1
|
Sokary S, Bawadi H. The promise of tirzepatide: A narrative review of metabolic benefits. Prim Care Diabetes 2025; 19:229-237. [PMID: 40221292 DOI: 10.1016/j.pcd.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Obesity and type 2 diabetes mellites (T2DM) are intertwined epidemics that continue to pose significant challenges to global public health. We aim to review the available evidence on the metabolic effects of tirzepatide, focusing on weight loss and maintenance of lost weight, body composition alterations, appetite regulation, glycemic control, and lipid profile modulation. Tirzepatide administration for 72 weeks elicited significant weight reduction ranging from 5 % to 20.9 % across different trials in a dose-dependent manner. Furthermore, limited evidence showed that lost body weight may be primarily due to fat mass reduction. Tirzepatide also significantly decreased food intake, reduced overall appetite scores and increased fasting visual analog scale scores for satiety and fullness across different clinical trials. Moreover, tirzepatide exhibited favorable effects on glycemic control, with notable reductions in HbA1c levels ranging from 20.4 mmol/mol with the 5 mg dose to 28.2 mmol/mol with the 15 mg dose, following treatment durations lasting 40-52 weeks. Additionally, tirzepatide exerts a beneficial impact on lipid profile parameters, including reductions in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels, while increasing high-density lipoprotein cholesterol concentrations. Despite its efficacy, tirzepatide is associated with gastrointestinal adverse effects, which requires dose escalation strategies to enhance tolerability. Mild to moderate adverse events are commonly reported at higher doses, with discontinuation rates ranging from 4 % to 10 % across different dosages. In conclusion, tirzepatide has shown multifaceted metabolic effects, along with manageable adverse profiles, which makes it a promising therapeutic agent for addressing both obesity and T2DM. However, further long-term randomized controlled trials are warranted to reveal long-term efficacy and safety outcomes, particularly in diverse patient populations.
Collapse
Affiliation(s)
- Sara Sokary
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Packer M, Zile MR, Kramer CM, Murakami M, Ou Y, Borlaug BA. Interplay of Chronic Kidney Disease and the Effects of Tirzepatide in Patients With Heart Failure, Preserved Ejection Fraction, and Obesity: The SUMMIT Trial. J Am Coll Cardiol 2025; 85:1721-1735. [PMID: 40162940 DOI: 10.1016/j.jacc.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Obesity leads to both heart failure with a preserved ejection fraction (HFpEF) and to chronic kidney disease (CKD); CKD may both influence the clinical course of obesity-related HFpEF; and incretin-based drugs may influence renal function. OBJECTIVES This analysis had dual objectives: 1) to evaluate the influence of CKD on the clinical responses to tirzepatide in patients with obesity-related HFpEF; and 2) to investigate the complexity of tirzepatide-related changes in renal function. For both objectives, we focused on discrepancies between creatinine-based and cystatin C-based estimates of the estimated glomerular filtration rate (eGFR). METHODS The SUMMIT trial randomly assigned 731 patients with HFpEF and a body mass index ≥30 kg/m2, who were enriched for participants with CKD. Patients received either placebo or tirzepatide for a median of 104 weeks and were followed for cardiovascular death or worsening heart failure events and for changes in the Kansas City Cardiomyopathy Questionnaire Clinical Summary Score (KCCQ-CSS) after 52 weeks. Because of the confounding produced by obesity and changes in muscle mass, eGFR was assessed at randomization and after 12, 24, and 52 weeks by both creatinine-based and cystatin C-based formulae. RESULTS Patients with CKD (based on creatinine or cystatin C) had greater severity of heart failure, as reflected by: 1) worse functional class, KCCQ-CSS scores, and 6-minute walk distance; 2) higher levels of NT-proBNP and cardiac troponin T; and 3) a 2-fold increase in the risk of worsening heart failure events. CKD did not influence the effect of tirzepatide to reduce the relative risk of major adverse heart failure events and to improve KCCQ-CSS, quality of life, and functional capacity, but the absolute risk reduction in the primary events was numerically greater in patients with CKD. Regarding renal function assessments, baseline eGFR-cystatin C was consistently ≈9 mL/min/1.73 m2 lower than that eGFR-creatinine, with significant individual variance. Furthermore, tirzepatide increased eGFR at 52 weeks, assessed by both creatinine-based and cystatin C-based formulae, but with considerable discordance in individual patients. Tirzepatide produced a decline in eGFR at 12 weeks with eGFR-creatinine (but not eGFR-cystatin C), and it led to an improvement in eGFR at 52 weeks in all patients (when assessed by cystatin C), but only in patients with CKD (when assessed by eGFR-creatinine). CONCLUSIONS The triad of obesity, HFpEF, and CKD identifies patients with considerable functional impairment and an unfavorable prognosis, who nevertheless respond favorably to tirzepatide. Long-term tirzepatide improves renal function (both by cystatin C and creatinine), but the measurement of eGFR in patients with obesity receiving incretin-based drugs is likely to be skewed by the effects of fat and muscle mass (and by changes in body composition) on the synthesis of both cystatin C and creatinine. (A Study of Tirzepatide [LY3298176] in Participants With Heart Failure With Preserved Ejection Fraction [HFpEF] and Obesity: The SUMMIT Trial; NCT04847557).
Collapse
Affiliation(s)
- Milton Packer
- Baylor University Medical Center, Dallas Texas, USA; Imperial College, London, United Kingdom.
| | - Michael R Zile
- RHJ Department of Veterans Affairs, Medical Center and Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher M Kramer
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | - Yang Ou
- Eli Lilly & Company, Indianapolis, Indiana, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Mimura H, Oura T, Chin R, Takeuchi M, Fujihara K, Sone H. Association of bodyweight loss with changes in lipids, blood pressure, and fasting serum glucose following tirzepatide treatment in Japanese participants with type 2 diabetes: A post hoc analysis of the SURPASS J-mono trial. J Diabetes Investig 2025; 16:807-816. [PMID: 39891527 PMCID: PMC12057373 DOI: 10.1111/jdi.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 02/03/2025] Open
Abstract
AIMS/INTRODUCTION In the SURPASS J-mono trial, tirzepatide demonstrated significant improvements in bodyweight and several metabolic parameters in Japanese participants with type 2 diabetes. This post hoc analysis evaluated the potential relationships between weight loss and metabolic improvements in SURPASS J-mono. MATERIALS AND METHODS Metabolic parameter data from tirzepatide-treated participants were analyzed by weight loss subgroups and compared to dulaglutide 0.75 mg. Correlations between changes from baseline to week 52 in weight loss and each metabolic parameter were assessed; Pearson correlation coefficients were derived. Mediation analyses were conducted to evaluate weight loss-associated and -unassociated effects of tirzepatide vs dulaglutide 0.75 mg. RESULTS This analysis included 548 participants (tirzepatide: n = 411, dulaglutide: n = 137). Weight loss subgroups showed greater improvement in metabolic parameters with greater bodyweight loss. Significant (P < 0.05) but weak correlations between changes in bodyweight and triglycerides (r = 0.18-0.25), high-density lipoprotein cholesterol (r = -0.37 to -0.29), and systolic blood pressure (r = 0.19-0.41) were observed across treatment groups; in diastolic blood pressure in the tirzepatide 5-mg (r = 0.28), pooled tirzepatide (r = 0.20), and dulaglutide 0.75-mg (r = 0.23) groups; and in fasting serum glucose in the dulaglutide 0.75-mg (r = 0.18) and pooled tirzepatide (r = 0.13) groups. Weight loss was associated with treatment differences between tirzepatide and dulaglutide 0.75 mg to varying degrees across metabolic parameters, with improvements in fasting serum glucose having the lowest association with weight loss (36.6%-43.5%). CONCLUSIONS In this post hoc analysis, non-glycemic and glycemic parameter improvements appeared differentially associated with weight loss, suggesting both weight loss-associated and -unassociated effects of tirzepatide.
Collapse
Affiliation(s)
- Hanaka Mimura
- Japan Drug Development and Medical AffairsEli Lilly Japan K.K.KobeJapan
| | - Tomonori Oura
- Japan Drug Development and Medical AffairsEli Lilly Japan K.K.KobeJapan
| | - Rina Chin
- Japan Drug Development and Medical AffairsEli Lilly Japan K.K.KobeJapan
| | - Masakazu Takeuchi
- Japan Drug Development and Medical AffairsEli Lilly Japan K.K.KobeJapan
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and MetabolismNiigata University Faculty of MedicineNiigataJapan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and MetabolismNiigata University Faculty of MedicineNiigataJapan
| |
Collapse
|
4
|
Kamrul-Hasan ABM, Pappachan JM, Dutta D, Nagendra L, Kuchay MS, Kapoor N. Reasons for discontinuing tirzepatide in randomized controlled trials: A systematic review and meta-analysis. World J Diabetes 2025; 16:101731. [PMID: 40236848 PMCID: PMC11947928 DOI: 10.4239/wjd.v16.i4.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Despite therapeutic benefits, discontinuation of tirzepatide is common in randomized controlled trials (RCTs) due to adverse events (AEs) and other causes. No previous systematic reviews have explored the reasons for discontinuing tirzepatide in the RCTs. AIM To explore the reasons for permanent discontinuation of tirzepatide vs controls [placebo, insulin, and glucagon-like peptide-1 receptor agonists (GLP-1Ras)] in RCTs. METHODS Relevant RCTs were systematically searched using related terms through multiple databases such as MEDLINE (via PubMed), Scopus, Cochrane Central Register, and ClinicalTrials.gov from their inception until June 20, 2024. RevMan web was used to conduct meta-analysis using random-effects models. Outcomes were presented as risk ratios (RR) with 95% confidence intervals (CI). RESULTS Seventeen RCTs (n = 14645), mostly having low risks of bias, were analyzed. Compared to placebo, the risk of permanent discontinuation of the study drug was substantially lower with tirzepatide 10 mg (RR: 0.69, 95%CI: 0.51-0.93, P = 0.02) and similar with tirzepatide 5 mg (RR: 0.74, 95%CI: 0.47-1.17, P = 0.20) and 15 mg (RR: 0.94, 95%CI: 0.68-1.31, P = 0.71). Tirzepatide had identical discontinuation risks when compared to insulin at 5 mg (RR: 0.96, 95%CI: 0.75-1.24, P = 0.77) and 10 mg (RR: 1.19, 95%CI: 0.77-1.82, P = 0.44) doses, whereas such risk was higher with tirzepatide 15 mg than insulin (RR: 1.31, 95%CI: 1.03-1.67, P = 0.03). Compared to GLP-1RA, the permanent discontinuation risk was similar with tirzepatide 5 mg (RR: 0.98, 95%CI: 0.70-1.37, P = 0.90) but was higher with tirzepatide 10 mg (RR: 1.40, 95%CI: 1.03-1.90, P = 0.03) and 15 mg (RR: 1.70, 95%CI: 1.27-2.27, P = 0.0004). Tirzepatide, at all doses, had higher risks of AE-related discontinuation than insulin; such risks were only greater with higher doses of tirzepatide than with placebo or GLP-1RA. Discontinuation risk due to withdrawal by the study subjects was lower with tirzepatide than with placebo or insulin. Compared to the placebo, tirzepatide (all doses) conferred a lower risk of study drug discontinuation due to other causes not specifically mentioned. CONCLUSION The discontinuation risk is not higher in tirzepatide group than in the placebo arm. Many factors other than AEs led to drug discontinuation in the included RCTs.
