Denner J. Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds. Microorganisms 2021; 9:microorganisms9122617. [PMID: 34946218 PMCID: PMC8706741 DOI: 10.3390/microorganisms9122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Minipigs play an important role in biomedical research and have also been used as donor animals in xenotransplantation. To serve as a donor in xenotransplantation, the animals must be free of potential zoonotic viruses, bacteria and parasites. Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated as most of the other pig viruses can. PERV-A and PERV-B infect human cells in cell culture and are integrated in all pigs, whereas PERV-C infects only pig cells and it is found in many, but not all pigs. Minipigs are known for a high prevalence of recombinant PERV-A/C viruses able to infect human cells (Denner and Schuurman, Viruses, 2021;13:1869). Here, Mini-LEWE minipigs are screened for the first time for pig viruses including PERV. Peripheral blood mononuclear cells (PBMCs) from 10 animals were screened using PCR-based methods (PCR, RT-PCR, and real-time PCR). In comparison with our previous screening assays, numerous improvements were introduced, e.g., the usage of gene blocks as a PCR standard and foreign RNA to control reverse transcription in RT-PCR. Using these improved detection methods, Mini-LEWE pigs were found to be negative for porcine cytomegalovirus (PCMV), porcine lymphotropic herpesviruses (PLHV-1, -2 and -3), porcine circoviruses (PCV1, 2, 3 and 4), porcine parvovirus (PPV) and hepatitis E virus (HEV). All animals carried PERV-A, PERV-B and PERV-C in their genome. PERV-A/C was not found. In contrast to all other minipig breeds (Göttingen minipigs, Aachen minipigs, Yucatan micropig, Massachusetts General Hospital miniature pigs), Mini-LEWE minipigs have less viruses and no PERV-A/C. Parasitological screening showed that none of the Mini-LEWE minipigs harbored ecto- and gastrointestinal parasites, but at least one animal tested positive for anti-Toxoplasma gondii antibodies.
Collapse
Affiliation(s)
- Sabrina Halecker
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Ludwig Krabben
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Benedikt Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Joachim Denner
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
- Correspondence: ; Tel.: +49-30-8386-3059
| |
Collapse
|
42
|
Opara A, Jost A, Dagogo-Jack S, Opara EC. Islet cell encapsulation - Application in diabetes treatment. Exp Biol Med (Maywood) 2021; 246:2570-2578. [PMID: 34666516 PMCID: PMC8669170 DOI: 10.1177/15353702211040503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this minireview, we briefly outline the hallmarks of diabetes, the distinction between type 1 and type 2 diabetes, the global incidence of diabetes, and its associated comorbidities. The main goal of the review is to highlight the great potential of encapsulated pancreatic islet transplantation to provide a cure for type 1 diabetes. Following a short overview of the different approaches to islet encapsulation, we provide a summary of the merits and demerits of each approach of the encapsulation technology. We then discuss various attempts to clinical translation with each model of encapsulation as well as the factors that have mitigated the full clinical realization of the promise of the encapsulation technology, the progress that has been made and the challenges that remain to be overcome. In particular, we pay significant attention to the emerging strategies to overcome these challenges. We believe that these strategies to enhance the performance of the encapsulated islet constructs discussed herein provide good platforms for additional work to achieve successful clinical translation of the encapsulated islet technology.
Collapse
Affiliation(s)
- Amoge Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV 89502, USA
| | - Alec Jost
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sam Dagogo-Jack
- Division of Endocrinology, Diabetes & Metabolism, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Emmanuel C Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV 89502, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
43
|
Denner J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021; 13:v13112156. [PMID: 34834962 PMCID: PMC8625113 DOI: 10.3390/v13112156] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.
