1
|
Varlamova EG, Gudkov SV, Blinova EV, Blinov DS, Turovsky EA. Anticancer signal transduction pathways of selenium nanoparticles in mouse colorectal cancer model. Biochem Biophys Res Commun 2025; 769:151962. [PMID: 40347624 DOI: 10.1016/j.bbrc.2025.151962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Despite significant advances in the treatment of colon cancer, this disease is extremely common, often requiring serious surgery followed by long-term drug treatment. Colon and rectal cancer remain dangerous forms of cancer due to the high degree of metastasis. The development and study of the effectiveness of anticancer drugs based on nanoparticles is an urgent task of modern biomedicine. Of particular interest are attempts to move research from the in vitro level to the in vivo level of preclinical studies. In the presented study, mice were subcutaneously implanted with MC-38 cell line, a tumor was grown, and selenium nanoparticles (SeNPs) with a diameter of 100 nm obtained using the laser ablation method were administered intraperitoneally. Using morphometric measurements, it was found that injections of 1 μg/g or 10 μg/g SeNPs inhibited weight loss of mice during cancer development, reduced tumor size by 2-2.5 times, and suppressed metastasis by 1.5-3 times. Analysis of selenium levels in mouse blood, liver and tumor samples by atomic absorption spectrometry after the end of SeNPs treatment showed that the nanoparticles increased selenium levels in the blood and liver of mice without a significant dose-dependence, whereas in tumors a dose-dependent increase in selenium concentration was detected from the concentration of nanoparticles, with 10 μg/g SeNPs causing a more pronounced increase in selenium concentration. Using PCR and Western blot analysis, it was possible to establish that SeNPs injections led to an increase in the expression of genes encoding anti-inflammatory and anti-hypoxic proteins, but reduced the expression of antioxidant selenium-containing proteins and proteins responsible for the proliferation of cancer cells. Both concentrations of SeNPs led to similar effects, but increasing the concentration of nanoselenium to 10 μg/g affected the expression of a larger number of genes and the effects on expression were more "bright". Thus, the complex of presented experiments showed that injections of selenium nanoparticles in concentrations of 1 μg/g or 10 μg/g are capable to transport by the bloodstream and accumulating in the highest concentration in colon adenocarcinoma, compared with liver, which indicates the targeting of SeNPs in relation to tumors even without functionalization by specific molecules. As a result, there was a change in the expression patterns of genes and a number of proteins, and as a result, there was a decrease in tumor volume, normalization of mouse weight and maintenance of positive dynamics throughout the entire observation period.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia
| | | | - Dmitrii S Blinov
- All-Union Research Center for Biological Active Compounds Safety, 23 Kirova St., 142450, StarajaKupavna, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
2
|
Cianci R, Caldarelli M, Brani P, Bosi A, Ponti A, Giaroni C, Baj A. Cytokines Meet Phages: A Revolutionary Pathway to Modulating Immunity and Microbial Balance. Biomedicines 2025; 13:1202. [PMID: 40427029 DOI: 10.3390/biomedicines13051202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Bacteriophages are a unique and fascinating group of viruses, known for their highly specific ability to infect and replicate within bacterial cells. While their potential as antibacterial agents has been recognized for decades, recent research has revealed complex interactions between phages and the human immune system, offering new insights into their role in immune modulation. New evidence reveals a dynamic and intricate relationship between phages and cytokines, suggesting their ability to regulate inflammation, immune tolerance, and host-pathogen interaction. Herein, we review how phages affect the production of cytokines and the behavior of immune cells indirectly by lysis of bacterium or directly on mammalian cells. Phages have been shown to induce both pro- and anti-inflammatory responses and recently, they have been explored in personalized immunotherapy, cancer immunotherapy, and microbiome modulation, which are the focus of this review. Several challenges remain despite significant progress, including practical obstructions related to endotoxins along with host microbiome variability and regulatory issues. Nevertheless, the potential of bacteriophages to modulate immune responses makes them attractive candidates for the future of precision medicine.
Collapse
Affiliation(s)
- Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Paola Brani
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Alessandra Ponti
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| |
Collapse
|
3
|
Barrios D, Bachhav B, Carlos-Alcalde W, Llanos CD, Zhou W, Segatori L. Feedback-responsive cell factories for dynamic modulation of the unfolded protein response. Nat Commun 2025; 16:4106. [PMID: 40316547 PMCID: PMC12048557 DOI: 10.1038/s41467-025-58994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
Abstract
Engineering cell factories that support the production of large quantities of protein therapeutics remains a significant biomanufacturing challenge. The overexpression of secretory proteins causes proteotoxic stress, affecting cell viability and protein productivity. Proteotoxic stress leads to the activation of the Unfolded Protein Response (UPR), a series of signal transduction pathways regulating protein quality control mechanisms aimed at restoring homeostasis. Sustained UPR activation culminates with the induction of apoptosis. Current strategies for enhancing the production of therapeutic proteins have focused on the deregulated modulation of key components of the UPR. These strategies have resulted in limited and often protein-specific improvements as they may lead to adaptation and cell toxicity and do not account for natural population heterogeneities. We report here feedback-responsive cell factories that sense proteotoxic stress and, in response, modulate the UPR to enhance stress attenuation and delay cell death, addressing the limitations of current strategies. We demonstrate that our cell engineering approach enables dynamic UPR modulation upon proteotoxic stress. The sense-and-respond systems that mediate dynamic UPR modulation enhance the production of the therapeutic enzyme tissue plasminogen activator and the bispecific antibody blinatumomab. Our feedback-responsive cell factories provide an innovative strategy for dynamically adjusting the innate cellular stress response and enhancing therapeutic protein manufacturing.
Collapse
Affiliation(s)
- Daniela Barrios
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Bhagyashree Bachhav
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | | | - Carlos D Llanos
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Wenchang Zhou
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Laura Segatori
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Lopez-Nieto M, Sun Z, Relton E, Safakli R, Freibaum BD, Taylor JP, Ruggieri A, Smyrnias I, Locker N. Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. J Cell Sci 2025; 138:jcs263548. [PMID: 39463355 DOI: 10.1242/jcs.263548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
To rapidly adapt to harmful changes to their environment, cells activate the integrated stress response (ISR). This results in an adaptive transcriptional and translational rewiring, and the formation of biomolecular condensates named stress granules (SGs), to resolve stress. In addition to this first line of defence, the mitochondrial unfolded protein response (UPRmt) activates a specific transcriptional programme to maintain mitochondrial homeostasis. We present evidence that the SG formation and UPRmt pathways are intertwined and communicate. UPRmt induction results in eIF2α phosphorylation and the initial and transient formation of SGs, which subsequently disassemble. The induction of GADD34 (also known as PPP1R15A) during late UPRmt protects cells from prolonged stress by impairing further assembly of SGs. Furthermore, mitochondrial functions and cellular survival are enhanced during UPRmt activation when SGs are absent, suggesting that UPRmt-induced SGs have an adverse effect on mitochondrial homeostasis. These findings point to a novel crosstalk between SGs and the UPRmt that might contribute to restoring mitochondrial functions under stressful conditions.