Collapse
Affiliation(s)
| | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Department of Endocrinology, KMC Medical College, Manipal University, Manipal 576104, India
| | - Deep Dutta
- Department of Endocrinology, CEDAR Superspeciality Healthcare, Dwarka, New Delhi 110075, India
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, India
| | - Mohammad Shafi Kuchay
- Department of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram 122001, Haryana, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
- Non-Communicable Disease Unit, Melbourne School of Population and Global Health, University of Melbourne, Carlton 3053, Victoria, Australia
| |
Collapse
|
5
|
Wang R, Khan MSA, Mukherjee K, Ghanem M, Xiao C. Glucose-dependent insulinotropic polypeptide stimulates post-absorptive lipid secretion in the intestine. Front Physiol 2025; 16:1549392. [PMID: 40255636 PMCID: PMC12006050 DOI: 10.3389/fphys.2025.1549392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
It is increasingly recognized that the intestine can retain a portion of dietary fats for secretion during the post-absorptive state, which has strong implications in metabolic diseases. The regulatory mechanisms of gut lipid storage and release are not well defined. Previous studies showed that the intestine releases locally stored fats in response to several stimulatory cues, such as glucose delivered into the intestinal lumen. It remains unknown how the intestine responds to nutrient signals in this phenomenon. Here we tested the effects of intravenous glucose delivery on intestinal lipid output during the post-absorptive state in mesenteric lymph duct cannulated rats. Compared with intraduodenal glucose delivery, intravenous glucose did not stimulate intestinal lipid output. Intraduodenal glucose was also associated with increases in blood levels of metabolic hormones, among which glucose-dependent insulinotropic peptide (GIP) levels were significantly higher at timepoints corresponding to increased lipid output than in intravenous glucose. Intraperitoneal GIP administration per se robustly stimulated intestinal lipid output. These results support a mechanism that involves glucose sensing at the apical side of the enterocytes and GIP as a potent stimulus for the release of lipid storage from the intestine.
Collapse
Affiliation(s)
| | | | | | | | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Vear A, Heneka MT, Clemmensen C. Incretin-based therapeutics for the treatment of neurodegenerative diseases. Nat Metab 2025; 7:679-696. [PMID: 40211045 DOI: 10.1038/s42255-025-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Neurodegenerative diseases (NDDs) represent a heterogeneous group of disorders characterized by progressive neuronal loss, which results in significant deficits in memory, cognition, motor skills, and sensory functions. As the prevalence of NDDs rises, there is an urgent unmet need for effective therapies. Current drug development approaches primarily target single pathological features of the disease, which could explain the limited efficacy observed in late-stage clinical trials. Originally developed for the treatment of obesity and diabetes, incretin-based therapies, particularly long-acting GLP-1 receptor (GLP-1R) agonists and GLP-1R-gastric inhibitory polypeptide receptor (GIPR) dual agonists, are emerging as promising treatments for NDDs. Despite limited conclusive preclinical evidence, their pleiotropic ability to reduce neuroinflammation, enhance neuronal energy metabolism and promote synaptic plasticity positions them as potential disease-modifying NDD interventions. In anticipation of results from larger clinical trials, continued advances in next-generation incretin mimetics offer the potential for improved brain access and enhanced neuroprotection, paving the way for incretin-based therapies as a future cornerstone in the management of NDDs.
Collapse
Affiliation(s)
- Anika Vear
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Morissette A, Mulvihill EE. Cardioprotective benefits of metabolic surgery and GLP-1 receptor agonist-based therapies. Trends Endocrinol Metab 2025; 36:316-329. [PMID: 39127552 DOI: 10.1016/j.tem.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Individuals with excessive adipose tissue and type 2 diabetes mellitus (T2DM) face a heightened risk of cardiovascular morbidity and mortality. Metabolic surgery is an effective therapy for people with severe obesity to achieve significant weight loss. Additionally, metabolic surgery improves blood glucose levels and can lead to T2DM remission, reducing major adverse cardiovascular outcomes (MACE). Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are a class of medication that effectively reduce body weight and MACE in patients with T2DM. This review explores the potential mechanisms underlying the cardioprotective benefits of metabolic surgery and GLP-1RA-based therapies and discusses recent evidence and emerging therapies in this dynamic area of research.
Collapse
Affiliation(s)
- Arianne Morissette
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario, KIY 4W7, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario, KIY 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, The University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada.
| |
Collapse
|
8
|
Zile MR, Borlaug BA, Kramer CM, Baum SJ, Litwin SE, Menon V, Ou Y, Weerakkody GJ, Hurt KC, Kanu C, Murakami M, Packer M. Effects of Tirzepatide on the Clinical Trajectory of Patients With Heart Failure, Preserved Ejection Fraction, and Obesity. Circulation 2025; 151:656-668. [PMID: 39556714 PMCID: PMC11893002 DOI: 10.1161/circulationaha.124.072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Patients with heart failure with preserved ejection fraction and obesity have significant disability and frequent exacerbations of heart failure. We hypothesized that tirzepatide, a long-acting agonist of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptors, would improve a comprehensive suite of clinical end points, including measures of health status, functional capacity, quality of life, exercise tolerance, patient well-being, and medication burden, in these patients. METHODS We randomized (double-blind) 731 patients with class II to IV heart failure, ejection fraction ≥50%, and body mass index ≥30 kg/m2 to tirzepatide (titrated up to 15 mg SC weekly; n=364) or placebo (n=367) added to background therapy for a median of 104 weeks (quartile 1, 66; quartile 3, 126 weeks). The primary end points were whether tirzepatide reduced the combined risk of cardiovascular death or worsening heart failure and improved Kansas City Cardiomyopathy Questionnaire Clinical Summary Score. The current expanded analysis included sensitivity analyses of the primary end points, 6-minute walk distance, EQ-5D-5L health state index, Patient Global Impression of Severity Overall Health score, New York Heart Association class, use of heart failure medications, and a hierarchical composite based on all-cause death, worsening heart failure, and 52-week changes in Kansas City Cardiomyopathy Questionnaire Clinical Summary Score and 6-minute walk distance. RESULTS Patients were 65.2±10.7 years of age; 53.8% (n=393) were female; body mass index was 38.2±6.7 kg/m2; Kansas City Cardiomyopathy Questionnaire Clinical Summary Score was 53.5±18.5; 6-minute walk distance was 302.8±81.7 m; and 53% (n=388) had a worsening heart failure event in the previous 12 months. Compared with placebo, tirzepatide produced a consistent beneficial effect across all composites of death and worsening heart failure events, analyzed as time to first event (hazard ratios, 0.41-0.67). At 52 weeks, tirzepatide increased the Kansas City Cardiomyopathy Questionnaire Clinical Summary Score by 6.9 points (95% CI, 3.3-10.6; P<0.001), 6-minute walk distance 18.3 meters (95% CI, 9.9-26.7; P<0.001), and EQ-5D-5L 0.06 (95% CI, 0.03-0.09; P<0.001). The tirzepatide group shifted to a more favorable Patient Global Impression of Severity Overall Health score (proportional odds ratio, 1.99 [95% CI, 1.44-2.76]) and New York Heart Association class (proportional odds ratio, 2.26 [95% CI, 1.54-3.31]; both P<0.001) and required fewer heart failure medications (P=0.015). The broad spectrum of effects was reflected in benefits on the hierarchical composite (win ratio, 1.63 [95% CI, 1.17-2.28]; P=0.004). CONCLUSIONS Tirzepatide produced a comprehensive, meaningful improvement in heart failure across multiple complementary domains; enhanced health status, quality of life, functional capacity, exercise tolerance, and well-being; and reduced symptoms and medication burden in patients with heart failure with preserved ejection fraction and obesity. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04847557.
Collapse
Affiliation(s)
- Michael R. Zile
- RHJ Department of Veterans Affairs, Health Care System and Medical University of South Carolina, Charleston (M.R.Z., S.E.L.)
| | - Barry A. Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (B.A.B.)
| | - Christopher M. Kramer
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville (C.M.K.)
| | | | - Sheldon E. Litwin
- RHJ Department of Veterans Affairs, Health Care System and Medical University of South Carolina, Charleston (M.R.Z., S.E.L.)
| | - Venu Menon
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, OH (V.M.)
| | - Yang Ou
- Eli Lilly and Company, Indianapolis, IN (Y.O., G.J.W., K.C.H., C.K., M.M.)
| | | | - Karla C. Hurt
- Eli Lilly and Company, Indianapolis, IN (Y.O., G.J.W., K.C.H., C.K., M.M.)
| | - Chisom Kanu
- Eli Lilly and Company, Indianapolis, IN (Y.O., G.J.W., K.C.H., C.K., M.M.)
| | - Masahiro Murakami
- Eli Lilly and Company, Indianapolis, IN (Y.O., G.J.W., K.C.H., C.K., M.M.)
| | - Milton Packer
- Baylor University Medical Center, Dallas, TX (M.P.)
- Imperial College, London, UK (M.P.)
| |
Collapse
|
9
|
Apperloo EM, Tuttle KR, Pavo I, Haupt A, Taylor R, Wiese RJ, Hemmingway A, Cherney DZ, Sattar N, Heerspink HJ. Tirzepatide Associated With Reduced Albuminuria in Participants With Type 2 Diabetes: Pooled Post Hoc Analysis From the Randomized Active- and Placebo-Controlled SURPASS-1-5 Clinical Trials. Diabetes Care 2025; 48:430-436. [PMID: 39746157 PMCID: PMC11870291 DOI: 10.2337/dc24-1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Tirzepatide, a long-acting, glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor agonist, reduced urine albumin-to-creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) decline in people with type 2 diabetes and high cardiovascular risk in the SURPASS-4 trial. To examine the generalizability of these findings, we assessed change from baseline in UACR for tirzepatide (5, 10, and 15 mg) compared with active and placebo treatment in a broad population from the SURPASS-1-5 trials. RESEARCH DESIGN AND METHODS This post hoc analysis examined data from the overall pooled SURPASS-1-5 population and subgroups defined by baseline UACR ≥30 mg/g. A mixed model for repeated measures was used to analyze on-treatment data from baseline to the end-of-treatment visit. Study identifier was included in the model as a covariate. RESULTS The adjusted mean percent change from baseline in UACR for tirzepatide 5, 10, or 15 mg compared with all pooled comparators was -19.3% (95% CI -25.5, -12.5), -22.0% (-28.1, -15.3), and -26.3 (-32.0, -20.0), respectively, at week 40/42. Results were similar across pooled placebo, active, and insulin comparator studies. UACR lowering appeared more pronounced in subgroups with UACR ≥30 mg/g. Mediation analysis findings suggested that approximately one-half of the reduction in albuminuria associated with tirzepatide may be weight loss related. There was no difference in eGFR between tirzepatide and pooled comparators at week 40/42. CONCLUSIONS In this post hoc analysis in people with type 2 diabetes, including those with chronic kidney disease, tirzepatide was associated with a clinically relevant decreased UACR versus comparators, suggesting a potential kidney-protective effect.