Collapse
Affiliation(s)
- Joachim Denner
- Department of Veterinary Medicine, Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
44
|
Reichart B, Längin M, Denner J, Schwinzer R, Cowan PJ, Wolf E. Pathways to Clinical Cardiac Xenotransplantation. Transplantation 2021; 105:1930-1943. [PMID: 33350675 DOI: 10.1097/tp.0000000000003588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart transplantation is the only long-lasting lifesaving option for patients with terminal cardiac failure. The number of available human organs is however far below the actual need, resulting in substantial mortality of patients while waiting for a human heart. Mechanical assist devices are used to support cardiac function but are associated with a high risk of severe complications and poor quality of life for the patients. Consistent success in orthotopic transplantation of genetically modified pig hearts into baboons indicates that cardiac xenotransplantation may become a clinically applicable option for heart failure patients who cannot get a human heart transplant. In this overview, we project potential paths to clinical cardiac xenotransplantation, including the choice of genetically modified source pigs; associated requirements of microbiological, including virological, safety; optimized matching of source pig and recipient; and specific treatments of the donor heart after explantation and of the recipients. Moreover, selection of patients and the regulatory framework will be discussed.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Reinhard Schwinzer
- Department of General-, Visceral-, and Transplantation Surgery, Transplant Laboratory, Hannover Medical School, Hannover, Germany
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| |
Collapse
|
45
|
Denner J. Porcine Lymphotropic Herpesviruses (PLHVs) and Xenotranplantation. Viruses 2021; 13:1072. [PMID: 34199939 PMCID: PMC8229715 DOI: 10.3390/v13061072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Porcine lymphotropic herpesviruses -1, -2 and -3 (PLHV-1, PLHV-2 and PLHV-3) are gammaherpesviruses which are widespread in pigs. They are closely related to the Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus, both of which cause severe diseases in humans. PLHVs are also related to bovine and ovine gammaherpesviruses, which are apathogenic in the natural host, but cause severe diseases after transmission into other species. Until now, no association between PLHVs and any pig diseases had been described. However, PLHV-1 causes a post-transplantation lymphoproliferative disorder (PTLD) after experimental transplantations in minipigs. This disorder is similar to human PTLD, a serious complication of solid human organ transplantation linked to EBV. Xenotransplantation using pig cells, tissues and organs is under development in order to alleviate the shortage of human transplants. Meanwhile, remarkable survival times of pig xenotransplants in non-human primates have been achieved. In these preclinical trials, another pig herpesvirus, the porcine cytomegalovirus (PCMV), a roseolovirus, was shown to significantly reduce the survival time of pig xenotransplants in baboons and other non-human primates. Although PLHV-1 was found in genetically modified donor pigs used in preclinical xenotransplantation, it was, in contrast to PCMV, not transmitted to the recipient. Nevertheless, it seems important to use PLHV-free donor pigs in order to achieve safe xenotransplantation.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University, 14163 Berlin, Germany
| |
Collapse
|
46
|
Infectivity assessment of porcine endogenous retrovirus using high-throughput sequencing technologies. Biologicals 2021; 71:1-8. [PMID: 34039532 DOI: 10.1016/j.biologicals.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Xenogenic cell-based therapeutic products are expected to alleviate the chronic shortage of human donor organs. For example, porcine islet cell products are currently under development for the treatment of human diabetes. As porcine cells possess endogenous retrovirus (PERV), which can replicate in human cells in vitro, the potential transmission of PERV has raised concerns in the case of products that use living pig cells as raw materials. Although several PERV sequences exist in the porcine genome, not all have the ability to infect human cells. Therefore, polymerase chain reaction analysis, which amplifies a portion of the target gene, may not accurately assess the infection risk. Here, we determined porcine genome sequences and evaluated the infectivity of PERVs using high-throughput sequencing technologies. RNA sequencing was performed on both PERV-infected human cells and porcine cells, and reads mapped to PERV sequences were examined. The normalized number of the reads mapped to PERV regions was able to predict the infectivity of PERVs, indicating that it would be useful for evaluation of the PERV infection risk prior to transplantation of porcine products.