Collapse
Affiliation(s)
- Marta Lopez-Nieto
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Zhaozhi Sun
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Emily Relton
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Rahme Safakli
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Ioannis Smyrnias
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| |
Collapse
|
5
|
Chen B, Li T, Wu Y, Song L, Wang Y, Bian Y, Qiu Y, Yang Z. Lipotoxicity: A New Perspective in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2025; 18:1223-1237. [PMID: 40297768 PMCID: PMC12036605 DOI: 10.2147/dmso.s511436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Type 2 diabetes mellitus is a non-communicable metabolic disorder characterized by insulin resistance (IR) associated with defects in insulin production and secretion. Recent studies have shown that lipotoxicity, which is characterized by the abnormal accumulation of lipids in non-adipose tissues, leads to bodily dysfunction and metabolic disorders, thereby promoting the progression of T2DM. This process is mediated by the induction of endoplasmic reticulum (ER) stress, oxidative stress (OS), mitochondrial dysfunction, and inflammatory responses in pancreatic β-cells, ultimately leading to the activation of apoptosis pathways, which results in β-cell dysfunction and cell death. Furthermore, lipotoxicity interferes with insulin signaling pathways, which worsens IR. Current clinical approaches aimed at mitigating lipotoxicity-induced IR and β-cell dysfunction include the use of metformin, glucagon-like peptide-1 analogs, thiazolidinediones, and molecular chaperones, in addition to interventions such as caloric restriction and physical activity, which reduce fat accumulation in the pancreas and enhance β-cell function. Investigating the interplay between lipotoxicity and T2DM is essential for understanding the underlying disease mechanisms and providing new insights into prevention and therapeutic strategies. This review offers a comprehensive analysis of the mechanisms underlying lipotoxicity in T2DM, highlighting how these insights may drive future research and inform the development of novel treatment approaches.
Collapse
Affiliation(s)
- Biaohua Chen
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| | - Tiangang Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| | - Yingli Wu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| | - Liyun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| | - Yinying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| | - Yao Bian
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| | - Yong Qiu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, People’s Republic of China
- Engineering Research Center of Classic Formula Regulate Immunity in Chronic Disease Prevention and Treatment, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
6
|
Chen JJ. HRI protein kinase in cytoplasmic heme sensing and mitochondrial stress response: Relevance to hematological and mitochondrial diseases. J Biol Chem 2025; 301:108494. [PMID: 40209956 DOI: 10.1016/j.jbc.2025.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Most iron in humans is bound in heme used as a prosthetic group for hemoglobin. Heme-regulated inhibitor (HRI) is responsible for coordinating heme availability and protein synthesis. Originally characterized in rabbit reticulocyte lysates, HRI was shown in 1976 to phosphorylate the α-subunit of eukaryotic initiation factor 2, revealing a new molecular mechanism for regulating protein synthesis. Since then, HRI research has mostly been focused on the biochemistry of heme inhibition through direct binding and heme sensing in balancing heme and globin synthesis to prevent proteotoxicity in erythroid cells. Beyond inhibiting translation of highly translated mRNAs, eukaryotic initiation factor 2α phosphorylation also selectively increases translation of certain poorly translated mRNAs, notably activating transcription factor 4 mRNA, for reprogramming of gene expression to mitigate stress, known as the integrated stress response (ISR). In recent years, there have been novel mechanistic insights of HRI-ISR in oxidative stress, mitochondrial function, and erythroid differentiation during heme deficiency. Furthermore, HRI-ISR is activated upon mitochondrial stress in several cell types, establishing the bifunctional nature of HRI protein. The role of HRI and ISR in cancer development and vulnerability is also emerging. Excitingly, the UBR4 ubiquitin ligase complex has been demonstrated to silence the HRI-ISR by degradation of activated HRI proteins, suggesting additional regulatory processes. Together, these recent advancements indicate that the HRI-ISR mechanistic axis is a target for new therapies for hematological and mitochondrial diseases as well as oncology. This review covers the historical overview of HRI biology, the biochemical mechanisms of regulating HRI, and the biological impacts of the HRI-ISR pathway in human diseases.
Collapse
Affiliation(s)
- Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
7
|
Ng MY, Hagen T. A strategy for liver selective NRF2 induction via cytochrome P450-activated prodrugs with low activity in hypoxia. J Biol Chem 2025; 301:108487. [PMID: 40209947 DOI: 10.1016/j.jbc.2025.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Activation of the transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) has been shown to be a promising therapeutic approach in the treatment of hepatosteatosis. NRF2 is believed to exert beneficial effects by upregulating cellular oxidative defense mechanisms and inhibiting inflammation. However, a major concern associated with long-term treatment with NRF2 activators are drug side effects, including the promotion of tumorigenesis. Many NRF2 activators function by forming cysteine adducts with KEAP1, which normally mediates the ubiquitination and degradation of NRF2. In this study, we identified NRF2 activator prodrugs of 4-methylcatechol and tert-butylhydroquinone. These prodrugs are converted into their active metabolites in a liver selective, cytochrome P450-dependent manner and function by inhibiting KEAP1, resulting in NRF2 activation. Unexpectedly, we also found that a number of NRF2-activating compounds, including 4-methylcatechol and tert-butylhydroquinone, show a markedly lower activity under hypoxic conditions than normoxia. Our findings suggest that the lower activity of these NRF2 inducers is a consequence of less potent cysteine adduct formation with KEAP1. The lower activity of NRF2 inducing compounds in hypoxia may limit tumor promoting effects of NRF2 induction. Our study provides an important proof of concept that it is possible to selectively activate NRF2 in the liver for the treatment of hepatosteatosis while avoiding tumorigenic effects as well as side effects of NRF2 activation in other tissues.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Fang M, Luo L, Chen Y, Liu Y, Yan Y, Wang F, Zou Y, Zhu H, Wu X, Jin Z, Huang C, Zhang Y, Fan S. Perillaldehyde Improves Parkinson-Like Deficits by Targeting G3BP Mediated Stress Granule Assembly in Preclinical Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412152. [PMID: 39951026 PMCID: PMC11984871 DOI: 10.1002/advs.202412152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/27/2024] [Indexed: 04/12/2025]
Abstract
Stress granules (SGs) fulfill a pivotal role in host defense mechanisms, by sequestering both mRNA and protein via the process of liquid-liquid phase separation (LLPS). In this study, we showed that perillaldehyde (PAE), a natural occurring compound, bound directly to the core protein of SGs, Ras GTPase-activating protein-binding protein 1/2 (G3BP1/2), thereby inducing the assembly of SGs through the LLPS of G3BP/RNA complexes in vitro. Moreover, in Parkinson's disease (PD) models using Caenorhabditis elegans (C. elegans) and mice, PAE administration prompted SG formation, enhanced eIF2α phosphorylation, shielded dopaminergic neurons from toxic insults, mitigated α-synuclein (α-syn) aggregation, and improved PD-like motor disorders. In addition, these findings revealed that the interaction between G3BP1 and histone deacetylase 6 (HDAC6) inhibited the functions of cytoplasmic HDAC6 and reduced α-syn aggregation in cells and worms. Notably, the inhibition of SG assembly via gtbp-1 and tiar-1 RNAi effectively counteracted the beneficial effects of PAE in C. elegans. Collectively, these results imply that PAE may exert neuroprotective effects by targeting G3BP-mediated SG formation, thereby safeguarding dopaminergic neurons from toxic damage.
Collapse
Affiliation(s)
- Minglv Fang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Lingling Luo
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- The Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang330006China
| | - Youjia Chen
- College of Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Ying Liu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yingxuan Yan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Fei Wang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yan Zou
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Huanhu Zhu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xiaojun Wu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Zhigang Jin
- College of Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Cheng Huang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yu Zhang
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsNHC Key Lab of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200237China
| | - Shengjie Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
9
|
Peti W, Padi SKR, Page R. Combining cryo-electron microscopy (cryo-EM) with orthogonal solution state methods to define the molecular basis of the phosphoprotein phosphatase family regulation and substrate specificity. Curr Opin Struct Biol 2025; 91:102992. [PMID: 39951957 PMCID: PMC11885005 DOI: 10.1016/j.sbi.2025.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/17/2025]
Abstract
Protein phosphatases are dynamic enzymes that exhibit complex regulatory mechanisms, with disruptions in these regulatory processes associated with disease. It is now clear that many phosphatases assemble into large macromolecular complexes via the interaction of phosphatase-specific regulatory proteins and substrates containing short linear motifs (SLiMs) or short helical motifs (SHelMs). Here, we review how cryo-electron microscopy (cryo-EM) integrated with orthogonal methods to study dynamic protein-protein interactions (NMR spectroscopy, hydrogen-deuterium exchange mass spectrometry, among others) is leading to new discoveries about the mechanisms controlling phosphatase assembly, substrate recruitment and dephosphorylation and, in turn, are providing novel strategies for targeting phosphatase-related diseases. This review focuses on the recently determined structures and regulation of the phosphoprotein phosphatase (PPP) family of ser/thr phosphatases-PP1, PP2A, Calcineurin and PP5.