Collapse
Affiliation(s)
- Ellen M. Apperloo
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Katherine R. Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA
- Nephrology Division and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA
| | - Imre Pavo
- Eli Lilly and Company, Indianapolis, IN
| | | | | | | | | | - David Z.I. Cherney
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- The George Institute for Global Health, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Mather KJ, Mari A, Weerakkody G, Heise T, DeVries JH, Urva S, Coskun T, Milicevic Z, Haupt A, Thomas MK. Greater improvement in insulin sensitivity per unit weight loss associated with tirzepatide versus semaglutide: An exploratory analysis. Diabetes Obes Metab 2025; 27:1507-1514. [PMID: 39762971 DOI: 10.1111/dom.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 02/08/2025]
Abstract
AIMS To explore the relationship between weight loss and insulin sensitivity in response to tirzepatide or semaglutide. MATERIALS AND METHODS We conducted a post hoc exploratory analysis of a 28-week, double-blind, randomized trial in people with type 2 diabetes treated with metformin, randomized to tirzepatide 15 mg, semaglutide 1 mg or placebo. We evaluated the relationship between change in body weight and change in insulin sensitivity determined from hyperinsulinemic euglycemic clamp (M value), or from mixed-meal tolerance testing (Matsuda index). RESULTS Tirzepatide was associated with a greater improvement than semaglutide in insulin sensitivity assessed using hyperinsulinemic euglycemic clamps (p < 0.001). With tirzepatide, improvements in insulin sensitivity were associated with percent change in weight (R = -0.656, p < 0.0001). With semaglutide, change in insulin sensitivity was less strongly correlated with percent change in weight (R = -0.268, p = 0.0820; p = 0.0242 vs. tirzepatide). In regression analyses, the slope of the relationship between change in M value and change in weight was statistically different between semaglutide and tirzepatide (p = 0.0461). These relationships were also assessed using the Matsuda index as the metric of insulin sensitivity, and using change in fat mass as the determinant of change in insulin sensitivity. CONCLUSIONS Improvement in insulin sensitivity was proportional to weight and fat loss, with greater strength of association with tirzepatide. In regression analysis, tirzepatide was associated with greater improvement in insulin sensitivity per unit weight loss than semaglutide. The greater improvement in insulin sensitivity following treatment with tirzepatide was not simply attributable to greater weight or fat loss.
Collapse
Affiliation(s)
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | | | | | | | - Shweta Urva
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Tamer Coskun
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | |
Collapse
|
11
|
Chee YJ, Dalan R, Cheung C. The Interplay Between Immunity, Inflammation and Endothelial Dysfunction. Int J Mol Sci 2025; 26:1708. [PMID: 40004172 PMCID: PMC11855323 DOI: 10.3390/ijms26041708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The endothelium is pivotal in multiple physiological processes, such as maintaining vascular homeostasis, metabolism, platelet function, and oxidative stress. Emerging evidence in the past decade highlighted the immunomodulatory function of endothelium, serving as a link between innate, adaptive immunity and inflammation. This review examines the regulation of the immune-inflammatory axis by the endothelium, discusses physiological immune functions, and explores pathophysiological processes leading to endothelial dysfunction in various metabolic disturbances, including hyperglycemia, obesity, hypertension, and dyslipidaemia. The final section focuses on the novel, repurposed, and emerging therapeutic targets that address the immune-inflammatory axis in endothelial dysfunction.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| |
Collapse
|
12
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Kamrul-Hasan ABM, Patra S, Dutta D, Nagendra L, Muntahi-Reza AFM, Borozan S, Pappachan JM. Renal effects and safety of tirzepatide in subjects with and without diabetes: A systematic review and meta-analysis. World J Diabetes 2025; 16:101282. [PMID: 39959269 PMCID: PMC11718474 DOI: 10.4239/wjd.v16.i2.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D), as well as obesity, are risk factors for chronic kidney disease (CKD) and end-stage renal disease. The renal impacts of glucose-lowering and weight-lowering drugs and their potential benefits in preventing CKD often guide clinicians in choosing them appropriately. Only limited data based on randomized controlled trials (RCTs) is currently available on the renal effects and safety profile of tirzepatide. AIM To explore the renal benefits and safety of tirzepatide vs controls. METHODS RCTs involving patients receiving tirzepatide for any indication in the intervention arm and placebo or active comparator in the control arm were searched through multiple electronic databases. The co-primary outcomes were percent change from baseline (CFB) in urine albumin-to-creatinine ratio (UACR) and absolute CFB in estimated glomerular filtration rate (eGFR; in mL/min/1.73 m2); the secondary outcome was tirzepatide's renal safety profile. RevMan web was used to conduct meta-analysis using random-effects models. Outcomes were presented as mean differences (MD) or risk ratios with 95% confidence intervals. RESULTS Fifteen RCTs (n = 14471) with mostly low risk of bias (RoB) were included. Over 26-72 weeks, tirzepatide 10 mg [MD -26.95% (-40.13, -13.76), P < 0.0001] and 15 mg [MD -18.03% (-28.58, -7.47), P = 0.0008] were superior to placebo in percent reductions of UACR. Tirzepatide, at all doses, outperformed insulin in percent reductions of UACR. Compared to the placebo, the percent UACR reduction was greater in subjects with T2D than those with obesity but without T2D (MD -33.25% vs -7.93%; P = 0.001). The CFB in eGFR with all doses of tirzepatide was comparable [5 mg: MD 0.36 (-1.41, 2.14); 10 mg: MD 1.17 (-0.22, 2.56); 15 mg: MD 1.42 (-0.04, 2.88)]; P > 0.05 for all] vs insulin. Tirzepatide (pooled and separate doses) did not increase the risks of adverse renal events, urinary tract infection, nephrolithiasis, acute kidney injury, and renal cancer compared to the placebo, insulin, and glucagon-like peptide-1 receptor agonists. CONCLUSION Short-term data from RCTs with low RoB suggests that tirzepatide positively impacts UACR without detrimental effects on eGFR in subjects with T2D and obesity without T2D, with a reassuring renal safety profile. Larger RCTs are warranted to prove the longer-term renal benefits of tirzepatide, which might also prevent eGFR decline and worsening of CKD.
Collapse
Affiliation(s)
- ABM Kamrul-Hasan
- Department of Endocrinology, Mymensingh Medical College, Mymensingh 2200, Dhaka, Bangladesh
| | - Shinjan Patra
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences Nagpur, Nagpur 441108, Maharashtra, India
| | - Deep Dutta
- Department of Endocrinology, CEDAR Superspeciality Clinics, Dwarka, New Delhi 110075, India
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, India
| | - AFM Muntahi-Reza
- Department of Urology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Sanja Borozan
- Department of Endocrinology, Clinical Centre of Montenegro, Podgorica 81000, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica 81000, Montenegro
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust & Manchester Metropolitan University, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal University, Manipal 576104, India
| |
Collapse
|
14
|
Afridi Z, Farhan K, Fahad F, Khan MWZ, Salomon I. Tirzepatide: a dual-action solution for obstructive sleep apnea and obesity. Ann Med Surg (Lond) 2025; 87:436-437. [PMID: 40110282 PMCID: PMC11918728 DOI: 10.1097/ms9.0000000000002975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/13/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
| | - Kanza Farhan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Fnu Fahad
- Khyber Medical College, Peshawar, Pakistan
| | | | - Izere Salomon
- University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| |
Collapse
|
15
|
Albiero M, Baragetti A. Exploring neutrophils as therapeutic targets in cardiometabolic diseases. Trends Pharmacol Sci 2025; 46:102-116. [PMID: 39855946 DOI: 10.1016/j.tips.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Current therapies for diabetes and atherosclerotic cardiovascular diseases (ACVDs) mainly target metabolic risk factors, but often fall short in addressing systemic inflammation, a key driver of disease onset and progression. Advances in our understanding of the biology of neutrophils, the cells that are principally involved in inflammatory situations, have highlighted their pivotal role in cardiometabolic diseases. Yet, neutrophils can reprogram their immune-metabolic functions based on the energetic substrates available, thus influencing both tissue homeostasis and the resolution of inflammation. In this review, we examine the effects of canonical therapies for cardiometabolic diseases on the key molecular pathways through which neutrophils respond to inflammatory stimuli. In addition, we explore potential synergies between these established therapeutic approaches and the anti-inflammatory therapies being evaluated for repurposing in the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padua, Italy; Regional Center for the Cellular Therapy of Diabetes, University Hospital of Padova, Padua, Italy; Veneto Institute of Molecular Medicine, Laboratory of Experimental Diabetology, Padua, Italy.
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Hegab II, El-Horany HES, Abd-Ellatif RN, Nasef NA, Okasha AH, Emam MN, Hassan S, Elseady WS, Radwan DA, ElEsawy RO, Hafez YM, Hassan ME, Mansour NM, Abdelkader GE, Fouda MH, Abd El Maged AM, Abdallah HM. Adropin/Tirzepatide Combination Mitigates Cardiac Metabolic Aberrations in a Rat Model of Polycystic Ovarian Syndrome, Implicating the Role of the AKT/GSK3β/NF-κB/NLRP3 Pathway. Int J Mol Sci 2024; 26:1. [PMID: 39795860 PMCID: PMC11720588 DOI: 10.3390/ijms26010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a multifaceted metabolic and hormonal disorder in females of reproductive age, frequently associated with cardiac disturbances. This research aimed to explore the protective potential of adropin and/or tirzepatide (Tirze) on cardiometabolic aberrations in the letrozole-induced PCOS model. Female Wistar non-pregnant rats were allotted into five groups: CON; PCOS; PCOS + adropin; PCOS + Tirze; and PCOS + adropin+ Tirze. The serum sex hormones, glucose, and lipid profiles were securitized. Cardiac phosphorylated levels of AKT(pAKT), glycogen synthase kinase-3 beta (pGSK-3β), NOD-like receptor family pyrin domain containing 3 (NLPR3), IL-1β and IL-18 were assayed. The cardiac redox status and endoplasmic reticulum stress (ER) parameters including relative glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) gene expressions were detected. Finally, the immunoreactivity of cardiac NF-κB, Bcl2, and BAX were assessed. Our results displayed that adropin and/or Tirze intervention successfully alleviated the PCOS-provoked cardiometabolic derangements with better results recorded for the combination treatment. The synergistic effect of adropin and Tirze is mostly mediated via activating the cardiac Akt, which dampens the GSK3β/NF-κB/NLRP3 signaling pathway, with a sequel of alleviating oxidative damage, inflammatory response, ER stress, and related apoptosis, making them alluring desirable therapeutic targets in PCOS-associated cardiac complications.
Collapse
Affiliation(s)
- Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah 21442, Saudi Arabia
| | - Hemat El-sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
- Department of Biochemistry, College of Medicine, Ha’il University, Hail 81158, Saudi Arabia
| | - Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
| | - Asmaa H. Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah 21442, Saudi Arabia
| | - Shereen Hassan
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
| | - Walaa S. Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (W.S.E.); (D.A.R.)