Collapse
|
47
|
Nagaya M, Hasegawa K, Uchikura A, Nakano K, Watanabe M, Umeyama K, Matsunari H, Osafune K, Kobayashi E, Nakauchi H, Nagashima H. Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes. World J Diabetes 2021; 12:306-330. [PMID: 33889282 PMCID: PMC8040081 DOI: 10.4239/wjd.v12.i4.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes is among the top 10 causes of death in adults and caused approximately four million deaths worldwide in 2017. The incidence and prevalence of diabetes is predicted to increase. To alleviate this potentially severe situation, safer and more effective therapeutics are urgently required. Mice have long been the mainstay as preclinical models for basic research on diabetes, although they are not ideally suited for translating basic knowledge into clinical applications. To validate and optimize novel therapeutics for safe application in humans, an appropriate large animal model is needed. Large animals, especially pigs, are well suited for biomedical research and share many similarities with humans, including body size, anatomical features, physiology, and pathophysiology. Moreover, pigs already play an important role in translational studies, including clinical trials for xenotransplantation. Progress in genetic engineering over the past few decades has facilitated the development of transgenic animals, including porcine models of diabetes. This article discusses features that attest to the attractiveness of genetically modified porcine models of diabetes for testing novel treatment strategies using recent technical advances.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki 261-8511, Kanagawa, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Ayuko Uchikura
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Kyoto, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Shinjuku 160-8582, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato 108-8639, Tokyo, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
48
|
Hawthorne WJ, Thomas A, Burlak C. Xenotransplantation literature update, November/December 2020. Xenotransplantation 2021; 28:e12674. [PMID: 33745161 DOI: 10.1111/xen.12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Wayne J Hawthorne
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,The Department of Surgery, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Adwin Thomas
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
49
|
Denner J. The origin of porcine endogenous retroviruses (PERVs). Arch Virol 2021; 166:1007-1013. [PMID: 33547957 DOI: 10.1007/s00705-020-04925-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and they produce viral particles that are able to infect human cells and therefore pose a special risk for xenotransplantation. In contrast to other pig microorganisms that also pose a risk, such as porcine cytomegalovirus and hepatitis E virus, PERVs cannot be eliminated from pigs by vaccines, antiviral drugs, early weaning, or embryo transfer. Since PERVs are relevant for xenotransplantation, their biology and origin are of great interest. Recent studies have shown that PERVs are the result of a transspecies transmission of precursor retroviruses from different animals and further evolution in the pig genome. PERVs acquired different long terminal repeats (LTRs), and recombination took place. In parallel, it has been shown that the activity of the LTRs and recombination in the envelope are important for the transmissibility and pathogenesis of PERVs. Transspecies transmission of retroviruses is common, a well-known example being the transmission of precursor retroviruses from non-human primates to humans, resulting in human immunodeficiency virus (HIV). Here, recent findings concerning the origin of PERVs, their LTRs, and recombination events that occurred during evolution are reviewed and compared with other findings regarding transspecies transmission of retroviruses.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Berlin, Germany. .,Institute for Virology, Free University, Berlin, Germany.
| |
Collapse
|
50
|
Shinohara K, Chujo D, Tamura-Nakano M, Kurokawa T, Matsumoto S, Shimoda M. High-quality porcine islets isolated from aged miniature pigs. Xenotransplantation 2021; 28:e12675. [PMID: 33543796 DOI: 10.1111/xen.12675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Koya Shinohara
- Islet Cell Transplantation Project, Diabetes Research Center, Research Institute of National Center for Global Health and Medicine, Tokyo, Japan
| | - Daisuke Chujo
- Islet Cell Transplantation Project, Diabetes Research Center, Research Institute of National Center for Global Health and Medicine, Tokyo, Japan.,Center for Clinical Research, Toyama University Hospital, Toyama, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute of National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory Inc., Naruto, Japan
| | - Masayuki Shimoda
- Islet Cell Transplantation Project, Diabetes Research Center, Research Institute of National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|