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA.
| | - Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA.
| |
Collapse
|
10
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Barny LA, Hermanson JN, Garcia SK, Stauffer PE, Plate L. Dissecting Branch-Specific Unfolded Protein Response Activation in Drug-Tolerant BRAF-Mutant Melanoma using Data-Independent Acquisition Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644425. [PMID: 40196682 PMCID: PMC11974750 DOI: 10.1101/2025.03.20.644425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cells rely on the Unfolded Protein Response (UPR) to maintain ER protein homeostasis (proteostasis) when faced with elevated levels of misfolded and aggregated proteins. The UPR is comprised of three main branches-ATF6, IRE1, and PERK-that coordinate the synthesis of proteins involved in folding, trafficking, and degradation of nascent proteins to restore ER function. Dysregulation of the UPR is linked to numerous diseases, including neurodegenerative disorders, cancer, and diabetes. Despite its importance, identifying UPR targets has been challenging due to their heterogeneous induction, which varies by cell type and tissue. Additionally, defining the magnitude and range of UPR-regulated genes is difficult because of intricate temporal regulation, feedback between UPR branches, and extensive cross-talk with other stress-signaling pathways. To comprehensively identify UPR-regulated proteins and determine their branch specificity, we developed a data-independent acquisition (DIA) liquid-chromatography mass spectrometry (LC-MS) pipeline. Our optimized workflow improved identifications of low-abundant UPR proteins and leveraged an automated SP3-based protocol on the Biomek i5 liquid handler for label-free peptide preparation. Using engineered stable cell lines that enable selective pharmacological activation of each UPR branch without triggering global UPR activation, we identified branch-specific UPR proteomic targets. These targets were subsequently applied to investigate proteomic changes in multiple patient-derived BRAF-mutant melanoma cell lines treated with a BRAF inhibitor (PLX4720, i.e., vemurafenib). Our findings revealed differential regulation of the XBP1s branch of the UPR in the BRAF-mutant melanoma cell lines after PLX4720 treatment, likely due to calcium activation, suggesting that the UPR plays a role as a non-genetic mechanism of drug tolerance in melanoma. In conclusion, the validated branch-specific UPR proteomic targets identified in this study provide a robust framework for investigating this pathway across different cell types, drug treatments, and disease conditions in a high-throughput manner.
Collapse
Affiliation(s)
- Lea A Barny
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Sarah K Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
| | - Philip E Stauffer
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Lars Plate
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232
| |
Collapse
|
12
|
Bravo-Jimenez MA, Sharma S, Karimi-Abdolrezaee S. The integrated stress response in neurodegenerative diseases. Mol Neurodegener 2025; 20:20. [PMID: 39972469 PMCID: PMC11837473 DOI: 10.1186/s13024-025-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
The integrated stress response (ISR) is a conserved network in eukaryotic cells that mediates adaptive responses to diverse stressors. The ISR pathway ensures cell survival and homeostasis by regulating protein synthesis in response to internal or external stresses. In recent years, the ISR has emerged as an important regulator of the central nervous system (CNS) development, homeostasis and pathology. Dysregulation of ISR signaling has been linked to several neurodegenerative diseases. Intriguingly, while acute ISR provide neuroprotection through the activation of cell survival mechanisms, prolonged ISR can promote neurodegeneration through protein misfolding, oxidative stress, and mitochondrial dysfunction. Understanding the molecular mechanisms and dynamics of the ISR in neurodegenerative diseases aids in the development of effective therapies. Here, we will provide a timely review on the cellular and molecular mechanisms of the ISR in neurodegenerative diseases. We will highlight the current knowledge on the dual role that ISR plays as a protective or disease worsening pathway and will discuss recent advances on the therapeutic approaches that have been developed to target ISR activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Astrid Bravo-Jimenez
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Shivangi Sharma
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
13
|
Falcón P, Brito Á, Escandón M, Roa JF, Martínez NW, Tapia-Godoy A, Farfán P, Matus S. GCN2-Mediated eIF2α Phosphorylation Is Required for Central Nervous System Remyelination. Int J Mol Sci 2025; 26:1626. [PMID: 40004088 PMCID: PMC11855834 DOI: 10.3390/ijms26041626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Under conditions of amino acid deficiency, mammalian cells activate a nutrient-sensing kinase known as general control nonderepressible 2 (GCN2). The activation of GCN2 results in the phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α), which can be phosphorylated by three other three integrated stress response (ISR) kinases, reducing overall protein synthesis. GCN2 activation also promotes the translation of specific mRNAs, some of which encode transcription factors that enhance the transcription of genes involved in the synthesis, transport, and metabolism of amino acids to restore cellular homeostasis. The phosphorylation of eIF2α has been shown to protect oligodendrocytes, the cells responsible for producing myelin in the central nervous system during remyelination. Here, we explore the potential role of the kinase GCN2 in the myelination process. We challenged mice deficient in the GCN2-encoding gene with a pharmacological demyelinating stimulus (cuprizone) and evaluated the recovery of myelin as well as ISR activation through the levels of eIF2α phosphorylation. Our findings indicate that GCN2 controls the establishment of myelin by fine-tuning its abundance and morphology in the central nervous system. We also found that GCN2 is essential for remyelination. Surprisingly, we discovered that GCN2 is necessary to maintain eIF2α levels during remyelination.
Collapse
Affiliation(s)
- Paulina Falcón
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
| | - Álvaro Brito
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
| | - Marcela Escandón
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Ph.D. “Program in Cell Biology and Biomedicine”, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Juan Francisco Roa
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Ph.D. “Program in Cell Biology and Biomedicine”, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Nicolas W. Martínez
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Ariel Tapia-Godoy
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
| | - Pamela Farfán
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
| | - Soledad Matus
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| |
Collapse
|
14
|
Li Z, Qin F, Liu C, Zhao Z, Wu H, Li J, Zhang Z, Qin Q. Alleviating heat stress-induced immune organ damage in ducks: Role of melittin. Trop Anim Health Prod 2025; 57:57. [PMID: 39939510 DOI: 10.1007/s11250-025-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Heat stress, one of the major challenges facing the global livestock industry, can adversely affect the immune system. The present study explored the mechanisms by which melittin alleviates heat stress-induced immune organ damage. Three hundred 20-day-old male Huainan sheldrakes were randomly assigned to four groups: heat stress group (basal diet), heat stress + melittin group (I, II, III group, basal diet + 0.08, 0.12, 0.16 g/kg melittin, respectively). The ducks were subjected to heat stress for 4 h per day (temperature 36-38 °C, relative humidity 60-70%) for 15 consecutive days. The results showed that compared with the heat-stress group, melittin improved the production performance of heat-stressed ducks, significantly increased serum immune indices (immunoglobulin G and interferon-gamma) and antioxidant indices (total antioxidant capacity, superoxide dismutase (SOD), and glutathione) (P < 0.05), and significantly decreased malondialdehyde (MDA) levels (P < 0.05). Additionally, melittin increased antioxidant function (nuclear factor-erythroid 2 p45-related factor 2, glutathione peroxidase, SOD, and catalase), and immune index (interleukin-10). Meanwhile, melittin significantly reduced immune indices (inducible nitric oxide synthase and cyclooxygenase-2), heat shock protein 70 expression, and apoptosis levels (P < 0.05) in heat-stressed ducks. Consequently, supplementing heat-stressed ducks with 0.12 g/kg melittin increases serum immune function and antioxidants, alleviate heat stress-induced immune organ damage, and improve growth performance.