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (W.S.E.); (D.A.R.)
| | - Rasha Osama ElEsawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (Y.M.H.); (M.E.H.)
| | - Maha Elsayed Hassan
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (Y.M.H.); (M.E.H.)
| | | | - Gamaleldien Elsayed Abdelkader
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman 11196, Jordan;
| | - Mohamed H. Fouda
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Amira M. Abd El Maged
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom 32511, Egypt;
| | - Hanan M. Abdallah
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
| |
Collapse
|
17
|
Simental-Mendía LE, Simental-Mendía M, Barragán-Zúñiga LJ, Navarro-Tinoco L. Effect of tirzepatide on leptin and adiponectin levels. Eur J Intern Med 2024; 130:168-170. [PMID: 39089971 DOI: 10.1016/j.ejim.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México.
| | - Mario Simental-Mendía
- Department of Orthopedics and Traumatology, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Laura Jazel Barragán-Zúñiga
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Litzy Navarro-Tinoco
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
18
|
Kamrul‐Hasan ABM, Mondal S, Dutta D, Nagendra L, Kabir MR, Pappachan JM. Pancreatic Safety of Tirzepatide and Its Effects on Islet Cell Function: A Systematic Review and Meta-Analysis. Obes Sci Pract 2024; 10:e70032. [PMID: 39720158 PMCID: PMC11667760 DOI: 10.1002/osp4.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Endogenous glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet cell function. GLP-1 receptor agonists (GLP-1RAs) have been associated with an elevated risk of acute pancreatitis. Data on the pancreatic safety of tirzepatide (a dual GLP-1 and GIP agonist) and its effects on islet cell function in randomized controlled trials (RCTs) are scarce. Moreover, no meta-analysis has comprehensively examined such effects of tirzepatide. METHODS Electronic databases were searched for RCTs with tirzepatide as the intervention and a placebo or active comparator as the control. The primary outcome was adjudication-confirmed pancreatitis; secondary outcomes were the percent changes from baseline in serum pancreatic amylase, lipase, insulin, C-peptide, glucagon, and homeostasis model assessment of insulin resistance (HOMA2-IR). RESULTS Seventeen RCTs with 18 published reports involving 14,645 subjects were analyzed. Over a follow-up duration of 12-72 weeks, tirzepatide had identical risks of pancreatitis to placebo (tirzepatide 5 mg: RR 2.04, 95% CI [0.27-15.69], p = 0.49; 10 mg: RR 0.63, 95% CI [0.08-5.12], p = 0.67; and 15 mg: RR 1.26, 95% CI [0.36-4.98], p = 0.72). Tirzepatide was also associated with comparable risks of pancreatitis to insulin and GLP-1RAs. However, tirzepatide (at all doses) caused greater increases in pancreatic amylase and lipase than placebo and insulin. Individuals on tirzepatide 15 mg and GLP-1RAs had similar risks of having increased lipase levels. The percent reductions in fasting insulin were greater with tirzepatide 10 and 15 mg than with placebo. All doses of tirzepatide caused greater percent reductions in fasting insulin, C-peptide, and glucagon than GLP-1RAs. Compared to placebo and GLP-1RAs, the percent reductions in HOMA2-IR were greater with all doses of tirzepatide. CONCLUSION The meta-analysis provides evidence of the safety of tirzepatide regarding pancreatitis and establishes its positive effect on islet cell functions and insulin resistance.
Collapse
Affiliation(s)
| | - Sunetra Mondal
- Department of EndocrinologyNRS Medical CollegeKolkataIndia
| | - Deep Dutta
- Department of EndocrinologyCEDAR Superspeciality ClinicsNew DelhiIndia
| | - Lakshmi Nagendra
- Department of EndocrinologyJSS Medical CollegeJSS Academy of Higher Education & ResearchMysoreIndia
| | | | - Joseph M. Pappachan
- Department of Endocrinology and MetabolismLancashire Teaching Hospitals NHS Trust & Manchester Metropolitan UniversityPrestonUK
| |
Collapse
|
19
|
Cazzola M, Matera MG, Calzetta L, Lauro D, Rogliani P. Can glucagon-like peptide-1 receptor agonists induce asthma? An analysis of the FAERS database. J Asthma 2024; 61:1638-1645. [PMID: 38913778 DOI: 10.1080/02770903.2024.2372600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor agonists (GLP1RAs), originally developed for the treatment of type 2 diabetes mellitus, have attracted attention for their potential therapeutic benefits in asthma due to their anti-inflammatory properties and effects on airway smooth muscle function. However, concerns have been raised about the possibility of GLP1RAs inducing or exacerbating asthma symptoms. METHODS We reviewed data from the US Food and Drug Administration's (FDA) adverse event (AE) reporting system (FAERS) to examine reports of cases of asthma observed in the real-world during treatment with GLP1RAs. RESULTS Analysis of the FAERS reporting system database has shown that certain GLP1RAs, particularly exenatide, semaglutide and liraglutide, were associated with a higher proportion of respiratory AEs, particularly asthma or asthma-like events. This association was statistically significant at least for semaglutide and liraglutide. Serious asthma-related events and deaths were also reported, with exenatide having the highest proportion of deaths. CONCLUSIONS The reasons for the observed differences in the AE profiles of the GLP1RAs remain unclear and may involve various factors such as pharmacological properties, patient characteristics and reporting biases. The complex interplay between the therapeutic benefits of GLP1RAs and the potential respiratory risks requires careful monitoring by clinicians, underpinned by ongoing research efforts to improve patient care and safety.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Davide Lauro
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
20
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Karakasis P, Sagris M, Patoulias D, Koufakis T, Theofilis P, Klisic A, Fragakis N, El Tanani M, Rizzo M. Mitigating Increased Cardiovascular Risk in Patients with Obstructive Sleep Apnea Using GLP-1 Receptor Agonists and SGLT2 Inhibitors: Hype or Hope? Biomedicines 2024; 12:2503. [PMID: 39595069 PMCID: PMC11591904 DOI: 10.3390/biomedicines12112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent condition associated with increased cardiovascular risk, particularly in individuals with comorbid obesity and type 2 diabetes (T2D). Despite the widespread use of continuous positive airway pressure (CPAP) for OSA management, adherence remains suboptimal, and CPAP has not consistently demonstrated reductions in surrogate cardiovascular events. Recently, attention has focused on glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors as potential therapeutic agents for mitigating cardiovascular risk in OSA patients. These agents, originally developed for T2D management, have demonstrated pleiotropic effects, including significant weight loss, blood pressure reduction, and amelioration of endothelial dysfunction and arterial stiffness, along with anti-inflammatory benefits, which may be particularly beneficial in OSA. Emerging clinical evidence suggests that GLP-1RAs and SGLT2 inhibitors can reduce OSA severity and improve daytime sleepiness, potentially reversing the adverse cardiovascular effects observed in OSA. This review explores the pathophysiological mechanisms linking OSA with cardiovascular disease and evaluates the potential therapeutic roles of GLP-1RAs and SGLT2 inhibitors in addressing cardiovascular risk in OSA patients. Further research, including long-term clinical trials, is necessary to establish the effectiveness of these therapies in reducing cardiovascular events and improving patients' reported outcomes in this population.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Marios Sagris
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.S.); (P.T.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54642 Thessaloniki, Greece; (D.P.); (T.K.)
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54642 Thessaloniki, Greece; (D.P.); (T.K.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.S.); (P.T.)
| | - Aleksandra Klisic
- Primary Health Care Center, Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Mohamed El Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.E.T.); (M.R.)
| | - Manfredi Rizzo
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.E.T.); (M.R.)
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90100 Palermo, Italy
| |
Collapse
|
22
|
Malhotra A, Grunstein RR, Fietze I, Weaver TE, Redline S, Azarbarzin A, Sands SA, Schwab RJ, Dunn JP, Chakladar S, Bunck MC, Bednarik J. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. N Engl J Med 2024; 391:1193-1205. [PMID: 38912654 PMCID: PMC11598664 DOI: 10.1056/nejmoa2404881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND Obstructive sleep apnea is characterized by disordered breathing during sleep and is associated with major cardiovascular complications; excess adiposity is an etiologic risk factor. Tirzepatide may be a potential treatment. METHODS We conducted two phase 3, double-blind, randomized, controlled trials involving adults with moderate-to-severe obstructive sleep apnea and obesity. Participants who were not receiving treatment with positive airway pressure (PAP) at baseline were enrolled in trial 1, and those who were receiving PAP therapy at baseline were enrolled in trial 2. The participants were assigned in a 1:1 ratio to receive either the maximum tolerated dose of tirzepatide (10 mg or 15 mg) or placebo for 52 weeks. The primary end point was the change in the apnea-hypopnea index (AHI, the number of apneas and hypopneas during an hour of sleep) from baseline. Key multiplicity-controlled secondary end points included the percent change in AHI and body weight and changes in hypoxic burden, patient-reported sleep impairment and disturbance, high-sensitivity C-reactive protein (hsCRP) concentration, and systolic blood pressure. RESULTS At baseline, the mean AHI was 51.5 events per hour in trial 1 and 49.5 events per hour in trial 2, and the mean body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) was 39.1 and 38.7, respectively. In trial 1, the mean change in AHI at week 52 was -25.3 events per hour (95% confidence interval [CI], -29.3 to -21.2) with tirzepatide and -5.3 events per hour (95% CI, -9.4 to -1.1) with placebo, for an estimated treatment difference of -20.0 events per hour (95% CI, -25.8 to -14.2) (P<0.001). In trial 2, the mean change in AHI at week 52 was -29.3 events per hour (95% CI, -33.2 to -25.4) with tirzepatide and -5.5 events per hour (95% CI, -9.9 to -1.2) with placebo, for an estimated treatment difference of -23.8 events per hour (95% CI, -29.6 to -17.9) (P<0.001). Significant improvements in the measurements for all prespecified key secondary end points were observed with tirzepatide as compared with placebo. The most frequently reported adverse events with tirzepatide were gastrointestinal in nature and mostly mild to moderate in severity. CONCLUSIONS Among persons with moderate-to-severe obstructive sleep apnea and obesity, tirzepatide reduced the AHI, body weight, hypoxic burden, hsCRP concentration, and systolic blood pressure and improved sleep-related patient-reported outcomes. (Funded by Eli Lilly; SURMOUNT-OSA ClinicalTrials.gov number, NCT05412004.).