Collapse
Affiliation(s)
- Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Feng Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Chang Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Zhimin Zhao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Jianzhu Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China.
| |
Collapse
|
15
|
Mazzolini L, Touriol C. PERK-Olating Through Cancer: A Brew of Cellular Decisions. Biomolecules 2025; 15:248. [PMID: 40001551 PMCID: PMC11852789 DOI: 10.3390/biom15020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced during the unfolded protein response (UPR), which is triggered, in particular, in tumor cells that constitutively experience various intracellular and extracellular stresses that impair protein folding within the ER. PERK activation can lead to both pro-survival and proapoptotic outcomes, depending on the cellular context and the extent of ER stress. It helps the reprogramming of the gene expression in cancer cells, thereby ensuring survival in the face of oncogenic stress, such as replicative stress and DNA damage, and also microenvironmental challenges, including hypoxia, angiogenesis, and metastasis. Consequently, PERK contributes to tumor initiation, transformation, adaptation to the microenvironment, and chemoresistance. However, sustained PERK activation in cells can also impair cell proliferation and promote apoptotic death by various interconnected processes, including mitochondrial dysfunction, translational inhibition, the accumulation of various cellular stresses, and the specific induction of multifunctional proapoptotic factors, such as CHOP. The dual role of PERK in promoting both tumor progression and suppression makes it a complex target for therapeutic interventions. A comprehensive understanding of the intricacies of PERK pathway activation and their impact is essential for the development of effective therapeutic strategies, particularly in diseases like cancer, where the ER stress response is deregulated in most, if not all, of the solid and liquid tumors. This article provides an overview of the knowledge acquired from the study of animal models of cancer and tumor cell lines cultured in vitro on PERK's intracellular functions and their impact on cancer cells and their microenvironment, thus highlighting potential new therapeutic avenues that could target this protein.
Collapse
|
16
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
17
|
Wu X, Gu R, Tang M, Mu X, He W, Nie X. Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: implications for therapeutic intervention. BURNS & TRAUMA 2025; 13:tkae061. [PMID: 39845196 PMCID: PMC11752647 DOI: 10.1093/burnst/tkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Wound healing is a complex and multistep biological process that involves the cooperation of various cell types. Programmed cell death, including apoptosis and necrotizing apoptosis, plays a crucial role in this process. Apoptosis, a controlled and orderly programmed cell death regulated by genes, helps eliminate unnecessary or abnormal cells and maintain internal environmental stability. It also regulates various cell functions and contributes to the development of many diseases. In wound healing, programmed cell death is essential for removing inflammatory cells and forming scars. On the other hand, necroptosis, another form of programmed cell death, has not been thoroughly investigated regarding its role in wound healing. This review explores the changes and apoptosis of specific cell groups during wound healing after an injury and delves into the potential underlying mechanisms. Furthermore, it briefly discusses the possible mechanisms linking wound inflammation and fibrosis to apoptosis in wound healing. By understanding the relationship between apoptosis and wound healing and investigating the molecular mechanisms involved in apoptosis regulation, new strategies for the clinical treatment of wound healing may be discovered.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
18
|
Renner DM, Parenti NA, Bracci N, Weiss SR. Betacoronaviruses Differentially Activate the Integrated Stress Response to Optimize Viral Replication in Lung-Derived Cell Lines. Viruses 2025; 17:120. [PMID: 39861909 PMCID: PMC11769277 DOI: 10.3390/v17010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize viral replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of growth arrest and DNA damage-inducible protein (GADD34) expression, an inducible protein phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, constitutive repressor of eIF2α phosphorylation (CReP), dramatically reduced HCoV-OC43 replication. Combining GADD34 knockout with CReP knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation.
Collapse
Affiliation(s)
- David M. Renner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas A. Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Bracci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Liu Y, Xia F, Zhu C, Song J, Tang B, Zhang B, Huang Z. Protein serine/threonine phosphatases in tumor microenvironment: a vital player and a promising therapeutic target. Theranostics 2025; 15:1164-1184. [PMID: 39776803 PMCID: PMC11700861 DOI: 10.7150/thno.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear. Decoding the pathological features of the TME is urgently needed to understand the tumor ecosystem and develop novel antitumor treatments. Protein serine/threonine phosphatases (PSPs) are responsible for inverse protein phosphorylation processes. Aberrant expression and dysfunction of PSPs disturb cellular homeostasis, reprogram metabolic processes and reshape the immune landscape, thereby contributing to cancer progression. Some therapeutic implications, such as the use of PSPs as targets, have drawn the attention of researchers and clinicians. To date, the effects of PSP inhibitors are less satisfactory in real-world practice. With breakthroughs in sequencing technologies, scientists can decipher TME investigations via multiomics and higher resolution. These benefits provide an opportunity to explore the TME in a more comprehensive manner and inspire more findings concerning PSPs in the TME. The current review starts by introducing the canonical knowledge of PSPs, including their members, structures and posttranslational modifications for activities. We then summarize the functions of PSPs in regulating cellular homeostasis. In particular, we specified the up-to-date roles of PSPs in modulating the immune microenvironment, adopting hypoxia, reprogramming metabolic processes, and responding to extracellular matrix remodeling. Finally, we introduce preclinical PSP inhibitors with translational value and conclude with clinical trials of PSP inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
21
|
Takaoka M, Tadross JA, Al-Hadithi ABAK, Zhao X, Villena-Gutiérrez R, Tromp J, Absar S, Au M, Harrison J, Coll AP, Marciniak SJ, Rimmington D, Oliver E, Ibáñez B, Voors AA, O’Rahilly S, Mallat Z, Goodall JC. GDF15 antagonism limits severe heart failure and prevents cardiac cachexia. Cardiovasc Res 2024; 120:2249-2260. [PMID: 39312445 PMCID: PMC11687397 DOI: 10.1093/cvr/cvae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
AIMS Heart failure and associated cachexia is an unresolved and important problem. This study aimed to determine the factors that contribute to cardiac cachexia in a new model of heart failure in mice that lack the integrated stress response (ISR) induced eIF2α phosphatase, PPP1R15A. METHODS AND RESULTS Mice were irradiated and reconstituted with bone marrow cells. Mice lacking functional PPP1R15A, exhibited dilated cardiomyopathy and severe weight loss following irradiation, whilst wild-type mice were unaffected. This was associated with increased expression of Gdf15 in the heart and increased levels of GDF15 in circulation. We provide evidence that the blockade of GDF15 activity prevents cachexia and slows the progression of heart failure. We also show the relevance of GDF15 to lean mass and protein intake in patients with heart failure. CONCLUSION Our data suggest that cardiac stress mediates a GDF15-dependent pathway that drives weight loss and worsens cardiac function. Blockade of GDF15 could constitute a novel therapeutic option to limit cardiac cachexia and improve clinical outcomes in patients with severe systolic heart failure.
Collapse
Affiliation(s)
- Minoru Takaoka
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John A Tadross
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
- Department of Histopathology, East Midlands & East of England Genomic Laboratory, Cambridge, UK
| | - Ali B A K Al-Hadithi
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Xiaohui Zhao
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Jasper Tromp
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
- Saw Swee Hock School of Public Health, National University of Singapore & the National University Health System, Singapore
| | - Shazia Absar
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marcus Au
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James Harrison
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anthony P Coll
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Debra Rimmington
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Hospital Fundacion Jimenez Diaz, Madrid, Spain
| | - Adriaan A Voors
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Stephen O’Rahilly
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM UMRS 970, Paris, France
| | - Jane C Goodall
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Yassin O, Praveen B, Darawshi O, LaFramboise T, Shmuel M, Pattanayak SP, Law BK, Hatzoglou M, Tirosh B. Opposing regulation of endoplasmic reticulum retention under stress by ERp44 and PDIA6. Biochem J 2024; 481:1921-1935. [PMID: 39621446 DOI: 10.1042/bcj20240444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Conditions of endoplasmic reticulum (ER) stress reduce protein synthesis by provoking translation regulation, governed by the eIF2α kinase PERK. When PERK is inhibited during ER stress, retention of a selective subset of glycoproteins occurs, a phenomenon we termed selective ER retention (sERr). sERr clients are enriched with tyrosine kinase receptors (RTKs), which form large molecular weight disulfide bonded complexes in the ER. The protein disulfide isomerase ERp44 promotes sERr and increases the size of sERr complexes. Here we show that sERr is reversible upon washout. Pulse chase analyses show that upon recovery, only a small fraction of the sERr complexes disintegrates and contributes to the matured proteins, while most are newly synthesized. Sequential inductions of sERr and washouts demonstrate an accelerated recovery that is dependent on the unfolded protein response transducer IRE1. Since IRE1 regulates the expression level PDIA6, we analyzed its contribution to sERr. We found that PDIA6 and ERp44 constitutively interact by disulfides and have opposite effects on resumed recovery of trafficking following removal of sERr conditions. Deletion of ERp44 accelerates, while deletion of PDIA6 slows down recovery with a minimal effect on total protein synthesis. ERp44 is a primary interactor with sERr clients. When missing, PDIA6 partitions more into sERr complexes. Deletion of the tumor suppressor PTEN, which induces RTK signaling, promoted sERr formation kinetics, and accelerated the recovery, suggesting feedback between RTKs signaling and sERr. This study suggests that sERr, should develop physiologically or pathologically, is counteracted by adaptation responses that involve IRE1 and PDIA6.
Collapse
Affiliation(s)
- Olaya Yassin
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bellam Praveen
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Odai Darawshi
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Miriam Shmuel
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shakti P Pattanayak
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, U.S.A
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| |
Collapse
|
23
|
Schultz A, Albertos-Arranz H, Sáez XS, Morgan J, Darland DC, Gonzalez-Duarte A, Kaufmann H, Mendoza-Santiesteban CE, Cuenca N, Lefcort F. Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy. Glia 2024; 72:2268-2294. [PMID: 39228100 DOI: 10.1002/glia.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Henar Albertos-Arranz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jamie Morgan
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | | | - Horacio Kaufmann
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Carlos E Mendoza-Santiesteban
- Department of Neurology, NYU Langone Health, New York, New York, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
24
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
25
|
Lu Y, Zhou J, Wang H, Gao H, Ning E, Shao Z, Hao Y, Yang X. Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: From molecular mechanisms to therapeutic applications. Cell Stress Chaperones 2024; 29:805-830. [PMID: 39571722 DOI: 10.1016/j.cstres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response, ER-associated degradation, and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
Collapse
Affiliation(s)
- Yifan Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hong Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Eryu Ning
- Gusu School, Nanjing Medical University, Suzhou, PR China; Department of Sports Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| |
Collapse
|
26
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
27
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
28
|
Cruz DF, Donovan J, Hejenkowska ED, Mu F, Banerjee I, Köhn M, Farinha CM, Swiatecka-Urban A. LMTK2 switches on canonical TGF-β1 signaling in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2024; 327:L769-L782. [PMID: 39316683 PMCID: PMC11560069 DOI: 10.1152/ajplung.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity. Namely, Smad7 recruits growth arrest and DNA damage (GADD34) protein that then interacts with the catalytic subunit of phosphoprotein phosphatase 1 (PP1c) to inactivate TGF-β receptor (TβR)-I and downregulate TGF-β1 signaling. Little is known about how TGF-β1 releases TβR-I from the GADD34-PP1c inhibition to activate its signaling. Transmembrane lemur tyrosine kinase 2 (LMTK2) is a PP1c inhibitor, and our published data showed that TGF-β1 recruits LMTK2 to the cell surface. Here, we tested the hypothesis that TGF-β1 recruits LMTK2 to inhibit PP1c, allowing activation of TβR-I. First, LMTK2 interacted with the TGF-β1 pathway in the human bronchial epithelium at multiple checkpoints. Second, TGF-β1 inhibited PP1c by an LMTK2-dependent mechanism. Third, TGF-β1 used LMTK2 to activate canonical Smad3-mediated signaling. We propose a model whereby the LMTK2-PP1c and Smad7-GADD34-PP1c complexes serve as on-and-off switches in the TGF-β1 signaling in human bronchial epithelium.NEW & NOTEWORTHY Activation of the transforming growth factor (TGF)-β1 signaling pathway is complex, involving many ligands, transmembrane receptors, transcription factors, and modulating proteins. The mechanisms of TGF-β1 signaling activation/inactivation are not fully understood. We propose for the first time a model by which transmembrane lemur tyrosine kinase 2 (LMTK2) forms a complex with phosphoprotein phosphatase 1 (PP1c) to activate TGF-β1 signaling and Smad7, growth arrest and DNA damage (GADD34), and PP1C form a complex to inactivate TGF-β1 signaling in human bronchial epithelium.