Collapse
Affiliation(s)
- Atul Malhotra
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Ronald R Grunstein
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Ingo Fietze
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Terri E Weaver
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Susan Redline
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Ali Azarbarzin
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Scott A Sands
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Richard J Schwab
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Julia P Dunn
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Sujatro Chakladar
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Mathijs C Bunck
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| | - Josef Bednarik
- From the University of California, San Diego, La Jolla (A.M.); Woolcock Institute of Medical Research, Macquarie University, Royal Prince Alfred Hospital, and the University of Sydney - all in Sydney (R.R.G.); the Center of Sleep Medicine, Charité University Hospital Berlin, Berlin (I.F.); the College of Nursing, University of Illinois Chicago, Chicago (T.E.W.); the School of Nursing (T.E.W.) and Perelman School of Medicine (R.J.S.), University of Pennsylvania, Philadelphia; the Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School - both in Boston (S.R., A.A., S.A.S.); and Eli Lilly, Indianapolis (J.P.D., S.C., M.C.B., J.B.)
| |
Collapse
|
23
|
Yilmaz MB, Keyif B. The Relation of Insulin Resistance With Free Androgen Index and Endothelial Dysfunction Marker YKL-40 and Its Effect on Male Infertility: A Prospective Study. Cureus 2024; 16:e72481. [PMID: 39600764 PMCID: PMC11590756 DOI: 10.7759/cureus.72481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE In this study, the effects of insulin resistance and the role of the endothelial dysfunction marker YKL-40 in male infertility were investigated. METHODS This study was conducted with male patients who underwent fertility investigations in the in vitro fertilization (IVF) unit of a tertiary center. Semen samples were evaluated after two to five days of sexual abstinence. The hormonal and lipid profiles, fasting glucose and insulin levels, and YKL-40 values of the patients were assessed. The Homeostatic Model Assessment (HOMA) index was calculated, and those with a score of 2.5 and above were considered insulin resistant (IR). RESULTS In total, 75 patients, 34 with IR and 41 without IR, were included. The groups had similar ages, heights, weights, and BMIs. Additionally, the semen parameters were similar between the groups. The median fasting glucose and insulin levels were significantly greater in the insulin-resistant group (p=0.008 and p<0.00, respectively). There were no significant differences in terms of the serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), thyroid stimulating hormone (TSH), sex hormone binding globulin (SHBG), high-density lipoprotein (HDL), or low-density lipoprotein LDL) levels. Total testosterone levels were lower in the IR group than in the group without IR (p<0.001). Both the total serum cholesterol and triglyceride levels were greater in the IR patients (p=0.031 and p=0,002, respectively). Compared with the patients without IR, the IR patients had a lower free androgen index. The serum YKL-40 levels were similar between the groups, and there were no correlations between YKL-40 and the other parameters. CONCLUSION This initial study investigating the serum YKL-40 level in men with and without IR revealed no relationship between YKL-40 levels and IR. Nonetheless, higher total serum cholesterol and triglyceride levels and lower total serum testosterone and free androgen indices were found in participants with IR.
Collapse
Affiliation(s)
- Muserref Banu Yilmaz
- Department of Obstetrics and Gynecology, SBU (Sağlık Bilimleri Üniversitesi) Zeynep Kamil Women and Children's Diseases Training and Research Hospital, İstanbul, TUR
| | - Betül Keyif
- Department of Obstetrics and Gynecology, Düzce University, Düzce, TUR
| |
Collapse
|
24
|
Handelsman Y, Anderson JE, Bakris GL, Ballantyne CM, Bhatt DL, Bloomgarden ZT, Bozkurt B, Budoff MJ, Butler J, Cherney DZI, DeFronzo RA, Del Prato S, Eckel RH, Filippatos G, Fonarow GC, Fonseca VA, Garvey WT, Giorgino F, Grant PJ, Green JB, Greene SJ, Groop PH, Grunberger G, Jastreboff AM, Jellinger PS, Khunti K, Klein S, Kosiborod MN, Kushner P, Leiter LA, Lepor NE, Mantzoros CS, Mathieu C, Mende CW, Michos ED, Morales J, Plutzky J, Pratley RE, Ray KK, Rossing P, Sattar N, Schwarz PEH, Standl E, Steg PG, Tokgözoğlu L, Tuomilehto J, Umpierrez GE, Valensi P, Weir MR, Wilding J, Wright EE. DCRM 2.0: Multispecialty practice recommendations for the management of diabetes, cardiorenal, and metabolic diseases. Metabolism 2024; 159:155931. [PMID: 38852020 DOI: 10.1016/j.metabol.2024.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
The spectrum of cardiorenal and metabolic diseases comprises many disorders, including obesity, type 2 diabetes (T2D), chronic kidney disease (CKD), atherosclerotic cardiovascular disease (ASCVD), heart failure (HF), dyslipidemias, hypertension, and associated comorbidities such as pulmonary diseases and metabolism dysfunction-associated steatotic liver disease and metabolism dysfunction-associated steatohepatitis (MASLD and MASH, respectively, formerly known as nonalcoholic fatty liver disease and nonalcoholic steatohepatitis [NAFLD and NASH]). Because cardiorenal and metabolic diseases share pathophysiologic pathways, two or more are often present in the same individual. Findings from recent outcome trials have demonstrated benefits of various treatments across a range of conditions, suggesting a need for practice recommendations that will guide clinicians to better manage complex conditions involving diabetes, cardiorenal, and/or metabolic (DCRM) diseases. To meet this need, we formed an international volunteer task force comprising leading cardiologists, nephrologists, endocrinologists, and primary care physicians to develop the DCRM 2.0 Practice Recommendations, an updated and expanded revision of a previously published multispecialty consensus on the comprehensive management of persons living with DCRM. The recommendations are presented as 22 separate graphics covering the essentials of management to improve general health, control cardiorenal risk factors, and manage cardiorenal and metabolic comorbidities, leading to improved patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, Texas Heart Institute, Houston, TX, USA
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Zachary T Bloomgarden
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Biykem Bozkurt
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Javed Butler
- University of Mississippi Medical Center, Jackson, MS, USA
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | | | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Robert H Eckel
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | | | - Jennifer B Green
- Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC, USA
| | - Stephen J Greene
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Per-Henrik Groop
- Department of Nephrology, University of Helsinki, Finnish Institute for Health and Helsinki University HospitalWelfare, Folkhälsan Research Center, Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - George Grunberger
- Grunberger Diabetes Institute, Bloomfield Hills, MI, USA; Wayne State University School of Medicine, Detroit, MI, USA; Oakland University William Beaumont School of Medicine, Rochester, MI, USA; Charles University, Prague, Czech Republic
| | | | - Paul S Jellinger
- The Center for Diabetes & Endocrine Care, University of Miami Miller School of Medicine, Hollywood, FL, USA
| | | | - Samuel Klein
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | - Norman E Lepor
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Chantal Mathieu
- Department of Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Christian W Mende
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Javier Morales
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, Advanced Internal Medicine Group, PC, East Hills, NY, USA
| | - Jorge Plutzky
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | - Peter E H Schwarz
- Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus at the Technische Universität/TU Dresden, Dresden, Germany
| | - Eberhard Standl
- Munich Diabetes Research Group e.V. at Helmholtz Centre, Munich, Germany
| | - P Gabriel Steg
- Université Paris-Cité, Institut Universitaire de France, AP-HP, Hôpital Bichat, Cardiology, Paris, France
| | | | - Jaakko Tuomilehto
- University of Helsinki, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Paul Valensi
- Polyclinique d'Aubervilliers, Aubervilliers and Paris-Nord University, Paris, France
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John Wilding
- University of Liverpool, Liverpool, United Kingdom
| | - Eugene E Wright
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
25
|
Mullur N, Morissette A, Morrow NM, Mulvihill EE. GLP-1 receptor agonist-based therapies and cardiovascular risk: a review of mechanisms. J Endocrinol 2024; 263:e240046. [PMID: 39145614 PMCID: PMC11466209 DOI: 10.1530/joe-24-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Cardiovascular outcome trials (CVOTs) in people living with type 2 diabetes mellitus and obesity have confirmed the cardiovascular benefits of glucagon-like peptide 1 receptor agonists (GLP-1RAs), including reduced cardiovascular mortality, lower rates of myocardial infarction, and lower rates of stroke. The cardiovascular benefits observed following GLP-1RA treatment could be secondary to improvements in glycemia, blood pressure, postprandial lipidemia, and inflammation. Yet, the GLP-1R is also expressed in the heart and vasculature, suggesting that GLP-1R agonism may impact the cardiovascular system. The emergence of GLP-1RAs combined with glucose-dependent insulinotropic polypeptide and glucagon receptor agonists has shown promising results as new weight loss medications. Dual-agonist and tri-agonist therapies have demonstrated superior outcomes in weight loss, lowered blood sugar and lipid levels, restoration of tissue function, and enhancement of overall substrate metabolism compared to using GLP-1R agonists alone. However, the precise mechanisms underlying their cardiovascular benefits remain to be fully elucidated. This review aims to summarize the findings from CVOTs of GLP-1RAs, explore the latest data on dual and tri-agonist therapies, and delve into potential mechanisms contributing to their cardioprotective effects. It also addresses current gaps in understanding and areas for further research.
Collapse
Affiliation(s)
- Neerav Mullur
- The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | | | - Nadya M Morrow
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
27
|
Taktaz F, Fontanella RA, Scisciola L, Pesapane A, Basilicata MG, Ghosh P, Franzese M, Tortorella G, Puocci A, Vietri MT, Capuano A, Paolisso G, Barbieri M. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: evidence for the role of tirzepatide. Cardiovasc Diabetol 2024; 23:242. [PMID: 38987789 PMCID: PMC11238498 DOI: 10.1186/s12933-024-02319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
28
|
Mei X, Li Y, Wu J, Liao L, Lu D, Qiu P, Yang HL, Tang MW, Liang XY, Liu D. Dulaglutide restores endothelial progenitor cell levels in diabetic mice and mitigates high glucose-induced endothelial injury through SIRT1-mediated mitochondrial fission. Biochem Biophys Res Commun 2024; 716:150002. [PMID: 38697011 DOI: 10.1016/j.bbrc.2024.150002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.
Collapse
Affiliation(s)
- Xi Mei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Yao Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jinlin Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Department of Endocrinology and Metabolism, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lumiu Liao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Di Lu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Ping Qiu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Hui-Lan Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Ming-Wei Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Xin-Ying Liang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
29
|
Dardano A, Bianchi C, Garofolo M, Del Prato S. The current landscape for diabetes treatment: Preventing diabetes-associated CV risk. Atherosclerosis 2024; 394:117560. [PMID: 38688748 DOI: 10.1016/j.atherosclerosis.2024.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Despite the risk of atherosclerosis has progressively declined over the past few decades, subjects with type 2 diabetes mellitus (T2DM) continue to experience substantial excess of atherosclerotic cardiovascular disease (ASCVD)-related events. Therefore, there is urgent need to treat ASCVD disease in T2DM earlier, more intensively, and with greater precision. Many factors concur to increase the risk of atherosclerosis, and multifactorial intervention remains the basis for effective prevention or reduction of atherosclerotic events. The role of anti-hyperglycemic medications in reducing the risk of ASCVD in subjects with T2DM has evolved over the past few years. Multiple cardiovascular outcome trials (CVOTs) with new and emerging glucose-lowering agents, namely SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RA), have demonstrated significant reductions of major cardiovascular events and additional benefits. This robust evidence has changed the landscape for managing people with T2DM. In addition to glycemic and ancillary extra-glycemic properties, SGLT2i and GLP1-RA might exert favorable effects on subclinical and clinical atherosclerosis. Therefore, the objective of this review is to discuss the available evidence supporting anti-atherosclerotic properties of SGLT2i and GLP1-RA, with a quick nod to sotagliflozin and tirzepatide.
Collapse
Affiliation(s)
- Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Italy; Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
30
|
Corrao S, Pollicino C, Maggio D, Torres A, Argano C. Tirzepatide against obesity and insulin-resistance: pathophysiological aspects and clinical evidence. Front Endocrinol (Lausanne) 2024; 15:1402583. [PMID: 38978621 PMCID: PMC11228148 DOI: 10.3389/fendo.2024.1402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Obesity is a chronic, multifactorial disease in which accumulated excess body fat has a negative impact on health. Obesity continues to rise among the general population, resulting in an epidemic that shows no significant signs of decline. It is directly involved in development of cardiometabolic diseases, ischemic coronary heart disease peripheral arterial disease, heart failure, and arterial hypertension, producing global morbidity and mortality. Mainly, abdominal obesity represents a crucial factor for cardiovascular illness and also the most frequent component of metabolic syndrome. Recent evidence showed that Tirzepatide (TZP), a new drug including both Glucagon Like Peptide 1 (GLP-1) and Glucose-dependent Insulinotropic Polypeptide (GIP) receptor agonism, is effective in subjects with type 2 diabetes (T2D), lowering body weight, fat mass and glycated hemoglobin (HbA1c) also in obese or overweight adults without T2D. This review discusses the pathophysiological mechanisms and clinical aspects of TZP in treating obesity.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties. Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Pollicino
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Dalila Maggio
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Alessandra Torres
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Christiano Argano
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| |
Collapse
|
31
|
Cariou B, Linge J, Neeland IJ, Dahlqvist Leinhard O, Petersson M, Fernández Landó L, Bray R, Rodríguez Á. Effect of tirzepatide on body fat distribution pattern in people with type 2 diabetes. Diabetes Obes Metab 2024; 26:2446-2455. [PMID: 38528819 DOI: 10.1111/dom.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
AIMS To describe the overall fat distribution patterns independent of body mass index (BMI) in participants with type 2 diabetes (T2D) in the SURPASS-3 MRI substudy by comparison with sex- and BMI-matched virtual control groups (VCGs) derived from the UK Biobank imaging study at baseline and Week 52. METHODS For each study participant at baseline and Week 52 (N = 296), a VCG of ≥150 participants with the same sex and similar BMI was identified from the UK Biobank imaging study (N = 40 172). Average visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (aSAT) and liver fat (LF) levels and the observed standard deviations (SDs; standardized normal z-scores: z-VAT, z-aSAT and z-LF) were calculated based on the matched VCGs. Differences in z-scores between baseline and Week 52 were calculated to describe potential shifts in fat distribution pattern independent of weight change. RESULTS Baseline fat distribution patterns were similar across pooled tirzepatide (5, 10 and 15 mg) and insulin degludec (IDeg) arms. Compared with matched VCGs, SURPASS-3 participants had higher baseline VAT (mean [SD] z-VAT +0.42 [1.23]; p < 0.001) and LF (z-LF +1.24 [0.92]; p < 0.001) but similar aSAT (z-aSAT -0.13 [1.11]; p = 0.083). Tirzepatide-treated participants had significant decreases in z-VAT (-0.18 [0.58]; p < 0.001) and z-LF (-0.54 [0.84]; p < 0.001) but increased z-aSAT (+0.11 [0.50]; p = 0.012). Participants treated with IDeg had a significant change in z-LF only (-0.46 [0.90]; p = 0.001), while no significant changes were observed for z-VAT (+0.13 [0.52]; p = 0.096) and z-aSAT (+0.09 [0.61]; p = 0.303). CONCLUSION In this exploratory analysis, treatment with tirzepatide in people with T2D resulted in a significant reduction of z-VAT and z-LF, while z-aSAT was increased from an initially negative value, suggesting a possible treatment-related shift towards a more balanced fat distribution pattern with prominent VAT and LF loss.
Collapse
Affiliation(s)
- Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ian J Neeland
- University Hospitals Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | | | - Ross Bray
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | |
Collapse
|
32
|
Vergès B. Do anti-obesity medical treatments have a direct effect on adipose tissue? ANNALES D'ENDOCRINOLOGIE 2024; 85:179-183. [PMID: 38871515 DOI: 10.1016/j.ando.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
During the past years, several drugs have been developed for the treatment of obesity. Some are already used in clinical practice: orlistat, GLP-1 receptor agonists (RA), GLP-1/GIP biagonists and the melanocortin 4 receptor (MC4R) agonist, setmelanotide. Some should be available in the future: GLP-1/glucagon biagonists, GLP-1/GIP/glucagon triagonists. These drugs act mainly by reducing food intake or fat absorption. However, many of them show specific effects on the adipose tissue. All these drugs show significant reduction of fat mass and, more particularly of visceral fat. If most of the drugs, except orlistat, have been shown to increase energy expenditure in rodents with enhanced thermogenesis, this has not yet been clearly demonstrated in humans. However, biagonists or triagonist stimulating glucagon seem to a have a more potent effect to increase thermogenesis in the adipose tissue and, thus, energy expenditure. Most of these drugs have been shown to increase the production of adiponectin and to reduce the production of pro-inflammatory cytokines by the adipose tissue. GLP-1RAs reduce the size of adipocytes and promote their differentiation. GLP-1RAS and GLP-1/GIP biagonists reduce, in the adipose tissue, the expression of several genes involved in lipogenesis. Further studies are still needed to clarify the precise roles, on the adipose tissue, of these drugs dedicated for the treatment of obesity.
Collapse
Affiliation(s)
- Bruno Vergès
- Department of Endocrinology-Diabetology, University Hospital, Dijon, France; Inserm, LNR, UMR1231, University of Burgundy and Franche-Comté, Dijon, France.
| |
Collapse
|
33
|
Caruso I, Giorgino F. Renal effects of GLP-1 receptor agonists and tirzepatide in individuals with type 2 diabetes: seeds of a promising future. Endocrine 2024; 84:822-835. [PMID: 38472620 PMCID: PMC11208186 DOI: 10.1007/s12020-024-03757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE Chronic kidney disease (CKD) is one of the most common complications of type 2 diabetes (T2D), and CKD-related disability and mortality are increasing despite the recent advances in diabetes management. The dual GIP/GLP-1 receptor agonist tirzepatide is among the furthest developed multi-agonists for diabetes care and has so far displayed promising nephroprotective effects. This review aims to summarize the evidence regarding the nephroprotective effects of glucagon-like peptide-1 receptor agonists (GLP-1RA) and tirzepatide and the putative mechanisms underlying the favorable renal profile of tirzepatide. METHODS A comprehensive literature search was performed from inception to July 31st 2023 to select research papers addressing the renal effects of GLP-1RA and tirzepatide. RESULTS The pathogenesis of CKD in patients with T2D likely involves many contributors besides hyperglycemia, such as hypertension, obesity, insulin resistance and glomerular atherosclerosis, exerting kidney damage through metabolic, fibrotic, inflammatory, and hemodynamic mechanisms. Tirzepatide displayed an unprecedented glucose and body weight lowering potential, presenting also with the ability to increase insulin sensitivity, reduce systolic blood pressure and inflammation and ameliorate dyslipidemia, particularly by reducing triglycerides levels. CONCLUSION Tirzepatide is likely to counteract most of the pathogenetic factors contributing to CKD in T2D, potentially representing a step forward in incretin-based therapy towards nephroprotection. Further evidence is needed to understand its role in renal hemodynamics, fibrosis, cell damage and atherosclerosis, as well as to conclusively show reduction of hard renal outcomes.
Collapse
Affiliation(s)
- Irene Caruso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
34
|
Sardar MB, Nadeem ZA, Babar M. Tirzepatide: A novel cardiovascular protective agent in type 2 diabetes mellitus and obesity. Curr Probl Cardiol 2024; 49:102489. [PMID: 38417475 DOI: 10.1016/j.cpcardiol.2024.102489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Cardiovascular disease (CVD) remains a major global health concern, and obesity and diabetes mellitus have been found to be important risk factors. Tirzepatide a dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP1) receptor agonist has been shown to have cardioprotective effects. Noteworthy benefits of Tirzepatide include decreased cardiovascular risk factors in people with Type 2 diabetes mellitus (T2DM). In the SURPASS-4 trial, tirzepatide significant decreased blood pressure, body weight, and HbA1c. Furthermore, the SURMOUNT-1 trial demonstrated the effectiveness of tirzepatide in reducing cardiometabolic risk factors in people with obesity without T2DM. Together, the dual receptor agonism improves lipid profiles, increases insulin secretion, reduces inflammation, and promotes endothelial integrity. Tirzepatide shows promise as a comprehensive therapeutic option for managing cardiovascular risk factors in patients with T2DM and obesity. While further studies are needed to assess the long-term cardiovascular benefits, current evidence supports tirzepatide's potential impact on cardiovascular health beyond its antidiabetic properties.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Cardiology, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore 54700, Pakistan.
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Muhammad Babar
- Department of Internal Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
35
|
Bardhan M, Gokhale P, Roy P, Kundu T, Anand A. Tirzepatide, a dual incretin analog, is a boon in metabolic syndrome: an editorial. Ann Med Surg (Lond) 2024; 86:1249-1250. [PMID: 38463093 PMCID: PMC10923294 DOI: 10.1097/ms9.0000000000001782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Affiliation(s)
- Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, USA
| | - Pooja Gokhale
- Shree Chanakya Education Society’s Indira College of Pharmacy, Pune
| | - Priyanka Roy
- Deputy Chief Inspector of Factories/ Deputy Director (Medical) and Certifying Surgeon, Directorate of Factories, Department of Labour, Government of West Bengal
| | - Tithishri Kundu
- Department of Pharmacology, Manipal Tata Medical College Jamshedpur, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| |
Collapse
|
36
|
Onishi Y, Oura T, Takeuchi M. Metabolic Abnormalities Following Tirzepatide Monotherapy in Japanese Patients with Type 2 Diabetes: A Phase 3 SURPASS J-mono Post Hoc Analysis. Diabetes Ther 2024; 15:649-661. [PMID: 38310163 PMCID: PMC10942919 DOI: 10.1007/s13300-024-01534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
INTRODUCTION The presence of metabolic abnormalities in patients with type 2 diabetes (T2D) increases the risk of cardiovascular disease and other comorbidities. This analysis compared the effects of tirzepatide (5, 10, and 15 mg) and dulaglutide 0.75 mg on the prevalence of metabolic abnormalities in Japanese patients with T2D. METHODS This was a post hoc analysis of SURPASS J-mono, a multicenter, randomized, double-blind, active-controlled, parallel-group, phase 3 trial that compared the efficacy and safety of tirzepatide monotherapy (5, 10, and 15 mg) to dulaglutide 0.75 mg in Japanese patients with T2D. Thresholds for abnormalities were based on the Japanese criteria for metabolic syndrome. Proportions of participants meeting a composite endpoint (visceral fat accumulation measured by waist circumference plus two or more of dyslipidemia, hypertension, or hyperglycemia) or individual component thresholds were calculated at baseline and week 52 for the overall population and for baseline body mass index (BMI) subgroups (< 25, 25 to < 30, and ≥ 30 kg/m2). RESULTS Of 636 randomized participants, 431 (67.8%) met the composite endpoint at baseline, with similar findings observed across treatment arms. At week 52, the proportion of participants on treatment that met the composite endpoint was 31.7%, 23.0%, and 14.2% in the tirzepatide 5-, 10-, and 15-mg arms, respectively, and 56.5% in the dulaglutide arm (p < 0.001). A higher proportion met the composite endpoint at baseline in the BMI 25 to < 30 and ≥ 30 kg/m2 subgroups (73.2-79.3%) compared with the < 25 kg/m2 subgroup (45.3%), with reductions observed across all BMI subgroups treated with tirzepatide. The proportion of participants with individual metabolic abnormalities showed similar trends to those observed for the composite endpoint. Tirzepatide was consistently superior to dulaglutide across all assessments. CONCLUSIONS Tirzepatide reduced the prevalence of multiple metabolic abnormalities, indicating tirzepatide may have metabolic benefit in Japanese patients with T2D. TRIAL REGISTRATION ClinicalTrials.gov, NCT03861052.