Collapse
Affiliation(s)
- Daniel F Cruz
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Joshua Donovan
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Ewelina D Hejenkowska
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ipsita Banerjee
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maja Köhn
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
29
|
Ivarsdottir EV, Gudmundsson J, Tragante V, Sveinbjornsson G, Kristmundsdottir S, Stacey SN, Halldorsson GH, Magnusson MI, Oddsson A, Walters GB, Sigurdsson A, Saevarsdottir S, Beyter D, Thorleifsson G, Halldorsson BV, Melsted P, Stefansson H, Jonsdottir I, Sørensen E, Pedersen OB, Erikstrup C, Bøgsted M, Pøhl M, Røder A, Stroomberg HV, Gögenur I, Hillingsø J, Bojesen SE, Lassen U, Høgdall E, Ullum H, Brunak S, Ostrowski SR, Sonderby IE, Frei O, Djurovic S, Havdahl A, Moller P, Dominguez-Valentin M, Haavik J, Andreassen OA, Hovig E, Agnarsson BA, Hilmarsson R, Johannsson OT, Valdimarsson T, Jonsson S, Moller PH, Olafsson JH, Sigurgeirsson B, Jonasson JG, Tryggvason G, Holm H, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Gene-based burden tests of rare germline variants identify six cancer susceptibility genes. Nat Genet 2024; 56:2422-2433. [PMID: 39472694 DOI: 10.1038/s41588-024-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/30/2024] [Indexed: 11/10/2024]
Abstract
Discovery of cancer risk variants in the sequence of the germline genome can shed light on carcinogenesis. Here we describe gene burden association analyses, aggregating rare missense and loss of function variants, at 22 cancer sites, including 130,991 cancer cases and 733,486 controls from Iceland, Norway and the United Kingdom. We identified four genes associated with increased cancer risk; the pro-apoptotic BIK for prostate cancer, the autophagy involved ATG12 for colorectal cancer, TG for thyroid cancer and CMTR2 for both lung cancer and cutaneous melanoma. Further, we found genes with rare variants that associate with decreased risk of cancer; AURKB for any cancer, irrespective of site, and PPP1R15A for breast cancer, suggesting that inhibition of PPP1R15A may be a preventive strategy for breast cancer. Our findings pinpoint several new cancer risk genes and emphasize autophagy, apoptosis and cell stress response as a focus point for developing new therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bøgsted
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - Mette Pøhl
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Røder
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Jens Hillingsø
- Department of Transplantation, Digestive Diseases and General Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Pal Moller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjarni A Agnarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Rafn Hilmarsson
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Trausti Valdimarsson
- The Medical Center, Glaesibae, Reykjavik, Iceland
- Department of Medicine, West Iceland Healthcare Centre, Akranes, Iceland
| | - Steinn Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall H Moller
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Bardur Sigurgeirsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Geir Tryggvason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
30
|
Karasik A, Guydosh NR. The Unusual Role of Ribonuclease L in Innate Immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1878. [PMID: 39727035 PMCID: PMC11672174 DOI: 10.1002/wrna.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Ribonuclease L is an endonuclease that is activated as part of the dsRNA-driven innate immune response. Active RNase L cleaves pathogenic RNAs as a way to eliminate infections. However, there are additional and unexpected ways that RNase L causes changes in the host that promote an immune response and contribute to its role in host defense. Central to these unconventional mechanisms is the observation that RNase L also degrades the mRNA of the host. In turn, mRNA fragments that RNase L generates can be translated. This causes activation of a ribosome collision sensor that leads to downstream signaling and cell death. Additionally, the liberation of RNA binding proteins after RNA decay appears to affect gene expression. In this review, we discuss these and other recent advances that focus on novel and unusual ways RNase L contributes to innate immunity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Nicholas R. Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
31
|
Wan X, Zhang H, Tian J, Liu L, An Z, Zhao X, Zhang L, Yang X, Ge C, Song X. The cGAS-STING/PERK-eIF2α: Individual or Potentially Collaborative Signaling Transduction in Cardiovascular Diseases. Int J Biol Sci 2024; 20:5868-5887. [PMID: 39664570 PMCID: PMC11628330 DOI: 10.7150/ijbs.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/19/2024] [Indexed: 12/13/2024] Open
Abstract
Over the past several decades, a canonical pathway called the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) mediating type I interferon (IFN) release via TANK-binding kinase 1(TBK1) / IFN regulatory factor 3 (IRF3) pathway has been widely investigated and characterized. Unexpectedly, recent studies show that the cGAS-STING noncanonically activates the protein kinase RNA-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α), an essential branch of unfolded protein response (UPR), even before the activation of the TBK1/IRF3 signaling. Additionally, we found that the PERK could regulate the STING signaling besides being modulated by upstream cGAS-STING. However, earlier evidence solely focused on the unidirectional regulation of STING and PERK, lacking their functional crosstalk. Hence, we postulate that there is a complex relationship between the cGAS-STING and PERK-eIF2α pathways and that, through convergent downstream signaling, they may collaboratively contribute to the pathophysiology of cardiovascular diseases (CVDs) via the cGAS-STING/PERK-eIF2α signaling axis. This study provides a novel pathway for the development of CVDs and paves the foundation for potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| |
Collapse
|
32
|
Badu P, Baniulyte G, Sammons MA, Pager CT. Activation of ATF3 via the integrated stress response pathway regulates innate immune response to restrict Zika virus. J Virol 2024; 98:e0105524. [PMID: 39212382 PMCID: PMC11494902 DOI: 10.1128/jvi.01055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that can have devastating health consequences. The developmental and neurological effects of a ZIKV infection arise in part from the virus triggering cellular stress pathways and perturbing transcriptional programs. To date, the underlying mechanisms of transcriptional control directing viral restriction and virus-host interaction are understudied. Activating Transcription Factor 3 (ATF3) is a stress-induced transcriptional effector that modulates the expression of genes involved in a myriad of cellular processes, including inflammation and antiviral responses, to restore cellular homeostasis. While ATF3 is known to be upregulated during ZIKV infection, the mode by which ATF3 is activated, and the specific role of ATF3 during ZIKV infection is unknown. In this study, we show via inhibitor and RNA interference approaches that ZIKV infection initiates the integrated stress response pathway to activate ATF4 which in turn induces ATF3 expression. Additionally, by using CRISPR-Cas9 system to delete ATF3, we found that ATF3 acts to limit ZIKV gene expression in A549 cells. We also determined that ATF3 enhances the expression of antiviral genes such as STAT1 and other components in the innate immunity pathway to induce an ATF3-dependent anti-ZIKV response. Our study reveals crosstalk between the integrated stress response and innate immune response pathways and highlights an important role for ATF3 in establishing an antiviral effect during ZIKV infection. IMPORTANCE Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that co-opts cellular mechanisms to support viral processes that can reprogram the host transcriptional profile. Such viral-directed transcriptional changes and the pro- or anti-viral outcomes remain understudied. We previously showed that ATF3, a stress-induced transcription factor, is significantly upregulated in ZIKV-infected mammalian cells, along with other cellular and immune response genes. We now define the intracellular pathway responsible for ATF3 activation and elucidate the impact of ATF3 expression on ZIKV infection. We show that during ZIKV infection, the integrated stress response pathway stimulates ATF3 which enhances the innate immune response to antagonize ZIKV infection. This study establishes a link between viral-induced stress response and transcriptional regulation of host defense pathways and thus expands our knowledge of virus-mediated transcriptional mechanisms and transcriptional control of interferon-stimulated genes during ZIKV infection.
Collapse
Affiliation(s)
- Pheonah Badu
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Gabriele Baniulyte
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Morgan A. Sammons
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Cara T. Pager
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| |
Collapse
|
33
|
Lidonnici J, Oberkersch RE. Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis. Int J Mol Sci 2024; 25:11284. [PMID: 39457064 PMCID: PMC11508371 DOI: 10.3390/ijms252011284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Angiogenesis, the process of formation of new blood vessels from pre-existing vasculature, is essential for tumor growth and metastasis. Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF) signaling is a powerful tool to combat tumor growth; however, anti-tumor angiogenesis therapy has shown limited efficacy, with survival benefits ranging from only a few weeks to months. Compensation by upregulation of complementary growth factors and switches to different modes of vascularization have made these types of therapies less effective. Recent evidence suggests that targeting specific players in endothelial metabolism is a valuable therapeutic strategy against tumor angiogenesis. Although it is clear that metabolism can modulate the translational machinery, the reciprocal relationship between metabolism and mRNA translational control during tumor angiogenesis is not fully understood. In this review, we explore emerging examples of how endothelial cell metabolism affects mRNA translation during the formation of blood vessels. A deeper comprehension of these mechanisms could lead to the development of innovative therapeutic strategies for both physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy;
| | | |
Collapse
|
34
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
35
|
Li X, Ruan T, Wang S, Sun X, Liu C, Peng Y, Tao Y. Mitochondria at the Crossroads of Cholestatic Liver Injury: Targeting Novel Therapeutic Avenues. J Clin Transl Hepatol 2024; 12:792-801. [PMID: 39280065 PMCID: PMC11393838 DOI: 10.14218/jcth.2024.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024] Open
Abstract
Bile acids are byproducts of cholesterol metabolism in the liver and constitute the primary components of bile. Disruption of bile flow leads to cholestasis, characterized by the accumulation of hydrophobic bile acids in the liver and bloodstream. Such accumulation can exacerbate liver impairment. This review discussed recent developments in understanding how bile acids contribute to liver damage, including disturbances in mitochondrial function, endoplasmic reticulum stress, inflammation, and autophagy dysfunction. Mitochondria play a pivotal role in cholestatic liver injury by influencing hepatocyte apoptosis and inflammation. Recent findings linking bile acids to liver damage highlight new potential treatment targets for cholestatic liver injury.