Collapse
Affiliation(s)
- Yukiko Onishi
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Tomonori Oura
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K, Kobe, 651-0086, Japan
| | - Masakazu Takeuchi
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K, Kobe, 651-0086, Japan.
| |
Collapse
|
37
|
Abstract
Tirzepatide (Mounjaro®), a first-in-class dual incretin agonist of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptors, is approved for use as an adjunct to diet and exercise to improve glycaemic control in adults with type 2 diabetes mellitus (T2DM) in the USA, EU, Japan and other countries. It comes as single-dose prefilled pens and single-dose vials. In phase III SURPASS trials, once-weekly subcutaneous tirzepatide, as monotherapy or add-on-therapy to oral glucose-lowering medications and insulin, was superior to the GLP-1 receptor agonists (RAs) dulaglutide 0.75 mg and semaglutide 1 mg as well as basal and prandial insulin for glycaemic control and weight loss in adults with inadequately controlled T2DM. Tirzepatide was generally well tolerated, with a safety profile consistent with that of GLP-1 RAs. Tirzepatide was associated with a low risk of clinically significant or severe hypoglycaemia and no increased risk of major adverse cardiovascular events. Adverse events were mostly mild to moderate in severity, with the most common being gastrointestinal events including nausea, diarrhoea, decreased appetite and vomiting. In conclusion, tirzepatide is a valuable addition to the treatment options for T2DM.
Collapse
Affiliation(s)
- Nicole L France
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
38
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
39
|
Dissanayake HA, Somasundaram NP. Polyagonists in Type 2 Diabetes Management. Curr Diab Rep 2024; 24:1-12. [PMID: 38150106 DOI: 10.1007/s11892-023-01530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes the new developments in polyagonist pharmacotherapy for type 2 diabetes. RECENT FINDINGS Several dual- and triple-agonists targeting different pathogenic pathways of type 2 diabetes have entered clinical trials and have led to significant improvements in glycaemia, body weight, fatty liver, and cardio-renal risk factors, with variable adverse event profiles but no new serious safety concerns. Combining agents with complementary and synergistic mechanisms of action have enhanced efficacy and safety. Targeting multiple pathogenic pathways simultaneously has led to enhanced benefits which potentially match those of bariatric surgery. Tirzepatide, cotadutide, BI456906, ritatrutide, and CagriSema have entered phase 3 clinical trials. Outcomes from published clinical studies are reviewed. Efficacy-safety profiles are heterogeneous between agents, suggesting the potential application of precision medicine and need for personalized approach in pharmacological management of type 2 diabetes and obesity. Polyagonism has become a key strategy to address the complex pathogenesis of type 2 diabetes and co-morbidities and increasing number of agents are moving through clinical trials. Heterogeneity in efficacy-safety profiles calls for application of precision medicine and need for judicious personalization of care.
Collapse
Affiliation(s)
- H A Dissanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | |
Collapse
|
40
|
Seksaria S, Dutta BJ, Kaur M, Gupta GD, Bodakhe SH, Singh A. Role of GLP-1 Receptor Agonist in Diabetic Cardio-renal Disorder: Recent Updates of Clinical and Pre-clinical Evidence. Curr Diabetes Rev 2024; 20:e090823219597. [PMID: 37559236 DOI: 10.2174/1573399820666230809152148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Cardiovascular complications and renal disease is the growing cause of mortality in patients with diabetes. The subversive complications of diabetes such as hyperglycemia, hyperlipidemia and insulin resistance lead to an increase in the risk of myocardial infarction (MI), stroke, heart failure (HF) as well as chronic kidney disease (CKD). Among the commercially available anti-hyperglycemic agents, incretin-based medications appear to be safe and effective in the treatment of type 2 diabetes mellitus (T2DM) and associated cardiovascular and renal disease. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to be fruitful in reducing HbA1c, blood glucose, lipid profile, and body weight in diabetic patients. Several preclinical and clinical studies revealed the safety, efficacy, and preventive advantages of GLP-1RAs against diabetes- induced cardiovascular and kidney disease. Data from cardio-renal outcome trials had highlighted that GLP-1RAs protected people with established CKD from significant cardiovascular disease, lowered the likelihood of hospitalization for heart failure (HHF), and lowered all-cause mortality. They also had a positive effect on people with end-stage renal disease (ESRD) and CKD. Beside clinical outcomes, GLP-1RAs reduced oxidative stress, inflammation, fibrosis, and improved lipid profile pre-clinically in diabetic models of cardiomyopathy and nephropathy that demonstrated the cardio-protective and reno-protective effect of GLP-1RAs. In this review, we have focused on the recent clinical and preclinical outcomes of GLP-1RAs as cardio-protective and reno-protective agents as GLP-1RAs medications have been demonstrated to be more effective in treating T2DM and diabetes-induced cardiovascular and renal disease than currently available treatments in clinics, without inducing hypoglycemia or weight gain.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Malandighi, Durgapur 713212, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| |
Collapse
|
41
|
Nicholls SJ, Bhatt DL, Buse JB, Prato SD, Kahn SE, Lincoff AM, McGuire DK, Nauck MA, Nissen SE, Sattar N, Zinman B, Zoungas S, Basile J, Bartee A, Miller D, Nishiyama H, Pavo I, Weerakkody G, Wiese RJ, D'Alessio D. Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events in participants with type 2 diabetes and atherosclerotic cardiovascular disease: SURPASS-CVOT design and baseline characteristics. Am Heart J 2024; 267:1-11. [PMID: 37758044 DOI: 10.1016/j.ahj.2023.09.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Tirzepatide, a once-weekly GIP/GLP-1 receptor agonist, reduces blood glucose and body weight in people with type 2 diabetes. The cardiovascular (CV) safety and efficacy of tirzepatide have not been definitively assessed in a cardiovascular outcomes trial. METHODS Tirzepatide is being studied in a randomized, double-blind, active-controlled CV outcomes trial. People with type 2 diabetes aged ≥40 years, with established atherosclerotic CV disease, HbA1c ≥7% to ≤10.5%, and body mass index ≥25 kg/m2 were randomized 1:1 to once weekly subcutaneous injection of either tirzepatide up to 15 mg or dulaglutide 1.5 mg. The primary outcome is time to first occurrence of any major adverse cardiovascular event (MACE), defined as CV death, myocardial infarction, or stroke. The trial is event-driven and planned to continue until ≥1,615 participants experience an adjudication-confirmed component of MACE. The primary analysis is noninferiority for time to first MACE of tirzepatide vs dulaglutide by demonstrating an upper confidence limit <1.05, which will also confirm superiority vs a putative placebo, and also to determine whether tirzepatide produces a greater CV benefit than dulaglutide (superiority analysis). RESULTS Over 2 years, 13,299 people at 640 sites in 30 countries across all world regions were randomized. The mean age of randomized participants at baseline was 64.1 years, diabetes duration 14.7 years, HbA1c 8.4%, and BMI 32.6 kg/m2. Overall, 65.0% had coronary disease, of whom 47.3% reported prior myocardial infarction and 57.4% had prior coronary revascularization. 19.1% of participants had a prior stroke and 25.3% had peripheral artery disease. The trial is fully recruited and ongoing. CONCLUSION SURPASS-CVOT will provide definitive evidence as to the CV safety and efficacy of tirzepatide as compared with dulaglutide, a GLP-1 receptor agonist with established CV benefit.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Victorian Heart Institute, Monash University, VIC, Melbourne, Australia.
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY
| | - John B Buse
- University of North Carolina, Chapel Hill, NC
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Pisa, and Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA
| | - A Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research) and Department of Cardiovascular Medicine, Cleveland, OH
| | - Darren K McGuire
- University of Texas Southwestern Medical Center and Parkland Health and Hospital System, Dallas, TX
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Medicine I, St. Josef-Hospital, Katholisches Klinikum Bochum gGmbH, Ruhr University of Bochum, Bochum, Germany
| | - Steven E Nissen
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research) and Department of Cardiovascular Medicine, Cleveland, OH
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Bernard Zinman
- University of Toronto, Lunenfeld-Tanenbaum Research Institute and Mount Sinai Hospital, Toronto, ON, Canada
| | - Sophia Zoungas
- Victorian Heart Institute, Monash University, VIC, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, VIC, Melbourne, Australia
| | - Jan Basile
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC
| | | | | | | | - Imre Pavo
- Eli Lilly and Company, Indianapolis, IN
| | | | | | | |
Collapse
|
42
|
Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, Tang C, Yu P. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. Biofactors 2024; 50:33-57. [PMID: 37646383 DOI: 10.1002/biof.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.
Collapse
Affiliation(s)
- Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangnan Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
43
|
Abstract
Glucagon-like peptide-1 receptor analogs (GLP-1 RAs) have been an innovative and instrumental drug class in the management of both type 2 diabetes and obesity. Tirzepatide is a novel agent that acts as an agonist for both GLP-1 receptors and gastric inhibitory polypeptide (GIP) receptors, another incretin that lowers glucose and appetite. Although previous studies showed a lack of therapeutic benefit for GIP agonists, current studies show that the glucose lowering and weight loss effects of tirzepatide are at least as effective as GLP-1 RAs with a similar adverse effect profile. Some studies, though not conclusive, predict that tirzepatide may in fact be more potent than GLP-1 RAs at reducing weight. A thorough review of the studies that led to tirzepatide's approval allows for comparisons between tirzepatide and GLP-1 RAs; it also allows for predictions of tirzepatide's eventual place in therapy - an agent used preferentially over GLP-1 RAs in patients with or without diabetes desiring to lose weight.
Collapse
Affiliation(s)
- John Andraos
- College of Pharmacy, Western University of Health Sciences, 91766, Pomona, CA, USA.
| | | | - Shawn R Smith
- College of Pharmacy, Western University of Health Sciences, 91766, Pomona, CA, USA
| |
Collapse
|
44
|
Goldenberg RM, Teoh H, Verma S. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide receptor co-agonists for cardioprotection, type 2 diabetes and obesity: a review of mechanisms and clinical data. Curr Opin Cardiol 2023; 38:539-545. [PMID: 37792556 DOI: 10.1097/hco.0000000000001084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
PURPOSE OF REVIEW Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are approved for the management of type 2 diabetes (T2D) and obesity, and some are recommended for cardiorenal risk reduction in T2D. To enhance the benefits with GLP-RA mono-agonist therapy, GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor co-agonists are in development to capitalize on the synergism of GLP-1 and GIP agonism. We review the mechanisms of action and clinical data for GLP-1/GIP receptor co-agonists in T2D and obesity and their potential role in cardiovascular protection. RECENT FINDINGS Tirzepatide, a first-in-class unimolecular GLP-1/GIP receptor co-agonist, is approved for T2D and is awaiting approval for obesity management. Phase 3 trials in T2D cohorts revealed significant reductions in glycemia and body weight and superiority compared with GLP-1R mono-agonism with semaglutide. Tirzepatide has demonstrated significant body weight reductions in individuals with obesity but not diabetes. It enhances lipid metabolism, reduces blood pressure, and lowers liver fat content. Pooled phase 2/3 data showed cardiovascular safety in T2D while a post hoc analysis suggested tirzepatide slows the decline of kidney function in T2D. SUMMARY GLP-1/GIP receptor co-agonists are a novel addition to the diabetes and obesity armamentarium. The cardiorenal-metabolic benefits position them as promising multiprong tools for metabolically complex individuals with chronic vascular complications.