Collapse
Affiliation(s)
- Xutao Li
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyin Ruan
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
36
|
Labbé K, LeBon L, King B, Vu N, Stoops EH, Ly N, Lefebvre AEYT, Seitzer P, Krishnan S, Heo JM, Bennett B, Sidrauski C. Specific activation of the integrated stress response uncovers regulation of central carbon metabolism and lipid droplet biogenesis. Nat Commun 2024; 15:8301. [PMID: 39333061 PMCID: PMC11436933 DOI: 10.1038/s41467-024-52538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The integrated stress response (ISR) enables cells to cope with a variety of insults, but its specific contribution to downstream cellular outputs remains unclear. Using a synthetic tool, we selectively activate the ISR without co-activation of parallel pathways and define the resulting cellular state with multi-omics profiling. We identify time- and dose-dependent gene expression modules, with ATF4 driving only a small but sensitive subgroup that includes amino acid metabolic enzymes. This ATF4 response affects cellular bioenergetics, rerouting carbon utilization towards amino acid production and away from the tricarboxylic acid cycle and fatty acid synthesis. We also find an ATF4-independent reorganization of the lipidome that promotes DGAT-dependent triglyceride synthesis and accumulation of lipid droplets. While DGAT1 is the main driver of lipid droplet biogenesis, DGAT2 plays an essential role in buffering stress and maintaining cell survival. Together, we demonstrate the sufficiency of the ISR in promoting a previously unappreciated metabolic state.
Collapse
Affiliation(s)
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Bryan King
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Nina Ly
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | - Jin-Mi Heo
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | |
Collapse
|
37
|
Renner DM, Parenti NA, Weiss SR. BETACORONAVIRUSES DIFFERENTIALLY ACTIVATE THE INTEGRATED STRESS RESPONSE TO OPTIMIZE VIRAL REPLICATION IN LUNG DERIVED CELL LINES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614975. [PMID: 39386680 PMCID: PMC11463420 DOI: 10.1101/2024.09.25.614975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The betacoronavirus genus contains five of the seven human viruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus- HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus) and MERS-CoV (merbecovirus)- to study betacoronavirus interaction with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation in lung derived cell lines. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of GADD34 expression, an inducible phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, CReP, dramatically reduced HCoV-OC43 replication. Combining growth arrest and DNA damage-inducible protein (GADD34) knockout with peripheral ER membrane-targeted protein (CReP) knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation. IMPORTANCE Lethal human betacoronaviruses have emerged three times in the last two decades, causing two epidemics and a pandemic. Here, we demonstrate differences in how these viruses interact with cellular translational control mechanisms. Utilizing inhibitory compounds and genetic ablation, we demonstrate that MERS-CoV and HCoV-OC43 benefit from keeping p-eIF2α levels low to maintain high rates of virus translation while SARS-CoV-2 tolerates high levels of p-eIF2α. We utilized a PP1:GADD34/CReP inhibitor, GADD34 KO cells, and CReP-targeting siRNA to investigate the therapeutic potential of these pathways. While ineffective for SARS-CoV-2, we found that HCoV-OC43 seems to primarily utilize CReP to limit p-eIF2a accumulation. This work highlights the need to consider differences amongst these viruses, which may inform the development of host-directed pan-coronavirus therapeutics.
Collapse
Affiliation(s)
- David M. Renner
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| | - Nicholas A. Parenti
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| | - Susan R. Weiss
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| |
Collapse
|
38
|
Yang Y, Xiong T, Wang T, Chen X, Ma Z, Zuo B, Ning D, Song R, Liu X, Wang D. Small GTP-binding protein GDP dissociation stimulator influences cisplatin-induced acute kidney injury via PERK-dependent ER stress. Commun Biol 2024; 7:1091. [PMID: 39237614 PMCID: PMC11377573 DOI: 10.1038/s42003-024-06792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cisplatin is a common anticancer drug, but its frequent nephrotoxicity limits its clinical use. Small GTP-binding protein GDP dissociation stimulator (smgGDS), a small GTPase chaperone protein, was considerably downregulated during cisplatin-induced acute kidney injury (CDDP-AKI), especially in renal tubular epithelial cells. SmgGDS-knockdown mice was established and found that smgGDS knockdown promoted CDDP-AKI, as demonstrated by an increase in serum creatine, blood urea nitrogen levels and the appearance of tubular patterns. RNA sequencing suggested that protein kinase RNA-like ER kinase (PERK), which bridges mitochondria-associated ER membranes, was involved in smgGDS knockdown following CDDP-AKI, and then identified that smgGDS knockdown increased phosphorylated-PERK in vivo and in vitro. Furthermore, we confirmed that smgGDS deficiency aggravated apoptosis and ER stress in vivo and in vitro. And the ER stress inhibitor 4-Phenylbutyric acid and the inhibition of PERK phosphorylation mitigated smgGDS deficiency-induced ER stress related apoptosis following cisplatin treatment, while the eIF2α phosphorylation inhibitor could not reverse the smgGDS deficiency accelerated cell death. Furthermore, the over-expression of smgGDS could reverse the ER stress and apoptosis caused by CDDP. Overall, smgGDS regulated PERK-dependent ER stress and apoptosis, thereby influencing renal damage. This study identified a target for diagnosing and treating cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Yuxue Yang
- The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ting Xiong
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Ti Wang
- The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China
| | - Xiwei Chen
- The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China
| | - Ziwei Ma
- Clinical Medical College, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Bangyun Zuo
- The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China
| | - Dong Ning
- School of Medicine, National University of Ireland Galway, University Road, Galway, 999014, Ireland
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, #88 South University Avenue, Yangzhou, Jiangsu, 225009, China
| | - Xuesong Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Daxin Wang
- The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|
39
|
Prabhakar A, Wadhwa M, Kumar R, Ghatpande P, Gandjeva A, Tuder RM, Graham BB, Lagna G, Hata A. Mechanisms underlying age-associated exacerbation of pulmonary veno-occlusive disease. JCI Insight 2024; 9:e181877. [PMID: 39269983 PMCID: PMC11466196 DOI: 10.1172/jci.insight.181877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare but severe form of pulmonary hypertension characterized by the obstruction of pulmonary arteries and veins, causing increased pulmonary artery pressure and leading to right ventricular (RV) heart failure. PVOD is often resistant to conventional pulmonary arterial hypertension (PAH) treatments and has a poor prognosis, with a median survival time of 2-3 years after diagnosis. We previously showed that the administration of a chemotherapy agent mitomycin C (MMC) in rats mediates PVOD through the activation of the eukaryotic initiation factor 2 (eIF2) kinase protein kinase R (PKR) and the integrated stress response (ISR), resulting in the impairment of vascular endothelial junctional structure and barrier function. Here, we demonstrate that aged rats over 1 year exhibit more severe vascular remodeling and RV hypertrophy than young adult rats following MMC treatment. This is attributed to an age-associated elevation of basal ISR activity and depletion of protein phosphatase 1, leading to prolonged eIF2 phosphorylation and sustained ISR activation. Pharmacological blockade of PKR or ISR mitigates PVOD phenotypes in both age groups, suggesting that targeting the PKR/ISR axis could be a potential therapeutic strategy for PVOD.
Collapse
Affiliation(s)
| | - Meetu Wadhwa
- Department of Anesthesia and Perioperative Care, and
- Department of Radiology, UCSF, San Francisco, California, USA
| | - Rahul Kumar
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, California, USA
| | | | - Aneta Gandjeva
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rubin M. Tuder
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brian B. Graham
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, California, USA
| | | | - Akiko Hata
- Cardiovascular Research Institute
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
40
|
Fu Q, Wang Y, Qin J, Xie D, McNally D, Yoon S. Enhanced ER protein processing gene expression increases rAAV yield and full capsid ratio in HEK293 cells. Appl Microbiol Biotechnol 2024; 108:459. [PMID: 39230729 PMCID: PMC11374875 DOI: 10.1007/s00253-024-13281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
The recombinant adeno-associated virus (rAAV) vector is among the most promising viral vectors in gene therapy. However, the limited manufacturing capacity in human embryonic kidney (HEK) cells is a barrier to rAAV commercialization. We investigated the impact of endoplasmic reticulum (ER) protein processing and apoptotic genes on transient rAAV production in HEK293 cells. We selected four candidate genes based on prior transcriptomic studies: XBP1, GADD34 / PPP1R15A, HSPA6, and BCL2. These genes were stably integrated into HEK293 host cells. Traditional triple-plasmid transient transfection was used to assess the vector production capability and the quality of both the overexpressed stable pools and the parental cells. We show that the overexpression of XBP1, HSPA6, and GADD34 increases rAAV productivity by up to 100% and increases specific rAAV productivity by up to 78% in HEK293T cells. Additionally, more prominent improvement associated with ER protein processing gene overexpression was observed when parental cell productivity was high, but no substantial variation was detected under low-producing conditions. We also confirmed genome titer improvement across different serotypes (AAV2 and AAV8) and different cell lines (HEK293T and HEK293); however, the extent of improvement may vary. This study unveiled the importance of ER protein processing pathways in viral particle synthesis, capsid assembly, and vector production. KEY POINTS: • Upregulation of endoplasmic reticulum (ER) protein processing (XBP1, HSPA6, and GADD34) leads to a maximum 100% increase in rAAV productivity and a maximum 78% boost in specific rAAV productivity in HEK293T cells • The enhancement in productivity can be validated across different HEK293 cell lines and can be used for the production of various AAV serotypes, although the extent of the enhancement might vary slightly • The more pronounced improvements linked to overexpressing ER protein processing genes were observed when parental cell productivity was high, with minimal variation noted under low-producing conditions.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Jiansong Qin
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - David McNally
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA, 02126, USA
| | - Seongkyu Yoon
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
41
|
Kueck AF, van den Boom J, Koska S, Ron D, Meyer H. Alternating binding and p97-mediated dissociation of SDS22 and I3 recycles active PP1 between holophosphatases. Proc Natl Acad Sci U S A 2024; 121:e2408787121. [PMID: 39207734 PMCID: PMC11388335 DOI: 10.1073/pnas.2408787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Protein phosphatase-1 catalytic subunit (PP1) joins diverse targeting subunits to form holophosphatases that regulate many cellular processes. Newly synthesized PP1 is known to be transiently sequestered in an inhibitory complex with Suppressor-of-Dis2-number-2 (SDS22) and Inhibitor-3 (I3), which is disassembled by the ATPases Associated with diverse cellular Activities plus (AAA+) protein p97. Here, we show that the SDS22-PP1-I3 complex also acts as a thermodynamic sink for mature PP1 and that cycles of SDS22-PP1-I3 formation and p97-driven disassembly regulate PP1 function and subunit exchange beyond PP1 biogenesis. Förster Resonance energy transfer (FRET) analysis of labeled proteins in vitro revealed that in the p97-mediated disassembly step, both SDS22 and I3 dissociate concomitantly, releasing PP1. In presence of a targeting subunit, for instance Growth Arrest and DNA Damage-inducible protein 34 (GADD34), liberated PP1 formed an active holophosphatase that dephosphorylated its substrate, eukaryotic translation initiation factor 2 alpha (eIF2α). Inhibition of p97 results in displacement of the GADD34 targeting subunit by rebinding of PP1 to SDS22 and I3 indicating that the SDS22-PP1-I3 complex is thermodynamically favored. Likewise, p97 inhibition in cells causes rapid sequestration of PP1 by free SDS22 and I3 at the expense of other subunits. This suggests that PP1 exists in a steady state maintained by spontaneous SDS22-PP1-I3 formation and adenosine triphosphate (ATP) hydrolysis, p97-driven disassembly that recycles active PP1 between different holophosphatase complexes to warrant a dynamic holophosphatase landscape.
Collapse
Affiliation(s)
- Anja F Kueck
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johannes van den Boom
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sandra Koska
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - David Ron
- Cellular Pathophysiology and Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Hemmo Meyer
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
42
|
Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, Zhang H. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod 2024; 111:292-311. [PMID: 38678504 DOI: 10.1093/biolre/ioae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.
Collapse
Affiliation(s)
- Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
43
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
44
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
45
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
46
|
Badu P, Baniulyte G, Sammons MA, Pager CT. Activation of ATF3 via the Integrated Stress Response Pathway Regulates Innate Immune Response to Restrict Zika Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550716. [PMID: 37546954 PMCID: PMC10402074 DOI: 10.1101/2023.07.26.550716] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that can have devastating health consequences. The developmental and neurological effects from a ZIKV infection arise in part from the virus triggering cellular stress pathways and perturbing transcriptional programs. To date, the underlying mechanisms of transcriptional control directing viral restriction and virus-host interaction are understudied. Activating Transcription Factor 3 (ATF3) is a stress-induced transcriptional effector that modulates the expression of genes involved in a myriad of cellular processes, including inflammation and antiviral responses, to restore cellular homeostasis. While ATF3 is known to be upregulated during ZIKV infection, the mode by which ATF3 is activated and the specific role of ATF3 during ZIKV infection is unknown. In this study, we show via inhibitor and RNA interference approaches that ZIKV infection initiates the integrated stress response pathway to activate ATF4 which in turn induces ATF3 expression. Additionally, by using CRISPR-Cas9 system to delete ATF3, we found that ATF3 acts to limit ZIKV gene expression in A549 cells. We also determined that ATF3 enhances the expression of antiviral genes such as STAT1 and other components in the innate immunity pathway to induce an ATF3-dependent anti-ZIKV response. Our study reveals crosstalk between the integrated stress response and innate immune response pathways and highlights an important role for ATF3 in establishing an antiviral effect during ZIKV infection.
Collapse
Affiliation(s)
- Pheonah Badu
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
| | - Gabriele Baniulyte
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
| | - Morgan A. Sammons
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
| | - Cara T. Pager
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222
| |
Collapse
|
47
|
Gibbs VJ, Lin YH, Ghuge AA, Anderson RA, Schiemann AH, Conaglen L, Sansom BJM, da Silva RC, Sattlegger E. GCN2 in Viral Defence and the Subversive Tactics Employed by Viruses. J Mol Biol 2024; 436:168594. [PMID: 38724002 DOI: 10.1016/j.jmb.2024.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.
Collapse
Affiliation(s)
- Victoria J Gibbs
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yu H Lin
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Aditi A Ghuge
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Reuben A Anderson
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Layla Conaglen
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bianca J M Sansom
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Richard C da Silva
- School of Natural Sciences, Massey University, Auckland, New Zealand; Genome Biology and Epigenetics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Evelyn Sattlegger
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand; School of Natural Sciences, Massey University, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Palmerston North, New Zealand.
| |
Collapse
|
48
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
49
|
Bidooki SH, Barranquero C, Sánchez-Marco J, Martínez-Beamonte R, Rodríguez-Yoldi MJ, Navarro MA, Fernandes SCM, Osada J. TXNDC5 Plays a Crucial Role in Regulating Endoplasmic Reticulum Activity through Different ER Stress Signaling Pathways in Hepatic Cells. Int J Mol Sci 2024; 25:7128. [PMID: 39000233 PMCID: PMC11241358 DOI: 10.3390/ijms25137128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Cristina Barranquero
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
50
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. Cell Rep 2024; 43:114287. [PMID: 38823018 PMCID: PMC11251458 DOI: 10.1016/j.celrep.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|