Collapse
Affiliation(s)
| | - Hwee Teoh
- Division of Cardiac Surgery
- Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute of St Michael's Hospital-Unity Health Toronto
| | - Subodh Verma
- Division of Cardiac Surgery
- Department of Surgery
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Zeng Q, Xu J, Mu X, Shi Y, Fan H, Li S. Safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes and obesity: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1214334. [PMID: 37908750 PMCID: PMC10613702 DOI: 10.3389/fendo.2023.1214334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose A systematic review and meta-analysis was conducted to synthesize the available data from clinical trials and assess the safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes (T2D) and obesity. Methods A systematic search was conducted in three electronic databases, namely Embase, PubMed, and the Cochrane Library, up until March 1, 2023, to identify randomized controlled trials (RCTs) comparing tirzepatide to either placebo or active hypoglycemic drugs in individuals with T2D and obesity. Heterogeneity was assessed using the I2 value and Cochran's Q test, and a fixed effects model was employed to estimate the safety profile of tirzepatide. The safety outcomes of interest, including pancreatitis, the composite of gallbladder or biliary diseases, cholecystitis, and cholelithiasis and biliary diseases, were evaluated. (The composite of gallbladder or biliary diseases incorporated cholelithiasis, cholecystitis, other gallbladder disorders, and biliary diseases.). Results A total of nine trials with 9871 participants (6828 in the tirzepatide group and 3043 in the control group) that met the pre-specified criteria were included. When compared to all control groups consisting of basal insulin (glargine or degludec), selective GLP1-RA (dulaglutide or semaglutide once weekly), and placebo, an increased risk of pancreatitis was not found to be significantly associated with tirzepatide (RR 1.46, [95% CI] 0.59 to 3.61; I2 = 0.0%, p = 0.436). For gallbladder or biliary disease, the composite of gallbladder or biliary disease was significantly associated with tirzepatide compared with placebo or basal insulin (RR 1.97, [95% CI] 1.14 to 3.42; I2 = 0.0%, p = 0.558), but not with the risk of cholelithiasis, cholecystitis or biliary diseases. Conclusion Based on the currently available data, tirzepatide appears to be safe regarding the risk of pancreatitis. However, the increased risk of the composite outcome of gallbladder or biliary diseases observed in RCTs warrants further attention from physicians in clinical practice. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023412400.
Collapse
Affiliation(s)
- Qingyue Zeng
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Xu
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyu Mu
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shi
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Cho YK, La Lee Y, Jung CH. The Cardiovascular Effect of Tirzepatide: A Glucagon-Like Peptide-1 and Glucose-Dependent Insulinotropic Polypeptide Dual Agonist. J Lipid Atheroscler 2023; 12:213-222. [PMID: 37800107 PMCID: PMC10548186 DOI: 10.12997/jla.2023.12.3.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 10/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists have been used extensively in the clinic and have an established safety profile in cardiovascular disease settings. For the treatment of peptide-secreting enteroendocrine cells, most research has focused on developing peptide multi-agonists as most of these cells are multihormonal. Among the various peptides secreted by enteroendocrine cells, the combination of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) is an attractive strategy for treating type 2 diabetes mellitus (T2DM) because both of these hormones have glucose-lowering actions. Tirzepatide, a synthetic peptide composed of 39 amino acids, functions as a dual receptor agonist of both the GIP and GLP-1 receptors. This unique mechanism of action has earned tirzepatide the nickname "twincretin." Tirzepatide's dual agonist activity may be the mechanism by which tirzepatide significantly reduces glycated hemoglobin levels and body weight in patients with T2DM as observed in phase 3 clinical trials. Besides its glucose-lowering and anti-obesity effects, tirzepatide has been reported to have potential cardiovascular benefits. In this review, we discuss the cardiovascular effects of tirzepatide based on the available preclinical and clinical data.
Collapse
Affiliation(s)
- Yun Kyung Cho
- Department of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Yoo La Lee
- Asan Institute of Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Hee Jung
- Department of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| |
Collapse
|
47
|
Rohani P, Malekpour Alamdari N, Bagheri SE, Hekmatdoost A, Sohouli MH. The effects of subcutaneous Tirzepatide on obesity and overweight: a systematic review and meta-regression analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2023; 14:1230206. [PMID: 37621649 PMCID: PMC10446893 DOI: 10.3389/fendo.2023.1230206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Background Despite the fact that obesity and overweight are serious major health problems worldwide, fighting against them is also considered a challenging issue. Several interventional studies have evaluated the potential weight-reduction effect of Tirzepatide. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of subcutaneous Tirzepatide on obesity and overweight. Methods Scopus, PubMed/Medline, Web of Science, Cochrane, and Embase databases were searched using standard keywords to identify all controlled trials investigating the weight loss effects of Tirzepatide. Pooled weighted mean difference and 95% confidence intervals were achieved by random-effects model analysis for the best estimation of outcomes. The statistical heterogeneity and publication bias were determined using the Cochran's Q test and I2 statistics and using the funnel plot and Egger's test, respectively. Results Twenty three treatments arm with 7062 participants' were included in this systematic review and meta-regression analysis. The pooled findings showed that Tirzepatide vs placebo significantly reduced body weight (weighted mean difference (WMD): -11.34 kg, 95% confidence interval (CI): -12.79 to -9.88, P< 0.001), body mass index (BMI) (WMD: -3.11 kg/m2, 95% CI: -4.36 to -1.86, P< 0.001), and waist circumference (WC) (WMD: -7.24 cm, 95% CI -10.12 to -4.36, P< 0.001). These reductions were even greater, especially with higher doses and duration of Tirzepatide. Conclusions Tirzepatide medication had significant effects on weight management with the reduction of body weight, BMI, and WC. Administration of Tirzepatide can be considered a therapeutic strategy for overweight or obese people.
Collapse
Affiliation(s)
- Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- Department of General Surgery, School of Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Commitee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Marassi M, Fadini GP. The cardio-renal-metabolic connection: a review of the evidence. Cardiovasc Diabetol 2023; 22:195. [PMID: 37525273 PMCID: PMC10391899 DOI: 10.1186/s12933-023-01937-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Type 2 diabetes (T2D), cardiovascular disease (CVD) and chronic kidney disease (CKD), are recognized among the most disruptive public health issues of the current century. A large body of evidence from epidemiological and clinical research supports the existence of a strong interconnection between these conditions, such that the unifying term cardio-metabolic-renal (CMR) disease has been defined. This coexistence has remarkable epidemiological, pathophysiologic, and prognostic implications. The mechanisms of hyperglycemia-induced damage to the cardio-renal system are well validated, as are those that tie cardiac and renal disease together. Yet, it remains controversial how and to what extent CVD and CKD can promote metabolic dysregulation. The aim of this review is to recapitulate the epidemiology of the CMR connections; to discuss the well-established, as well as the putative and emerging mechanisms implicated in the interplay among these three entities; and to provide a pathophysiological background for an integrated therapeutic intervention aiming at interrupting this vicious crosstalks.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Gian Paolo Fadini
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy.
| |
Collapse
|
49
|
Nogueiras R, Nauck MA, Tschöp MH. Gut hormone co-agonists for the treatment of obesity: from bench to bedside. Nat Metab 2023:10.1038/s42255-023-00812-z. [PMID: 37308724 DOI: 10.1038/s42255-023-00812-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
The discovery and development of so-called gut hormone co-agonists as a new class of drugs for the treatment of diabetes and obesity is considered a transformative breakthrough in the field. Combining action profiles of multiple gastrointestinal hormones within a single molecule, these novel therapeutics achieve synergistic metabolic benefits. The first such compound, reported in 2009, was based on balanced co-agonism at glucagon and glucagon-like peptide-1 (GLP-1) receptors. Today, several classes of gut hormone co-agonists are in development and advancing through clinical trials, including dual GLP-1-glucose-dependent insulinotropic polypeptide (GIP) co-agonists (first described in 2013), and triple GIP-GLP-1-glucagon co-agonists (initially designed in 2015). The GLP-1-GIP co-agonist tirzepatide was approved in 2022 by the US Food and Drug Administration for the treatment of type 2 diabetes, providing superior HbA1c reductions compared to basal insulin or selective GLP-1 receptor agonists. Tirzepatide also achieved unprecedented weight loss of up to 22.5%-similar to results achieved with some types of bariatric surgery-in non-diabetic individuals with obesity. In this Perspective, we summarize the discovery, development, mechanisms of action and clinical efficacy of the different types of gut hormone co-agonists, and discuss potential challenges, limitations and future developments.
Collapse
Affiliation(s)
- Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galicia Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Medical Department I, St. Josef-Hospital, Katholisches Klinikum Bochum, Ruhr University of Bochum, Bochum, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany.
| |
Collapse
|
50
|
Pandey S, Mangmool S, Parichatikanond W. Multifaceted Roles of GLP-1 and Its Analogs: A Review on Molecular Mechanisms with a Cardiotherapeutic Perspective. Pharmaceuticals (Basel) 2023; 16:836. [PMID: 37375783 DOI: 10.3390/ph16060836] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes is one of the chronic metabolic disorders which poses a multitude of life-debilitating challenges, including cardiac muscle impairment, which eventually results in heart failure. The incretin hormone glucagon-like peptide-1 (GLP-1) has gained distinct recognition in reinstating glucose homeostasis in diabetes, while it is now largely accepted that it has an array of biological effects in the body. Several lines of evidence have revealed that GLP-1 and its analogs possess cardioprotective effects by various mechanisms related to cardiac contractility, myocardial glucose uptake, cardiac oxidative stress and ischemia/reperfusion injury, and mitochondrial homeostasis. Upon binding to GLP-1 receptor (GLP-1R), GLP-1 and its analogs exert their effects via adenylyl cyclase-mediated cAMP elevation and subsequent activation of cAMP-dependent protein kinase(s) which stimulates the insulin release in conjunction with enhanced Ca2+ and ATP levels. Recent findings have suggested additional downstream molecular pathways stirred by long-term exposure of GLP-1 analogs, which pave the way for the development of potential therapeutic molecules with longer lasting beneficial effects against diabetic cardiomyopathies. This review provides a comprehensive overview of the recent advances in the understanding of the GLP-1R-dependent and -independent actions of GLP-1 and its analogs in the protection against cardiomyopathies.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|